The subject matter described herein generally relates to interferometry measurement. In one embodiment, techniques described herein provide interferometry measurement for testing storage devices.
In some storage devices such as hard disk drives, a head is kept near a rotating disk. The head enables magnetic (rather than physical) access to the disk to read and/or write bits of data. If the head touches the disk surface, the data that is magnetically stored on the disk may be damaged. Also, damage to the head may occur if the head physically contacts the rotating disk. In some current hard disk drives, extensive damage may be caused to both the head and the rotating disk surface if they physically come in contact, since the disks can spin at speeds of several thousands of revolutions per minute (RPM).
To store as much data as possible in a given footprint of a hard disk drive, the heads are kept at increasingly shorter distances from the rotating disks. Hence, accurate measurement of the distance between the head and the rotating disk is needed to control the slider manufacturing process, and ensure that the recording heads fly at the proper height.
In various embodiments, techniques for interferometry measurements in disturbed environments are described. The disturbed environment may include one or more variations such as pressure variations and/or thermal variations. For example, the disturbed environment may be generated by a rotating disk in an optical flying height tester.
In one embodiment, a method includes detecting a difference between an optical path of a first beam and an optical path of a second beam. One or more of the first or second beams may be encased in a shroud proximate to a disturbed environment e.g., to reduce the negative effects of the disturbed environment. The method may further couple a window to the shroud in proximity to the disturbed environment, e.g., to further reduce the negative effects of the disturbed environment.
In a further embodiment, an apparatus includes a detector to determine a difference in an optical path of a first beam and an optical path of a second beam. One or more of the first or second beams may be reflected off of a first object and a second object, respectively. Alternatively, one of the beams may be an internal reference beam. The apparatus may further include a shroud to encase the first beam and a second beam proximate to the disturbed environment.
Additional advantages, objects and features of embodiments of the invention are set forth in part in the detailed description which follows. It is to be understood that both the foregoing general description and the following detailed description are merely exemplary of embodiments of the invention, and are intended to provide an overview or framework for understanding the nature and character of embodiments of the invention.
The accompanying drawings are included to provide further understanding of embodiments of the invention, illustrate various embodiments of the invention, and together with the description serve to explain the principles and operation of the invention. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different figures indicates similar or identical items.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of embodiments of the present invention. Embodiments of the present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.
Also, reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least an implementation. The appearances of the phrase “in one embodiment” in various places in the specification may or may not be all referring to the same embodiment.
As illustrated in
The system 100 may further include an objective lens 112 to focus the beams 108 and 110 on the bottom surface of the disk 102 and/or the slider 104. Since the disk 102 and slider 104 may have a gap that ranges in nanometers or fractions thereof, the lens 112 may be utilized to focus the beams 108 and 110 on the same focal plane in one embodiment. The objective lens 112 may have any suitable shape such as concave (or convex) or semi-concave (or semi convex), and may be adjusted by moving the lens 112 in a plane that is substantially perpendicular to the rotational plane of the disk 102. The lens 112 may be constructed with any suitable material such as glass, quartz, fused Silica, or combinations thereof. Also, multiple lenses may be utilized in various embodiments, such as one for each beam (108 and/or 110).
The system may further include a shroud 114 to reduce the negative effects of the environmental disturbance 106 that may be present proximate to the disk 102 (e.g., due to the rotation of the disk 102). The shroud 114 may reduce the inhomogeneities discussed above, e.g., to improve the measurement repeatability. The shroud 114 may improve the measurement repeatability in two ways. First, it may reduce the distance traveled in the disturbed environment 106, therefore reducing the contribution of temperature and/or pressure inhomogeneities to the optical phase difference between the beams 108 and 110. Second, the shroud 114 may improve the uniformity of the optical path traversed by the beams 108 and 110. For example, the presence of the shroud 114 may provide a gas flow between a detector (e.g., detector 212 of
Additionally, the shroud 114 may be coupled to an optional window 116. The window 116 may be coupled to the shroud 114 in proximity of the disturbed environment 106 to further reduce the negative effects of the environmental disturbance 106, e.g., by limiting or preventing the flow of air (or other gases) generated by the rotation of the disk 102 to enter the shroud 114 and perturb the volume of air (or other gases) inside the shroud 114. The presence of the window 116 on shroud 114 may help provide a gas flow between a detector (e.g., detector 212 of
The window 116 may be transparent (to electromagnetic radiation) and may have anti-reflective coating. The window 116 may be constructed with any suitable material such as glass, fused Silica, quartz, or combinations thereof. Additionally, the window 116 may be tilted relative to the disk 102 (not shown), e.g., to reduce reflections of the beams 108 and 110. Also, the window 116 may be a lens in one embodiment.
A radiation source 202 may provide electromagnetic radiation such as a laser beam. Hence the source 202 may be a laser diode. Also, more than one radiation source may be utilized in an embodiment. The radiation provided by the source 202 may pass through a collimating lens inside the source 202 to direct a collimated beam 206 to a beam splitter 208. The collimated beam may pass through a plate beam splitter 204 that may be used to redirect the reflected beams onto a detector 212. The beam splitter 208 may split the beam 206 to provide the beams 108 and 110 discussed with reference to
After the disk 102 and slider 104 of
Even though the systems 100 and 200 of
In the description and claims, the terms “coupled” and “connected,” along with their derivatives, may be used. In some embodiments of the invention, “connected” may be used to indicate that two or more elements are in direct physical contact with each other. “Coupled” may mean that two or more elements are in direct physical contact. However, “coupled” may also mean that two or more elements may not be in direct contact with each other, but may still cooperate or interact with each other.
Although embodiments have been described in language specific to structural features and/or methodological acts, it is to be understood that claimed subject matter may not be limited to the specific features or acts described. Rather, the specific features and acts are disclosed as sample forms of implementing various embodiments. While the invention has been described above in conjunction with one or more specific embodiments, it should be understood that the invention is not intended to be limited to one embodiment. The invention is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention, such as those defined by the appended claims.