This relates generally to an integrated photonics device configured for measuring one or more properties of a sample volume. More specifically, the integrated photonics device can include integrated edge outcouplers.
One application for optical sensing systems can be to measure one or more properties of a sample volume. The optical sensing system can include an integrated photonics device including a plurality of optical components such as light sources and detectors. The placement and alignment accuracy of the light sources and detectors relative to each other can affect the accuracy of the measurement. For example, the alignment of the optical components can affect the accuracy of the selective detection of return light measured by the detectors that have a certain path length.
Described herein is an integrated photonics device for determining one or more properties of a measured sample volume. The integrated photonics device can include a light emitter configured to emit light through a waveguide formed by a plurality of layers. The light can propagate through the waveguide to one or more integrated edge outcouplers. The integrated edge outcoupler can redirect the light to emission optics, which can then collimate, focus, and/or direct the light to an emission region located on an external surface of the device. The light can interact with material included in a measured sample volume. The light can undergo one or more scattering events in the measured sample volume, where the scattering event(s) can cause the light to return to the device. The return light can enter into the device via one or more windows. Detection/collection optics can be used to collimate, focus, and/or direct the return light to the detector array. A detector may also be attached to the supporting material above the outcoupler and attached directly to the outcoupler. The detector array can generate a plurality of signals to be analyzed by a controller or processor for determining one or more properties of the measured sample volume.
The integrated photonics device can include a hermetically sealed enclosure, which can include optical components, electrical components, and/or thermal components. For example, the optical components can include the emission and detection optics and the detector array. The hermetic seal can reduce the amount of moisture and/or contamination that may affect the measurement, analysis, and/or the function of the individual components within the sealed enclosure. Additionally or alternatively, the hermetic seal can be used to protect the components within the enclosure from environmental contamination induced during the manufacturing, packaging, and/or shipping process. The electrical components can include one or more layers disposed on a supporting layer and configured to route electrical signals from the optical components to regions outside of the hermetic seal. The thermal components can include, but are not limited to, one or more passive thermal slugs and active thermoelectric devices configured to relocate heat generated by the optical components to the system interface of the device.
The integrated photonics device can also include an integrated edge outcoupler. The integrated edge outcoupler can be formed by creating one or more pockets in the layers of a die. Outcoupler material can be formed in the pocket and, optionally, subsequent layers can be deposited on top of the outcoupler material. The edge of the die can be polished until a targeted polish plane is achieved to form the outcoupler. Once the outcoupler is formed, the die can be flipped over and other components can be formed. Once the other components are formed, a frame can be bonded to the supporting layer, and a hermetic seal can be formed.
In the following description of examples, reference is made to the accompanying drawings in which it is shown by way of illustration specific examples that can be practiced. It is to be understood that other examples can be used and structural changes can be made without departing from the scope of the various examples.
Various techniques and process flow steps will be described in detail with reference to examples as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of one or more aspects and/or features described or referenced herein. It will be apparent, however, to one skilled in the art, that one or more aspects and/or features described or referenced herein may be practiced without some or all of these specific details. In other instances, well-known process steps and/or structures have not been described in detail in order to not obscure some of the aspects and/or features described or referenced herein.
Further, although process steps or method steps can be described in a sequential order, such processes and methods can be configured to work in any suitable order. In other words, any sequence or order of steps that can be described in the disclosure does not, in and of itself, indicate a requirement that the steps be performed in that order. Further, some steps may be performed simultaneously despite being described or implied as occurring non-simultaneously (e.g., because one step is described after the other step). Moreover, the illustration of a process by its description in a drawing does not imply that the illustrated process is exclusive of other variations and modification thereto, does not imply that the illustrated process or any of its steps are necessary to one or more of the examples, and does not imply that the illustrated process is preferred.
Described here is an integrated photonics device for determining one or more properties of a measured sample volume. The integrated photonics device can include a light emitter configured to emit light through a waveguide formed by a plurality of layers. The light can propagate through the waveguide to one or more integrated edge outcouplers. The integrated edge outcoupler can redirect the light to emission optics, which can then collimate, focus, and/or direct the light to an emission region located on an external surface of the device. The light can interact with material included in a measured sample volume. The light can undergo one or more scattering events in the measured sample volume, where the scattering event(s) can cause the light to return to the device. The return light can enter into the device via one or more windows. Detection optics can be used to collimate, focus, and/or direct the return light to the detector array. The detector array can generate a plurality of signals to be analyzed by a controller or processor for determining one or more properties of the measured sample volume.
The integrated photonics device can include a hermetically sealed enclosure, which can include optical components, electrical components, and/or thermal components. For example, the optical components can include the emission and detection optics and the detector array. The hermetic seal can reduce the amount of moisture and/or contamination that may affect the measurement, analysis and/or the function of the individual components within the sealed enclosure. Additionally or alternatively, the hermetic seal can be used to protect the components within the enclosure from environmental contamination induced during the manufacturing, packaging, and/or shipping process. The electrical components can include one or more layers disposed on a supporting layer and configured to route electrical signals from the optical components to regions outside of the hermetic seal. The thermal components can include one or more thermal slugs configured to relocate heat generated by the optical components to the system interface of the device.
The integrated photonics device can also include an integrated edge outcoupler. The integrated edge outcoupler can be formed by creating one or more pockets in the layers of a die. Outcoupler material can be formed in the pocket, and optionally, subsequent layers can be deposited on top of the outcoupler material. The edge of the die can be polished until a targeted polish plane is achieved to form the outcoupler. Once the outcoupler is formed, the die can be flipped over and other components can be formed. Once the other components are formed, a frame can be bonded to the supporting layer, and a hermetic seal can be formed.
An overview of the components included in an exemplary integrated photonics device and operation thereof are now described, with detailed descriptions provided below.
The emission region 182 can be configured to allow light to exit the system 100 towards the measured sample volume 120. Depending on the nature of the measured sample volume 120, light can penetrate a certain depth into the measured sample volume 120 to reach one or more scattering sites and can return (e.g., reflect and/or scatter back) towards the system 100. The return light can enter back into the system 100 at the detection region 156 (step 159 of process 151). The return light that enters back into the system can be collected by light collection optics 116, which can direct, collimate, focus, and/or magnify the return light (step 161 of process 151). The return light can be directed towards the detector 130 (e.g., a detector array). The detector 130 can detect the return light and send an electrical signal indicative of the amount of detected light to the controller 140 (step 163 of process 151).
The light emitter 107 can optionally emit light towards the reference 108 (step 165 of process 151). The reference 108 can redirect light towards optics 194 (step 167 of process 151). The reference 108 can include, but is not limited to, a mirror, a filter, and/or a sample with known optical properties. Optics 194 can direct, collimate, focus, and/or magnify light towards the detector 130 (step 169 of process 151). The detector 130 can measure light reflected from the reference 108 and can generate an electrical signal indicative of this reflected light (step 171 of process 151). The controller can be configured to receive at least two electrical signals from the detector 130. In some instances, one electrical signal can be indicative of return light from the measured sample volume 120, and another electrical signal can be indicative of light reflected from the reference 108. The different electrical signals can be a time-multiplexed signal, for example. The electrical signal at a given instance in time can be based on whether the light is sent to the measured sample volume or the reference. In other instances, the two or more electrical signals can be received by different detector pixels simultaneously and may include different light information. The controller 140 (or another processor) can determine the properties of the sample from the electrical signals (step 173 of process 151).
In some examples, when the system is measuring the properties of the sample and the reference, light emitted from the light emitter 107 can reflect off a surface of the sample back into the system 100. Light reflected off the interior walls or components can be referred to as the interface reflected light 184. In some examples, the interface reflected light 184 could be light emitted from the light emitter 107 that has not reflected off the measured sample volume 120 or the reference 108 and can be due to light scattering within the system 100. Since the interface reflected light 184 can be unwanted, the absorber or light blocker 192 can prevent the interface reflected light 184 from being collected by optics 194 and light collection optics 116. In this manner, the system can prevent the interface reflected light 184 from being measured by the detector 130.
A detailed description of an exemplary integrated photonics device is now provided.
The measured sample volume can include one or more locations, which can include one or more scattering sites associated with scattering event(s). The device 200 can be configured to reconstruct the optical paths in the measured sample volume. For example, the device 200 can be configured to reconstruct angles and locations of light received at the detection regions 256 to another place (e.g., a plane located closer to the detector array 230). Reconstruction of the optical paths can be performed using one or more layers of optics (e.g., optics 216). The device 200 can include any number of layers of optics; the one-layer of optics shown in the figure is just one example.
The device 200 can include multiple components, where the multiple components can be formed on or attached to a supporting layer 242. The supporting layer 242 can include any type of material such as silicon. At least some of the multiple components can include optical components. Exemplary optical components can include a light emitter 207, a detector array 230, optics 216, optics 291, and an outcoupler 209. Other optical components (not shown) can include optical traces, multiplexers, reflectors, and the like. The device can also include one or more electrical components, such as layer 210, layer 219, and bonding bumps 236.
The device 200 can also include a frame 214, which can be used to hermetically seal the optical components within the cavity between the supporting layer 242 and the system interface 280. The frame 214 can assist in creating the hermetic seal by being bonded to the supporting layer 242. In some examples, the frame 214 include a conductive (e.g., metal) frame. The hermetic seal can reduce the amount of water located in the cavity and/or reduce the amount of contamination in the optical paths of the light included in the measurements. In some instances, at least a portion of the frame 214 can be at a location inside the perimeter of the supporting layer 242, as shown in the figure. Bond pads (not shown) can be placed on the edge 245 of the supporting layer 242. Wire bonds 247 can be used to connect the bond pads to a board (e.g., interposer 241 or board 243) located outside of the sealed enclosure. One or more traces (e.g., included in layer 219) can be used to electrically couple the active components in the sealed enclosure to the bond pads and/or wire bonds 247, located outside of the sealed enclosure. In some examples, one or more layers 248 (dielectric layers and/or conductive layers) located between the frame 214 and the supporting layer 242 can be used for routing signals from the active components to the bond pads and/or wire bonds 247.
As discussed above, the system interface 280 can include one or more emission regions 282 and one or more detection regions 256. The emission region(s) 282 can be configured to allow light emitted by the light emitter 207 (and redirected by the outcoupler 209 and optics 291) to exit the device 200 at the system interface 280. The detection region(s) 256 can be configured to allow return light to enter the device 200 to be redirected by optics 216 and detected by the detector array 230. In some examples, certain detector pixels included in the detector array 230 can be associated with different optical path lengths to determine (e.g., estimate) the optical properties (e.g., absorbance) of the measured sample volume.
The detector array 230 can be located below (i.e., opposite the system interface 280) the optics 216. In some examples, the optics 216 can be formed from the same material as the window(s) 201. Between the detector array 230 and the optics 216, the device 200 can include air, vacuum, or any medium with a refractive index that contrasts the refractive indices of the optics 216. As discussed below, in some examples, the medium can include a thermal slug.
The device 200 can include one or more light emitters 207. A light emitter 207 can be configured to emit light. The light emitter 207 can include any type of light source (including one or more waveguides (not shown)) capable of generating light. In some instances, the light emitter 206 can include a single light source. In other instances, the light emitter 207 can include a plurality of discrete light sources. A light source can include, but is not limited to, a lamp, laser, light-emitting diode (LED), organic light-emitting diode (OLED), electroluminescent (EL) source, quantum dot (QD) light emitter, super-luminescent diode, super-continuum source, fiber-based source, or a combination of one or more of these sources. In some examples, the light emitter 207 can be capable of emitting a single wavelength of light. In some examples, the light emitter 207 can be capable of emitting a plurality of wavelengths of light. In some examples, the light emitter 207 can include any tunable source capable of generating a short-wave infrared (SWIR) signature. In some examples, a light emitter 207 can include a III-V material, such as Indium Phosphide (InP), Gallium Antimonide (GaSb), Gallium Arsenide Antimonide (GaAsSb), Aluminum Arsenide (AlAs), Aluminum Gallium Arsenide (AlGaAs), Aluminum Indium Arsenide (AnnAs), Indium Gallium Phosphide (InGaP), Indium Gallium Arsenide (InGaAs), Indium Arsenide Antimonide (InAsSb), Indium Phosphide Antimonide (InPSb), Indium Arsenide Phosphide Antimonide (InAsPSb), and Gallium Indium Arsenide Antimonide Phosphide (GaInAsSbP).
Optics 291 can be configured to redirect, collimate, and/or focus light emitted by the light emitter 207 and redirected by the outcoupler 209. Additionally, the optics 216 can be configured to redirect, collimate, and/or focus return light to be received by the detector array 230. The device can further include an outcoupler 209, which can be configured to redirect the light emitted by the light emitter 207. In some examples, the outcoupler 209 can be located on the same layer as at least one of the layers 210. For example, a side of the outcoupler 209 can contact the supporting layer 242, and a side of the layers 210 can also contact the supporting layer. Optionally, the device can include a reflector 211 disposed on the outcoupler 209.
The device 200 can include one or more layers 210 and/or one or more layers 219. The layers 210 can include one or more conductive layers configured to route one or more signals to the light emitter 207. For example, the layers 210 can be configured to route one or more signals from a controller (e.g., controller 140 illustrated in
Additionally, the layers 219 can include one or more conductive layers configured to route one or more signals to the detector array 230. For example, the layers 219 can be configured to route one or more signals from the detector array 230 to a controller (e.g., controller 140 illustrated in
In some examples, the device can include one or more traces (not shown) that connect layers 210 and layers 219. The one or more traces can be routed out of the hermetically sealed cavity. In some instances, the device can include through-silicon vias (TSVs) (not shown) to electrically connect the layers 210 and the layers 219. In other instances, the traces can be routed to the edges of the supporting layer 242, under the frame 214, and bonded to one or more components outside of the hermetic seal (e.g., using wire bonds 247 to connect to board 243)
Additionally, the device can include one or more thermal components, such as thermal slug, a heat sink, thermoelectric device, or the like. The thermal slug 232 can be configured to relocate heat from one location in the device to another. For example, the thermal slug 232 can be used to relocate heat from the light emitter 207 to the system interface 280. The thermal slug 232 can be attached to the supporting layer 242 using the solder connection 234. In some examples, the solder connection can be an under bump metallization made from a thermally conductive material such as nickel gold. In some examples, solder connection(s) 234 can be located in locations corresponding to the light emitters 207. That is, a solder connection 234 can be located above (i.e., closer to the system interface 280) the light emitter 207 such that heat from the light emitter 207 can be relocated to the thermal slug 232 located above. In some examples, the solder connection 234 can have the same footprint as the light emitter 207. In some examples, the each light emitter 207 can have a unique solder connection 234 and a unique thermal slug 232. Additional solder connections 234 can be located in other areas of the device, e.g., to help connect frame 214 to the supporting layer 242.
The device 200 can optionally include an underfill 244 and/or overfill 246. The underfill 246 can fill the space located between the outcoupler 209 and the interposer 241. The overfill 246 can be located in the space outside of the hermetically sealed cavity and can be used to, e.g., seal any wire bonds to prevent the wire bonds from breaking.
Although the descriptions given above and below pertain to a device, examples of the disclosure can include a system having multiple devices, where different components may be located in the different devices.
In some examples, the thermal slug included in the device can occupy the space around the optics.
In the above-described examples, the devices can include one or more thermally conductive adhesive materials (e.g., an epoxy) that bonds the thermal slug to another component. For example, a thermally conductive epoxy can be used to bond the window 201 to thermal slug 232 in device 200 illustrated in
The process for forming the edge outcoupler will now be described.
In some examples, the light emitter (e.g., light emitter 207 illustrated in
In some examples, the supporting layer 542 and the index matching layer 514 can form a waveguide for light to propagate. For example, the light from the light emitter (e.g., light emitter 207 illustrated in
An outcoupler material (e.g., outcoupler material 515 illustrated in
In some examples, outcouplers can be located along multiple edges of a given die. For example, although
One or more additional layers may be deposited on top of the outcoupler material, as shown in
The dies can be diced along the dice lanes (e.g., dice lanes 505 illustrated in
In some examples, the polishing step can include polishing the outcoupler material along a targeted polish plane such that the targeted polish depth and/or polish angle is achieved, as discussed below. In some instances, the characteristics of the targeted polish plane can be based on the location of the emission region (e.g., emission region 282 illustrated in
In some examples, more than one edge of a die can be polished. In some examples, a single edge of a die can include multiple outcouplers (as shown in
A reflective material can optionally be deposited on the outcoupler 509 to form a reflector 511 (step 412 of process 400). A plurality of bonding bumps 536 can be formed on the layers 510 (step 414 of process 400).
In some examples, the die can include a plurality of outcouplers, as illustrated in the top and planar views of
Although the above figures illustrate the bonding bumps formed after separating the dies via a dicing step, examples of the disclosure can include separating the dies after the bonding bumps are formed on the layers. As illustrated in the top view shown in
The die can be flipped over and bonded to an interposer (e.g., interposer 241 illustrated in
Examples of the disclosure further include using one or more fiducials in the polishing step (e.g., step 410 illustrated in
The fiducials 623 can be included in the layers, where the number and depth from the topmost layer can be based on the target polish depth. For example, if the target polish depth is located at 5 um, and layer 610D is also at 5 um, then the exposure of the fiducial 623E would be an indication that the target polish depth has been reached.
Additionally, the fiducials can have certain horizontal locations based on the target polish angle. For example, the ends of the fiducials 623 can form a plane that is angled at the given target polish angle. If the target polish angle changes, the horizontal offset of the fiducials can be changed accordingly. Generally, a smaller offset can be used for steeper target polish angles. In some examples, the fiducials 623 may have one edge that is vertically aligned, but may have another edge that is not (e.g., the fiducials 623 may not be the same length).
The fiducials 623 can be made of any material that is at least partially opaque and can be included in the layers 610. An exemplary material is metal. The fiducials 623 can be arranged, shaped, and/or sized according to a given target polish plane 621.
A method for operating the device to determine one or more properties of a sample is now discussed.
The emission optics 791 can direct, collimate, and/or focus light 751 towards the emission region 782 and through window 701 (step 760 of process 750). Light 751 can undergo a scattering event at location 759 of the measured sample volume 720 (step 762 of process 750). At the scattering event, the light can return to the device 700 as light 753. Light 753 can transmit through window 701. The detection optics 716 can direct, collimate, and/or focus light 753 towards the detector array 730 (step 764 of process 750). The detector pixels in the detector array 730 can generate a plurality of signals indicative of the detected light, and layers 719 can route the signals to a controller or a processor for processing (step 766 of process 750). The signals can be routed out of the hermetically sealed enclosure to another board (e.g., board 243 illustrated in
In some examples, at least one of the outcouplers can be configured for redirecting light (i.e., a reference light beam) to a reference detector. The reference detector can be used to reduce the amount of drift from the light emitter that is included in the measurement signal(s). For example, the outcoupler 519 illustrated in
Representative applications of methods and apparatus according to the present disclosure are described in this section. These examples are being provided solely to add context and aid in the understanding of the described examples. It will thus be apparent to one skilled in the art that the described examples may be practiced without some or all of the specific details. Other applications are possible, such that the following examples should not be taken as limiting.
An integrated photonics device is disclosed. The integrated photonics device can include: a supporting layer including a first side and a second side; one or more windows located at a system interface of the integrated photonics device; optics configured to redirect, focus, and/or collimate incident light to or from the one or more windows; one or more edge outcouplers configured to redirect light towards at least some of the optics; one or more light emitters configured to emit light in response to first signals, where the emitted light is incident on the one or more edge outcouplers; a plurality of first layers deposited on the first side of the supporting layer, wherein the plurality of first layers is configured to route the first signals from a controller to the one or more light emitters; one or more detectors configured to detect return light and generate second signals indicative of the detected return light, wherein the detected return light includes at least a portion of the emitted light; a plurality of second layers deposited on the second side of the supporting layer, wherein the plurality of second layers is configured to route second signals from the one or more detectors to the controller or a processor; and the controller or a processor configured to determine one or more sample properties based on the second signals. Additionally or alternatively, in some examples, the integrated photonics device further comprises: a frame connected to the supporting layer, wherein the frame is configured to create a hermetic seal around at least the one or more detectors and at least some of the optics. Additionally or alternatively, in some examples, the integrated photonics device further comprises: one or more traces electrically connected to the one or more second layers, wherein the one or more traces are configured to route the second signals to a location outside of the hermetic seal. Additionally or alternatively, in some examples, the integrated photonics device of claim 1, further comprises one or more thermal slugs configured to relocate heat from one location to another, the one or more thermal slugs thermally coupled to the supporting layer and the one or more windows. Additionally or alternatively, in some examples, the one or more thermal slugs are located around the one or more optics. Additionally or alternatively, in some examples, the integrated photonics device further comprises: one or more solder connections configured to connect the one or more thermal slugs to the supporting layer, wherein the one or more solder connections are located in locations corresponding to the one or more light emitters. Additionally or alternatively, in some examples, the one or more edge outcouplers includes an outcoupler material, the outcoupler material including amorphous silicon, the supporting layer includes silicon, and the plurality of first layers includes silicon and silicon dioxide. Additionally or alternatively, in some examples, the plurality of first layers includes one or more of insulating layer(s) and conductive layer(s), at least some of the plurality of first layers including a plurality of fiducials, wherein at least two of the plurality of fiducials are offset relative to one another, the offset based on a target polishing plane. Additionally or alternatively, in some examples, the integrated photonics device further comprises: a plurality of second fiducials, wherein the plurality of second fiducials is oriented along a different direction than the plurality of fiducials. Additionally or alternatively, in some examples, the optics are one-layer optics.
A method for determining one or more properties of a sample using an integrated photonics device is disclosed. The method can comprise: emitting light from one or more light emitters towards one or more waveguides; propagating the emitted light using the one or more waveguides to one or more edge outcouplers, the one or more waveguides formed from at least some of a plurality of first layers; redirecting the emitted light using the one or more edge outcouplers towards optics; redirecting, focusing, and/or collimating the redirected light using the optics towards one or more windows of the integrated photonics device; receiving return light from the one or more windows by one or more detectors; generating second signals indicative of the return light using the one or more detectors; and determining the one or more properties of the sample based on the second signals. Additionally or alternatively, in some examples, the method further comprises: creating a hermetic seal around at least the one or more detectors and the one or more windows. Additionally or alternatively, in some examples, the method further comprises: routing the second signals from the one or more detectors to a controller located outside of the hermetic seal. Additionally or alternatively, in some examples, the method further comprises: routing first signals from a controller using one or more of an interposer and bonding bumps; and transmitting first signals to the one or more light emitters, the first signals associated with the emitted light from the one or more light emitters. Additionally or alternatively, in some examples, the method further comprises: relocating heat from the one or more light emitters to the one or more windows using one or more thermal slugs.
A method for forming an integrated photonics device is disclosed. The method can comprise: providing a wafer, the wafer including a supporting layer and a plurality of first layers on a first side of the supporting layer; and forming one or more integrated edge outcouplers including: forming one or more pockets by etching the plurality of first layers, growing outcoupler material in the one or more pockets, and polishing at least one edge of wafer along a target polish plane, wherein the polish exposes at a least a portion of the outcoupler material. Additionally or alternatively, in some examples, forming the one or more integrated edge outcouplers further comprises: depositing additional material on top of the outcoupler material prior to the polishing. Additionally or alternatively, in some examples, forming the one or more integrated edge outcouplers further comprises: depositing a plurality of fiducials in the plurality of layers such that the plurality of fiducials is offset with respect to one another to form the target polish plane. Additionally or alternatively, in some examples, the method further comprises: forming a plurality of second layers on a second side of the supporting layer; forming a detector array on the plurality of second layers; connecting a frame to the supporting layer; and creating a hermetic seal using the frame. Additionally or alternatively, in some examples, the method further comprises: forming one or more light emitters on the first side of the supporting layer; forming one or more solder connections in locations corresponding to the one or more light emitters; forming one or more thermal slugs; and thermally coupling the one or more thermal slugs to the supporting layer using the one or more solder connections.
Although the disclosed examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the disclosed examples as defined by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 16/969,034, filed Aug. 11, 2020, which is a national phase application under 35 U.S.C. § 371 of PCT Application PCT/US2019/017842, filed Feb. 13, 2019, which claims benefit of U.S. Provisional Patent Application No. 62/630,018, filed on Feb. 13, 2018, the contents of which are hereby incorporated by reference as if fully disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
3805074 | McCormack | Apr 1974 | A |
3861788 | Webster | Jan 1975 | A |
4082464 | Johnson, Jr. | Apr 1978 | A |
4195311 | Moran | Mar 1980 | A |
4236076 | Judge | Nov 1980 | A |
4260263 | Kummer | Apr 1981 | A |
4286327 | Rosenthal | Aug 1981 | A |
4300167 | Miller | Nov 1981 | A |
4810077 | Sting | Mar 1989 | A |
4956796 | Rogers | Sep 1990 | A |
4975581 | Robinson | Dec 1990 | A |
5220403 | Batchelder | Jun 1993 | A |
5430787 | Norton | Jul 1995 | A |
5475235 | Phillips | Dec 1995 | A |
5483261 | Yasutake | Jan 1996 | A |
5488204 | Mead et al. | Jan 1996 | A |
5644667 | Tabuchi | Jul 1997 | A |
5652654 | Asimopoulos | Jul 1997 | A |
5737078 | Takarada | Apr 1998 | A |
5818629 | Kinoshita | Oct 1998 | A |
5825352 | Bisset et al. | Oct 1998 | A |
5835079 | Shieh | Nov 1998 | A |
5880411 | Gillespie et al. | Mar 1999 | A |
5936739 | Cameron | Aug 1999 | A |
5953133 | Fujimiya et al. | Sep 1999 | A |
6048755 | Jiang | Apr 2000 | A |
6104946 | Tsuchiya | Aug 2000 | A |
6122042 | Wunderman et al. | Sep 2000 | A |
6188391 | Seely et al. | Feb 2001 | B1 |
6198531 | Nielsen | Mar 2001 | B1 |
6236459 | Negahdaripour | May 2001 | B1 |
6248988 | Krantz | Jun 2001 | B1 |
6310610 | Beaton et al. | Oct 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6424416 | Gross et al. | Jul 2002 | B1 |
6519033 | Quist | Feb 2003 | B1 |
6690387 | Zimmerman et al. | Feb 2004 | B2 |
6826424 | Zeng et al. | Nov 2004 | B1 |
6844554 | Karlsson | Jan 2005 | B2 |
6892449 | Brophy et al. | May 2005 | B1 |
6940625 | Endo et al. | Sep 2005 | B2 |
6999183 | Nielsen et al. | Feb 2006 | B2 |
7015894 | Morohoshi | Mar 2006 | B2 |
7061623 | Davidson | Jun 2006 | B2 |
7129508 | Chen | Oct 2006 | B2 |
7184064 | Zimmerman et al. | Feb 2007 | B2 |
7203426 | Wu et al. | Apr 2007 | B2 |
7282723 | Schomacker | Oct 2007 | B2 |
7405825 | Schuurmans et al. | Jul 2008 | B2 |
7428057 | De Lega et al. | Sep 2008 | B2 |
7433042 | Cavanaugh | Oct 2008 | B1 |
7466636 | Buchler et al. | Dec 2008 | B2 |
7495768 | Mori et al. | Feb 2009 | B2 |
7623233 | Freese et al. | Nov 2009 | B2 |
7650743 | Wehler et al. | Jan 2010 | B2 |
7663607 | Hotelling et al. | Feb 2010 | B2 |
7720291 | Trifonov et al. | May 2010 | B2 |
7751741 | Hirai | Jul 2010 | B2 |
7884933 | Kashyap | Feb 2011 | B1 |
8102530 | Sperling | Jan 2012 | B2 |
8179526 | Bennett et al. | May 2012 | B2 |
8479122 | Hotelling et al. | Jul 2013 | B2 |
8498681 | Wang et al. | Jul 2013 | B2 |
8518643 | Rank et al. | Aug 2013 | B2 |
8564784 | Wang et al. | Oct 2013 | B2 |
8597190 | Rule et al. | Dec 2013 | B2 |
8619177 | Perwass | Dec 2013 | B2 |
8619237 | Hillman et al. | Dec 2013 | B2 |
8629930 | Brueckner et al. | Jan 2014 | B2 |
8634072 | Trainer | Jan 2014 | B2 |
8670123 | Schleipen et al. | Mar 2014 | B2 |
8731638 | Butler | May 2014 | B2 |
8928877 | Lim et al. | Jan 2015 | B2 |
8951472 | Kellner et al. | Feb 2015 | B2 |
8958056 | Wiethege et al. | Feb 2015 | B2 |
9013684 | Xalter et al. | Apr 2015 | B2 |
9024252 | Chiarello et al. | May 2015 | B2 |
9036145 | Froigneux et al. | May 2015 | B2 |
9062957 | Yamada | Jun 2015 | B2 |
9075015 | Shapiro | Jul 2015 | B2 |
9185272 | Ebe | Nov 2015 | B2 |
9217669 | Wu et al. | Dec 2015 | B2 |
9234747 | Ishii et al. | Jan 2016 | B2 |
9287314 | Toda | Mar 2016 | B2 |
9307127 | Masuda | Apr 2016 | B2 |
9322773 | Coates et al. | Apr 2016 | B2 |
9377396 | Goldring et al. | Jun 2016 | B2 |
9380968 | Nishida et al. | Jul 2016 | B2 |
9442084 | Kakefuda | Sep 2016 | B2 |
9459201 | Gulati et al. | Oct 2016 | B2 |
9494535 | Sezginer | Nov 2016 | B2 |
9531963 | Yamanaka | Dec 2016 | B2 |
9562848 | Goldring et al. | Feb 2017 | B2 |
9585604 | Ruchti et al. | Mar 2017 | B2 |
9597024 | Robinson et al. | Mar 2017 | B2 |
9739663 | Haider et al. | Aug 2017 | B2 |
9804027 | Fish et al. | Oct 2017 | B2 |
9955111 | Mori | Apr 2018 | B2 |
10085656 | Sato | Oct 2018 | B2 |
10132996 | Lambert | Nov 2018 | B2 |
10139278 | Fish et al. | Nov 2018 | B2 |
10274426 | Arbore et al. | Apr 2019 | B2 |
10411433 | Weber | Sep 2019 | B2 |
10416434 | Fujimoto et al. | Sep 2019 | B2 |
10429597 | ten Have et al. | Oct 2019 | B2 |
10551605 | Arbore et al. | Feb 2020 | B2 |
10620105 | Trainer | Apr 2020 | B2 |
10718931 | Arbore et al. | Jul 2020 | B2 |
10788366 | Arbore et al. | Sep 2020 | B2 |
10801950 | Kangas et al. | Oct 2020 | B2 |
11035793 | Arbore et al. | Jun 2021 | B2 |
11206985 | Alford et al. | Dec 2021 | B2 |
11226459 | Bishop et al. | Jan 2022 | B2 |
11243115 | Arbore et al. | Feb 2022 | B2 |
11275405 | Hotelling | Mar 2022 | B2 |
11378808 | Hargis et al. | Jul 2022 | B2 |
20020154847 | Dutt | Oct 2002 | A1 |
20030108821 | Mei | Jun 2003 | A1 |
20040096152 | Nakama | May 2004 | A1 |
20050063431 | Gallup et al. | Mar 2005 | A1 |
20060178570 | Robinson | Aug 2006 | A1 |
20070057211 | Bahlman et al. | Mar 2007 | A1 |
20070258083 | Heppell | Nov 2007 | A1 |
20080044128 | Kish, Jr. | Feb 2008 | A1 |
20090087925 | Wagner | Apr 2009 | A1 |
20100220315 | Morrell et al. | Sep 2010 | A1 |
20110081064 | Hsu | Apr 2011 | A1 |
20110184260 | Robinson et al. | Jul 2011 | A1 |
20120059232 | Gross et al. | Mar 2012 | A1 |
20120281258 | Sheblee et al. | Nov 2012 | A1 |
20130216177 | Tseng | Aug 2013 | A1 |
20150018642 | Gulati et al. | Jan 2015 | A1 |
20150018644 | Gulati et al. | Jan 2015 | A1 |
20160091368 | Fish | Mar 2016 | A1 |
20170328912 | Szlag | Nov 2017 | A1 |
20210018432 | Kangas et al. | Jan 2021 | A1 |
20210199576 | Arbore et al. | Jul 2021 | A1 |
20210302313 | Arbore et al. | Sep 2021 | A1 |
20220037856 | Ghosh et al. | Feb 2022 | A1 |
20220074573 | Arbore et al. | Mar 2022 | A1 |
20220104735 | Lee et al. | Apr 2022 | A1 |
20220136899 | Arbore et al. | May 2022 | A1 |
20230204497 | Kangas et al. | Jun 2023 | A1 |
20230266243 | Arbore et al. | Aug 2023 | A1 |
20230314321 | Arbore et al. | Oct 2023 | A1 |
Number | Date | Country |
---|---|---|
101199413 | Jun 2008 | CN |
101622566 | Jan 2010 | CN |
101625319 | Jan 2010 | CN |
102038486 | May 2011 | CN |
102334021 | Jan 2012 | CN |
102439426 | May 2012 | CN |
102472664 | May 2012 | CN |
102519976 | Jun 2012 | CN |
102803930 | Nov 2012 | CN |
103842797 | Jun 2014 | CN |
104614084 | May 2015 | CN |
104733483 | Jun 2015 | CN |
105223163 | Jan 2016 | CN |
105438912 | Mar 2016 | CN |
106662706 | May 2017 | CN |
106941779 | Jul 2017 | CN |
107250767 | Oct 2017 | CN |
108449957 | Aug 2018 | CN |
102018211972 | Jan 2020 | DE |
0168983 | Jan 1986 | EP |
0943950 | Sep 1999 | EP |
1292134 | Mar 2003 | EP |
1403985 | Mar 2004 | EP |
1432045 | Jun 2004 | EP |
2320027 | May 2011 | EP |
2399220 | Sep 2004 | GB |
2000163031 | Jun 2000 | JP |
2000171403 | Jun 2000 | JP |
2002342033 | Nov 2002 | JP |
2003090798 | Mar 2003 | JP |
2014163895 | Sep 2014 | JP |
2010044004 | Feb 2020 | JP |
2020511693 | Apr 2020 | JP |
2020516959 | Jun 2020 | JP |
20070092818 | Sep 2007 | KR |
1020090116731 | Nov 2009 | KR |
1020110077598 | Jul 2011 | KR |
20130045189 | May 2013 | KR |
1020140130702 | Nov 2014 | KR |
WO 85003575 | Aug 1985 | WO |
WO 01014929 | Mar 2001 | WO |
WO 03056876 | Jul 2003 | WO |
WO 03087787 | Oct 2003 | WO |
WO 04031824 | Apr 2004 | WO |
WO 06086566 | Aug 2006 | WO |
WO 07121593 | Nov 2007 | WO |
WO 08032193 | Mar 2008 | WO |
WO 13126280 | Aug 2013 | WO |
WO 15101992 | Jul 2015 | WO |
WO 16106350 | Jun 2016 | WO |
WO 16106368 | Jun 2016 | WO |
WO 16109355 | Jul 2016 | WO |
WO 17040431 | Mar 2017 | WO |
WO 17184420 | Oct 2017 | WO |
WO 17184423 | Oct 2017 | WO |
WO-2017184420 | Oct 2017 | WO |
WO 20065391 | Apr 2020 | WO |
Entry |
---|
Aguirre et al. (Feb. 17, 2010). “High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe,” Optical Society of America, vol. 18, No. 5, Retrieved from the Internet: lir-11:1-1Up://w,A,w.ncbi.nlimnih.govipmclarticies/PMC2908909/pdlioe-18-5-4222.pcii , retrieved on Oct. 31, 2014, Figures 107, pp. 4226-4235. |
Bogaerts, et al., “Off-Chip Coupling,” Handbook of Silicon Photonics, CRC Press, Apr. 2013, 43 pages. |
He et al., “Integrated Polarization Compensator for WDM Waveguide Demultiplexers,” IEEE Photonics Technology Letters vol. 11, No. 2, Feb. 1999, pp. 224-226. |
Ke, S. et al. (Feb. 10, 2009) “Three-dimensional coherent transfer function for a confocal microscope with two D-shaped pupils,” Applied Optics, Optical Society of America, Washington, DC; US, vol. 48, No. 5, pp. 810-817. |
Kurugol, S. et al. (2011). “Semi-automated Algorithm for Localization of Dermal/Epidermal Junction in Reflectance Confocal Microscopy Images of Human Skin,” Proc. of SPIE, vol. 7904, ten pages. |
Lee, S.K. et al. (Apr. 1985). “A Multi-Touch Three Dimensional Touch-Sensitive Tablet,” Proceedings of CHI: ACM Conference on Human Factors in Computing Systems, pp. 21-25. |
Rubine, D.H. (Dec. 1991). “The Automatic Recognition of Gestures,” CMU-CS-91-202, Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, 285 pages. |
Rubine, D.H. (May 1992). “Combining Gestures and Direct Manipulation,” CHI ' 92, pp. 659-660. |
Sayli et al., “Two-distance partial pathlength method for accurate measurement of muscle oxidative metabolism using fNIRS,” Proceeding of SPIE, Bellingham, Washington USA, vol. 6084, 2006, 8 pages. |
Westerman, W. (Spring 1999). “Hand Tracking, Finger Identification, and Chordic Manipulation on a Multi-Touch Surface,” A Dissertation Submitted to the Faculty of the University of Delaware in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Electrical Engineering, 364 pages. |
U.S. Appl. No. 18/108,416, filed Feb. 10, 2023, Arbore et al. |
U.S. Appl. No. 18/111,740, filed Feb. 20, 2023, Kangas et al. |
Xia et al., “Study of optical parameters of polystyrene spheres in dense aqueous suspensions,” Applied Optics, May 23, 2012, vol. 51, No. 16, pp. 3263-3268. |
Number | Date | Country | |
---|---|---|---|
20220236503 A1 | Jul 2022 | US |
Number | Date | Country | |
---|---|---|---|
62630018 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16969034 | US | |
Child | 17575326 | US |