OTP, One-Time Programmable, memory is a device that can be programmed once and only once. The OTP can be a fuse that has low resistance state initially to be programmed into a high resistance state. The OTP can be an anti-fuse that has high resistance state initially to be programmed into a lower resistance state. The OTP can also be a charge-trapping device. By determining certain parameters about whether there is sufficient charge stored in a floating gate or oxide/nitride spacer, a proper initial and programmed state can be determined. The fuse can be an interconnect fuse, such as silicided polysilicon, metal, or metal-gate fuse, or a contact/via fuse. The anti-fuse can be a gate-oxide breakdown fuse in a MOS or dielectric breakdown fuse between two conductors.
There are many applications that require a memory can be programmed a few times, from two times to several hundred times, called MTP, Multiple-Time Programmable memory. This kind of device typically falls between one-time OTP and 10K times programmable memory, such as a flash memory. The process requirements for MTP are also different from OTP and flash memory. Normally, in fabrication, MTP can allow adding one or two more masks, while OTP requires zero add-on mask and flash memory can allow adding at least 7-8 masks over the standard logic processes.
An OTP memory can be used to implement an MTP memory. Such as a memory can be referred to as a pseudo-MTP. By using N OTP cells as one pseudo-MTP cell, each pseudo-MTP cell can be programmed N times by programming into the different OTP cells each time in the pseudo-MTP cell. Alternatively, N OTP memories can be used as one N-time programmable MTP by programming into different OTP memory each time.
The conventional approach to providing a control system to keep track of the number of times programmed and to generate proper addresses is too complicated and thus undesirable for use with a pseudo-MTP. The overhead for the control system is too high to use pseudo-MTP effectively. Thus, there is a need for improved methods and circuits to keep track of program counts and to generate proper addresses to access an OTP memory to emulate an MTP memory. As a result, a pseudo-MTP memory can be rendered very easy to use and its cost can be relatively low.
Embodiments disclosed herein use various schemes to emulate an MTP memory by using an integrated OTP memory, i.e., a so-called pseudo-MTP memory, with minimum system overhead. The integrated pseudo-MTP memory can have at least one non-volatile register to store program count and block size for different count and block configurations. The integrated pseudo-MTP can use a built-in address mapping scheme to generate proper addresses based on the number of program counts. Thus, the system overhead to access a pseudo-MTP memory can be minimized.
According to one embodiment, a pseudo-memory device can have at least one non-volatile register to store block size and program count information so that a fixed OTP memory can be configured into different tradeoffs between block sizes and program counts. The smaller the block size, the larger the program counts and vice versa. Every time a new round of programming is started, the count register will update at least once so that the follow-on programming will be mapped into a new OTP block associated with the latest program count. Any subsequent read operation will find the latest program count from the program count register and to generate a proper address to access the latest OTP block associated with the latest program count.
The invention can be implemented in numerous ways, including as a method, system, device, or apparatus (including computer readable medium). Several embodiments of the invention are discussed below.
As an OTP-for-MTP memory, one embodiment can, for example, include at least an OTP memory that has a plurality of OTP blocks and at least one non-volatile register to store block size and program count information so that a fixed OTP memory can be configured into different tradeoffs between blocks sizes and program counts. The smaller the block size, the larger the program counts and vice versa. Every time a new round of programming is started the count register can be updated at least once so that follow-on programming can be mapped into a new OTP block associated with the latest program count. Any subsequent read operation will acquire the latest (current) program count from the program count register and generate a proper address to access the latest OTP block associated with the latest program count.
As an electronic system, one embodiment can, for example, include at least: a processor; and an OTP-for-MTP memory operatively connected to the processor. The OTP-for-MTP memory can include at least an OTP memory that has a plurality of OTP blocks and at least one non-volatile register to store block size and program count information so that a fixed OTP memory can be configured into different tradeoffs between blocks sizes and program counts. The smaller the block size, the larger the program counts and vice versa. Every time a new round of programming is started the count register can be updated at least once so that follow-on programming can be mapped into a new OTP block associated with the latest program count. Any subsequent read operation will acquire the latest (current) program count from the program count register and generate a proper address to access the latest OTP block associated with the latest program count.
As a method for building an OTP for MTP memory, one embodiment can, for example, include at least: providing an OTP memory that has a plurality of OTP blocks and at least one non-volatile register to store block size and program count information so that a fixed OTP memory can be configured into various blocks sizes versus different program counts tradeoff. The smaller the block size, the larger the program count can become and vice versa. Every time starting a new round of programming, the count register can be updated at least once so that follow-on programming can be mapped into a new OTP block associated with the updated program count. Any subsequent read will find the latest program count from the program count register and to generate a proper address to access the latest OTP block associated with the latest program count.
The present invention will be readily understood by the following detailed descriptions in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
Embodiments disclosed herein use various schemes to use a portion of OTP memory with different blocks for different program counts to operate like, i.e., mimic, an MTP memory. Embodiments can also use an automatic address generation to access different blocks in the OTP memory. A portion of OTP memory can be divided into many blocks associated with different program counts. The block sizes can be made smaller to accommodate more program counts, or can be made larger to accommodate fewer program counts. There can be at least one non-volatile register to store block sizes and program counts. There can also be circuitry to generate a block address based on program counts. The block address together with the lower bits in an input address can be used to generate a final address to access the OTP memory accordingly as the latest data that has been programmed. The embodiment can implement in a pseudo-MTP memory.
Several embodiments of the invention are discussed below with reference to
The MTP base register in
The embodiments of invention can be implemented in a part or all of an OTP, One-Time-Programmable memory, to emulate functionality of an MTP memory. The OTP can be an electrical fuse, anti-fuse, or charge-trapping device, depending on different embodiments. The electrical fuse can be an interconnect fuse, such as silicided polysilicon, metal, or metal-gate fuse, or can be a contact/via fuse. The anti-fuse can be a MOS gate oxide breakdown anti-fuse or can be a dielectric breakdown anti-fuse built between two conductors. The charge-trapping OTP can be based on charge-trapping mechanism in the floating gate or oxide/nitride spacer. There are many variations and equivalent embodiments of building OTPs for MTP and they all fall within the scope of this invention for those skilled in the art.
Additional details on OTP devices, including designing, using and programming thereof, can be found in: (i) U.S. patent application Ser. No. 13/471,704, filed on May 15, 2012 and entitled “Circuit and System of Using Junction Diode as Program Selector for One-Time Programmable Devices,” which is hereby incorporated herein by reference; (ii) U.S. patent application Ser. No. 13/026,752, filed on Feb. 14, 2011 and entitled “Circuit and System of Using Junction Diode as Program Selector for One-Time Programmable Devices,” which is hereby incorporated herein by reference; (iii) U.S. patent application Ser. No. 13/026,656, filed on Feb. 14, 2011 and entitled “Circuit and System of Using Polysilicon Diode As Program Selector for One-Time Programmable Devices,” which is hereby incorporated herein by reference; (iv) U.S. patent application Ser. No. 13/026,752, filed on Feb. 14, 2011 and entitled “Circuit and System of Using a Junction Diode as Program Selector for One-Time Programmable Devices,” which is hereby incorporated herein by reference; (v) U.S. patent application Ser. No. 13/954,831, filed on Jul. 30, 2013 and entitled “Circuit and System of Using Junction Diode as Program Selector for One-Time Programmable Devices,” which is hereby incorporated herein by reference; (vi) U.S. patent application Ser. No. 13/471,704, filed on May 15, 2012 and entitled “Circuit and System of Using a Junction Diode as Program Selector for One-Time Programmable Devices,” which is hereby incorporated herein by reference; (vii) U.S. patent application Ser. No. 13/835,308, filed on Mar. 5, 2013 and entitled “Circuit and System of Using a Junction Diode as Program Selector for One-Time Programmable Devices,” which is hereby incorporated herein by reference; (viii) U.S. patent application Ser. No. 13/840,965, filed on Mar. 15, 2013 and entitled “Circuit and System of Using Junction Diode as Program Selector and Mos as Read Selector for One-Time Programmable Devices,” which is hereby incorporated herein by reference; (ix) U.S. patent application Ser. No. 13/970,562, filed on Aug. 19, 2013 and entitled “Circuit and System of Using Junction Diode as Program Selector for Metal Fuses for One-Time Programmable Devices,” which is hereby incorporated herein by reference; (x) U.S. patent application Ser. No. 13/842,824, filed on Mar. 15, 2013 and entitled “Circuit and System of Using a Junction Diode as Program Selector for One-Time Programmable Devices,” which is hereby incorporated herein by reference; (xi) U.S. patent application Ser. No. 14/749,392, filed on Jun. 24, 2015 and entitled “Circuit and System of Using a Junction Diode as Program Selector for One-Time Programmable Devices,” which is hereby incorporated herein by reference; (xii) U.S. patent application Ser. No. 14/485,698, filed on Sep. 13, 2014 and entitled “One-Time Programmable Devices Using Junction Diode as Program Selector for Electrical Fuses with Extended Area,” which is hereby incorporated herein by reference; (xiii) U.S. patent application Ser. No. No. 14/485,696, filed on Sep. 13, 2014 and entitled “Method and Structure for Reliable Electrical Fuse Programming,” which is hereby incorporated herein by reference; (xiv) U.S. patent application Ser. No. 14/644,020, filed on Mar. 10, 2015 and entitled “Method and Structure for Reliable Electrical Fuse Programming,” which is hereby incorporated herein by reference; (xv) U.S. patent application Ser. No. 13/590,044, filed on Aug. 20, 2012 and entitled “Multiple-Bit Programmable Resistive Memory Using Diode as Program Selector,” which is hereby incorporated herein by reference; (xvi) U.S. patent application Ser. No. 13/288,843, filed on Nov. 3, 2011 and entitled “Low-In-Count Non-Volatile Memory Interface,” which is hereby incorporated herein by reference; (xvii) U.S. patent application Ser. No. 14/553,874, filed on Nov. 25, 2014 and entitled “Low-In-Count Non-Volatile Memory Interface,” which is hereby incorporated herein by reference; (xviii) U.S. patent application Ser. No. 14/231,404, filed on Mar. 31, 2014 and entitled “Low-Pin-Count Non-Volatile Memory Interface with Soft Programming Capability,” which is hereby incorporated herein by reference; (xix) U.S. patent application Ser. No. 14/792,479, filed on Jul. 6, 2015 and entitled “Low-Pin-Count Non-Volatile Memory Interface with Soft Programming Capability,” which is hereby incorporated herein by reference; (xx) U.S. patent application Ser. No. 14/231,413, filed on Mar. 31, 2014 and entitled “Low-In-Count Non-Volatile Memory Embedded in a Integrated Circuit without any Additional Pins for Access,” which is hereby incorporated herein by reference; (xxi) U.S. patent application Ser. No. 14/493,069, filed on Sep. 22, 2014 and entitled “Low-In-Count Non-Volatile Memory Interface for 3D IC,” which is hereby incorporated herein by reference; (xxii) U.S. patent application Ser. No. 14/636,155, filed on Mar. 2, 2015 and entitled “Low-In-Count Non-Volatile Memory Interface for 3D IC,” which is hereby incorporated herein by reference; (xxiii) U.S. patent application Ser. No. 13/761,057, filed on Feb. 6, 2013 and entitled “Circuit and System for Testing a One-Time Programmable (OTP) Memory,” which is hereby incorporated herein by reference; and (xxiv) U.S. patent application Ser. No. 14/500,743, filed on Sep. 29, 2014 and entitled “Circuit and System of Using Finfet for Building Programmable Resistive Devices,” which is hereby incorporated herein by reference.
The above description and drawings are only to be considered illustrative of exemplary embodiments, which achieve the features and advantages of certain embodiments of the present invention. Modifications and substitutions of specific process conditions and structures can be made without departing from the spirit and scope of the present invention.
The many features and advantages of the present invention are apparent from the written description and, thus, it is intended by the appended claims to cover all such features and advantages of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation as illustrated and described. Hence, all suitable modifications and equivalents may be resorted to as falling within the scope of the invention.
This application claims priority benefit of U.S. Provisional Patent Application No. 62/136,608, filed on Mar. 22, 2015, and title “SYSTEM AND METHOD OF AN INTEGRATED OTP FOR MTP MEMORY,” which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3198670 | Nissim | Aug 1965 | A |
3715242 | Daniel | Feb 1973 | A |
4148046 | Hendrickson et al. | Apr 1979 | A |
4192059 | Khan et al. | Mar 1980 | A |
4642674 | Schoofs | Feb 1987 | A |
5192989 | Matsushita et al. | Mar 1993 | A |
5389552 | Iranmanesh | Feb 1995 | A |
5447876 | Moyer et al. | Sep 1995 | A |
5635742 | Hoshi et al. | Jun 1997 | A |
5637901 | Beigel et al. | Jun 1997 | A |
5723890 | Fujihira et al. | Mar 1998 | A |
5757046 | Fujihira et al. | May 1998 | A |
5761148 | Allan et al. | Jun 1998 | A |
5962903 | Sung et al. | Oct 1999 | A |
6002156 | Lin | Dec 1999 | A |
6008092 | Gould | Dec 1999 | A |
6034882 | Johnson et al. | Mar 2000 | A |
6054344 | Liang et al. | Apr 2000 | A |
6140687 | Shimormura et al. | Oct 2000 | A |
6243864 | Odani et al. | Jun 2001 | B1 |
6249472 | Tamura et al. | Jun 2001 | B1 |
6346727 | Ohtomo | Feb 2002 | B1 |
6388292 | Lin | May 2002 | B1 |
6400540 | Chang | Jun 2002 | B1 |
6405160 | Djaja et al. | Jun 2002 | B1 |
6461934 | Nishida et al. | Oct 2002 | B2 |
6483734 | Sharma et al. | Nov 2002 | B1 |
6597629 | Raszka et al. | Jul 2003 | B1 |
6611043 | Takiguchi | Aug 2003 | B2 |
6731535 | Ooishi et al. | May 2004 | B1 |
6770953 | Boeck et al. | Aug 2004 | B2 |
6798684 | Low et al. | Sep 2004 | B2 |
6803804 | Madurawe | Oct 2004 | B2 |
6813705 | Duesterwald et al. | Nov 2004 | B2 |
6897543 | Huang et al. | May 2005 | B1 |
6934176 | Low et al. | Aug 2005 | B2 |
6944083 | Pedlow | Sep 2005 | B2 |
6967879 | Mizukoshi | Nov 2005 | B2 |
7009182 | Kannan et al. | Mar 2006 | B2 |
7102951 | Paillet et al. | Sep 2006 | B2 |
7167397 | Paillet et al. | Jan 2007 | B2 |
7211843 | Low et al. | May 2007 | B2 |
7212432 | Ferrant Et | May 2007 | B2 |
7224598 | Perner | May 2007 | B2 |
7263027 | Kim et al. | Aug 2007 | B2 |
7294542 | Okushima | Nov 2007 | B2 |
7369452 | Kenkare et al. | May 2008 | B2 |
7391064 | Tripsas et al. | Jun 2008 | B1 |
7411844 | Nitzan et al. | Aug 2008 | B2 |
7439608 | Arendt | Oct 2008 | B2 |
7461371 | Luo et al. | Dec 2008 | B2 |
7573762 | Kenkare et al. | Aug 2009 | B2 |
7579232 | Ping | Aug 2009 | B1 |
7589367 | Oh et al. | Sep 2009 | B2 |
7609578 | Buer et al. | Oct 2009 | B2 |
7660181 | Kumar et al. | Feb 2010 | B2 |
7696017 | Tripsas et al. | Apr 2010 | B1 |
7701038 | Chen et al. | Apr 2010 | B2 |
7759766 | Booth | Jul 2010 | B2 |
7764532 | Kurjanowicz et al. | Jul 2010 | B2 |
7772591 | Shih et al. | Aug 2010 | B1 |
7802057 | Iyer et al. | Sep 2010 | B2 |
7808815 | Ro et al. | Oct 2010 | B2 |
7830697 | Herner | Nov 2010 | B2 |
7833823 | Klersy | Nov 2010 | B2 |
7852656 | Shin et al. | Dec 2010 | B2 |
7859920 | Jung | Dec 2010 | B2 |
7889204 | Hansen et al. | Feb 2011 | B2 |
7910999 | Lee et al. | Mar 2011 | B2 |
8008723 | Nagai | Aug 2011 | B2 |
8050129 | Liu et al. | Nov 2011 | B2 |
8089137 | Lung et al. | Jan 2012 | B2 |
8115280 | Chen et al. | Feb 2012 | B2 |
8119048 | Nishimura | Feb 2012 | B2 |
8168538 | Chen et al. | May 2012 | B2 |
8174063 | Liu et al. | May 2012 | B2 |
8174922 | Naritake | May 2012 | B2 |
8179711 | Kim et al. | May 2012 | B2 |
8183665 | Bertin et al. | May 2012 | B2 |
8217490 | Bertin et al. | Jul 2012 | B2 |
8233316 | Liu et al. | Jul 2012 | B2 |
8339079 | Tamada | Dec 2012 | B2 |
8369166 | Kurjanowicz et al. | Feb 2013 | B2 |
8373254 | Chen et al. | Feb 2013 | B2 |
8380768 | Hoefler | Feb 2013 | B2 |
8415764 | Chung | Apr 2013 | B2 |
8482972 | Chung | Jul 2013 | B2 |
8488359 | Chung | Jul 2013 | B2 |
8488364 | Chung | Jul 2013 | B2 |
8503141 | Mallikarjunaswamy | Aug 2013 | B2 |
8514606 | Chung | Aug 2013 | B2 |
8526254 | Kurjanowicz et al. | Sep 2013 | B2 |
8559208 | Chung | Oct 2013 | B2 |
8570800 | Chung | Oct 2013 | B2 |
8576602 | Chung | Nov 2013 | B2 |
8598639 | Hsin | Dec 2013 | B2 |
8643085 | Pfirsch | Feb 2014 | B2 |
8644049 | Chung | Feb 2014 | B2 |
8648349 | Masuda et al. | Feb 2014 | B2 |
8649203 | Chung | Feb 2014 | B2 |
8680620 | Salcedo | Mar 2014 | B2 |
8699259 | Zhang et al. | Apr 2014 | B2 |
8760904 | Chung | Jun 2014 | B2 |
8804398 | Chung | Aug 2014 | B2 |
8817563 | Chung | Aug 2014 | B2 |
8830720 | Chung | Sep 2014 | B2 |
8848423 | Chung | Sep 2014 | B2 |
8854859 | Chung | Oct 2014 | B2 |
8861249 | Chung | Oct 2014 | B2 |
8913415 | Chung | Dec 2014 | B2 |
8913449 | Chung | Dec 2014 | B2 |
8923070 | Xia | Dec 2014 | B2 |
8923085 | Chung | Dec 2014 | B2 |
8929122 | Chung | Jan 2015 | B2 |
8988965 | Chung | Mar 2015 | B2 |
9019742 | Chung | Apr 2015 | B2 |
9019791 | Chung | Apr 2015 | B2 |
9025357 | Chung | May 2015 | B2 |
9070437 | Chung | Jun 2015 | B2 |
9178100 | Webster | Nov 2015 | B2 |
9236141 | Chung | Jan 2016 | B2 |
9281038 | Chung | Mar 2016 | B2 |
9305973 | Chung | Apr 2016 | B2 |
9324447 | Chung | Apr 2016 | B2 |
9324849 | Chung | Apr 2016 | B2 |
9343176 | Chung | May 2016 | B2 |
9460807 | Chung | Oct 2016 | B2 |
9478306 | Chung | Oct 2016 | B2 |
20020018355 | Johnson et al. | Feb 2002 | A1 |
20020075744 | McCollum | Jun 2002 | A1 |
20020168821 | Williams et al. | Nov 2002 | A1 |
20020196659 | Hurst et al. | Dec 2002 | A1 |
20030104860 | Cannon et al. | Jun 2003 | A1 |
20030135709 | Niles et al. | Jul 2003 | A1 |
20030169625 | Hush et al. | Sep 2003 | A1 |
20040057271 | Parkinson | Mar 2004 | A1 |
20040113183 | Karpov et al. | Jun 2004 | A1 |
20040130924 | Ma et al. | Jul 2004 | A1 |
20050060500 | Luo et al. | Mar 2005 | A1 |
20050062110 | Dietz et al. | Mar 2005 | A1 |
20050110081 | Pendharkar | May 2005 | A1 |
20050124116 | Hsu et al. | Jun 2005 | A1 |
20050146962 | Schreck | Jul 2005 | A1 |
20050242386 | Ang | Nov 2005 | A1 |
20060072357 | Wicker | Apr 2006 | A1 |
20060092689 | Braun et al. | May 2006 | A1 |
20060104111 | Tripsas et al. | May 2006 | A1 |
20060120148 | Kim et al. | Jun 2006 | A1 |
20060129782 | Bansal et al. | Jun 2006 | A1 |
20060215440 | Cho et al. | Sep 2006 | A1 |
20060244099 | Kurjanowicz | Nov 2006 | A1 |
20070004160 | Voldman | Jan 2007 | A1 |
20070008776 | Scheuerlein et al. | Jan 2007 | A1 |
20070030026 | Hsu et al. | Feb 2007 | A1 |
20070057323 | Furukawa et al. | Mar 2007 | A1 |
20070081377 | Zheng et al. | Apr 2007 | A1 |
20070133341 | Lee et al. | Jun 2007 | A1 |
20070138549 | Wu et al. | Jun 2007 | A1 |
20070223266 | Chen | Sep 2007 | A1 |
20070279978 | Ho et al. | Dec 2007 | A1 |
20080025068 | Scheuerlein et al. | Jan 2008 | A1 |
20080028134 | Matsubara et al. | Jan 2008 | A1 |
20080044959 | Cheng et al. | Feb 2008 | A1 |
20080067601 | Chen | Mar 2008 | A1 |
20080105878 | Ohara | May 2008 | A1 |
20080151612 | Pellizzer et al. | Jun 2008 | A1 |
20080170429 | Bertin et al. | Jul 2008 | A1 |
20080175060 | Liu et al. | Jul 2008 | A1 |
20080220560 | Klersy | Sep 2008 | A1 |
20080225567 | Burr et al. | Sep 2008 | A1 |
20080280401 | Burr et al. | Nov 2008 | A1 |
20080316852 | Matsufuji et al. | Dec 2008 | A1 |
20090055617 | Bansal et al. | Feb 2009 | A1 |
20090115021 | Moriwaki | May 2009 | A1 |
20090168493 | Kim et al. | Jul 2009 | A1 |
20090172315 | Iyer et al. | Jul 2009 | A1 |
20090180310 | Shimomura et al. | Jul 2009 | A1 |
20090194839 | Bertin et al. | Aug 2009 | A1 |
20090213660 | Pikhay et al. | Aug 2009 | A1 |
20090219756 | Schroegmeier et al. | Sep 2009 | A1 |
20090309089 | Hsia et al. | Dec 2009 | A1 |
20100027326 | Kim et al. | Feb 2010 | A1 |
20100061136 | Koyama et al. | Mar 2010 | A1 |
20100085798 | Lu et al. | Apr 2010 | A1 |
20100091546 | Liu et al. | Apr 2010 | A1 |
20100142254 | Choi et al. | Jun 2010 | A1 |
20100157651 | Kumar et al. | Jun 2010 | A1 |
20100171086 | Lung et al. | Jul 2010 | A1 |
20100177547 | Shen | Jul 2010 | A1 |
20100201410 | Illegems | Aug 2010 | A1 |
20100232203 | Chung et al. | Sep 2010 | A1 |
20100238701 | Tsukamoto et al. | Sep 2010 | A1 |
20100246237 | Borot et al. | Sep 2010 | A1 |
20100250974 | Ristic | Sep 2010 | A1 |
20100277967 | Lee et al. | Nov 2010 | A1 |
20100301304 | Chen et al. | Dec 2010 | A1 |
20110022648 | Harris et al. | Jan 2011 | A1 |
20110062557 | Bandyopadhyay et al. | Mar 2011 | A1 |
20110108926 | Bahl | May 2011 | A1 |
20110128772 | Kim et al. | Jun 2011 | A1 |
20110145777 | Iyer et al. | Jun 2011 | A1 |
20110175199 | Lin et al. | Jul 2011 | A1 |
20110222330 | Lee et al. | Sep 2011 | A1 |
20110260289 | Oyamada | Oct 2011 | A1 |
20110267869 | Hoefler | Nov 2011 | A1 |
20110297912 | Samachisa et al. | Dec 2011 | A1 |
20110310655 | Kreupl et al. | Dec 2011 | A1 |
20110312166 | Yedinak et al. | Dec 2011 | A1 |
20120032303 | Elkareh et al. | Feb 2012 | A1 |
20120039107 | Chung | Feb 2012 | A1 |
20120044736 | Chung | Feb 2012 | A1 |
20120044737 | Chung | Feb 2012 | A1 |
20120044738 | Chung | Feb 2012 | A1 |
20120044739 | Chung | Feb 2012 | A1 |
20120044740 | Chung | Feb 2012 | A1 |
20120044743 | Chung | Feb 2012 | A1 |
20120044744 | Chung | Feb 2012 | A1 |
20120044745 | Chung | Feb 2012 | A1 |
20120044746 | Chung | Feb 2012 | A1 |
20120044747 | Chung | Feb 2012 | A1 |
20120044748 | Chung | Feb 2012 | A1 |
20120044753 | Chung | Feb 2012 | A1 |
20120044756 | Chung | Feb 2012 | A1 |
20120044757 | Chung | Feb 2012 | A1 |
20120044758 | Chung | Feb 2012 | A1 |
20120047322 | Chung | Feb 2012 | A1 |
20120074460 | Kitagawa | Mar 2012 | A1 |
20120106231 | Chung | May 2012 | A1 |
20120147653 | Chung | Jun 2012 | A1 |
20120147657 | Sekar et al. | Jun 2012 | A1 |
20120209888 | Chung | Aug 2012 | A1 |
20120224406 | Chung | Sep 2012 | A1 |
20120256292 | Yu et al. | Oct 2012 | A1 |
20120257435 | Lin | Oct 2012 | A1 |
20120287730 | Kim | Nov 2012 | A1 |
20120314472 | Chung | Dec 2012 | A1 |
20120314473 | Chung | Dec 2012 | A1 |
20120320656 | Chung | Dec 2012 | A1 |
20120320657 | Chung | Dec 2012 | A1 |
20130148409 | Chung | Jun 2013 | A1 |
20130161780 | Kizilyalli et al. | Jun 2013 | A1 |
20130189829 | Mieczkowski et al. | Jul 2013 | A1 |
20130200488 | Chung | Aug 2013 | A1 |
20130201745 | Chung | Aug 2013 | A1 |
20130201746 | Chung | Aug 2013 | A1 |
20130201748 | Chung | Aug 2013 | A1 |
20130201749 | Chung | Aug 2013 | A1 |
20130208526 | Chung | Aug 2013 | A1 |
20130215663 | Chung | Aug 2013 | A1 |
20130235644 | Chung | Sep 2013 | A1 |
20130268526 | John et al. | Oct 2013 | A1 |
20130308366 | Chung | Nov 2013 | A1 |
20140010032 | Seshadri et al. | Jan 2014 | A1 |
20140016394 | Chung et al. | Jan 2014 | A1 |
20140071726 | Chung | Mar 2014 | A1 |
20140092674 | Chung | Apr 2014 | A1 |
20140124871 | Ko et al. | May 2014 | A1 |
20140124895 | Salzman et al. | May 2014 | A1 |
20140126266 | Chung | May 2014 | A1 |
20140131710 | Chung | May 2014 | A1 |
20140131711 | Chung | May 2014 | A1 |
20140131764 | Chung | May 2014 | A1 |
20140133056 | Chung | May 2014 | A1 |
20140160830 | Chung | Jun 2014 | A1 |
20140211567 | Chung | Jul 2014 | A1 |
20140269135 | Chung | Sep 2014 | A1 |
20140340954 | Chung | Nov 2014 | A1 |
20150003142 | Chung | Jan 2015 | A1 |
20150003143 | Chung | Jan 2015 | A1 |
20150009743 | Chung | Jan 2015 | A1 |
20150014785 | Chung | Jan 2015 | A1 |
20150021543 | Chung | Jan 2015 | A1 |
20150029777 | Chung | Jan 2015 | A1 |
20150078060 | Chung | Mar 2015 | A1 |
20150137258 | Mittal | May 2015 | A1 |
20150194433 | Ponoth | Jul 2015 | A1 |
20160034351 | Michael | Feb 2016 | A1 |
20160071582 | Chung | Mar 2016 | A1 |
20160268002 | Chen | Sep 2016 | A1 |
20160276043 | Chung | Sep 2016 | A1 |
20170110512 | Chung | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
03-264814 | Nov 1991 | CN |
1469473 | Jan 2004 | CN |
1691204 | Nov 2005 | CN |
101057330 | Oct 2007 | CN |
101083227 | Dec 2007 | CN |
101188140 | May 2008 | CN |
101271881 | Sep 2008 | CN |
101483062 | Jul 2009 | CN |
101728412 | Jun 2010 | CN |
1367596 | Dec 2003 | EP |
I309081 | Oct 2007 | TW |
Entry |
---|
U.S. Appl. No. 13/471,704, filed May 15, 2012. |
U.S. Appl. No. 13/026,650, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,656, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,664, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,678, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,692, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,704, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,717, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,725, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,752, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,771, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,783, filed Feb. 14, 2011. |
U.S. Patent Application No. 13/026,835 filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,840, filed Feb. 14, 2011. |
U.S. Appl. No. 13/026,852, filed Feb. 14, 2011. |
U.S. Appl. No. 13/214,198, filed Aug. 21, 2011. |
U.S. Appl. No. 13/590,044, filed Aug. 20, 2012. |
U.S. Appl. No. 13/590,047, filed Aug. 20, 2012. |
U.S. Appl. No. 13/590,049, filed Aug. 20, 2012. |
U.S. Appl. No. 13/590,050, filed Aug. 20, 2012. |
U.S. Appl. No. 13/214,183, filed Aug. 20, 2011. |
U.S. Appl. No. 13/288,843, filed Nov. 3, 2011. |
U.S. Appl. No. 13/314,444, filed Dec. 8, 2011. |
U.S. Appl. No. 13/397,673, filed Feb. 15, 2012. |
U.S. Appl. No. 13/571,797, filed Aug. 10, 2012. |
U.S. Appl. No. 13/590,044, filed Aug. 20. 2012. |
U.S. Appl. No. 13/590,047, filed Aug. 20. 2012. |
U.S. Appl. No. 13/590,049, filed Aug. 20. 2012. |
U.S. Appl. No. 13/590,050, filed Aug. 20. 2012. |
U.S. Appl. No. 13/678,539, filed Nov. 15, 2012. |
U.S. Appl. No. 13/678,544, filed Nov. 15, 2012. |
U.S. Appl. No. 13/678,541, filed Nov. 15, 2012. |
U.S. Appl. No. 13/678,543, filed Nov. 15, 2012. |
Ahn, S.J. et al, “Highly Reliable 50nm Contact Cell Technology for 256Mb PRAM,” IEEE Vlsi Tech Symp., Jun. 2005, pp. 98-99. |
Alavi, Mohsen, et al., “A PROM Element Based on Salicide Allgomeration of Poly Fuses in a CMOS Logic Process,” IEEE IEDM, 97, pp. 855-858. |
Andre, T. W. et al., “A 4-Mb 0.18um 1T1MTJ Toggle Mram With Balanced Three Input Sensing Scheme and Locally Mirrored Unidirectional Write Drivers,” IEEE J. of Solid-State Circuits, vol. 40, No. 1, Jan. 2005, pp. 301-309. |
Ang, Boon et al., “NiSi Polysilicon Fuse Reliability in 65nm Logic CMOS Technology,” IEEE Trans. on Dev. Mat. Rel. vol. 7, No. 2, Jun. 2007, pp. 298-303. |
Aziz, A. et al., Lateral Polysilicon n+p. Diodes: Effect of the Grain boundaries and of the p-Implemented Doping Level on the I-V and C-V Characteristics, “Springer Proceedings in Physics”, vol. 54, 1991, pp. 318-322. |
Aziz, A. et al., “Lateral Polysilicon PN Diodes: Current-Voltage Characteristics Simulation Between 200K and 400K a Numerical Approach,” IEEE Trans. On Elec. Dev., vol. 41, No. 2, Feb, 1994, pp. 204-211. |
Banerjee, Kaustav et al., “High Current Effects in Silicide Films for Sub-0.25um VLSI Technologies,” IEEE 36th IRPS, 1998, pp. 284-292. |
Bedeschi, F. et al., “4-Mb MOSFET-Selected uTrench Phase-Change Memory Experimental Chip,” IEEE J. of Solid-State Circuits, vol. 40, No. 7, Jul. 2005, pp. 1557-1565. |
Bedeschi, F. et al., “A Bipolar-Selected Phase Change Memory Featuring Multi-Level Cell Storage,” IEEE J. Sol. Stat. Cir., vol. 44, No. 1, Jan. 2009, pp. 217-227. |
Bedeschi, F. et al., “A Fully Symmetrical Sense Amplifier for Non-volatile Memories,” IEEE. Int. Symp. On Circuits and Systems, (ISCAS), vol. 2, 2004, pp. 625-628. |
Bedeschi, F. et al., “An 8Mb Demonstrator for High-Density 1.8V Phase-Change Memories,” VLIS Cir. Symp, Jun. 2004, pp. 442-445. |
Bedeschi, F. et al., “Set and Reset Pulse Characterization in BJT-Selected Phase-Change Memory,” IEEE Int. Symp. On Circuits and Systems (ISCAS), 2005, pp. 1270-1273. |
Braganca, P. M. et al., “A Three-Terminal Approach to Developing Spin-Torque Written Magnetic Random Access Memory Cells,” IEEE Trans. on Nano. vol. 8, No. 2, Mar. 2009, pp. 190-195. |
Cagli, C. et al., “Evidence for threshold switching in the set process of NiO-based Rram and physical modeling for set, reset, retention and disturb prediction,” IEEE IEDM, 2008, pp. 1-4. |
Chan, W. T. et al., “CMOS Compatible Zero-Mask One-Time Programmable (OTP) Memory Design,” Proc. Int. Conf. Solid State Integr. Cir. Tech., Beijing, China, Oct. 20-23, 2008. pp. 861-864. |
Chan, Wan Tim, et al., “CMOS Compatible Zero-Mask One Time Programmable Memory Design”, Master Thesis, Hong-Kong University of Science and Technologies, 2008. |
Chang, Meng-Fan et al., “Circuit Design Challenges in Embedded Memory and Resistive Ram (RRAM) for Mobile SoC and 3D-IC”, Design Automation Conference (ASP-DAC), 16th Asia and South Pacific, 2011, pp. 197-203. |
Cheng, Yu-Hsing et al., “Failure Analysis and Optimization of Metal Fuses for Post Package Trimming,” IEEE 45th IRPS, 2007, pp. 616-617. |
Chiu, Pi-Feng et al., “A Low Store Energy, Low VDDmin, Nonvolatile 8T2R SRAM with 3D Stacked RRAM Devices for Low Power Mobile Applications,” IEEE VLSI Cir./Tech Symp., Jun. 2010, pp. 229-230. |
Cho, Woo Yeong et al., “A 0.18um 3.0V 64Mb Non-Volatile Phase-Transition Random-Access Memory (PRAM),” ISSCC, Feb. 2004, Sec. 2-1. |
Choi, Sang-Jun et al., “Improvement of CBRAM Resistance Window by Scaling Down Electrode Size in Pure-GeTe Film,” IEEE Elec. Dev., vol. 30, No. 2, Feb. 2009, pp. 120-122. |
Choi, Youngdon et al., “A 20nm 1.8V 8Gb PRAM with 40MB/s Program Bandwidth,” IEEE ISSCC, 2012, pp. 46-47. |
Chung, S. et al., “A 1.25um2 Cell 32Kb Electrical Fuse Memory in 32nm CMOS with 700mV Vddmin and Parallel/Serial Interface,” VLSI Cir. Symp., Jun. 2009, pp. 30-31. |
Chung, S. et al., “A 512x8 Electrical Fuse Memory with 15um2 Cells Using 8-sq Asymmetrical Fuse and Core Devices in 90nm CMOS,” VLSI Cir. Symp., Jun. 2007, pp. 74-75. |
Crowley, Matthew et al., “512Mb PROM with 8 Layers of Antifuse/Diode Cells,” IEEE ISSCC 2003, Sec. 16.4. |
De Sandre, Guido et al., “A 4Mb LV MOS-Selected Embedded Phase Change Memory in 90nm Standard CMOS Technology,” IEEE J. Sol. Stat. Cir, vol. 46. No. 1, Jan. 2011, pp. 52-63. |
De Sandre, Guido et al., “A 90nm 4Mb Embedded Phase-Change Memory with 1.2V 12ns Read Access Time and 1MB/s Write Throughput,” ISSCC 2010, Sec. 14.7. |
Desikan, Rajagopalan et al., “On-Chip MRAM as a High-Bandwidth Low-Latency Replacement for DRAM Physical Memories,” Tech Report Tr-02-47, Dept. of Computer Science, University of Texas, Austin, Sep. 27, 2002, 18 pages. |
Dietrich, Stefan et al., “A Nonvolatile 2-Mbit CBRAM Memory Core Featuring Advanced Read and Program Control,” IEEE J. of Solid-Stat Cir., vol. 42, No. 4, Apr., 2007, pp. 839-845. |
Dion, Michael J., “Reservoir Modeling for Electromigration Improvement of Metal Systems with Refractory Barriers,” IEEE 39th IRPS, 2001, pp. 327-333. |
Doorn, T. S. et al., “Ultra-fast Programming of Silicided Polysilicon Fuses Based on New Insights in the Programming Physics,” IEEE IEDM, 2005, pp. 667-670. |
Doorn, T. S., “Detailed Qualitative Model for the Programming Physics of Silicided Polysilicon Fuses,” IEEE Trans. On Elec. Dev. vol. 54, No. 12, Dec. 2007, pp. 3285-3291. |
Durlam, M. et al., “A 1-Mbit MRAM Based on 1T1MTJ Bit Cell Integrated With Copper Interconnects,” IEEE J. of Solid-State Circuits, vol. 38, No. 5, May 2003, pp. 769-773. |
Engel, B. et al., “The Science and Technology of Magnetoresistive Tunnel Memory,” IEEE Tran. on Nanotechnology, vol. 1, No. 1, Mar. 2002, pp. 32-38. |
Engel, B.N. et al., “A 4Mb Toggle Mram Based on a Novel bit and Switching Method,” IEEE Trans. on Mag. vol. 41, No. 1, Jan. 2005, pp. 132-136. |
Fellner, Johannes, et al., “Lifetime Study for a Poly Fuse in a 0.35um Polycide CMOS Process,” IEEE 43rd IRPS, 2005, pp. 446-449. |
Gao, B. et al., “Oxide-Based RRAM: Uniformity Improvement Using a New Material-Oriented Methodology,” IEEE VLSI Tech. Symp., Jun. 2009, pp. 30-31. |
Gao, B. et al., “Oxide-Based RRAM Switching Mechanism: A New Ion-Transport-Recombination Model,” IEDM, Dec. 2008, pp. 563-566. |
Gill, M. et al., “Ovonic Unified Memory-A High Performance Nonvolatile Memory Technology for Stand-Alone Memory and Embedded Applications,” IEEE, ISSCC Dig. of Tech. Paper, Feb. 2002, pp. 202-203. |
Gogl, D. et aL, “A 16-Mb MRAM Featuring Bootstrapped Write Drivers,” IEEE J. of Solid-State Circuits, vol. 40, No. 4, Apr. 2005, pp. 902-908. |
Gopalan, C. et al., Demonstration of Conductive Bridging Random Access Memory (CBRAM) in Logic CMOS Process, IEEE Int. Memory Workshop, 2010, pp. 1-4. |
Ha, Daewon and Kim, Kinam, “Recent Advances in High Density Phase Change Memory (PRAM),” IEEE VLSI Tech. Symp. Jun. 2007. |
Hosoi, Y. et al., “High Speed Unipolar Switching Resistance RAM (RRAM) Technology,” IEEE IEDM, Dec. 2006, pp. 1-4. |
Hosomi, M. et al., “A Novel Nonvolatile Memory with Spin Torque Transfer Magnetization Switching: Spin-RAM,” IEEE IEDM Dig. of Tech. Paper, Dec. 2005, pp. 459-463. |
Huang, Chia-En et al., “A New CMOS Logic Anti-Fuse Cell with Programmable Contact,” IEEE IEDM Tech. Dig. 2007, pp. 48-51. |
Im, Jay et al., “Characterization of Silicided Polysilicon Fuse Implemented in 65nm CMOS Technology,”7th Annual Non-Volatile Memory Technology Symp, (NVMTS) 2006, pp. 55-57. |
Jin, Li-Yan et aL, “Low-Area 1-Kb Multi-Bit OTP IP Design,” IEEE 8th Int. Conf. on ASIC (ASICON), 2009. pp. 629-632. |
Johnson, Mark et al., “512Mb PROM with a Three-Dimensional Array of Diode/Antifuse Memory Cells,” IEEE J. of Sol. Stat. Cir., vol. 38, No. 11, Nov. 2003, pp. 1920-1928. |
Kalnitsy, Alexander et al., “CoSi2 Integrated Fuses on Poly Silicon for Low Voltage 0.18um CMOS Applications,” IEEE IEDM 1999, pp. 765-768. |
Kang, Han-Byul et al., “Electromigration of NiSi Poly Gated Electrical Fuse and Its Resistance Behaviors Induced by By High Temperature,” IEEE IRPS, 2010, pp. 265-270. |
Kang, Sangbeom et al., “A 0.1um 1.8V 256Mb Phase-Change Random Access Memory (PRAM) with 66Mhz Synchronous Burst-Read,” IEEE J. of Sol. Stat. Cir. vol. 42. No. 1, Jan. 2007, pp. 210-218. |
Kawahara, T. et al., “2Mb Spin-Transfer Torque RAM (SPRAM) with Bit-by-Bit Bidirectional Current Write and Parailelizing-Direction Current Read,” IEEE ISSCC Dig. of Tech. Paper, Feb. 2007, pp. 480-481. |
Ker, Ming-Dou et al., “High-Current Polysilicon Diode for Electrostatic Discharge Protection in Sub-Quarter-Micron Complementary Metal Oxide Semiconductor Technology,” Characterization of Jpn. J. Appl. Phys. vol. 42 (2003) pp. 3377-3378. |
Ker, Ming-Dou et al., “Ultra-High-Voltage Charge Pump Circuit in Low-Voltage Bulk CMOS Processes With Polysilicon Diodes,” IEEE Trans. on Cir. And Sys.-II: Exp. Brief., vol. 54, No. 1, Jan. 2007, pp. 47-51. |
Kim, Deok-Kee et al., “An Investigation of Electrical Current Induced Phase Transitions in the NiPtSi/Polysilicon System,” J. App. Phy. 103, 073708 (2008). |
Kim, I. S. et al., “High Performance Pram Cell Scalable to sub-20nm Technology with below 4F2 Cell Size, Extendable to DRAM Applications,” IEEE VLSI Tech Symp., Jun. 2010, pp. 203-204. |
Kim, Jinbong et al., “3-Transistor Antifuse OTP ROM Array Using Standard CMOS Process,” IEEE VLSI Cir. Symposium, Jun. 2003, pp. 239-242. |
Kim, O. et al., “CMOS trimming circuit based on polysilicon fusing,” Elec. Lett. vol. 34, No. 4, pp. 355-356, Feb. 1998. |
Klee, V. et al., “A 0.13um Logic Based Embedded DRAM Technology with Electrical Fuses, Cu Interconnect in SiLK, sub-7ns Random Access Time and its Extension to the 0.10um Generation,” IEEE IEDM, 2001, pp. 407-410. |
Kothandaramam, C. et al., “Electrically programmable fuse (eFUSE) using electromigration in silicides,” IEEE Elec. Dev. Lett., vol. 23, No. 9, pp. 523-525, Sep. 2002. |
Kulkarni, S. et al., “High-Density 3-D Metal-Fuse Prom Featuring 1.37um2 1T1R Bit Cell in 32nm High-K Metal-Gate CMOS Technology,” VLSI Cir. Symp., Jun. 2009 pp. 28-29. |
Kulkarni, S. et al., “A 4Kb Metal-Fuse OTP-ROM Macro Featuring a 2V Programmable 1.37um2 1T1R Bit Cell in 32nm High-K Metal-Gate Cmos,” IEEE J. of Sol. Stat. Cir, vol., 45, No. 4, Apr. 2010, pp. 863-868. |
Kund, Michael et al., “Conductive Bridging RAM (CBRAM): An Emerging NonVolatile Memory Technology Scalable to Sub 20nm,” IEEE IEDM 2005, pp. 754-757. |
Lai, Han-Chao et al., “A 0.26um2 U-Shaped Nitride-Based Programming Cell on Pure 90nm CMOS Technology,” IEEE Elec. Dev. Lett. vol. 28, No. 9, Sep. 2007, pp. 837-839. |
Lai, S., “Current Status of the Phase Change Memory and Its Future,” IEEE IEDM Dig. of Tech. Paper, Dec. 2003, pp. 255-258. |
Lee, H. Y. et al., “Low Power and High Speed Bipolar Switching with a Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM,” IEEE IEDM, 2008, pp. 14. |
Lee, K.J., et al., “A 90nm 1.8V 512Mb Diode-Switch PRAM with 266MB/s Read Throughout,” IEEE ISSCC, Dig. of Tech. Paper, Feb. 2007, 3 pgs. |
Lee, Kwang-Jin et al., “A 90nm 1.8V 512Mb Diode-Switch PRAM with 266MB/s Read Throughput,” IEEE J. of Sol. Stat. Cir., vol. 43, No. 1, Jan. 2008, pp. 150-162. |
Lee, M.-J. et al., “Stack Friendly all-Oxide 3D Rram Using GaInZnO Peripheral TFT Realized Over Glass Substrates,” IEDM, Dec. 2008. pp. 1-4. |
Lee, Man Chiu et al., “OTP Memory for Low Cost Passive Rfid Tags,” IEEE Conf. on Electron Devices and Solid-State Circuits (EDSSC), 2007, pp. 633-636. |
Liaw, Corvin et al., “The Conductive Bridging Random Access Memory (CBRAM): A Non-volatile Multi-Level Memory Technology,”European Solid-State Device Research Conference (ESSDERC), 2007, pp. 226-229. |
Lim, Kyunam et al., “Bit Line Coupling Scheme and Electrical Fuse Circuit for Reliable Operation of High Density DRAM,” IEEE VLSI Cir. Symp. Jun. 2001, pp. 33-34. |
Maffitt, T. et al., “Design Considerations for MRAM,” IBM J. Res. & Dev., vol. 50, No. 1, Jan. 2006, pp. 25-39. |
Meng, X.Z. et al., “Reliability Concept for Electrical Fuses,” IEE Proc.-Sci Meas. Technol., vol. 144, No. 2, Mar. 1997, pp. 87-92. |
Min, Byung-Jun et al., “An Embedded Non-volatile Fram with Electrical Fuse Repair Scheme and One Time Programming Scheme for High Performance Smart Cards,” IEEE CICC, Nov. 2005, pp. 255-258. |
Mojumder, N. N. et al., “Three-Terminal Dual-Pillar STT-MRAM for High Performance Robust Memory Applications,” IEEE Trans. Elec. Dev. vol. 58. No. 5, May, 2011, pp. 1508-1516. . |
Morimoto, T. et al., “A NiSi Salicide Technology for Advanced Logic Devices,” IEEE IEDM, Dec. 1991, pp. 653-656. |
Neale, Ron, “PCM Progress Report No. 6 Afterthoughts,” http://www.eetimes.com/General/PrintView/4236240, Feb. 13, 2012, 5 pages. |
Nebashi, R. et al., “A 90nm 12ns 32Mb 2T1MTJ MRAM,” IEEE ISSCC Dig. of Tech. Paper, Sess. 27.4, Feb. 2009, 3 pages. |
Ng, K.P. et al., “Diode-Base Gate Oxide Anti-Fuse One-Time Programmable Memory Array in Standard CMOS Process,” IEEE Int. Conf. of Elect. Dev. & Solid-Stat Cir. (EDSSC), Dec. 2009, pp. 457-460. |
Ohbayashi, Shigeki et al., “A 65nm Embedded SRAM With Wafer Level Burn-In Mode, Leak-Bit Redundancy and Cu E-Trim Fuse for Known Good Die,” IEEE J. of Solid. Stat. Cir., vol. 43, No. 1, Jan. 2008, pp. 96-108. |
Oh, G. H. et al., “Parallel Multi-Confined (PMC) Cell Technology for High Density MLC PRAM,” IEEE VLSI Tech. Symp., Jun. 2009, pp. 220-221. |
Oh, J. H. et al., “Full Integration of Highly Manufacturable 512Mb PRAM Based on 90nm Technology,” IEEE Iedm Dig. of Tech. Paper, Dec. 2006, pp. 1-4. |
Osada, K. et al., “Phase Change Ram Operated with 1.5V CMOS as Low Cost Embedded Memory,” IEEE CICC, Nov. 2005, pp. 431-434. |
Park, Don et al., “Study on Reliability of Metal Fuse for Sub-100nm Technology,” IEEE Int. Symp. On Semiconductor Manufacturing (ISSM), 2005, pp. 420-421. |
Park, Jongwoo et al., “Phase Transformation of Programmed NiSi Electrical Fuse: Diffusion, Agglomeration, and Thermal Stability,” 18th IEEE Int. Symp. On Physical and Failure Analysis of Integrated Circuits, (IPFA), 2011, pp. 1-7. |
Park, Young-Bae et al., “Design of an eFuse OTP Memory of 8 Bits Based on a 0.35um BCD Process,” Mobile IT Convergence (ICMIC), 2011 Int. Conf. on, pp. 137-139. |
Pellizzer, F. et al., “Novel uTrench Phase-Change Memory Cell for Embedded and Stand-alone Non-Volatile Memory Applications,” IEEE VLSI Tech Symp. Jun. 2004, pp. 18-19. |
Peng, J. et al., “A Novel Embedded OTP NVM Using Standard Foundry CMOS Logic Technology,” IEEE 21st Non-Volatile Semiconductor Memory Workshop (NVSMW) 2006, pp. 24-26. |
Rizzolo, R. F. et al., “IBM System z9 eFUSE applications and methodology,” IBM J. Res. & Dev. vol. 51 No. 1/2 Jan./Mar. 2007, pp. 65-75. |
Robson, Norm et al., “Electrically Programmable Fuse (eFuse) from Memory Redundancy to Autonomic Chips,” IEEE CICC, 2007, pp. 799-804. |
Russo, U. et al., “Conductive-Filament Switching Analysis and Self-Accelerated Thermal Dissolution Model for Reset in NiO-based RRAM,” IEDM, Dec. 2007, pp. 775-778. |
Safran, J. et al., “A Compact eFUSE Programmable Array Memory for SOI CMOS,” VLSI Cir. Symp. Jun. 2007, pp. 72-73. |
Sasaki, Takahiko et al., “Metal-Segregate-Quench Programming of Electrical Fuse,” IEEE 43rd IRPS, 2005, pp. 347-351. |
Schrogmeier, P. et al., “Time Discrete Voltage Sensing and Iterative Programming Control for a 4F2 Multilevel CBRAM,” VLSI Cir. Symp., Jun. 2007, pp. 186-187. |
Sheu, Shyh-Shyuan et al., “A 5ns Fast Write Multi-Level Non-Volatile 1K-bits RRAM Memory with Advance Write Scheme,” VLSI Cir. Symp., Jun. 2009, pp. 82-83. |
Sheu, Shyh-Shyuan et al., “Fast-Write Resistive RAM (RRAM) for Embedded Applications,” IEEE Design & Test of Computers, Jan./Feb. 2011, pp. 64-71. |
Shi, Min et al., “Zero-Mask Contact Fuse for One-Time-Programmable Memory in Standard CMOS Processes,” IEEE Dev. Lett. vol. 32, No. 7, Jul. 2011, pp. 955-957. |
Song, Y. J. et al., “Highly Reliable 256Mb PRAM with Advanced Ring Contact Technology and Novel Encapsulating Technology,” IEEE VLSI Tech Symp., Jun. 2006, pp. 153-154. |
Suto, Hiroyuki et al., “Programming Conditions for Silicided Poly-Si or Copper Electrically Programmable Fuses,” IEEE IIRW Final Report, 2007, pp. 84-89. |
Suto, Hiroyuki et al., “Study of Electrically Programmable Fuses Through Series of I-V Measurements,” IEEE IIRW Final Report, 2006, pp. 83-86. |
Suto, Hiroyuki et al., “Systematic Study of the Dopant-Dependent Properties of Electrically Programmable Fuses With Silicide Poly-Si Links Through a Series of I-V Measurements,” IEEE Trans. on Dev. Mat. Rel. vol. 7, No. 2, Jun. 2007, pp. 285297. |
Takaoka, H. et al., A Novel Via-fuse Technology Featuring Highly Stable Blow Operation with Large On-off Ratio for 32nm Node and Beyond, IEDM, 2007, pp. 4346. |
Tehrani, S. et al., “Magnetoresistive Random Access Memory Using Magnetic Tunnel Junction,” Proc. of IEEE, vol. 91, No. 5, May 2003, pp. 703-714. |
Tehrani, S., “Status and Outlook of Mram Memory Technology,” IEEE Iedm Dig. of Tech Paper., Dec. 2006, pp. 1-4. |
Teichmann, J. et al., “One Time Programming (OTP) with Zener Diodes in CMOS Processes,” 33rd Conf. on European Solid-State Device Research (ESSDERC), 2003, pp. 433-436. |
Tian, C. et al., “Reliability Investigation of NiPtSi Electrical Fuse with Different Programming Mechanisms,” IEEE IIRW Final Report, 2007, pp. 90-93. |
Tian, C. et al., “Reliability Qualification of CoSi2 Electrical Fuse for 90nm Technology,” IEEE 44th IRPS, 2006, pp. 392-397. |
Tian, Chunyan et al., “Reliability Investigation of NiPtSi Electrical Fuse with Different Programming Mechanisms,” IEEE Trans. on Dev. Mat. Rel. vol. 8, No. 3, Sep. 2008, pp. 536-542. |
Tonti, W. R. et al., “Product Specific Sub-Micron E-Fuse Reliability and Design Qualification,” IEEE IIRW Final Report, 2003, pp. 36-40. |
Tonti, W. R., “Reliability and Design Qualification of a Sub-Micro Tungsten Silicide E-Fuse,” IEEE IRPS Proceedings, 2004, pp. 152-156. |
Tonti, W. R., “Reliability, Design Qualification, and Prognostic Opportunity of in Die E-Fuse,” IEEE Conference on Prognostics and Health Management (PHM), 2011, pp. 1-7. |
Ueda, T. et al., “A Novel Cu Electrical Fuse Structure and Blowing Scheme utilizing Crack-assisted Mode for 90-45nm-node and beyond,” IEEE VLSI Tech. Sym., Jun. 2006, 2 pages. |
Ulman, G. et al., “A Commercial Field-Programmable Dense eFUSE Array Memory with 00.999% Sense Yield for 45nm Soi Cmos”, ISSCC 2008/ Session 22 / Variation Compensation and Measurement/ 22.4, 2008 IEEE International Solid-State Circuits Conference, pp. 406-407. |
Vimercati, Daniele et al., “A 45nm 1Gbit 1.8V PCM for Wireless and Embedded Applications,” IEEE ISSCC Feb. 2010, 26 pages. |
Vinson, J. E., “NiCr Fuse Reliability—A New Approach,” Southcon/94, Conference Record, 1994, pp. 250-255. |
Walko, J., “Ovshinsky's Memories,” IEE Review, Issue 11, Nov. 2005, pp. 42-45. |
Wang, J. P. et al., “The Understanding of Resistive Switching Mechansim in HfO2-Based Resistive Random Access Memory,” IEDM, 2011, pp. 12.1.1-12.1.4. |
Wikipedia, “Programmable read-only memory”, http://en.wikipedia.org/wiki/Programmable—read-only—memory, downloaded Jan. 31, 2010, 4 pages. |
Worledge, D.C., “Single-Domain Model for Toggle MRAM,” IBM J. Res. & Dev. vol. 50, No. 1, Jan. 2006, pp. 69-79. |
Wu, Kuei-Sheng et al., “The Improvement of Electrical Programmable Fuse with Salicide-Block Dielectrical Film in 40nm CMOS Technology,” Interconnect Technology Conference (IITC), 2010 Int. pp. 1-3. |
Wu, Kuei-Sheng et al., “Investigation of Electrical Programmable Metal Fuse in 28nm and beyond CMOS Technology,” IEEE International Interconnect Technology Conference and 2011 Materials for Advanced Metallization (IITC/MAM), 2011, pp. 1-3. |
Yin, M. et al., “Enhancement of Endurance for CuxO based RRAM Cell,” 9th Int. Conf. on Solid-State and Integrated-Circuit Technology (ICSICT) 2008, pp. 917-920. |
Zhu, Jian-Gang, “Magnetoresistive Random Access Memory: The Path to Competitiveness and Scalability,” Proc. Of IEEE, vol. 96, No. 11, Nov. 2008, pp. 1786-1798. |
Zhuang, W. W. et al., “Novell Colossal Magnetonresistive Thin Film Nonvolatile Resistance Random Access Memory (RRAM),” IEEE IEDM 2002, pp. 193-196. |
Notice of Allowance for U.S. Appl. No. 13/026,664 dated Sep. 18, 2012. |
Office Action for U.S. Appl. No. 13/471,704 dated Jul. 31, 2012. |
Notice of Allowance for U.S. Appl. No. 13/471,704 dated Oct. 18, 2012. |
Notice of Allowance for U.S. Appl. No. 13/026,678 dated Sep. 19, 2012. |
Office Action for U.S. Appl. No. 13/026,783 dated Sep. 27, 2012. |
Office Action for U.S. Appl. No. 13/026,717 dated Oct. 25, 2012. |
Office Action for U.S. Appl. No. 13/026,650 dated Nov. 9, 2012. |
Office Action for U.S. Appl. No. 13/026,692 dated Nov. 9, 2012. |
Office Action for U.S. Appl. No. 13/026,752 dated Nov. 9, 2012. |
Office Action for U.S. Appl. No. 13/026,656 dated Nov. 13, 2012. |
Office Action for U.S. Appl. No. 13/026,704 dated Nov. 23, 2012. |
Office Action for U.S. Appl. No. 13/397,673, dated Dec. 18, 2012. |
Office Action for U.S. Appl. 13/026,840, dated Dec. 31, 2012. |
Office Action for U.S. Appl. No. 13/026,852, dated Jan. 14, 2013. |
Office Action for U.S. Appl. No. 13/026,783, dated Sep. 27, 2012. |
Restriction Requirement for U.S. Appl. No. 13/026,835, dated Dec. 12, 2012. |
Notice of Allowance for U.S. Appl. No. 13/026,717, dated Feb. 12, 2013. |
Office Action for U.S. Appl. No. 13/471,704, dated Jan. 25, 2013. |
U.S. Appl. No. 13/761,048, filed Feb. 6, 2013. |
U.S. Appl. No. 13/761,057, filed Feb. 6, 2013. |
U.S. Appl. No. 13/761,097, filed Feb. 6, 2013. |
U.S. Appl. No. 13/761,045, filed Feb. 6, 2013. |
Office Action for U.S. Appl. No. 13/026,678, dated Feb. 20, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,783, dated Mar. 4, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,692, dated Mar. 15, 2013. |
Office Action for U.S. Appl. No. 13/026,704, dated Nov. 23, 2012. |
Notice of Allowance for U.S. Appl. No. 13/026,835, dated Mar. 20, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,664, dated Apr. 22, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,656, dated Apr. 22, 2013. |
Jagasivamani et al., “Development of a Low-Power SRAM Compiler”, IEEE Press, 2001, pp. 498-501. |
Liu et al., “A Flexible Embedded Sram Compiler”, IEEE Press, 2002, 3 pgs. |
Sundrararajan, “Osuspram: Design of a Single Port SRAM Compiler in NCSU FREEPDK45 Process”, Mater of Science in Electrical Engineering, Oklahoma State University, Jul. 2010, 117 pgs. |
Notice of Allowance for U.S. Appl. No. 13/026,835, dated Apr. 18, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,704, dated Apr. 30, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,852, dated May 10, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,717, dated May 15, 2013. |
Notice of Allowance for U.S. Appl. No. 13/471,704, dated May 22, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,678, dated May 28, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,650, dated May 30, 2013. |
Restriction Requirement for U.S. Appl. No. 13/314,444, dated Jun. 7, 2013. |
Restriction Requirement for U.S. Appl. No. 13/214,198, dated Jun. 13, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,840, dated Jun. 13, 2013. |
Restriction Requirement for U.S. Appl. No. 13/026,771, dated Jun. 13, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,752, dated Jul. 1, 2013. |
Restriction Requirement for U.S. Appl. No. 13/678,543, dated Jul. 8, 2013. |
Office Action for U.S. Appl. No. 13/026,725, dated Jul. 19, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,664, dated Jul. 22, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,692, dated Jul. 23, 2013. |
Notice of Allowance for U.S. Appl. No. 13/397,673, dated Jul. 30, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,704, dated Aug. 2, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,783, dated Aug. 5, 2013. |
Office Action for U.S. Appl. No. 13/214,198, dated Aug. 6, 2013. |
Office action for Chinese Patent Application No. 201110279954.7, dated Jul. 1, 2013. |
Shen et al., “High-K Metal Gate Contact RRAM (CRRAM) in Pure 28 nm CMOS Logic Process”, Electron Devices Meeting (IEDM), 2012 IEEE International, Dec. 2012, 4 pgs. |
Tseng et al., “A New High-Density and Ultrasmall-Cell Size Contact RRAM (CR-RAM) with Fully CMOS-Logic-Compatible Technology and Circuits”, IEEE Transactions on Electron Devices, vol. 58, Issue 1, Jan. 2011, 6 pgs. |
Office Action for U.S. Appl. No. 13/026,783, dated Sep. 9, 2013. |
Office Action for U.S. Appl. No. 13/314,444, dated Sep. 9, 2013. |
Office Action for U.S. Appl. No. 13/026,771, dated Sep. 9, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,852, dated Sep. 18, 2013. |
Office Action (Ex Parte) for U.S. Appl. No. 13/678,543, dated Sep. 20, 2013. |
Office Action for U.S. Appl. No. 13/835,308, dated Sep. 27, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,717, dated Oct. 1, 2013. |
Office Action for U.S. Appl. No. 13/954,831, dated Oct. 1, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,656, dated Oct. 4, 2013. |
Office Action for U.S. Appl. No. 13/214,183, dated Oct. 25, 2013. |
Chua, “Many Times Programmable z8 Microcontroller”, e-Gizmo.cim, Nov. 21, 2006, pp. 1-5. |
Forum, Intel Multi-byte Nops, asmcommunity.net, Nov. 21, 2006, pp. 1-5. |
CMOS Z8 OTP Microcontrollers Product Specification, Zilog Inc., May 2008, Revision 1, pp. 1-84. |
OTP Programming Adapter Product User Guide, Zilog Inc., 2006, pp. 1-3. |
Notice of Allowance for U.S. Appl. No. 13/026,852, dated Nov. 15, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,835, dated Nov. 22, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,725, dated Dec. 10, 2013. |
Office Action for U.S. Appl. No. 13/026,783, dated Dec. 23, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,771, dated Jan. 15, 2014. |
Office Action for Chinese Patent Application No. 201110244362.1, dated Sep. 29, 2013. |
Office Action for Chinese Patent Application No. 201110235464.7, dated Oct. 8, 2013. |
Office Action for Chinese Patent Application No. 201110244400.3, dated Nov. 5, 2013. |
Office Action for Chinese Patent Application No. 201110244342.4, dated Oct. 31, 2013. |
Restriction Requirement for U.S. Appl. No. 13/678,541, dated Feb. 28, 2014. |
Notice of Allowance for U.S. Appl. No. 13/026,840, dated Mar. 6, 2014. |
Notice of Allowance for U.S. Appl. No. 13/026,840, dated Mar. 10, 2014. |
Notice of Allowance of U.S. Appl. No. 13/678,543, dated Dec. 13, 2013. |
Notice of Allowance for U.S. Appl. No. 13/835,308, dated Mar. 14, 2014. |
Notice of Allowance for U.S. Appl. No. 13/026,835, dated Mar. 14, 2014. |
Notice of Allowance for U.S. Appl. No. 13/026,725, dated Mar. 31, 2014. |
Notice of Allowance for U.S. Appl. No. 13/026,852, dated Mar. 20, 2014. |
Notice of Allowance for U.S. Appl. No. 13/026,771, dated Mar. 18, 2014. |
Final Office Action for U.S. Appl. No. 13/214,183, dated Apr. 17, 2014. |
“Embedded Systems/Mixed C and Assembly Programming”, Wikibooks, Aug 6, 2009, pp. 1-7. |
Notice of Allowance for U.S. Appl. No. 13/761,097, dated Jul. 15, 2014. |
Office Action for U.S. Appl. No. 13/571,797, dated Apr. 24, 2014. |
Notice of Allowance for U.S. Appl. No. 13/590,044, dated Apr. 29, 2014. |
Notice of Allowance for U.S. Appl. No. 13/954,831, dated May 27, 2014. |
Notice of Allowance of U.S. Appl. No. 13/833,044, dated May 29, 2014. |
Notice of Allowance for U.S. Appl. No. 13/761,048, dated Jun. 10, 2014. |
Office Action for Taiwanese Patent Application No. 100129642, dated May 19, 2014 (with translation). |
Office Action for U.S. Appl. No. 13/072,783, dated Nov. 7, 2013. |
Notice of Allowance for U.S. Appl. No. 13/026,840, dated Jun. 24, 2014. |
Notice of Allowance for U.S. Appl. No. 13/214,198, dated Jun. 23, 2014. |
Notice of Allowance for U.S. Appl. No. 13/590,044, dated Jun. 23, 2014. |
Ker et al., “MOS-bounded diodes for on-chip ESD protection in a 0.15- m shallow-trench-isolation salicided CMOS Process” International Symposium on Vlsi Technology, Systems and Applications, 2003, 5 pgs. |
Notice of Allowance for U.S. Appl. No. 13/840,965, dated Jun. 25, 2014. |
Office Action for U.S. Appl. No. 13/970,562, dated Jun. 27, 2014. |
Office Action for U.S. Appl. No. 13/835,308, dated Jun. 27, 2014. |
Notice of Allowance for U.S. Appl. No. 13/288,843, dated Jul. 8, 2014. |
Restriction Requirement for U.S. Appl. No. 13/678,539, dated Jul. 1, 2014. |
Notice of Allowance for U.S. Appl. No. 14/231,413, dated Jul. 18, 2014. |
Notice of Allowance for U.S. Appl. No. 13/590,044, dated Jul. 23, 2014. |
Restriction Requirement for U.S. Appl. No. 13/833,067, dated Jul. 11, 2014. |
Notice of Allowance for U.S. Appl. No. 13/954,831, dated Aug. 4, 2014. |
Restriction Requirement for U.S. Appl. No. 13/678,544, dated Aug. 1, 2014. |
Notice of Allowance for U.S. Appl. No. 13/761,097, dated Jul. 25, 2014. |
Ex parte Quayle for U.S. Appl. No. 13/761,057, dated Aug. 8, 2014. |
Final Office Action for U.S. Appl. No. 13/314,444, dated May 14, 2014. |
Corrected Notice of Allowability for U.S. Appl. No. 13/288,843, dated Aug. 19, 2014. |
Office Action for U.S. Appl. No. 13/590,049, dated Aug. 29, 2014. |
Ex Parte Quayle for U.S. Appl. No. 13/590,047, dated Aug. 29, 2014. |
Ex Parte Quayle for U.S. Appl. No. 13/590,050, dated Sep. 3, 2014. |
Office Action for U.S. Appl. No. 13/678,544, dated Sep. 12, 2014. |
Office Action for U.S. Appl. No. 13/678,539, dated Sep. 10, 2014. |
Notice of Allowance for U.S. Appl. No. 13/288,843, dated Sep. 18, 2014. |
Notice of Allowance for U.S. Appl. No. 13/761,057, dated Sep. 26, 2014. |
Notice of Allowance for U.S. Appl. No. 13/833,044, dated Sep. 24, 2014. |
Notice of Allowance for U.S. Appl. No. 13/314,444, dated Sep. 24, 2014. |
Office Action for U.S. Appl. No. 13/761,045, dated Sep. 30, 2014. |
Notice of Allowance for U.S. Appl. No. 13/835,308, dated Oct. 10, 2014. |
Notice of Allowance for U.S. Appl. No. 13/571,797, dated Oct. 14, 2014. |
Office Action for U.S. Appl. No. 13/833,067, dated Oct. 20, 2014. |
Notice ofAllowance for U.S. Appl. No. 14/085,228, dated Oct. 23, 2014. |
Office Action for U.S. Appl. No. 13/842,824, dated Oct. 29, 2014. |
Herner et al., “Vertical p-i-n. Polysilicon Diode with Antifuse for stackable Field-Programmable ROM”, IEEE Electron Device Letters, vol., 25, No. 5, pp. 271-273, May 2004. |
Notice of Allowance for U.S. Appl. No. 13/590,049, dated Nov. 25, 2014. |
Notice of Allowance for U.S. Appl. No. 13/590,047, dated Nov. 24, 2014. |
Office Action for U.S. Appl. No. 13/590,044, dated Dec. 9, 2014. |
Notice of Allowance for U.S. Appl. No. 13/590,050, dated Dec. 18, 2014. |
Office Action for U.S. Appl. No. 14/042,392, dated Dec. 31, 2014. |
Office Action for U.S. Appl. No. 14/071,957, dated Dec. 29, 2014. |
International Search Report and Written Opinion for International Patent Application No. PCT/US/2014/056676, dated Dec. 19, 2014. |
Office Action for U.S. Appl. No. 14/493,083, dated Jan. 8, 2015. |
Office Action for Chinese Patent Application No. 2011102443903, dated Dec. 16, 2014 (with translation). |
Notice of Allowance for U.S. Appl. No. 13/970,562, dated Jan. 23, 2015. |
Notice of Allowance for U.S. Appl. No. 14/493,069, dated Feb. 17, 2015. |
Notice of Allowance for U.S. Appl. No. 14/085,228, dated Feb. 18, 2015. |
Notice of Allowance for U.S. Appl. No. 13/761,045, dated Feb. 18, 2015. |
Notice of Allowance for U.S. Appl. No. 14/231,404, dated Jan. 22, 2015. |
Notice of Allowance for U.S. Appl. No. 14/021,990, dated Dec. 9, 2014. |
Final Office Action for U.S. Appl. No. 13/678,544, dated Feb. 15, 2015. |
Office Action for U.S. Appl. No. 14/101,125, dated Mar. 6, 2015. |
Hassan, “Argument for anti-fuse non-volatile memory in 28nm high-k metal gate”, Feb. 15, 2011, wwwl.eeetimes.com publication. |
Office Action for U.S. Appl. No. 13/026,783, dated on Mar. 5, 2015. |
Final Office Action for U.S. Appl. No. 13/678,539, dated Apr. 1, 2015. |
Office Action for U.S. Appl. No. 14/636,155, dated Apr. 10, 2015. |
Notice of Allowance for U.S. Appl. No. 14/021,990, dated Apr. 14, 2015. |
Notice of Allowance for U.S. Appl. No. 13,842,824, dated Apr. 14, 2015. |
Notice of Allowance for U.S. Appl. No. 14/071,957, dated Apr. 14, 2014. |
Notice of Allowance for U.S. Appl. No. 14/231,404, dated Apr. 17, 2015. |
Notice of Allowance for U.S. Appl. No. 13/590,444, dated May 12, 2015. |
Notice of Allowance for U.S. Appl. No. 13/072,783, dated May 13, 2015. |
Notice of Allowance for U.S. Appl. No. 13/833,067, dated Jun. 5, 2015. |
Office Action for U.S. Appl. No. 13/314,444, dated Dec. 10, 2014. |
Final Office Action for U.S. Appl. No. 13/026,783, dated Jul. 30, 2015. |
Notice of Allowance for U.S. Appl. No. 14/553,874, dated Aug. 10, 2015. |
Office Action for U.S. Appl. No. 14/500,743, dated Aug. 17, 2015. |
Notice of Allowance for U.S. Appl. No. 14/042,392, dated Aug. 21, 2015. |
Office Action for U.S. Appl. No. 14/485,696, dated Aug. 20, 2015. |
Notice of Allowance for U.S. Appl. No. 14/493,083, dated Aug. 27, 2015. |
Office Action for U.S. Appl. No. 13/678,539, dated Sep. 16, 2015. |
Office Action for U.S. Appl. No. 14/507,691, dated Oct. 30, 2015. |
Final Office Action for U.S. Appl. No. 14/101,125, dated Nov. 17, 2015. |
Notice of Allowance for U.S. Appl. No. 13/072,783, dated Oct. 27, 2015. |
Office Action for U.S. Appl. No. 14/792,479, dated Aug. 28, 2015. |
Notice of Allowance for U.S. Appl. No. 14/500,743, dated Dec. 2, 2015. |
Notice of Allowance for U.S. Appl. No. 14/636,155, dated Dec. 4, 2015. |
Notice of Allowance for U.S. Appl. No. 14/071,957, dated Dec. 4, 2015. |
Notice of Allowance for U.S. Appl. No. 13/678,544, dated Feb. 12, 2016. |
Office Action for U.S. Appl. No. 14/749,392, dated Feb. 25, 2016. |
Office Action for U.S. Appl. No. 14/940,012, dated Feb. 26, 2016. |
Notice of Allowance for U.S. Appl. No. 14/485,698, dated Mar. 1, 2016. |
Notice of Allowance for U.S. Appl. No. 14/507,691, dated Mar. 15, 2016. |
Final Office Action for U.S. Appl. No. 13/314,444, dated Dec. 8, 2011. |
Final Office Action for U.S. Appl. No. 13/678,539, dated Apr. 8, 2016. |
Notice of Allowance for U.S. Appl. No. 14/545,775, dated Apr. 12, 2016. |
Final Office Action for U.S. Appl. No. 14/101,125, dated Apr. 21, 2016. |
Notice of Allowance for U.S. Appl. No. 14/500,743, dated Apr. 26, 2016. |
Notice of Allowance for U.S. Appl. No. 14/749,392, dated Jun. 27, 2016. |
Notice of Allowance for U.S. Appl. No. 14/940,012, dated Jul. 15, 2016. |
Office Action for U.S. Appl. No. 14/985,095, dated Jul. 21, 2016. |
Notice of Allowance for U.S. Appl. No. 13/314,444, dated Aug. 5, 2016. |
Notice of Allowance for U.S. Appl. No. 14/485,696, dated Sep. 21, 2016. |
Notice of Allowance for U.S. Appl. No. 15,076,460, dated Dec. 5, 2016. |
Final Office Action for U.S. Appl. No. 14/101,125, dated Dec. 14, 2016. |
Office Action for U.S. Appl. No. 15/297,922, dated Dec. 23, 2016. |
Office Action for U.S. Appl. No. 15/270,287, dated Dec. 23, 2016. |
Final Office Action for U.S. Appl. No. 13/678,539, dated Feb. 8, 2017. |
Notice of Allowance for U.S. Appl. No. 15/076,460, dated Mar. 15, 2017. |
Office Action for U.S. Appl. No. 15/422,266, dated Mar. 17, 2017. |
Office Action for U.S. Appl. No. 15/365,584, dated Apr. 21, 2017. |
Notice of Allowance for U.S. Appl. No. 14/485,696, dated May 25, 2017. |
Number | Date | Country | |
---|---|---|---|
20160276043 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
62136608 | Mar 2015 | US |