1. Field of the Invention
The present invention relates to, but is not limited to, electronic devices, and in particular, to the field of interconnects.
2. Description of Related Art
Integrated circuits use conductive contacts and interconnects to wire together individual devices on a semiconductor substrate, or to conduct input into and output from the integrated circuits. Interconnects may include metals such as, aluminum, copper, silver, gold, tungsten and their alloys. A typical method of forming an interconnect is a damascene process that involves forming an interconnect recess in a dielectric or insulation layer. The interconnect recess (hereinafter referred to as “recess”) may also be lined with a diffusion barrier layer. Often, a conductive seed material is then deposited in the recess. Thereafter, the conductive material is introduced into the recess. The conductive material is then typically planarized. Finally, an annealing process may be carried out either prior to planarization or post planarization.
The present invention will be described by way of exemplary embodiments, but not limitations, illustrated in the accompanying drawings in which like references denote similar elements, and in which:
In the following description, for purposes of explanation, numerous details are set forth in order to provide a thorough understanding of the disclosed embodiments of the present invention. However, it will be apparent to one skilled in the art that these specific details are not required in order to practice the disclosed embodiments of the present invention. In other instances, well-known electrical structures and circuits are shown in block diagram form in order not to obscure the disclosed embodiments of the present invention.
According to embodiments of the invention, interconnects are formed with their grain structures adapted to reduce electron scattering. In various embodiments, the interconnect's grain structure is adapted using localized annealing. An example of an interconnect that may contain such adapted grain structure is depicted in
The interconnect 102 may comprise of highly conductive material such as a metal, an alloy and/or other conductive materials. The substrate 108 may be, for example, part of a die or a chip. The insulation layer 112 may be any type of insulation or dielectric material that may be suitable for electrically isolating the interconnect 102. Examples of insulation materials include but are not limited to interlayer dielectrics (ILD) and low-k dielectrics. The barrier layer 114 is typically used to prevent or hinder the diffusion of conductive (e.g., interconnect) material into the surrounding material (e.g., insulation layer 112) but does not prevent the interconnect 102 from electrically coupling with other components. Etch stop layer 116 may serve as etch stop during the patterning of damascene structure without attacking the underlying interconnect 102 or substrate 108. This etch stop layer 116 may also act as a diffusion barrier to prevent or hinder the diffusion of conductive (e.g., interconnect) material into the surrounding material and/or underlying substrate.
In addition to the insulation layer 112, the interconnect 102 may interface with or be located near other components such as other substrate layers, transistors, capacitors, resistors, diodes, and the like. Many of these components may have strict thermal budgets. For example, with some adjacent components, such as the material that is used to form the insulation layer 112, there may be a backend thermal budget of less than or equal to about 450° C. Other components, such as other interconnects, transistors, capacitors, and the like, that are coupled to or are near to the interconnect 102, may also have strict thermal budgets.
Note that the interconnect 102 in
The conductivity of a conductive material, such as the material that makes up an interconnect 102, may be compromised due to electron scattering. Electron scattering is the process in which electrons, under the influence of an electric field, scatter at, for example, specific locations such as at grain boundaries, point defects, external interfaces (surfaces), and the like. As a result of the scattering, the movement of electrons that occurs under the influence of an electric field, such as when an electrical current is passing through an interconnect, may be disrupted. As a result, the scattering of the electrons may increase the overall resistivity of the interconnect. In various embodiments, it may be desirable to reduce electron scattering by, for example, reducing or eliminating sites, such as grain boundaries, that may cause electron scattering.
According to some embodiments of the invention, localized annealing processes are employed for producing large grains in an interconnect 102 without exceeding the thermal budgets of surrounding components. For these embodiments, the grain structure of the conductive material (e.g., interconnect material) may be adapted by the localized annealing process to have relatively fewer grain boundaries and thus reduce electron scattering, which in turn may result in reduced resistivity.
The processes may focus a relatively high amount of energy to an interconnect 102 for a relatively short time duration. As a result, there is little impact to the thermal budgets of surrounding components. In doing so, the desired grain structure with reduced electron scattering may be formed within the interconnect 102. The following descriptions provide embodiments for localized annealing of an interconnect 102.
In some embodiments, the grain structure is a bamboo grain structure. Referring to
In order to form the desired example bamboo grain structure 202 in an interconnect 102 without exceeding the thermal budgets of surrounding components, the interconnect 102 may be laser annealed according to some embodiments. In doing so, the thermal budgets of surrounding components and/or interconnect interfaces (e.g., interface between the interconnect 102 and the insulation layer 112) may not be compromised. For these embodiments, a laser may direct coherent light to heat a small area, such as an interconnect site, on a die. Since lasers may be precisely controlled, a laser may be accurately directed to only heat or anneal a localized area. For these embodiments, grain lengths up to ten times the line width have been achieved using for example, a Yttrium Aluminum Garnet (YAG) laser operating at 523 nanometers (nm) and at less than 10 Watts (W) of power for line widths of about 0.25 to 0.5 um.
The process 300 may begin when an etch stop layer 404 is deposited onto a substrate 406 at 301 in accordance with various embodiments. For these embodiments, the etch stop layer 404 may serve two functions, as an etch stop and as a diffusion barrier layer. The etch stop layer 404 may comprise of materials such as but are not limited to silicon nitride, silicon carbide, silicon oxycarbide, silicon oxynitride, and the like. If the etch stop layer 404 comprises of silicon nitride, a chemical vapor deposition process may be used to form the etch stop/diffusion barrier layer 404. In one embodiment, the etch stop layer 404 is deposited to a thickness in the range from about 30 to about 120 nanometers (nm).
In various embodiments, the substrate 406 may be a substrate of a die or a chip. The substrate 406 may include, among other things, semiconductor devices, such as but are not limited to, active and passive devices such as transistors, capacitors, resistors, diffused junctions, gate electrodes, local interconnects, and the like.
According to various embodiments, an insulation layer 402 may next be deposited or formed on the etch stop layer 404 at 302 (see
After depositing or forming the insulation layer 402 on the etch stop layer 404, a photoresist layer 408 may be deposited and patterned on top of the insulation layer 402 to define an interconnect recess for receiving a subsequently deposited conductive (herein “interconnect”) material at 304 (see
Once the photoresist layer 408 is formed and patterned, the exposed portion of the insulation layer 402 may be etched to form an interconnect recess 410 and the photoresist 408 may be removed at 306 (see
Next, a barrier layer 412 may be deposited or formed on the insulation layer 102 and in the interconnect recess 410 at 308 (see
In various embodiments, a conductive seed film (herein “seed film”) 414 may be deposited or formed on the barrier layer 412at 310 (see
Once the seed film 414 has been deposited, the interconnect material 416 may be deposited or formed onto the interconnect recess 410 using, for example, an electroplating process at 312 (see
Once the interconnect material 416 has been deposited onto the insulation layer 402 and into the interconnect recess 410, a planarization process may be performed at 314 (see
After the removal of the overburden 418, the interconnect material 416 that is in the interconnect recess 410 may than be locally annealed at 316 (see
The annealing time may also vary depending on a number of factors including but are not limited to the type of laser used, laser power, wavelength, interconnect material, and the like. In some embodiments, the annealing time may be about 30 to about 60 μsec. According to one embodiment, a CO2 laser with power of about 50 to about 200 Watts (W) and preferably greater than 100 W may be used. For the embodiment, the anneal time may range from about 1 to about 200 μsec.
According to another embodiment of the invention, the grain structure of an interconnect 102 may be adapted using localized annealing via resistive annealing. In resistive annealing, interconnect material may be annealed by passing an electric current through the interconnect material and using the interconnect material's own natural resistivity, generate localized heat. The generated heat may then induce grain growth and increase grain size, thereby reducing electron scattering. This may be accomplished without exceeding the thermal budgets of surrounding components and interfaces by, for example, passing electric currents in short pulses through the interconnect material of the interconnect being formed.
Referring to
According to some embodiments, the overall process for forming interconnects with large grain structures using resistive annealing may be generally similar to the process depicted in
A determination may be empirically made as to the electrical current requirement for obtaining a particular temperature point in an interconnect using resistive annealing. For instance, the power generated electrically in a conductive material is known to equal to I2R, where I is the current passing through the material and R is the resistance of the material. In an equilibrium state, the power generated by an electrical current is equal to the power dissipated by radiation, or black body radiation. For example, suppose it is desirable to obtain a temperature of 400 degrees Celsius for a Cu electroplating having a thickness of about 1 μm. Under those conditions, the Cu electroplating will dissipate radiation power of 1 kW/m2. For a 1 μm copper film on a silicon wafer, the measured resistivity is about 0.2 Ohm across the wafer. Suppose further that the area of the wafer is about 0.03 m2. Based on the following formula, a determination may be made that about 12.2 amps of current must be supplied in order to bring the Cu electroplating to a temperature of 400 degrees Celsius:
I2×R=[radiated power/area]×[area]
I2×0.2 Ohm=1 kW/m2×0.03 m2, therefore I=12.2 Amp
Although the embodiments depicted thus far shows localized annealing of an interconnect 102 belonging to a single substrate level, multi-level interconnects may be annealed at the same time in other embodiments. For example, multi-level interconnects may be formed by stacking a plurality of interconnects, such as the interconnect 102 depicted in
Referring to
Depending on the applications, the system 600 may include other components, including but not limited to non-volatile memory, chipsets, mass storage (such as hard disk, compact disk (CD), digital versatile disk (DVD), graphical or mathematic co-processors, and so forth.
One or more of the system components may be located on a single chip such as a SOC. In various embodiments, the system 600 may be a personal digital assistant (PDA), a wireless mobile phone, a tablet computing device, a laptop computing device, a desktop computing device, a set-top box, an entertainment control unit, a digital camera, a digital video recorder, a CD player, a DVD player, a network server, or device of the like.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiment shown. This application is intended to cover any adaptations or variations of the embodiments of the present invention. Therefore, it is manifestly intended that this invention be limited only by the claims.