Interleukin-3 (IL-3) multiple mutation polypeptides

Information

  • Patent Grant
  • 6458931
  • Patent Number
    6,458,931
  • Date Filed
    Tuesday, June 6, 1995
    29 years ago
  • Date Issued
    Tuesday, October 1, 2002
    22 years ago
Abstract
The present invention relates to recombinant human interleukin-3 (hIL-3) variant or mutant proteins (muteins). These hIL-3 muteins contain amino acid substitutions and may also have amino acid deletions at both the N- and C-termini. The invention also relates to pharmaceutical compositions containing the hIL-3 muteins and methods for using them. Additionally, the present invention relates to recombinant expression vectors comprising nucleotide sequences encoding the hIL-3 muteins, related microbial expression systems, and processes for making the hIL-3 muteins using the microbial expression systems. Included in the present invention are deletion mutants of hIL-3 in which from 1 to 14 amino acids have been deleted from the N-terminus, and from 1 to 15 amino acids (a.a.119 to 133) have been deleted from the C-terminus, and which also contain amino acid substitutions in the polypeptide. These hIL-3 multiple mutation polypeptides may have biological activities similar to or better than hIL-3 and, in some cases, may also have an improved side effect profile.
Description




FIELD OF THE INVENTION




The present invention relates to mutants or variants of human interleukin-3 (hIL-3) which contain multiple amino acid substitutions and which may have portions of the native hIL-3 molecule deleted. These hIL-3 multiple mutation polypeptides retain one or more activities of native hIL-3 and may also show improved hematopoietic cell-stimulating activity and/or an improved activity profile which may include reduction of undesirable biological activities associated with native hIL-3.




BACKGROUND OF THE INVENTION




Colony stimulating factors (CSFs) which stimulate the differentiation and/or proliferation of bone marrow cells have generated much interest because of their therapeutic potential for restoring depressed levels of hematopoietic stem cell-derived cells. CSFs in both human and murine systems have been identified and distinguished according to their activities. For example, granulocyte-CSF (G-CSF) and macrophage-CSF (M-CSF) stimulate the in vitro formation of neutrophilic granulocyte and macrophage colonies, respectively while GM-CSF and interleukin-3 (IL-3) have broader activities and stimulate the formation of both macrophage, neutrophilic and eosinophilic granulocyte colonies. IL-3 also stimulates the formation of mast, megakaryocyte and pure and mixed erythroid colonies.




Because of its ability to stimulate the proliferation of a number of different cell types and to support the growth and proliferation of progenitor cells, IL-3 has potential for therapeutic use in restoring hematopoietic cells to normal amounts in those cases where the number of cells has been reduced due to diseases or to therapeutic treatments such as radiation and chemotherapy.




Interleukin-3 (IL-3) is a hematopoietic growth factor which has the property of being able to promote the survival, growth and differentiation of hematopoietic cells. Among the biological properties of IL-3 are the ability (a) to support the growth and differentiation of progenitor cells committed to all, or virtually all, blood cell lineages; (b) to interact with early multipotential stem cells; (c) to sustain the growth of pluripotent precursor cells; (d) to stimulate proliferation of chronic myelogenous leukemia (CML) cells; (e) to stimulate proliferation of mast cells, eosinophils and basophils; (f) to stimulate DNA synthesis by human acute myelogenous leukemia (AML) cells; (g) to prime cells for production of leukotrienes and histamines; (h) to induce leukocyte chemotaxis; and (i) to induce cell surface molecules needed for leukocyte adhesion.




Mature human interleukin-3 (hIL-3) consists of 133 amino acids. It has one disulfide bridge and two potential glycosylation sites (Yang, et al., CELL 47:3 (1986)).




Murine IL-3 (mIL-3) was first identified by Ihle, et al., J. IMMUNOL. 126:2184 (1981) as a factor which induced expression of a T cell associated enzyme, 20-hydroxysteroid dehydrogenase. The factor was purified to homogeneity and shown to regulate the growth and differentiation of numerous subclasses of early hematopoietic and lymphoid progenitor cells.




In 1984, cDNA clones coding for murine IL-3 were isolated (Fung, et al., NATURE 307:233 (1984) and Yokota, et al., PROC. NATL. ACAD. SCI. USA 81:1070 (1984)). The murine DNA sequence coded for a polypeptide of 166 amino acids including a putative signal peptide.




The gibbon IL-3 sequence was obtained using a gibbon cDNA expression library. The gibbon IL-3 sequence was then used as a probe against a human genomic library to obtain a human IL-3 sequence.




Gibbon and human genomic DNA homologues of the murine IL-3 sequence were disclosed by Yang, et al., CELL 47:3 (1986). The human sequence reported by Yang, et al. included a serine residue at position 8 of the mature protein sequence. Following this finding, others reported isolation of Pro


8


hIL-3 cDNAs having proline at position 8 of the protein sequence. Thus it appears that there may be two allelic forms of hIL-3.




Dorssers, et al., GENE 55:115 (1987), found a clone from a human cDNA library which hybridized with mIL-3. This hybridization was the result of the high degree of homology between the 3′ noncoding regions of mIL-3 and hIL-3. This cDNA coded for an hIL-3 (Pro


8


) sequence.




U.S. Pat. No. 4,877,729 and U.S. Pat. No. 4,959,454 disclose human IL-3 and gibbon IL-3 cDNAs and the protein sequences for which they code. The hIL-3 disclosed has serine rather than proline at position 8 in the protein sequence.




Clark-Lewis, et al., SCIENCE 231:134 (1986) performed a functional analysis of murine IL-3 analogues synthesized with an automated peptide synthesizer. The authors concluded that the stable tertiary structure of the complete molecule was required for full activity. A study on the role of the disulfide bridges showed that replacement of all four cysteines by alanine gave a molecule with 1/500th the activity as the native molecule. Replacement of two of the four Cys residues by Ala(Cys


79


, Cys


140


→Ala


79


, Ala


140


) resulted in an increased activity. The authors concluded that in murine IL-3 a single disulfide bridge is required between cysteines 17 and 80 to get biological activity that approximates physiological levels and that this structure probably stabilizes the tertiary structure of the protein to give a conformation that is optimal for function. (Clark-Lewis, et al., PROC. NATL. ACAD. SCI. USA 85:7897 (1988)).




International Patent Application (PCT) WO 88/00598 discloses gibbon- and human-like IL-3. The hIL-3 contains a Ser


8


→Pro


8


replacement. Suggestions are made to replace Cys by Ser, thereby breaking the disulfide bridge, and to replace one or more amino acids at the glycosylation sites.




EP-A-0275598 (WO 88/04691) illustrates that Ala


1


can be deleted while retaining biological activity. Some mutant hIL-3 sequences are provided, e.g., two double mutants, Ala


1


→Asp


1


, Trp


13


→Arg


13


(pGB/IL-302) and Ala


1


→Asp


1


, Met


3


→Thr


3


(pGB/IL-304) and one triple mutant Ala


1


→Asp


1


, Leu


9


→Pro


9


, Trp


13


→Arg


13


(pGB/IL-303).




WO 88/05469 describes how deglycosylation mutants can be obtained and suggests mutants of Arg


54


Arg


55


and Arg


108


Arg


109


Lys


110


might avoid proteolysis upon expression in


Saccharomyces cerevisiae


by KEX2 protease. No mutated proteins are disclosed. Glycosylation and the KEX2 protease activity are only important, in this context, upon expression in yeast.




WO 88/06161 mentions various mutants which theoretically may be conformationally and antigenically neutral. The only actually performed mutations are Met


2


→Ile


2


and Ile


131


→Leu


131


. It is not disclosed whether the contemplated neutralities were obtained for these two mutations.




WO 91/00350 discloses nonglycosylated hIL-3 analog proteins, for example, hIL-3 (Pro


8


Asp


15


Asp


70


), Met


3


rhul-3 (Pro


8


Asp


15


Asp


70


); Thr


4


rhuL-3 (Pro


8


Asp


15


Asp


70


) and Thr


6


rhuIL-3 (Pro8Asp


15


Asp


70


). It is said that these protein compositions do not exhibit certain adverse side effects associated with native hIL-3 such as urticaria resulting from infiltration of mast cells and lymphocytes into the dermis. The disclosed analog hIL-3 proteins may have N termini at Met


3


, Thr


4


, or Thr


6


.




WO 91/12874 discloses cysteine added variants (CAVS) of IL-3 which have at least one Cys residue substituted for a naturally occurring amino acid residue.




SUMMARY OF THE INVENTION




The present invention relates to recombinant human interleukin-3 (hIL-3) variant or mutant proteins (muteins). These hIL-3 muteins contain amino acid substitutions and may also have amino acid deletions at either/or both the N- and C-termini. Preferably, these mutant polypeptides of the present invention contain four or more amino acids which differ from the amino acids found at the corresponding positions in the native hIL-3 polypeptide. The invention also relates to pharmaceutical compositions containing the hIL-3 muteins, DNA coding for the muteins, and methods for using the muteins. Additionally, the present invention relates to recombinant expression vectors comprising nucleotide sequences encoding the hIL-3 muteins, related microbial expression systems, and processes for making the hIL-3 muteins using the microbial expression systems.




The present invention includes mutants of hIL-3 in which from 1 to 14 amino acids have been deleted from the N-terminus and/or from 1 to 15 amino acids have been deleted from the C-terminus, and in which multiple amino acid substitutions have been made. Preferred muteins of the present invention are those in which amino acids 1 to 14 have been deleted from the N-terminus, amino acids 126 to 133 have been deleted from the C-terminus, and which also contain from about four to about twenty-six amino acid substitutions in the polypeptide sequence. These hIL-3 multiple mutation polypeptides may have biological activities similar to or better than hIL-3 and, in some cases, may also have an improved side effect profile, i.e., some muteins may have a better therapeutic index than native hIL-3. The present invention also provides muteins which may function as IL-3 antagonists or as discrete antigenic fragments for the production of antibodies useful in immunoassay and immunotherapy protocols. In addition to the use of the hIL-3 multiple mutation polypeptides of the present invention in vivo, it is envisioned that in vitro uses would include the ability to stimulate bone marrow and blood cell activation and growth before infusion into patients.




Antagonists of hIL-3 would be particularly useful in blocking the growth of certain cancer cells like AML, CML and certain types of B lymphoid cancers. Other conditions where antagonists would be useful include those in which certain blood cells are produced at abnormally high numbers or are being activated by endogenous ligands. Antagonists would effectively compete for ligands, presumably naturally occurring hemopoietins including and not limited to IL-3, GM-CSF and IL-5, which might trigger or augment the growth of cancer cells by virtue of their ability to bind to the IL-3 receptor complex while intrinsic activation properties of the ligand are diminished. IL-3, GM-CSF and/or IL-5 also play a role in certain asthmatic responses. An antagonist of the IL-3 receptor may have the utility in this disease by blocking receptor-mediated activation and recruitment of inflammatory cells.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is the human IL-3 gene for


E. coli


expression (pMON5873), encoding the polypeptide sequence of natural (wild type) human IL-3 [SEQ ID NO:128], plus an initiator methionine, as expressed in


E. coli,


with the amino acids numbered from the N-terminus of the natural hIL-3.




FIG.


2


: ClaI to NsiI Replacement Fragment.

FIG. 2

shows the nucleotide sequence of the replacement fragment used between the ClaI and NsiI sites of the hIL-3 gene. The codon choice used in the fragment corresponds to that found in highly expressed


E. coli


genes (Gouy and Gautier, 1982). Three new unique restriction sites, EcoRV, XhoI and PstI were introduced for the purpose of inserting synthetic gene fragments. The portion of the coding sequence shown encodes hIL-3 amino acids 20-70.





FIGS. 3A and 3B

shows the nucleotide and amino acid sequence of the gene in pMON5873 with the sequence extending from NcoI through HindIII. The codon choices used to encode amino acids 1-14 and 107-133 correspond to that found in highly expressed


E. coli


genes.





FIG. 4

shows the construction of the plasmid vector pMON5846 which encodes [Met-(1-133) hIL-3 (Arg


129


)].





FIG. 5

shows the construction of the plasmid vector pMON5847 (ATCC 68912) which encodes [Met-(1-133) hIL-3 (Arg


129


)].





FIG. 6

shows the construction of plasmid vector pMON5853 which encodes [Met-(15-133) hIL-3 (Arg


129


)].





FIG. 7

shows the construction of the plasmid vector pMON5854 which encodes [Met-(1-133) hIL-3 (Arg


129


)].





FIG. 8

shows the DNA sequence and resulting amino acid sequence of the LamB signal peptide.





FIG. 9

shows the construction of the plasmid vector pMON5978 which encodes Met-Ala-(15-125)hIL-3.





FIG. 10

shows the construction of the plasmid vector pMON5988 which encodes Met-Ala(15-125)hIL-3.





FIG. 11

shows the construction of the plasmid vector pMON5887 which encodes Met-(1-125)hIL-3.





FIG. 12

shows the construction of pMON6457 which encodes (15-125)hIL-3; it contains the araBAD promoter and the LamB signal peptide fused to the variant hIL-3 amino acids 15-125.





FIG. 13

shows the construction of pMON6458; it contains the araBAD promoter and the LamB signal peptide fused to the variant hIL-3 amino acids 15-125.





FIG. 14

shows the construction of pMON13359.





FIG. 15

shows the construction of pMON13352.





FIG. 16

shows the construction of pMON13360.





FIG. 17

shows the construction of pMON13363.





FIG. 18

shows the construction of pMON13364.





FIG. 19

shows the construction of pMON13365.





FIG. 20

shows the construction of pMON13287.





FIG. 21

shows the construction of pMON13288.





FIG. 22

shows the construction of pMON13289.





FIG. 23

shows the construction of pMON5723.





FIG. 24

shows the construction of pMON13438.











DETAILED DESCRIPTION OF THE INVENTION




The present invention relates to muteins of human interleukin-3 (hIL-3) in which amino acid substitutions have been made at four or more positions in amino acid sequence of the polypeptide and to muteins which have substantially the same structure and substantially the same biological activity. Preferred muteins of the present invention are (15-125)hIL-3 deletion mutants which have deletions of amino acids 1 to 14 at the N-terminus and 126 to 133 at the C-terminus and which also have four or more amino acid substitutions in the polypeptide and muteins having substantially the same structure and substantially the same biological activity. Among the preferred muteins are those having twenty-six amino acid substitutions. As used herein human interleukin-3 corresponds to the amino acid sequence (1-133) as depicted in FIG.


1


and (15-125) hIL-3 corresponds to the 15 to 125 amino acid sequence of the hIL-3 polypeptide. Naturally occurring variants of hIL-3 polypeptide amino acids are also included in the present invention (for example, the allele in which proline rather than serine is at position 8 in the hIL-3 polypeptide sequence) as are variant hIL-3 molecules which are modified post-translationally (e.g. glycosylation).




The present invention also includes the DNA sequences which code for the mutant polypeptides, DNA sequences which are substantially similar and perform substantially the same function, and DNA sequences which differ from the DNAs encoding the muteins of the invention only due to the degeneracy of the genetic code.




Included in the present invention are novel mutant human interleukin-3 polypeptides comprising a polypeptide having the amino acid sequence of native human interleukin-3 wherein amino acids 126 to 133 have been deleted from the C-terminus of the native human interleukin-3 polypeptide and amino acids 1 to 14 have been deleted from the N-terminus of the native human interleukin-3 polypeptide and, in addition, polypeptides also have four or more amino acid substitutions in the polypeptide sequence.




Also included in the present invention are the DNA sequences coding for the muteins of the present invention; the oligonucleotide intermediates used to construct the mutant DNAS; and the polypeptides coded for by these oligonucleotides. These polypeptides may be useful as antagonists or as antigenic fragments for the production of antibodies useful in imnunoassay and immunotherapy protocols.




The mutant hIL-3 polypeptides of the present invention may also have methionine, alanine, or methionine-alanine residues inserted at the N-terminus.




The present invention includes human interleukin-3 mutant polypeptide Formula I:













Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn







 1               5                   10                  15













Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa






                 20                  25                  30













Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa






                 35                  40                  45













Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa






                 50                  55                  60













Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa






                 65                  70                  75













Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa






                 80                  85                  90













Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa






                 95                 100                 105













Xaa Phe Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa






                110                 115                 120













Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe [SEQ ID NO:15]






                125                 130













wherein Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or













      Arg;













Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;













Xaa at position 19 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;













Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;













Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn,













Thr, Ser or Val;













Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln,













Leu, Val or Gly;













Xaa at position 23 is Ile, Val1 Ala, Leu, Gly, Trp, Lys, Phe,













           Ser, or Arg;













Xaa at position 24 is Ile, Gly, Val, Arg, Ser, Phe, or Leu;













Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;













Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;













Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;













Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;













Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;













Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu,













      or Lys;













Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;













Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or













      Glu;













Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;













Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr,













      Arg, Ala, Phe, Ile or Met;













Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;













Xaa at position 36 is Asp, Leu, or Val;













Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;













Xaa at position 38 is Asn, or Ala;













Xaa at position 40 is Leu, Trp, or Arg;













Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;













Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu,













      Val, Glu, Phe, Tyr, Ile, Met or Ala;













Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys,













      Gln, Arg, Thr, Gly or Ser;













Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp,













      Glu, Asn, Gln, Ala or Pro;













Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys,













      Trp, Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;













Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Giu, Asn, Gln,













      Lys, His, Ala, Tyr, Ile, Val or Gly;













Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;













Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu,













      Lys, Thr, Ala, Met, Val or Asn;













Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;













Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser,













      Ala, Ile, Val, His, Phe, Met or Gln;













Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;













Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;













Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser,













      or Met;













Xaa at position 54 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn,













      Lys, His, Ala or Leu;













Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;













Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His,













      Thr, Ala, Tyr, Phe, Leu, Val or Lys;













Xaa at position 57 is Asn or Gly;













Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;













Xaa at position 59 is Glu Tyr, His, Leu, Pro, or Arg;













Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;













Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;













Xaa at position 62 is Asn His, Val, Arg, Pro, Thr, Asp, or Ile;













Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or













      Val;













Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;













Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;













Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;













Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro,













      or His;













Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or













      His;













Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly,













      or Leu;













Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;













Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln,













      Trp, or Asn;













Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or













      Asp;













Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or













      Arg;













Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;













Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser,













      Gln, or Leu;













Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly,













      or Asp;













Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;













Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;













Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or













      Asp;













Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or













      Arg;













Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or













      Lys;













Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn,













      His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;













Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;













Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;













Xaa at position 85 is Leu, Asn, Val, or Gln;













Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;













Xaa at position 87 is Leu, Ser, Trp, or Gly;













Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;













Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn,













      or Ser;













Xaa at position 90 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or













      Met;













Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;













Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile













      or Leu;













Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;













Xaa at position 94 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His,













Ala,













      or Pro;













Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn,













Lys,













      Ser, Ala, Trp, Phe, Ile, or Tyr;













Xaa at position 96 is Pro, Lys, Tyr, Gly, Ile, or Thr;













Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;













Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr,













      Glu, Gln, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;













Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln,













      Gly, Ser, Phe, or His;













Xaa at position 100 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln,













      or Pro;













Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val,













      Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gln;













Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;













Xaa at position 103 is Asp, or Ser;













Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu,













      Gln, Lys, Ala, Phe, or Gly;













Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr,













      Leu, Lys, Ile, Asp, or His;













Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or Pro;













Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, Ile, Gln, His, Ser,













Ala













      or Pro;













Xaa at position 109 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;













Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His, Glu,













Ser,













      or Trp;













Xaa at position 111 is Leu, Ile, Arg, Asp, or Met;













Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;













Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp,













      Lys, Leu, Ile, Val or Asn;













Xaa at position 114 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;













Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr,













      Trp, or Met;













Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu,













      Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;













Xaa at position 117 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;













Xaa at position 118 is Leu, Ser, Pro, Ala, Glu, Cys, Asp, or Tyr;













Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;













Xaa at position 120 is Asn, Ala, Pro, Leu, His, Val, or Gln;













Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or













      Gly;













Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His,













      Ile, Tyr, or Cys;













Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;











and which can additionally have Met- preceding the amino acid in position 1; and wherein from 1 to 14 amino acids can be deleted from the N-terminus and/or from 1 to 15 amino acids can be deleted from the C-terminus; and wherein from 4 to 44 of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-133) human interleukin-3.




Included in the present invention are human interleukin-3 mutant polypeptide of the Formula II:













Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn







 1               5                   10                  15













Cys Xaa Xaa Xaa Xaa Xaa Glu Xaa Xaa Xaa Xaa Leu Xaa Xaa Xaa






                 20                  25                  30













Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Leu Xaa Xaa Glu Xaa Xaa






                 35                  40                  45













Xaa Xaa Leu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Leu Xaa Xaa






                 50                  55                  60













Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa






                 65                  70                  75













Xaa Xaa Leu Xaa Xaa Xaa Xaa Xaa Cys Xaa Pro Xaa Xaa Xaa Xaa






                 80                  85                  90













Xaa Xaa Xaa Arg Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asp Xaa Xaa






                 95                 100                 105













Xaa Phe Xaa Xaa Lys Leu Xaa Phe Xaa Xaa Xaa Xaa Leu Xaa Xaa






                110                 115                 120













Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe [SEQ ID NO:16]






                125                 130













wherein













Xaa at position 17 is Ser, Gly, Asp, Met, or Gln;













Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;













Xaa at position 19 is Met, Phe, Ile, Arg, or Ala;













Xaa at position 20 is Ile or Pro;













Xaa at position 21 is Asp or Glu;













Xaa at positicn 23 is Ile, Val, Ala, Leu, or Gly;













Xaa at position 24 is Ile, Val, Phe, or Leu;













Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;













Xaa at position 26 is His, Phe, Gly, Arg, or Ala;













Xaa at position 28 is Lys, Leu, Gln, Gly, Pro, or Val;













Xaa at position 29 is Gln, Asn, Leu, Arg, or Val;













Xaa at position 30 is Pro, His, Thr, Gly, or Gln;













Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;













Xaa at position 32 is Leu, Arg, Gln, Asn, Gly, Ala, or Glu;













Xaa at position 33 is Pro, Leu, Gln, Ala, or Glu;













Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Ala, Arg, Gln, Glu,













      Ile, Phe, Thr or Met;













Xaa at position 35 is Leu, Ala, Asn, Pro, Gln, or Val;













Xaa at position 36 is Asp or Leu;













Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;













Xaa at position 38 is Asn or Ala;













Xaa at position 41 is Asn, Cys, Arg, His, Met, or Pro;













Xaa at position 42 is Gly, Asp, Ser, Cys, Ala, Asn, Ile, Leu, Met,













      Tyr, Val or Arg;













Xaa at position 44 is Asp or Glu;













Xaa at position 45 is Gln, Val, Met, Leu, Thr, Lys, Ala, Asn, Glu,













      Ser, or Trp;













Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Ala, Asn, Gln, Glu,













      His, Ile, Lys, Tyr, Val or Gly;













Xaa at position 47 is Ile, Val, or His;













Xaa at position 49 is Met, Asn, or Asp;













Xaa at position 50 is Glu, Thr, Ala, Asn, Ser or Asp;













Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;













Xaa at position 52 is Asn or Gly;













Xaa at position 53 is Leu, Met, or Phe;













Xaa at position 54 is Arg, Ala, or Ser;













Xaa at position 55 is Arg, Thr, Val, Leu, or Gly;













Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Ala, Arg, Asn, Glu,













His,













      Leu, Thr, Val or Lys;













Xaa at position 59 is Glu, Tyr, His, Leu, or Arg;













Xaa at position 60 is Ala, Ser, Asn, or Thr;













Xaa at position 61 is Phe or Ser;













Xaa at position 62 is Asn, Val, Pro, Thr, or Ile;













Xaa at position 63 is Arg, Tyr, Lys, Ser, His, or Val;













Xaa at position 64 is Ala or Asn;













Xaa at position 65 is Val, Thr, Leu, or Ser;













Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;













Xaa at position 67 is Ser, Phe, Val, Gly, Asn, Ile, or His;













Xaa at position 68 is Leu, Val, Ile, Phe, or His;













Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, or Gly;













Xaa at position 70 is Asn or Pro;













Xaa at position 71 is Ala, Met, Pro, Arg, Glu, Thr, or Gln;













Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp;













Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, Arg, or













      Pro;













Xaa at position 74 is Ile or Met;













Xaa at position 75 is Glu, Gly, Asp, Ser, or Gln;













Xaa at position 76 is Ser, Val, Ala, Asn, Glu, Pro, Gly, or













      Asp;













Xaa at position 77 is Ile, Ser, or Leu;













Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or













      Asp;













Xaa at position 80 is Asn, Val, Gly, Thr, Leu, Glu, or Arg;













Xaa at position 81 is Leu, or Val;













Xaa at position 82 is Leu, Gln, Trp, Arg, Asp, Ala, Asn, Glu, His,













      Met, Phe, Ser, Thr, Tyr or Val;













Xaa at position 83 is Pro, Ala, Thr, Trp, or Met;













Xaa at position 85 is Leu or Val;













Xaa at position 87 is Leu or Ser;













Xaa at position 88 is Ala, Arg, or Trp;













Xaa at position 89 is Thr, Asp, Glu, His, Asn, or Ser;













Xaa at position 90 is Ala, Asp, or Met;













Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, or Asp;













Xaa at position 92 is Pro or Ser;













Xaa at position 93 is Thr, Asp, Ser, Pro, Ala, Leu, or Arg;













Xaa at position 95 is His, Pro, Arg, Val, Leu, Gly, Asn, Ile, Phe,













      Ser or Thr;













Xaa at position 96 is Pro or Tyr;













Xaa at position 97 is Ile, Val, or Ala;













Xaa at position 98 is His, Ile, Asn, Leu, Asp, Ala, Thr, Leu, Arg,













Gln,













      Glu, lys, Met, Ser, Tyr, Val or Pro;













Xaa at position 99 is Ile, Leu, Val, or Phe;













Xaa at position 100 is Lys, Leu, His, Arg, Ile, Gln, Pro, or













      Ser;













Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val,













      Asn, Ile, Leu or Tyr;













Xaa at position 102 is Gly, Glu, Lys, or Ser;













Xaa at position 104 is Trp, Val, Tyr, Met, or Leu;













Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr,













      Leu, Lys, Ile, Asp, or His;













Xaa at position 106 is Glu, Ser, Ala, or Gly;













Xaa at position 108 is Arg, Ala, Gln, Ser or Lys;













Xaa at position 109 is Arg, Thr, Glu, Leu, Ser, or Gly;













Xaa at position 112 is Thr, Val, Gln, Glu, His, or Ser;













Xaa at position 114 is Tyr or Trp;













Xaa at position 115 is Leu or Ala;













Xaa at position 116 is Lys, Thr, Met, Val, Trp, Ser, Leu, Ala,













Asn,













      Gln, His, Met, Phe, Tyr or Ile;













Xaa at position 117 is Thr, Ser, or Asn;













Xaa at position 119 is Glu, Ser, Pro, Leu, Thr, or Tyr;













Xaa at position 120 is Asn, Pro, Leu, His, Val, or Gln;













Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or













      Gly;













Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His,













      Ile, Tyr, or Cys;













Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;











and which can additionally have Met- preceding the amino acid in position 1; and wherein from 1 to 14 amino acids can be deleted from the N-terminus and/or from 1 to 15 amino acids can be deleted from the C-terminus; and wherein from 4 to 44 of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-133) human interleukin-3.




Included in the present invention are human interleukin-3 mutant polypeptide of the Formula III:













Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn







 1               5                   10                  15













Cys Xaa Xaa Xaa Ile Xaa Glu Xaa Xaa Xaa Xaa Leu Lys Xaa Xaa






                 20                  25                  30













Xaa Xaa Xaa Xaa Xaa Asp Xaa Xaa Asn Leu Asn Xaa Glu Xaa Xaa






                 35                  40                  45













Xaa Ile Leu Met Xaa Xaa Asn Leu Xaa Xaa Xaa Asn Leu Glu Xaa






                 50                  55                  60













Phe Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Ile Glu






                 65                  70                  75













Xaa Xaa Leu Xaa Xaa Leu Xaa Xaa Cys Xaa Pro Xaa Xaa Thr Ala






                 80                  85                  90













Xaa Pro Xaa Arg Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Asp Xaa Xaa






                 95                 100                 105













Xaa Phe Xaa Xaa Lys Leu Xaa Phe Xaa Xaa Xaa Xaa Leu Glu Xaa






                110                 115                 120













Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe [SEQ ID NO:17]






                125                 130













wherein













Xaa at position 17 is Ser, Gly, Asp, Met, or Gln;













Xaa at position 18 is Asn, His, or Ile;













Xaa at position 19 is Met or Ile;













Xaa at position 21 is Asp or Glu;













Xaa at position 23 is Ile, Ala, Leu, or Gly;













Xaa at position 24 is Ile, Val, or Leu;













Xaa at position 25 is Thr, His, Gln, or Ala;













Xaa at position 26 is His or Ala;













Xaa at position 29 is Gln, Asn, or Val;













Xaa at position 30 is Pro, Gly, or Gln;













Xaa at position 31 is Pro, Asp, Gly, or Gln;













Xaa at position 32 is Leu, Arg, Gln, Asn, Gly, Ala, or Glu;













Xaa at position 33 is Pro or Glu;













Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Ala, Arg, Gln,













      Glu, Ile, Phe, Thr or Met;













Xaa at position 35 is Leu, Ala, Asn, Pro, Gln, or Val;













Xaa at position 37 is Phe, Ser, Pro, or Trp;













Xaa at position 38 is Asn or Ala;













Xaa at position 42 is Gly, Asp, Ser, Cys, Ala, Asn, Ile, Leu,













      Met, Tyr or Arg;













Xaa at position 44 is Asp or Glu;













Xaa at position 45 is Gln, Val, Met, Leu, Thr, Ala, Asn, Glu,













      Ser or Lys;













Xaa at position 46 is Asp, Phe, Ser, Thr, Ala, Asn Gln, Glu, His,













      Ile, Lys, Tyr, Val or Cys;













Xaa at position 50 is Glu, Ala, Asn, Ser or Asp;













Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;













Xaa at position 54 is Arg or Ala;













Xaa at position 54 is Arg or Ala;













Xaa at position 55 is Arg, Thr, Val, Leu, or Gly;













Xaa at position 56 is Pro, Gly, Ser, Gln, Ala, Arg, Asn, Glu,













      Leu, Thr, Val or Lys;













Xaa at position 60 is Ala or Ser;













Xaa at position 62 is Asn, Pro, Thr, or Ile;













Xaa at position 63 is Arg or Lys;













Xaa at position 64 is Ala or Asn;













Xaa at position 65 is Val or Thr;













Xaa at position 66 is Lys or Arg;













Xaa at position 67 is Ser, Phe, or His;













Xaa at position 68 is Leu, Ile, Phe, or His;













Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, or Gly;













Xaa at position 71 is Ala, Pro, or Arg;













Xaa at position 72 is Ser, Glu, Arg, or Asp;













Xaa at position 73 is Ala or Leu;













Xaa at position 76 is Ser, Val, Ala, Asn, Glu, Pro, or Gly;













Xaa at position 77 is Ile or Leu;













Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, Gly, or













      Asp;













Xaa at position 80 is Asn, Gly, Glu, or Arg;













Xaa at position 82 is Leu, Gln, Trp, Arg, Asp, Ala, Asn, Glu, His,













      Ile, Met, Phe, Ser, Thr, Tyr or Val;













Xaa at position 83 is Pro or Thr;













Xaa at position 85 is Leu or Val;













Xaa at position 87 is Leu or Ser;













Xaa at position 88 is Ala or Trp;













Xaa at position 91 is Ala or Pro;













Xaa at position 93 is Thr, Asp, Ser, Pro, Ala, Leu, or Arg;













Xaa at position 95 is His, Pro, Arg, Val, Leu1, Gly, Asn, Phe, Ser













      or Thr;













Xaa at position 96 is Pro or Tyr;













Xaa at position 97 is Ile or Val;













Xaa at position 98 is His, Ile, Asn, Leu, Ala, Thr, Arg, Gln,













      Lys, Met, Ser, Tyr, Val or Pro;













Xaa at position 99 is Ile, Leu, or Val;













Xaa at position 100 is Lys, Arg, Ile, Gln, Pro, or Ser;













Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Pro, Asn,













      Ile, Leu or Tyr;













Xaa at position 104 is Trp or Leu;













Xaa at position 105 is Asn, Pro, Ala, Ser, Trp, Gln, Tyr, Leu,













      Lys, Ile, Asp, or His;













Xaa at position 106 is Glu or Gly;













Xaa at position 108 is Arg, Ala, or Ser;













Xaa at position 109 is Arg, Thr, Glu, Leu, or Ser;













Xaa at position 112 is Thr, Val, or Gln;













Xaa at position 114 is Tyr or Trp;













Xaa at position 115 is Leu or Ala;













Xaa at position 116 is Lys, Thr, Val, Trp, Ser, Ala, His, Met,













      Phe, Tyr or Ile;













Xaa at position 117 is Thr or Ser;













Xaa at position 120 is Asn, Pro, Leu, His, Val, or Gln;













Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Asp, or Gly;













Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His,













      Ile, Tyr, or Cys;













Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;











and which can additionally have Met- preceding the amino acid in position 1; and wherein from 1 to 14 amino acids can be deleted from the N-terminus and/or from 1 to 15 amino acids can be deleted from the C-terminus; and wherein from 4 to 35 of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-133)human interleukin-3.




Included in the present invention are human interleukin-3 mutant polypeptide of the Formula IV:













Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn







 1               5                   10                  15













Cys Xaa Xaa Met Ile Asp Glu Xaa Ile Xaa Xaa Leu Lys Xaa Xaa






                 20                  25                  30













Pro Xaa Pro Xaa Xaa ASP Phe Xaa Asn Leu Asn Xaa Glu Asp Xaa






                 35                  40                  45













Xaa Ile Leu Met Xaa Xaa Asn Leu Arg Xaa Xaa Asn Leu Glu Ala






                 50                  55                  60













Phe Xaa Arg Xaa Xaa Lys Xaa Xaa Xaa Asn Ala Ser Ala Ile Glu






                 65                  70                  75













Xaa Xaa Leu Xaa Xaa Leu Xaa Pro Cys Leu Pro Xaa Xaa Thr Ala






                 80                  85                  90













Xaa Pro Xaa Arg Xaa Pro Ile Xaa Xaa Xaa Xaa Gly Asp Trp Xaa






                 95                 100                 105













Glu Phe Xaa Xaa Lys Leu Xaa Phe Tyr Leu Xaa Xaa Leu Glu Xaa






                110                 115                 120













Xaa Xaa Xaa Gln Gln Thr Thr Leu Ser Leu Ala Ile Phe [SEQ ID NO:18)






                125                 130













wherein













Xaa at position 17 is Ser, Gly, Asp, or Gln;













Xaa at position 18 is Asn, His, or Ile;













Xaa at position 23 is Ile, Ala, Leu, or Gly;













Xaa at position 25 is Thr, His, or Gln;













Xaa at position 26 is His or Ala;













Xaa at position 29 is Gln or Asn;













Xaa at position 30 is Pro or Gly;













Xaa at position 32 is Leu, Arg, Asn, or Ala;













Xaa at position 34 is Leu, Val, Ser, Ala, Arg, Gln, Glu, Ile,













      Phe, Thr, or Met;













Xaa at position 35 is Leu, Ala, Asn, or Pro;













Xaa at position 38 is Asn or Ala;













Xaa at position 42 is Gly, Asp, Ser, Ala, Asn, Ile, Leu, Met,













      Tyr or Arg;













Xaa at position 45 is Gln, Val, Met, Leu, Ala, Asn, Glu, or Lys;













Xaa at position 46 is Asp, Phe, Ser, Gln, Glu, His, Val













      or Thr;













Xaa at position 50 is Glu Asn, Ser or Asp;













Xaa at position 51 is Asn, Arg, Pro, Thr, or His;













Xaa at position 55 is Arg, Leu, or Gly;













Xaa at position 56 is Pro, Gly, Ser, Ala, Asn, Val, Leu or Gln;













Xaa at position 62 is Asn, Pro, or Thr;













Xaa at position 64 is Ala or Asn;













Xaa at position 65 is Val or Thr;













Xaa at position 67 is Ser or Phe;













Xaa at position 68 is Leu or Phe;













Xaa at position 69 is Gln, Ala, Glu, or Arg;













Xaa at position 76 is Ser, Val, Asn, Pro, or Gly;













Xaa at position 77 is Ile or Leu;













Xaa at position 79 is Lys, Asn, Met, Arg, Ile, or Gly;













Xaa at position 80 is Asn, Gly, Glu, or Arg;













Xaa at position 82 is Leu, Gln, Trp, Arg, Asp, Asn, Glu, His, Met,













      Phe, Ser, Thr, Tyr or Val;













Xaa at position 87 is Leu or Ser;













Xaa at position 88 is Ala or Trp;













Xaa at position 91 is Ala or Pro;













Xaa at position 93 is Thr, Asp, or Ala;













Xaa at position 95 is His, Pro, Arg, Val, Gly, Asn, Ser or Thr;













Xaa at position 98 is His, Ile, Asn, Ala, Thr, Gln, Glu,













      Lys, Met, Ser, Tyr, Val or Leu;













Xaa at position 99 is Ile or Leu;













Xaa at position 100 is Lys or Arg;













Xaa at position 101 is Asp, Pro, Met, Lys, Thr, His, Pro, Asn, Ile,













      Leu or Tyr;













Xaa at position 105 is Asn, Pro, Ser, Ile or Asp;













Xaa at position 108 is Arg, Ala, or Ser;













Xaa at position 109 is Arg, Thr, Glu, Leu, or Ser;













Xaa at position 112 is Thr or Gln;













Xaa at position 116 is Lys, Val, Trp, Ala, His, Phe, Tyr or Ile;













Xaa at position 117 is Thr or Ser;













Xaa at position 120 is Asn, Pro, Leu, His, Val, or Gln;













Xaa at position 121 is Ala, Ser, Ile, Pro, or Asp;













Xaa at position 122 is Gln, Met, Trp, Phe, Pro, His, Ile, or Tyr;













Xaa at position 123 is Ala, Met, Glu, Ser, or Leu;











and which can additionally have Met- preceding the amino acid in position 1; and wherein from 1 to 14 amino acids can be deleted from the N-terminus and/or from 1 to 15 amino acids can be deleted from the C-terminus; and wherein from 4 to 44 of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-133)human interleukin-3.




Included in the present invention are (15-125)human interleukin-3 mutant polypeptides of the Formula V:














Asn Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa








 1     5         10                  15















Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa







                 20                  25                  30















Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa







                 35                  40                  45















Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa







                 50                  55                  60















Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa







                 65                  70                  75















Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa







                 80                  85                  90















Xaa Xaa Phe Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa







                 95                 100                 105















Xaa Xaa Xaa Xaa Gln Gln [SEQ ID NO:19]







                110



















wherein













Xaa at position 3 is Ser, Lys, Gly, Asp, Met, Gln, or Arg;













Xaa at position 4 is Asn, His, Leu, Ile, Phe, Arg, or Gln;













Xaa at position 5 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;













Xaa at position 6 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;













Xaa at position 7 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn,













      Thr, Ser or Val;













Xaa at position 8 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln,













      Leu, Val, or Gly;













Xaa at position 9 is Ile, Val, Ala, Leu, Gly, Trp, Lys, Phe,













      Ser, or Arg;













Xaa at position 10 is Ile, Gly, Val, Arg, Ser, Phe, or Leu;













Xaa at position 11 is Thr, His, Gly, Gln, Arg, Pro, or Ala;













Xaa at position 12 is His, Thr, Phe, Gly, Arg, Ala, or Trp;













Xaa at position 13 is Leu, Gly, Arg, Thr, Ser, or Ala;













Xaa at position 14 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;













Xaa at position 15 is Gln, Asn, Leu, Pro, Arg, or Val;













Xaa at position 16 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or













      Lys;













Xaa at position 17 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;













Xaa at position 18 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;













Xaa at position 19 is Pro, Leu, Gln, Ala, Thr, or Glu;













Xaa at position 20 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr,













      Arg, Ala, Phe, Ile or Met;













Xaa at position 21 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;













Xaa at position 22 is Asp, Leu, or Val;













Xaa at position 23 is Phe, Ser, Pro, Trp, or Ile;













Xaa at position 24 is Asn, or Ala;













Xaa at position 26 is Leu, Trp, or Arg;













Xaa at position 27 is Asn, Cys, Arg, Leu, His, Met, Pro;













Xaa at position 28 is Gly, Asp, Ser, Cys, Ala, Lys, Asn, Thr, Leu,













      Val, Glu, Phe, Tyr, Ile or Met;













Xaa at position 29 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln,













      Arg, Thr, Gly or Ser;













Xaa at position 30 is Asp, Ser, Leu, Arg, Lys, Thr,Met, Trp, Glu,













      Asn, Gln, Ala or Pro;













Xaa at position 31 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Asp,













      Asn, Arg, Ser, Ala, Ile, Glu, His or Trp;













Xaa at position 32 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln,













      Lys, His, Ala, Tyr, Ile, Val or Gly;













Xaa at position 33 is Ile, Gly, Val, Ser, Arg, Pro, or His;













Xaa at position 34 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu,













      Lys, Thr, Ala, Met, Val or Asn;













Xaa at position 35 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;













Xaa at position 36 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala,













      Ile, Val, His, Phe, Met or Gln;













Xaa at position 37 is Asn, Arg, Met, Pro, Ser, Thr, or His;













Xaa at position 38 is Asn, His, Arg, Leu, Gly, Ser, or Thr;













Xaa at position 39 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser,













      Met, or;













Xaa at position 40 is Arg, Asp, Ile, Ser, Val, Thr, Gln, Asn,













      Lys, His, Ala or Leu:













Xaa at position 41 is Arg, Thr, Val, Ser, Leu, or Gly;













Xaa at position 42 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His,













      Thr, Ala, Tyr, Phe, Leu, Val or Lys;













Xaa at position 43 is Asn or Gly;













Xaa at position 44 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;













Xaa at position 45 is Glu Tyr, His, Leu, Pro, or Arg:













Xaa at position 46 is Ala, Ser, Pro, Tyr, Asn, or Thr;













Xaa at position 47 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;













Xaa at position 48 is Asn, His, Val, Arg, Pro, Thr, Asp, or Ile;













Xaa at position 49 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or Val;













Xaa at position 50 is Ala, Asn, Pro, Ser, or Lys;













Xaa at position 51 is Val, Thr, Pro, His, Leu, Phe, or Ser;













Xaa at position 52 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;













Xaa at position 53 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or













      His;













Xaa at position 54 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;













Xaa at position 55 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or













      Leu;













Xaa at position 56 is Asn, Leu, Val, Trp, Pro, or Ala;













Xaa at position 57 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln,













      Trp, or Asn;













Xaa at position 58 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp;













Xaa at position 59 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;













Xaa at position 60 is Ile, Met, Thr, Pro, Arg, Gly, Ala;













Xaa at position 61 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser,













      Gln, or Leu;













Xaa at position 62 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or













      Asp;













Xaa at position 63 is Ile, Ser, Arg, Thr, or Leu;













Xaa at position 64 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;













Xaa at position 65 is Lys, Thr, Gly, Asn, Met, Arg, Ile, or













      Asp;













Xaa at position 66 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;













Xaa at position 67 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;













Xaa at position 68 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn,













      His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;













Xaa at position 69 is Pro, Ala, Thr, Trp, Arg, or Met;













Xaa at position 70 is Cys, Glu, Gly, Arg, Met, or Val;













Xaa at position 71 is Leu, Asn, Val, or Gln;













Xaa at position 72 is Pro, Cys, Arg, Ala, or Lys;













Xaa at position 73 is Leu, Ser, Trp, or Gly;













Xaa at position 74 is Ala, Lys, Arg, Val, or Trp;













Xaa at position 75 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn, or













      Ser;













Xaa at position 76 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;













Xaa at position 77 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;













Xaa at position 78 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile













      or Leu:













Xaa at position 79 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;













Xaa at position 80 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His,













      Ala or Pro;













Xaa at position 81 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn,













      Lys, Ser, Ala, Trp, Phe, Ile or Tyr;













Xaa at position 82 is Pro, Lys, Tyr, Gly, Ile, or Thr;













Xaa at position 83 is Ile, Val, Lys, Ala, or Asn;













Xaa at position 84 is His, Ile, Asn, Leu, Asp, Ala, Thr, Glu,













      Gln, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;













Xaa at position 85 is Ile, Leu, Arg, Asp, Val, Pro, Gln,













      Gly, Ser, Phe, or His;













Xaa at position 86 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln,













      Pro;













Xaa at position 87 is Asp, Pro, Met, Lys, His, Thr, Val,













      Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu or Gln;













Xaa at position 88 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;













Xaa at position 89 is Asp, or Ser;













Xaa at position 90 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu,













      Gln, Lys, Ala, Phe, or Gly;













Xaa at position 91 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr,













      Leu, Lys, Ile, Asp, or His;













Xaa at position 92 is Glu, Ser, Ala, Lys, Thr, Ile, Gly, or Pro;













Xaa at position 94 is Arg, Lys, Asp, Leu, Thr, Ile, Gln,













      His, Ser, Ala, or Pro;













Xaa at position 95 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;













Xaa at position 96 is Lys, Asn, Thr, Leu, Gln, Arg,













      His, Glu, Ser, Ala or Trp;













Xaa at position 97 is Leu, Ile, Arg, Asp, or Met;













Xaa at position 98 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;













Xaa at position 99 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp,













      Lys, Leu, Ile, Val or Asn;













Xaa at position 100 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;













Xaa at position 101 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr,













      Trp, or Met;













Xaa at position 102 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu, Arg,













Trp,













       Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;













Xaa at position 103 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;













Xaa at position 104 is Leu, Ser, Pro, Ala, Glu, Cys, Asp, or Tyr;













Xaa at position 105 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;













Xaa at position 106 is Asn, Ala, Pro, Leu, His, Val, or Gln;













Xaa at position 107 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or













      Gly;













Xaa at position 108 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His,













      Ile, Tyr, or Cys;













Xaa at position 109 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;











and which can additionally have Met- or Met-Ala- preceding the amino acid in position 1; and wherein from 4 to 44 of the amino acids designated by Xaa are different from the corresponding native amino acids of (1-133) human interleukin-3; or a polypeptide having substantially the same structure and substantially the same biological activity.




Included in the present invention are (15-125)human interleukin-3 mutant polypeptides of the Formula VI:














Asn Cys Xaa Xaa Xaa Xaa Xaa Glu Xaa Xaa Xaa Xaa Leu Xaa Xaa








 1               5                   10                  15















Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Leu Xaa Xaa Glu Xaa







                 20                  25                  30















Xaa Xaa Xaa Leu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Leu Xaa







                 35                  40                  45















Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa







                 50                  55                  60















Xaa Xaa Xaa Leu Xaa Xaa Xaa Xaa Xaa Cys Xaa Pro Xaa Xaa Xaa







                 65                  70                  75















Xaa Xaa Xaa Xaa Arg Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asp Xaa







                 80                  85                  90















Xaa Xaa Phe Xaa Xaa Lys Leu Xaa Phe Xaa Xaa Xaa Xaa Leu Xaa







                 95                 100                 105















Xaa Xaa Xaa Xaa Gln Gln [SEQ ID NO:20]







                110



















wherein













Xaa at position 3 is Ser, Gly, Asp, Met, or Gln;













Xaa at position 4 is Asn, His, Leu, Ile, Phe, Arg, or Gln;













Xaa at position 5 is Met, Phe, Ile, Arg, or Ala;













Xaa at position 6 is Ile or Pro;













Xaa at position 7 is Asp, or Glu;













Xaa at position 9 is Ile, Val, Ala, Leu, or Gly;













Xaa at position 10 is Ile, Val, Phe, or Leu;













Xaa at position 11 is Thr, His, Gly, Gln, Arg, Pro, or Ala;













Xaa at position 12 is His, Phe, Gly, Arg, or Ala;













Xaa at position 14 is Lys, Leu, Gln, Gly, Pro, or Val;













Xaa at position 15 is Gln, Asn, Leu, Arg, or Val;













Xaa at position 16 is Pro, His, Thr, Gly, or Gln;













Xaa at position 17 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;













Xaa at position 18 is Leu, Arg, Gln, Asn, Gly, Ala, or Glu;













Xaa at position 19 is Pro, Leu, Gln, Ala, or Glu;













Xaa at position 20 is Leu, Val, Gly, Ser, Lys, Ala, Arg, Gln,













       Glu, Ile, Phe, Thr or Met;













Xaa at position 21 is Leu, Ala, Asn, Pro, Gln, or Val;













Xaa at position 22 is Asp or Leu;













Xaa at position 23 is Phe, Ser, Pro, Trp, or Ile;













Xaa at position 24 is Asn or Ala;













Xaa at position 27 is Asn, Cys, Arg, His, Met, or Pro;













Xaa at position 28 is Gly, Asp, Ser, Cys, Ala, Asn, Ile, Leu,













      Met, Tyr, or Arg;













Xaa at position 30 is Asp, or Glu;













Xaa at position 31 is Gln, Val, Met, Leu, Thr, Lys, Ala, Asn Glu,













      Ser or Trp;













Xaa at position 32 is Asp, Phe, Ser, Thr, Cys, Ala, Asn, Gln,













      Glu, His, Ile, Lys, Tyr, Val or Gly;













Xaa at position 33 is Ile, Val, or His;













Xaa at position 35 is Met, Asn, or Asp;













Xaa at position 36 is Glu, Thr, Ala, Asn, Ser or Asp;













Xaa at position 37 is Asn, Arg, Met, Pro, Ser, Thr, or His;













Xaa at position 38 is Asn or Gly;













Xaa at position 39 is Leu, Met, or Phe;













Xaa at position 40 is Arg, Ala or Ser;













Xaa at position 41 is Arg, Thr, Val, Leu, or Gly;













Xaa at position 42 is Pro, Gly, Cys, Ser, Gln, Ala, Arg, Asn,













            Glu, His, Leu, Thr, Val or Lys;













Xaa at position 45 is Glu, Tyr, His, Leu, or Arg;













Xaa at position 46 is Ala, Ser, Asn, or Thr;













Xaa at position 47 is Phe or Ser;













Xaa at position 48 is Asn, Val, Pro, Thr, or Ile;













Xaa at position 49 is Arg, Tyr, Lys, Ser, His, or Val;













Xaa at position 50 is Ala or Asn;













Xaa at position 51 is Val, Thr, Leu, or Ser;













Xaa at position 52 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;













Xaa at position 53 is Ser, Phe, Val, Gly, Asn, Ile, or His;













Xaa at position 54 is Leu, Val, Ile, Phe, or His;













Xaa at position 55 is Gln, Ala, Pro, Thr, Glu, Arg, or Gly;













Xaa at position 56 is Asn or Pro;













Xaa at position 57 is Ala, Met, Pro, Arg, Glu, Thr, or Gln;













Xaa at position 58 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp:













Xaa at position 59 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, Arg, or













            Pro;













Xaa at position 60 is Ile or Met;













Xaa at position 61 is Glu, Gly, Asp, Ser, or Gln;













Xaa at position 62 is Ser, Val, Ala, Asn, Glu, Pro, Gly, or













            Asp;













Xaa at position 63 is Ile, Ser, or Leu;













Xaa at position 65 is Lys, Thr, Gly, Asn, Met, Arg, Ile, or













            Asp;













Xaa at position 66 is Asn, Val, Gly, Thr, Leu, Glu, or Arg;













Xaa at position 67 is Leu, or Val;













Xaa at position 68 is Leu, Gln, Trp, Arg, Asp, Ala, Asn, Glu,













            His, Met, Phe, Ser, Thr, Tyr or Val;













Xaa at position 69 is Pro, Ala, Thr, Trp, or Met;













Xaa at position 71 is Leu or Val;













Xaa at position 73 is Leu or Ser;













Xaa at position 74 is Ala, Arg, or Trp;













Xaa at position 75 is Thr, Asp, Glu, His, Asn, or Ser;













Xaa at position 76 is Ala, Asp, or Met;













Xaa at position 77 is Ala, Pro, Ser, Thr, Phe, Leu, or Asp;













Xaa at position 78 is Pro or Ser:













Xaa at position 79 is Thr, Asp, Ser, Pro, Ala, Leu, or Arg;













Xaa at position 81 is His, Pro, Arg, Val, Leu, Gly, Asn, Ile, Phe,













            Ser or Thr;













Xaa at position 82 is Pro or Tyr;













Xaa at position 83 is Ile, Val, or Ala;













Xaa at position 84 is His, Ile, Asn, Leu, Asp, Ala, Thr,













            Arg, Gln, Glu, Lys, Met, Ser, Tyr, Val or Pro;













Xaa at position 85 is Ile, Leu, Val, or Phe;













Xaa at position 86 is Lys, Leu, His, Arg, Ile, Gln, Pro or













      Ser;













Xaa at position 87 is Asp, Pro, Met, Lys, His, Thr, Val,













            Asn, Ile, Leu or Tyr;













Xaa at position 88 is Gly, Glu, Lys, or Ser;













Xaa at position 90 is Trp, Val, Tyr, Met, or Leu;













Xaa at position 91 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr,













      Leu, Lys, Ile, Asp, or His:













Xaa at position 92 is Glu, Ser, Ala, or Gly;













Xaa at position 94 is Arg, Ala, Gln, Ser or Lys;













Xaa at position 95 is Arg, Thr, Glu, Leu, Ser, or Gly;













Xaa at position 98 is Thr, Val, Gln, Glu, His, or Ser;













Xaa at position 100 is Tyr or Trp;













Xaa at position 101 is Leu or Ala;













Xaa at position 102 is Lys, Thr, Met, Val, Trp, Ser, Leu,













      Ala, Asn, Gln, His, Met, Phe, Tyr or Ile;













Xaa at position 103 is Thr, Ser, or Asn;













Xaa at position 105 is Glu, Ser, Pro, Leu, Thr, or Tyr;













Xaa at position 106 is Asn, Pro, Leu, His, Val, or Gln;













Xaa at position 107 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or













      Gly;













Xaa at position 108 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His,






            Ile, Tyr, or Cys;













Xaa at position 109 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu:











and which can additionally have Met- or Met-Ala- preceding the amino acid in position 1; and wherein from 4 to 44 of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-133) human interleukin-3; or a polypeptide having substantially the same structure and substantially the same biological activity.




Included in the present invention are (15-125)human interleukin-3 mutant polypeptides of the Formula VII:















Asn Cys Xaa Xaa Xaa Ile Xaa Glu Xaa Xaa Xaa Xaa Leu Lys Xaa








 1               5                   10                  15















Xaa Xaa Xaa Xaa Xaa Xaa Asp Xaa Xaa Asn Leu Asn Xaa Glu Xaa







                 20                  25                  30















Xaa Xaa Ile Leu Met Xaa Xaa Asn Leu Xaa Xaa Xaa Asn Leu Glu







                 35                  40                  45















Xaa Phe Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Ile







                 50                  55                  60















Glu Xaa Xaa Leu Xaa Xaa Leu Xaa Xaa Cys Xaa Pro Xaa Xaa Thr







                 65                  70                  75















Ala Xaa Pro Xaa Arg Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Asp Xaa







                 80                  85                  90















Xaa Xaa Phe Xaa Xaa Lys Leu Xaa Phe Xaa Xaa Xaa Xaa Leu Glu







                 95                 100                 105















Xaa Xaa Xaa Xaa Gln Gln [SEQ ID NO:21]







                110















wherein















Xaa at position 3 is Ser, Gly, Asp, Met, or Gln;















Xaa at position 4 is Asn, His, or Ile;















Xaa at position 5 is Met or Ile;















Xaa at position 7 is Asp or Glu;















Xaa at position 9 is Ile, Ala, Leu, or Gly;















Xaa at position 10 is Ile, Val, or Leu;















Xaa at position 11 is Thr, His, Gln, or Ala;















Xaa at position 12 is His or Ala;















Xaa at position 15 is Gln, Asn, or Val;















Xaa at position 16 is Pro, Gly, or Gln;















Xaa at position 17 is Pro, Asp, Gly, or Gln;















Xaa at position 18 is Leu, Arg, Gln, Asn, Gly, Ala, or Glu;















Xaa at position 19 is Pro or Glu;















Xaa at position 20 is Leu, Val, Gly, Ser, Lys, Ala, Arg,















      Gln, Glu, Ile, Phe, Thr or Met;















Xaa at position 21 is Leu, Ala, Asn, Pro, Gln, or Val;















Xaa at position 23 is Phe, Ser, Pro, or Trp;















Xaa at position 24 is Asn or Ala;















Xaa at position 28 is Gly, Asp, Ser, Cys, Ala, Asn, Ile,















      Leu, Met Tyr or Arg;















Xaa at position 30 is Asp or Glu;















Xaa at position 31 is Gln, Val, Met, Leu, Thr, Ala, Asn,















      Glu, Ser or Lys;















Xaa at position 32 is Asp, Phe, Ser, Thr, Ala, Asn, Gln, Glu,















      His, Ile, Lys, Tyr, Val or Cys;















Xaa at position 36 is Glu, Ala, Asn, Ser or Asp;















Xaa at position 37 is Asn, Arg, Met, Pro, Ser, Thr, or His;















Xaa at position 40 is Arg or Ala;















Xaa at position 41 is Arg, Thr, Val, Leu, or Gly;















Xaa at position 42 is Pro, Gly, Ser, Gln, Ala, Arg, Asn,















      Glu, Leu, Thr, Val or Lys;















Xaa at position 46 is Ala or Ser;















Xaa at position 48 is Asn, Pro, Thr, or Ile;















Xaa at position 49 is Arg or Lys;















Xaa at position 50 is Ala or Asn;















Xaa at position 51 is Val or Thr;















Xaa at position 52 is Lys or Arg;















Xaa at position 53 is Ser, Phe, or His;















Xaa at position 54 is Leu, Ile, Phe, or His;















Xaa at position 55 is Gln, Ala, Pro, Thr, Glu, Arg, or Gly;















Xaa at position 57 is Ala, Pro, or Arg;















Xaa at position 58 is Ser, Glu, Arg, or Asp;















Xaa at position 59 is Ala or Leu;















Xaa at position 62 is Ser, Val, Ala, Asn, Glu, Pro, or Gly;















Xaa at position 63 is Ile or Leu;















Xaa at position 65 is Lys, Thr, Asn, Met, Arg, Ile, Gly,















      or Asp;















Xaa at position 66 is Asn, Gly, Glu, or Arg;















Xaa at position 68 is Leu, Gln, Trp, Arg, Asp, Ala, Asn, Glu,















      His, Ile, Met, Phe, Ser, Thr, Tyr or Val;















Xaa at position 69 is Pro or Thr;















Xaa at position 71 is Leu or Val:















Xaa at position 73 is Leu or Ser;















Xaa at position 74 is Ala or Trp;















Xaa at position 77 is Ala or Pro;















Xaa at position 79 is Thr, Asp, Ser, Pro, Ala, Leu, or Arg;















Xaa at position 81 is His, Pro, Arg, Val, Leu, Gly, Asn, Phe,















      Ser or Thr;















Xaa at position 82 is Pro or Tyr;















Xaa at position 83 is Ile or Val;















Xaa at position 84 is His, Ile, Asn, Leu, Ala, Thr, Arg,















      Gln, Lys, Met, Ser, Tyr, Val or Pro;















Xaa at position 85 is Ile, Leu, or Val;















Xaa at position 86 is Lys, Arg, Ile, Gln, Pro, or Ser;















Xaa at position 87 is Asp, Pro, Met, Lys, His, Thr, Asn, Ile,















      Leu or Tyr;















Xaa at position 90 is Trp or Leu;















Xaa at position 91 is Asn, Pro, Ala, Ser, Trp, Gln, Tyr, Leu,















      Lys, Ile, Asp, or His;















Xaa at position 92 is Glu, or Gly;















Xaa at position 94 is Arg, Ala, or Ser;















Xaa at position 95 is Arg, Thr, Glu, Leu, or Ser;















Xaa at position 98 is Thr, Val, or Gln;















Xaa at position 100 is Tyr or Trp;















Xaa at position 101 is Leu or Ala;















Xaa at position 102 is Lys, Thr, Val, Trp, Ser, Ala, His,















      Met, Phe, Tyr or Ile;















Xaa at position 103 is Thr or Ser;















Xaa at position 106 is Asn, Pro, Leu, His, Val, or Gln;















Xaa at position 107 is Ala, Ser, Ile, Asn, Pro, Asp, or Gly;















Xaa at position 108 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His,















      Ile, Tyr, or Cys;















Xaa at position 109 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;











which can additionally have Met- or Met-Ala- preceding the amino acid in position 1; and wherein from 4 to 35 of the amino acids designated by Xaa are different from the corresponding amino acids of native human interleukin-3.




Included in the present invention are (15-125)human interleukin-3 mutant polypeptides of the Formula VIII:















Asn Cys Xaa Xaa Met Ile Asp Glu Xaa Ile Xaa Xaa Leu Lys Xaa








 1               5                   10                  15















Xaa Pro Xaa Pro Xaa Xaa Asp Phe Xaa Asn Leu Asn Xaa Glu Asp







                 20                  25                  30















Xaa Xaa Ile Leu Met Xaa Xaa Asn Leu Arg Xaa Xaa Asn Leu Glu







                 35                  40                  45















Ala Phe Xaa Arg Xaa Xaa Lys Xaa Xaa Xaa Asn Ala Ser Ala Ile







                 50                  55                  60















Glu Xaa Xaa Leu Xaa Xaa Leu Xaa Pro Cys Leu Pro Xaa Xaa Thr







                 65                  70                  75















Ala Xaa Pro Xaa Arg Xaa Pro Ile Xaa Xaa Xaa Xaa Gly Asp Trp







                 80                  85                  90















Xaa Glu Phe Xaa Xaa Lys Leu Xaa Phe Tyr Leu Xaa Xaa Leu Glu







                 95                 100                 105















Xaa Xaa Xaa Xaa Gln Gln [SEQ ID NO:22]







                110



















wherein













Xaa at position 3 is Ser, Gly, Asp, or Gln;













Xaa at position 4 is Asn, His, or Ile;













Xaa at position 9 is Ile, Ala, Leu, or Gly;













Xaa at position 11 is Thr, His, or Gln;













Xaa at position 12 is His or Ala;













Xaa at position 15 is Gln or Asn;













Xaa at position 16 is Pro or Gly;













Xaa at position 18 is Leu, Arg, Asn, or Ala:













Xaa at position 20 is Leu, Val, Ser, Ala, Arg, Gln, Glu, Ile,













      Phe, Thr or Met:













Xaa at position 21 is Leu, Ala, Asn, or Pro;













Xaa at position 24 is Asn or Ala;













Xaa at position 28 is Gly, Asp, Ser, Ala, Asn, Ile, Leu, Met,













      Tyr or Arg;













Xaa at position 31 is Gln, Val, Met, Leu, Ala, Asn, Glu or Lys;













Xaa at position 32 is Asp, Phe, Ser, Ala, Gln, Glu, His, Val













      or Thr;













Xaa at position 36 is Glu, Asn, Ser or Asp;













Xaa at position 37 is Asn, Arg, Pro, Thr, or His;













Xaa at position 41 is Arg, Leu, or Gly;













Xaa at position 42 is Pro, Gly, Ser, Ala, Asn, Val, Leu or Gln;













Xaa at position 48 is Asn, Pro, or Thr;













Xaa at position 50 is Ala or Asn;













Xaa at position 51 is Val or Thr;






I






Xaa at position 53 is Ser or Phe;













Xaa at position 54 is Leu or Phe;













Xaa at position 55 is Gln, Ala, Glu, or Arg;













Xaa at position 62 is Ser, Val, Asn, Pro, or Gly;













Xaa at position 63 is Ile or Leu;













Xaa at position 65 is Lys, Asn, Met, Arg, Ile, or Gly;













Xaa at position 66 is Asn, Gly, Glu, or Arg;













Xaa at position 68 is Leu, Gln, Trp, Arg, Asp, Asn, Glu, His,













      Met, Phe, Ser, Thr, Tyr or Val;













Xaa at position 73 is Leu or Ser;













Xaa at position 74 is Ala or Trp:













Xaa at position 77 is Ala or Pro;













Xaa at position 79 is Thr, Asp, or Ala;













Xaa at position 81 is His, Pro, Arg, Val, Gly, Asn, Ser or Thr;













Xaa at position 84 is His, Ile, Asn, Ala, Thr, Arg, Gln, Glu,













      Lys, Met, Ser, Tyr, Val or Leu;













Xaa at position 85 is Ile or Leu;













Xaa at position 86 is Lya or Arg:













Xaa at position 87 is Asp, Pro, Met, Lys, His, Pro, Asn, Ile,













      Leu or Tyr;













Xaa at position 91 is Asn, Pro, Ser, Ile or Asp;













Xaa at position 94 is Arg, Ala, or Ser;













Xaa at position 95 is Arg, Thr, Glu, Leu, or Ser;













Xaa at position 98 is Thr or Gln;













Xaa at position 102 is Lys, Val, Trp, or Ile;













Xaa at position 103 is Thr, Ala, His, Phe, Tyr or Ser;













Xaa at position 106 is Asn, Pro, Leu, His, Val, or Gln;













Xaa at position 107 is Ala, Ser, Ile, Pro, or Asp;













Xaa at position 108 is Gln, Met, Trp, Phe, Pro, His, Ile, or













      Tyr;













Xaa at position 109 is Ala, Met, Glu, Ser, or Leu;











and which can additionally have Met- or Met-Ala- preceding the amino acid in position 1; and wherein from 4 to 26 of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-133)human interleukin-3; or a polypeptide having substantially the same structure and substantially the same biological activity.




The present invention includes polypeptides of the formula














       1                5                  10




[SEQ ID NO:129]







(Met)


m


-Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr













            15                  20






Ser Trp Val Asn Cys Ser Xaa Xaa Xaa Asp Glu Xaa Ile













25                  30                  35






Xaa His Leu Lys Xaa Pro Pro Xaa Pro Xaa Leu Asp Xaa













        40                  45              50






Xaa Asn Leu Asn Xaa Glu Asp Xaa Xaa Ile Leu Xaa Xaa













                55                  60






Xaa Asn Leu Arg Xaa Xaa Asn Leu Xaa Xaa Phe Xaa Xaa













    65                  70               75






Ala Xaa Lys Xaa Leu Xaa Asn Ala Ser Xaa Ile Glu Xaa













            80                  85






Ile Leu Xaa Asn Leu Xaa Pro Cys Xaa Pro Xaa Xaa Thr













90                  95                  100






Ala Xaa Pro Xaa Arg Xaa Pro Ile Xaa Ile Xaa Xaa Gly













        105                 110                 115






Asp Trp Xaa Glu Phe Arg Xaa Lys Leu Xaa Phe Tyr Leu













                120                 125






Xaa Xaa Leu Glu Xaa Ala Gln Xaa Gln Gln Thr Thr Leu













    130






Ser Leu Ala Ile Phe











wherein m is 0 or 1; Xaa at position 18 is Asn or Ile; Xaa at position 19 is Met, Ala or Ile; Xaa at position 20 is Ile, Pro or Leu; Xaa at position 23 is Ile, Ala or Leu; Xaa at position 25 is Thr or His; Xaa at position 29 is Gln, Arg, Val or Leu; Xaa at position 32 is Leu, Ala, Asn or Arg; Xaa at position 34 is Leu or Ser; Xaa at position 37 is Phe, Pro, or Ser; Xaa at position 38 is Asn or Ala; Xaa at position 42 is Gly, Ala, Ser, Asp or Asn; Xaa at position 45 is Gln, Val, or Met; Xaa at position 46 is Asp or Ser; Xaa at position 49 is Met, Ile, Leu or Asp; Xaa at position 50 is Glu or Asp; Xaa at position 51 is Asn Arg or Ser; Xaa at position 55 is Arg, Leu, or Thr; Xaa at position 56 is Pro or Ser; Xaa at position 59 is Glu or Leu; Xaa at position 60 is Ala or Ser; Xaa at position 62 is Asn, Val or Pro; Xaa at position 63 is Arg or His; Xaa at position 65 is Val or Ser; Xaa at position 67 is Ser, Asn, His or Gly; Xaa at position 69 is Gln or Glu; Xaa at position 73 is Ala or Gly; Xaa at position 76 is Ser, Ala or Pro; Xaa at position 79 is Lys, Arg or Ser; Xaa at position 82 is Leu, Glu, Val or Trp; Xaa at position 85 is Leu or Val; Xaa at position 87 is Leu, Ser, Trp; Xaa at position 88 is Ala or Trp; Xaa at position 91 is Ala or Pro; Xaa at position 93 is Pro or Ser; Xaa at position 95 is His or Thr; Xaa at position 98 is His, Ile, or Thr; Xaa at position 100 is Lys or Arg; Xaa at position 101 is Asp, a or Met; Xaa at position 105 is Asn or Gln; Xaa at position 109 is Arg, Glu or Leu; Xaa at position 112 is Thr or Gln; Xaa at position 116 is Lys, Val, Trp or Ser; Xaa at position 117 is Thr or Ser; Xaa at position 120 is Asn, Gln, or His; Xaa at position 123 is Ala or Glu; with the proviso that from four to twenty-six of the amino acids designated by Xaa are different from the corresponding amino acids of native human interleukin-3; or a polypeptide having substantially the same structure and substantially the same biological activity.




Preferred polypeptides of the present invention are those of the formula














             1               5               10




[SEQ ID NO:130]







(Met


m


-Ala


n


)


p


-Asn Cys Ser Xaa Xaa Xaa Asp Glu Xaa Ile













                15                  20






Xaa His Leu Lys Xaa Pro Pro Xaa Pro Xaa Leu Asp Xaa













     25                  30                 35






Xaa Asn Leu Asn Xaa Glu Asp Xaa Xaa Ile Leu Xaa Xaa













            40                  45






Xaa Asn Leu Arg Xaa Xaa Asn Leu Xaa Xaa Phe Xaa Xaa













50                  55                  60






Ala Xaa Lys Xaa Leu Xaa Asn Ala Ser Xaa Ile Glu Xaa













        65                  70                  75






Ile Leu Xaa Asn Xaa Xaa Pro Cys Xaa Pro Xaa Xaa Thr













                80                   85






Ala Xaa Pro Xaa Arg Xaa Pro Ile Xaa Ile Xaa Xaa Gly













    90                   95                   100






Asp Trp Xaa Glu Phe Arg Xaa Lys Leu Xaa Phe Tyr Leu













            105                 110






Xaa Xaa Leu Glu Xaa Ala Gln Xaa Gln Gln











wherein m is 0 or 1; n is 0 or 1; p is 0 or 1; Xaa at position 4 is Asn or Ile; Xaa at position 5 is Met, Ala or Ile: Xaa at position 6 is Ile, Pro or Leu; Xaa at position 9 is Ile, Ala or Leu; Xaa at position 11 is Thr or His; Xaa at position 15 is Gln, Arg, Val or Leu; Xaa at position 18 is Leu, Ala, Asn or Arg; Xaa at position 20 is Leu or Ser; Xaa at position 23 is Phe, Pro, or Ser; Xaa at position 24 is Asn or Ala; Xaa at position 28 is Gly, Ala, Ser, Asp or Asn; Xaa at position 31 is Gln, Val, or Met; Xaa at position 32 is Asp or Ser; Xaa at position 35 is Met, Ile, Leu or Asp; Xaa at position 36 is Glu or Asp; Xaa at position 37 is Asn, Arg or Ser; Xaa at position 41 is Arg, Leu, or Thr; Xaa at position 42 is Pro or Ser; Xaa at position 45 is Glu or Leu; Xaa at position 46 is Ala or Ser; Xaa at position 48 is Asn, Val or Pro; Xaa at position 49 is Arg or His; Xaa at position 51 is Val or Ser; Xaa at position 53 is Ser, Asn, His or Gly; Xaa at position 55 is Gln or Glu; Xaa at position 59 is Ala or Gly; Xaa at position 62 is Ser, Ala or Pro; Xaa at position 65 is Lys, Arg or Ser; Xaa at position 67 is Leu, Glu, or Val; Xaa at position 68 is Leu, Glu, Val or Trp; Xaa at position 71 is Leu or Val; Xaa at position 73 is Leu, Ser or Trp; Xaa at position 74 is Ala or Trp; Xaa at position 77 is Ala or Pro; Xaa at position 79 is Pro or Ser; Xaa at position 81 is His or Thr; Xaa at position 84 is His, Ile, or Thr; Xaa at position 86 is Lys or Arg; Xaa at position 87 is Asp, Ala or Met; Xaa at position 91 is Asn or Glu; Xaa at position 95 is Arg, Glu, Leu; Xaa at position 98 Thr or Gln; Xaa at position 102 is Lys, Val, Trp or Ser; Xaa at position 103 is Thr or Ser; Xaa at position 106 is Asn, Gln, or His; Xaa at position 109 is Ala or Glu; with the proviso that from four to twenty-six of the amino acids designated by Xaa are different from the corresponding amino acids of native (15-125)human interleukin-3; or a polypeptide having substantially the same structure and substantially the same biological activity.




“Mutant amino acid sequence,” “mutant protein” or “mutant polypeptide” refers to a polypeptide having an amino acid sequence which varies from a native sequence or is encoded by a nucleotide sequence intentionally made variant from a native sequence. “Mutant protein,” “variant protein” or “mutein” means a protein comprising a mutant amino acid sequence and includes polypeptides which differ from the amino acid sequence of native hIL-3 due to amino acid deletions, substitutions, or both. “Native sequence” refers to an amino acid or nucleic acid sequence which is identical to a wild-type or native form of a gene or protein.




Human IL-3 can be characterized by its ability to stimulate colony formation by human hematopoietic progenitor cells. The colonies formed include erythroid, granulocyte, megakaryocyte, granulocytic macrophages and mixtures thereof. Human IL-3 has demonstrated an ability to restore bone marrow function and peripheral blood cell populations to therapeutically beneficial levels in studies performed initially in primates and subsequently in humans (Gillio, A. P., et al. (1990); Ganser, A, et al. (1990); Falk, S., et al. (1991). Additional activities of hIL-3 include the ability to stimulate leukocyte migration and chemotaxis; the ability to prime human leukocytes to produce high levels of inflammatory mediators like leukotrienes and histamine; the ability to induce cell surface expression of molecules needed for leukocyte adhesion; and the ability to trigger dermal inflammatory responses and fever. Many or all of these biological activities of hIL-3 involve signal transduction and high affinity receptor binding. Mutant polypeptides of the present invention may exhibit useful properties such as having similar or greater biological activity when compared to native hIL-3 or by having improved half-life or decreased adverse side effects, or a combination of these properties. They may also be useful as antagonists. hIL-3 mutant polypeptides which have little or no activity when compared to native hIL-3 may still be useful as antagonists, as antigens for the production of antibodies for use in immunology or immunotherapy, as genetic probes or as intermediates used to construct other useful hIL-3 muteins. Since hIL-3 functions by binding to its receptor(s) and triggering second messages resulting in competent signal transduction, hIL-3 muteins of this invention may be useful in helping to determine which specific amino acid sequences are responsible for these activities.




The novel hIL-3 mutant polypeptides of the present invention will preferably have at least one biological property of human IL-3 or of an IL-3-like growth factor and may have more than one IL-3-like biological property, or an improved property, or a reduction in an undesirable biological property of human IL-3. Some mutant polypeptides of the present invention may also exhibit an improved side effect profile. For example, they may exhibit a decrease in leukotriene release or histamine release when compared to native hIL-3 or (15-125) hIL-3. Such hIL-3 or hIL-3-like biological properties may include one or more of the following biological characteristics and in vivo and in vitro activities.




One such property is the support of the growth and differentiation of progenitor cells committed to erythroid, lymphoid, and myeloid lineages. For example, in a standard human bone marrow assay, an IL-3-like biological property is the stimulation of granulocytic type colonies, megakaryocytic type colonies, monocyte/macrophage type colonies, and erythroid bursts. Other IL-3-like properties are the interaction with early multipotential stem cells, the sustaining of the growth of pluripotent precursor cells, the ability to stimulate chronic myelogenous leukemia (CML) cell proliferation, the stimulation of proliferation of mast cells, the ability to support the growth of various factor-dependent cell lines, and the ability to trigger immature bone marrow cell progenitors. Other biological properties of IL-3 have been disclosed in the art. Human IL-3 also has some biological activities which may in some cases be undesirable, for example the ability to stimulate leukotriene release and the ability to stimulate increased histamine synthesis in spleen and bone marrow cultures and in vivo.




Biological activity of hIL-3 and hIL-3 mutant proteins of the present invention is determined by DNA synthesis by human acute myelogenous leukemia cells (AML). The factor-dependent cell line AML 193 was adapted for use in testing biological activity.




One object of the present invention is to provide hIL-3 muteins and hIL-3 deletion muteins with four or more amino acid substitutions in the polypeptide sequence which have similar or improved biological activity in relation to native hIL-3 or native (15-125)hIL-3.




The present invention includes mutant polypeptides comprising minimally amino acids residues 15 to 118 of hIL-3 with or without additional amino acid extensions to the N-terminus and/or C-terminus which further contain four or more amino acid substitutions in the amino acid sequence of the polypeptide. It has been found that the (15-125)hIL-3 mutant is more soluble than is hIL-3 when expressed in the cytoplasm of


E. coli,


and the protein is secreted to the periplasm in


E. coli


at higher levels compared to native hIL-3.




When expressed in the


E. coli


cytoplasm, the above-mentioned mutant hIL-3 polypeptides of the present invention may also be constructed with Met-Ala- at the N-terminus so that upon expression the Met is cleaved off leaving Ala at the N-terminus. These mutant hIL-3 polypeptides may also be expressed in


E. coli


by fusing a signal peptide to the N-terminus. This signal peptide is cleaved from the polypeptide as part of the secretion process. Secretion in


E. coli


can be used to obtain the correct amino acid at the N-terminus (e.g., Asn


15


in the (15-125) hIL-3 polypeptide) due to the precise nature of the signal peptidase. This is in contrast to the heterogeneity often observed at the N-terminus of proteins expressed in the cytoplasm in


E. coli.






The hIL-3 mutant polypeptides of the present invention may have hIL-3 or hIL-3-like activity. For example, they may possess one or more of the biological activities of native hIL-3 and may be useful in stimulating the production of hematopoietic cells by human or primate progenitor cells. The hIL-3 muteins of the present invention and pharmaceutical compositions containing them may be useful in the treatment of conditions in which hematopoietic cell populations have been reduced or destroyed due to disease or to treatments such as radiation or chemotherapy.




hIL-3 muteins of the present invention may also be useful as antagonists which block the hIL-3 receptor by binding specifically to it and preventing binding of the agonist.




One potential advantage of the (15-125) hIL-3 muteins of the present invention, particularly those which retain activity similar to or better than that of native hIL-3, is that it may be possible to use a smaller amount of the biologically active mutein to produce the desired therapeutic effect. This may make it possible to reduce the number of treatments necessary to produce the desired therapeutic effect. The use of smaller amounts may also reduce the possibility of any potential antigenic effects or other possible undesirable side effects. For example, if a desired therapeutic effect can be achieved with a smaller amount of polypeptide it may be possible to reduce or eliminate side effects associated with the administration of native IL-3 such as the stimulation of leukotriene and/or histamine release. The hIL-3 muteins of the present invention may also be useful in the activation of stem cells or progenitors which have low receptor numbers. Pharmaceutical compositions containing (15-125) hIL-3 muteins of the present invention can be administered parenterally, intravenously, or subcutaneously.




As another aspect of the present invention, there is provided a novel method for producing the novel family of human IL-3 muteins. The method of the present invention involves culturing a suitable cell or cell line, which has been transformed with a vector containing a DNA sequence coding for expression of a novel hIL-3 mutant polypeptide. Suitable cells or cell lines may be bacterial cells. For example, the various strains of


E. coli


are well-known as host cells in the field of biotechnology. Examples of such strains include


E. coli


strains JM101 [Yanish-Perron, et al. (1985)] and MON105 [Obukowicz, et al. (1992)]. Various strains of


B. subtilis


may also be employed in this method. Many strains of yeast cells known to those skilled in the art are also available as host cells for expression of the polypeptides of the present invention.




Also suitable for use in the present invention are mammalian cells, such as Chinese hamster ovary cells (CHO). General methods for expression of foreign genes in mammalian cells are reviewed in: Kaufman, R. J. (1987). High level production of proteins in mammalian cells, in


Genetic Engineering, Principles and Methods,


Vol. 9, J. K. Setlow, editor, Plenum Press, New York. An expression vector is constructed in which a strong promoter capable of functioning in mammalian cells drives transcription of a eukaryotic secretion signal peptide coding region, which is translationally fused to the coding region for the hIL-3 variant. For example, plasmids such as pcDNA I/Neo, pRc/RSV, and pRc/CMV (obtained from Invitrogen Corp., San Diego, Calif.) can be used. The eukaryotic secretion signal peptide coding region can be from the hIL-3 gene itself or it can be from another secreted mammalian protein (Bayne, M. L. et al. (1987)


Proc. Natl. Acad. Sci. USA


84, 2638-2642). After construction of the vector containing the hIL-3 variant gene, the vector DNA is transfected into mammalian cells. Such cells can be, for example, the COS7, HeLa, BHK, CHO, or mouse L lines. The cells can be cultured, for example, in DMEM media (JRH Scientific). The hIL-3 variant secreted into the media can be recovered by standard biochemical approaches following transient expression 24-72 hours after transfection of the cells or after establishment of stable cell lines following selection for neomycin resistance. The selection of suitable mammalian host cells and methods for transformation, culture, amplification, screening and product production and purification are known in the art. See, e.g., Gething and Sambrook,


Nature,


293:620-625 (1981), or alternatively, Kaufman et al,


Mol. Cell. Biol.,


5(7):1750-1759 (1985) or Howley et al., U.S. Pat. No. 4,419,446. Another suitable mammalian cell line is the monkey COS-1 cell line. A similarly useful mammalian cell line is the CV-1 cell line.




Where desired, insect cells may be utilized as host cells in the method of the present invention. See, e.g. Miller et al,


Genetic Engineering,


8:277-298 (Plenum Press 1986) and references cited therein. In addition, general methods for expression of foreign genes in insect cells using Baculovirus vectors are described in: Summers, M. D. and Smith, G. E. (1987)—A manual of methods for Baculovirus vectors and insect cell culture procedures, Texas Agricultural Experiment Station Bulletin No. 1555. An expression vector is constructed comprising a Baculovirus transfer vector, in which a strong Baculovirus promoter (such as the polyhedron promoter) drives transcription of a eukaryotic secretion signal peptide coding region, which is translationally fused to the coding region for the hIL-3 variant polypeptide. For example, the plasmid pVL1392 (obtained from Invitrogen Corp., San Diego, Calif.) can be used. After construction of the vector carrying the hIL-3 variant gene, two micrograms of this DNA is cotransfected with one microgram of Baculovirus DNA (see Summers & Smith, 1987) into insect cells, strain SF9. Pure recombinant Baculovirus carrying the hIL-3 variant is used to infect cells cultured, for example, in Excell 401 serum-free medium (JRH Biosciences, Lenexa, Kans.). The hIL-3 variant secreted into the medium can be recovered by standard biochemical approaches.




Another aspect of the present invention provides plasmid DNA vectors for use in the method of expression of these novel hIL-3 muteins. These vectors contain the novel DNA sequences described above which code for the novel polypeptides of the invention. Appropriate vectors which can transform microorganisms capable of expressing the hIL-3 muteins include expression vectors comprising nucleotide sequences coding for the hIL-3 muteins joined to transcriptional and translational regulatory sequences which are selected according to the host cells used.




Vectors incorporating modified sequences as described above are included in the present invention and are useful in the production of the hIL-3 mutant polypeptides. The vector employed in the method also contains selected regulatory sequences in operative association with the DNA coding sequences of the invention and capable of directing the replication and expression thereof in selected host cells.




Additional details may be found in WO 94/12639, which is hereby incorporated by reference in its entirety.




All references, patents or applications cited herein are incorporated by reference in their entirety.




The present invention also includes the construction and expression of (15-125)human interleukin-3 muteins having four or more amino acid substitutions in secretion vectors that optimize accumulation of correctly folded, active polypeptide. While many heterologous proteins have been secreted in


E. coli


there is still a great deal of unpredictability and limited success (Stader and Silhavy 1990). Full-length hIL-3 is such a protein, where attempts to secrete the protein in


E. coli


resulted in low secretion levels. Secretion of the variant (15-125) hIL-3 mutant polypeptides of the present invention as a fusion with a signal peptide such as LamB results in correctly folded protein that can be removed from the periplasm of


E. coli


by osmotic shock fractionation. This property of the variant (15-125) hIL-3 muteins allows for the direct and rapid screening for bioactivity of the secreted material in the crude osmotic shock fraction, which is a significant advantage. Furthermore, it provides a means of using the (15-125)hIL-3 muteins to conduct structure activity relationship (SAR) studies of the hIL-3 molecule. A further advantage of secretion of (15-125) hIL-3 muteins fused to the LamB signal peptide is that the secreted polypeptide has the correct N-terminal amino acid (Asn) due to the precise nature of the cleavage of the signal peptide by signal peptidase, as part of the secretion process.




The (15-125)hIL-3 muteins of the present invention may include hIL-3 polypeptides having Met-, Ala- or Met-Ala- attached to the N-terminus. When the muteins are expressed in the cytoplasm of


E. coli,


polypeptides with and without Met attached to the N-terminus are obtained. The methionine can in some cases be removed by methionine aminopeptidase.




Amino terminal sequences of hIL-3 muteins made in


E. coli


were determined using the method described by Hunkapillar et al., (1983). It was found that hIL-3 proteins made in


E. coli


from genes encoding Met-(15-125)hIL-3 were isolated as Met-(15-125) hIL-3. Proteins produced from genes encoding Met-Ala-(15-125) hIL-3 were produced as Ala-(15-125) hIL-3. The N-termini of proteins made in the cytoplasm of


E. coli


are affected by posttranslational processing by methionine aminopeptidase (Ben-Bassat et al., 1987) and possibly by other peptidases.




One method of creating the preferred hIL-3 (15-125) mutant genes is cassette mutagenesis [Wells, et al. (1985)] in which a portion of the coding sequence of hIL-3 in a plasmid is replaced with synthetic oligonucleotides that encode the desired amino acid substitutions in a portion of the gene between two restriction sites. In a similar manner amino acid substitutions could be made in the full-length hIL-3 gene, or genes encoding variants of hIL-3 in which from 1 to 14 amino acids have been deleted from the N-terminus and/or from 1 to 15 amino acids have been deleted from the C-terminus. When properly assembled these oligonucleotides would encode hIL-3 variants with the desired amino acid substitutions and/or deletions from the N-terminus and/or C-terminus. These and other mutations could be created by those skilled in the art by other mutagenesis methods including; oligonucleotide-directed mutagenesis [Zoller and Smith (1982, 1983, 1984), Smith (1985), Kunkel (1985), Taylor, et al. (1985), Deng and Nickoloff (1992)] or polymerase chain reaction (PCR) techniques [Saiki, (1985)].




Pairs of complementary synthetic oligonucleotides encoding portions of the amino terminus of the hIL-3 gene can be made and annealed to each other. Such pairs would have protruding ends compatible with ligation to NcoI at one end. The NcoI site would include the codon for the initiator methionine. At the other end of oligonucleotide pairs, the protruding (or blunt) ends would be compatible with a restriction site that occurs within the coding sequence of the hIL-3 gene. The DNA sequence of the oligonucleotide would encode sequence for amino acids of hIL-3 with the exception of those substituted and/or deleted from the sequence.




The NcoI enzyme and the other restriction enzymes chosen should have recognition sites that occur only once in the DNA of the plasmid chosen. Plasmid DNA can be treated with the chosen restriction endonucleases then ligated to the annealed oligonucleotides. The ligated mixtures can be used to transform competent JM101 cells to resistance to an appropriate antibiotic. Single colonies can be picked and the plasmid DNA examined by restriction analysis and/or DNA sequencing to identify plasmids with mutant hIL-3 genes.




One example of a restriction enzyme which cleaves within the coding sequence of the hIL-3 gene is ClaI whose recognition site is at codons 20 and 21. The use of ClaI to cleave the sequence of hIL-3 requires that the plasmid DNA be isolated from an


E. coli


strain that fails to methylate adenines in the DNA at GATC recognition sites. This is because the recognition site for ClaI, ATCGAT, occurs within the sequence GATCGAT which occurs at codons 19, 20 and 21 in the hIL-3 gene. The A in the GATC sequence is methylated in most


E. coli


host cells. This methylation prevents ClaI from cleaving at that particular sequence. An example of a strain that does not methylate adenines is GM48.




Interpretation of Activity of Single Amino Acid Mutants in IL-3 (15-125)




As illustrated in Tables 6 and 9, there are certain positions in the IL-3 (15-125) molecule which are intolerant of substitutions, in that most or all substitutions at these positions resulted in a considerable decrease in bioactivity. There are two likely classes of such “down-mutations”: mutations that affect overall protein structure, and mutations that interfere directly with the interaction between the IL-3 molecule and its receptor. Mutations affecting the three-dimensional structure of the protein will generally lie in the interior of the protein, while mutations affecting receptor binding will generally lie on the surface of the protein. Although the three-dimensional structure of IL-3 is unknown, there are simple algorithms which can aid in the prediction of the structure. One such algorithm is the use of “helical wheels” (Kaiser, E. T. & Kezdy, F. J., Science, 223:249-255 (1984)). In this method, the presence of alpha helical protein structures can be predicted by virtue of their amphipathic nature. Helices in globular proteins commonly have an exposed hydrophilic side and a buried hydrophobic side. As a broad generalization, in globular proteins, hydrophobic residues are present in the interior of the protein, and hydrophilic residues are present on the surface. By displaying the amino acid sequence of a protein on such a “helical wheel” it is possible to derive a model for which amino acids in alpha helices are exposed and which are buried in the core of the protein. Such an analysis of the IL-3 (15-125) molecule predicts that the following helical residues are buried in the core:




M19, I20, I23, I24, L27, L58, F61, A64, L68, A71, I74, I77, L78, L81, W104, F107, L111, Y114, L115, L118.




In addition, cysteine residues at positions 16 and 84 are linked by a disulfide bond, which is important for the overall structure or “folding” of the protein. Finally, mutations which result in a major disruption of the protein structure may be expressed at low level in the secretion system used in our study, for a variety of reasons: either because the mis-folded protein is poorly recognized by the secretion machinery of the cell; because mis-folding of the protein results in aggregation, and hence the protein cannot be readily extracted from the cells; or because the mis-folded protein is more susceptible to degradation by cellular proteases. Hence, a block in secretion may indicate which positions in the IL-3 molecule which are important for maintenance of correct protein structure.




In order to retain the activity of a variant of IL-3, it is necessary to retain both the structural integrity of the protein, and retain the specific residues important for receptor contact. Hence it is possible to define specific amino acid residues in IL-3 (15-125) which must be retained in order to preserve biological activity.




Residues predicted to be important for interaction with the receptor: D21, E22, E43, D44, L48, R54, R94, D103, K110, P113.




Residues predicted to be structurally important: C16, L58, F61, A64, I74, L78, L81, C84, P86, P92, P96, F107, L111, L115, L118.




The hIL-3 muteins of the present invention may be useful in the treatment of diseases characterized by a decreased levels of either myeloid, erythroid, lymphoid, or megakaryocyte cells of the hematopoietic system or combinations thereof. In addition, they may be used to activate mature myeloid and/or lymphoid cells. Among conditions susceptible to treatment with the polypeptides of the present invention is leukopenia, a reduction in the number of circulating leukocytes (white cells) in the peripheral blood. Leukopenia may be induced by exposure to certain viruses or to radiation. It is often a side effect of various forms of cancer therapy, e.g., exposure to chemotherapeutic drugs and of infection or hemorrhage. Therapeutic treatment of leukopenia with these hIL-3 mutant polypeptides of the present invention may avoid undesirable side effects caused by treatment with presently available drugs.




The hIL-3 muteins of the present invention may be useful in the treatment of neutropenia and, for example, in the treatment of such conditions as aplastic anemia, cyclic neutropenia, idiopathic neutropenia, Chediak-Higashi syndrome, systemic lupus erythematosus (SLE), leukemia, myelodysplastic syndrome and myelofibrosis.




Many drugs may cause bone marrow suppression or hematopoietic deficiencies. Examples of such drugs are AZT, DDI, alkylating agents and anti-metabolites used in chemotherapy, antibiotics such as chloramphenicol, penicillin and sulfa drugs, phenothiazones, tranquilizers such as meprobamate, and diuretics. The hIL-3 muteins of the present invention may be useful in preventing or treating the bone marrow suppression or hematopoietic deficiencies which often occur in patients treated with these drugs.




Hematopoietic deficiencies may also occur as a result of viral, microbial or parasitic infections and as a result of treatment for renal disease or renal failure, e.g., dialysis. The hIL-3 muteins of the present invention may be useful in treating such hematopoietic deficiency.




The treatment of hematopoietic deficiency may include administration of the hIL-3 mutein of a pharmaceutical composition containing the hIL-3 mutein to a patient. The hIL-3 muteins of the present invention may also be useful for the activation and amplification of hematopoietic precursor cells by treating these cells in vitro with the muteins of the present invention prior to injecting the cells into a patient.




Various immunodeficiencies e.g., in T and/or B lymphocytes, or immune disorders, e.g., rheumatoid arthritis, may also be beneficially affected by treatment with the hIL-3 mutant polypeptides of the present invention. Immunodeficiencies may be the result of viral infections e.g. HTLVI, HTLVII, HTLVIII, severe exposure to radiation, cancer therapy or the result of other medical treatment. The hIL-3 mutant polypeptides of the present invention may also be employed, alone or in combination with other hematopoietins, in the treatment of other blood cell deficiencies, including thrombocytopenia (platelet deficiency), or anemia. Other uses for these novel polypeptides are in the treatment of patients recovering from bone marrow transplants in vivo and ex vivo, and in the development of monoclonal and polyclonal antibodies generated by standard methods for diagnostic or therapeutic use.




Other aspects of the present invention are methods and therapeutic compositions for treating the conditions referred to above. Such compositions comprise a therapeutically effective amount of one or more of the hIL-3 muteins of the present invention in a mixture with a pharmaceutically acceptable carrier. This composition can be administered either parenterally, intravenously or subcutaneously. When administered, the therapeutic composition for use in this invention is preferably in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such a parenterally acceptable protein solution, having due regard to pH, isotonicity, stability and the like, is within the skill of the art.




The dosage regimen involved in a method for treating the above-described conditions will be determined by the attending physician considering various factors which modify the action of drugs, e.g. the condition, body weight, sex and diet of the patient, the severity of any infection, time of administration and other clinical factors. Generally, a daily regimen may be in the range of 0.2-150 μg/kg of non-glycosylated IL-3 protein per kilogram of body weight. This dosage regimen is referenced to a standard level of biological activity which recognizes that native IL-3 generally possesses an EC


50


at or about 10 picoMolar to 100 picoMolar in the AML proliferation assay described herein. Therefore, dosages would be adjusted relative to the activity of a given mutein vs. the activity of native (reference) IL-3 and it would not be unreasonable to note that dosage regimens may include doses as low as 0.1 microgram and as high as 1 milligram per kilogram of body weight per day. In addition, there may exist specific circumstances where dosages of IL-3 mutein would be adjusted higher or lower than the range of 10-200 micrograms per kilogram of body weight. These include co-administration with other CSF or growth factors: co-administration with chemotherapeutic drugs and/or radiation; the use of glycosylated IL-3 mutein; and various patient-related issues mentioned earlier in this section. As indicated above, the therapeutic method and compositions may also include co-administration with other human factors. A non-exclusive list of other appropriate hematopoietins, CSFs and interleukins for simultaneous or serial co-administration with the polypeptides of the present invention includes GM-CSF, CSF-1, G-CSF, Meg-CSF, M-CSF, erythropoietin (EPO), IL-1, IL-4, IL-2, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, LIF, B-cell growth factor, B-cell differentiation factor and eosinophil differentiation factor, stem cell factor (SCF) also known as steel factor or c-kit ligand, or combinations thereof. The dosage recited above would be adjusted to compensate for such additional components in the therapeutic composition. Progress of the treated patient can be monitored by periodic assessment of the hematological profile, e.g., differential cell count and the like.




Materials and Methods for hIL-3 Mutein Expression in


E. coli






Unless noted otherwise, all specialty chemicals were obtained from Sigma Co., (St. Louis, Mo.). Restriction endonucleases, T4 poly-nucleotides kinase,


E. coli


DNA polymerase I large fragment (Klenow) and T4 DNA ligase were obtained from New England Biolabs (Beverly, Mass.).






Escherichia coli


Strains




Strain JM101: delta (pro lac), supE, thi, F′ (traD36, rpoAB, lacI-Q, lacZdeltaM15) (Messing, 1979). This strain can be obtained from the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Md. 20852, accession number 33876. MON 105 (W3110 rpoH358) is a derivative of W3110 (Bachmann, 1972) and has been assigned ATCC accession number 55204. Strain GM48: dam-3, dcm-6, gal, ara, lac, thr, leu, tonA, tsx (Marinus, 1973) was used to make plasmid DNA that is not methylated at the sequence GATC.




Genes and Plasmids




The gene used for hIL-3 production in


E. coli


was obtained from British Biotechnology Incorporated, Cambridge, England, catalogue number BBG14. This gene is carried on a pUC based plasmid designated pP0518.




The plasmids used for production of hIL-3 in


E. coli


contain genetic elements whose use has been described (Olins et al., 1988; Olins and Rangwala, 1990). The replicon used is that of pBR327 (Covarrubias, et al., 1981) which is maintained at a copy number of about 100 in the cell (Soberon et al., 1980). A gene encoding the beta-lactamase protein is present on the plasmids. This protein confers ampicillin resistance on the cell. This resistance serves as a selectable phenotype for the presence of the plasmid in the cell.




For cytoplasmic expression vectors the transcription promoter was derived from the recA gene of


E. coli


(Sancar et al., 1980). This promoter, designated precA, includes the RNA polymerase binding site and the lexa repressor binding site (the operator). This segment of DNA provides high level transcription that is regulated even when the recA promoter is on a plasmid with the pBR327 origin of replication (Olins et al., 1988) incorporated herein by reference.




In secretion expression plasmids the transcription promoter was derived from the ara B, A, and D genes of


E. coli


(Greenfield et al., 1978). This promoter is designated pAraBAD and is contained on a 323 base pair SacII, BglII restriction fragment. The LamB secretion leader (Wong et al., 1988, Clement et al., 1981) was fused to the N-terminus of the hIL-3 gene at the recognition sequence for the enzyme NcoI (5′CCATGG3′). The hIL-3 genes used were engineered to have a HindIII recognition site (5′AAGCTT3′) following the coding sequence of the gene.




These hIL-3 variants were expressed as a fusion with the LamB signal peptide shown in

FIG. 8

, operatively joined to the araBAD promoter (Greenfield, 1978) and the g10-L ribosome binding site (Olins et al. 1988). The processed form was selectively released from the periplasm by osmotic shock as a correctly folded and fully active molecule. Secretion of (15-125) hIL-3 was further optimized by using low inducer (arabinose) concentration and by growth at 30° C. These conditions resulted in lower accumulation levels of unprocessed LamB signal peptide (15-125) hIL-3 fusion, maximal accumulation levels of processed (15-125) hIL-3 and selective release of (15-125) hIL-3 by osmotic shock fractionation. The use of a tightly regulated promoter such as araBAD from which the transcription level and hence the expression level can be modulated allowed for the optimization of secretion of (15-125) hIL-3.




The ribosome binding site used is that from gene 10 of phage T7 (Olins et al., 1988). This is encoded in a 100 base pair (bp) fragment placed adjacent to precA. In the plasmids used herein, the recognition sequence for the enzyme NcoI (CCATGG) follows the glO-L. It is at this NcoI site that the hIL-3 genes are joined to the plasmid. It is expected that the nucleotide sequence at this junction will be recognized in mRNA as a functional start site for translation (Olins et al., 1988). The hIL-3 genes used were engineered to have a HindIII recognition site (AAGCTT) downstream from the coding sequence of the gene. At this HindIII site is a 514 base pair RsaI fragment containing the origin of replication of the single stranded phage f1 (Dente et al., 1983; Olins, et al., 1990) both incorporated herein by reference. A plasmid containing these elements is pMON2341. Another plasmid containing these elements is pMON5847 which has been deposited at the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Md. 20852 under the accession number ATCC 68912.




Synthesis of Oligonucleotides




Oligonucleotides were synthesized on Nucleotide Synthesizer model 380A or 380B from Applied Biosystems, Inc. (Foster City, Calif.). Oligonucleotides were purified by polyacrylamide gel electrophoresis at concentrations from 12-20% (19:1 crosslinked) in 0.5×Tris borate buffer (0.045 M Tris, 0.045 M boric acid, 1.25 mM EDTA) followed by passage through a Nensorb column obtained from New England Nuclear (Boston, Mass.) using a PREP Automated Sample Processor obtained from DuPont, Co. (Wilmington, Del.).




Quantitation of Synthetic Oligonucleotides




Synthetic oligonucleotides were resuspended in water and quantitated by reading the absorbance at 260 nm on a Beckman DU40 Spectrophotometer (Irvine, Calif.) using a one centimeter by one millimeter quartz cuvette (Maniatis, 1982). The concentration was determined using an extinction coefficient of 1×10


4


(Voet et al., 1963; Mahler and Cordes, 1966). The oligonucleotides were then diluted to a desired concentration.




Quantitation of synthetic DNA fragments can also be achieved by adding 10 to 100 picomoles of DNA to a solution containing kinase buffer (25 mM Tris pH 8.0, 10 mM MgCl


2


, 10 mM DTT and 2 mM spermidine). To the reaction mix is added ATP to 20 micromolar, ATP radiolabeled at the gamma phosphate (5000-10,0000 dpm/pmol) and 5 units of T4 polynucleotide kinase. Radiolabelled material is obtained from New England Nuclear (Boston, Mass.). The 10 microliter mixture is incubated at 37° C. for one hour. A 1 microliter aliquot of the mixture was chromatographed on DEAE paper (Whatman) in 0.3 M ammonium bicarbonate. The counts that remained at the origin were used to determine the concentration of the synthetic DNA.




Recombinant DNA Methods




Isolation of plasmid DNA from


E. coli


cultures was performed as described (Birnboim and Doly, 1979). Some DNAs were purified by Magic™ columns, available from Promega (Madison, Wis.).




Purified plasmid DNA was treated with restriction endonucleases according to manufacturer's instructions. Analysis of the DNA fragments produced by treatment with restriction enzymes was done by agarose or polyacrylamide gel electrophoresis. Agarose (DNA grade from Fisher, Pittsburgh Pa.) was used at a concentration of 1.0% in a Tris-acetate running buffer (0.04 M Tris-acetate, 0.001M EDTA). Polyacrylamide (BioRad, Richmond Calif.) was used at a concentration of 6% (19:1 crosslinked) in 0.5×Tris-borate buffer (0.045 M Tris, 0.045 M boric acid, 1.25 mM EDTA), hereafter referred to as PAGE.




DNA polymerase I, large fragment, Klenow enzyme was used according to manufacturers instructions to catalyze the addition of mononucleotides from 5′ to 3′ of DNA fragments which had been treated with restriction enzymes that leave protruding ends. The reactions were incubated at 65° C. for 10 minutes to heat inactivate the Klenow enzyme.




The synthetic oligonucleotides were made without 5′ or 3′ terminal phosphates. In cases where such oligonucleotides were ligated end to end, the oligonucleotides were treated at a concentration of 10 picomoles per microliter with T4 polynucleotide kinase in the following buffer: 25 mM Tris, pH 8.0, 10 mM MgCl


2


, 10 mM dithiothreitol, 2 mM spermidine, 1 mM rATP. After incubation for 30 minutes at 37° C., the samples were incubated at 65° C. for five minutes to heat inactivate the kinase.




Synthetic Gene Assembly




The (15-125) hIL-3 gene was divided into four regions separated by five convenient restriction sites. In each of the four regions synthetic oligonucleotides were designed so that they would anneal in complementary pairs, with protruding single stranded ends, and when the pairs were properly assembled would result in a DNA sequence that encoded a portion of the hIL-3 gene. Amino acid substitutions in the hIL-3 gene were made by designing the oligonucleotides to encode the desired substitutions. The complementary oligonucleotides were annealed at concentration of 1 picomole per microliter in ligation buffer plus 50 mM NaCl. The samples were heated in a 100 ml beaker of boiling water and permitted to cool slowly to room temperature. One picomole of each of the annealed pairs of oligonucleotides were ligated with approximately 0.2 picomoles of plasmid DNA, digested with the appropriate restriction enzymes, in ligation buffer (25 mM Tris pH 8.0, 10 mM MgCl


2


, 10 mM dithiothreitol, 1 mM ATP, 2 mM spermidine) with T4 DNA ligase obtained from New England Biolabs (Beverly, Mass.) in a total volume of 20 μl at room temperature overnight.




DNA fragments were isolated from agarose gels by intercepting the restriction fragments on DEAE membranes from Schleicher and Schuell (Keene, N.H.) and eluting the DNA in 10 mM Tris, 1 mM EDTA, 1 M NaCl at 55° C. for 1 hour, according to manufacturer's directions. The solutions containing the DNA fragment were concentrated and desalted by using Centricon 30 concentrators from Amicon (W. R. Grace, Beverly Mass.) according to the manufacturer's directions. Ligations were performed at 15° C. overnight, except as noted, in ligation buffer.




Polymerase Chain Reaction




Polymerase Chain Reaction (hereafter referred to as PCR) techniques (Saiki, 1985) used the reagent kit and thermal cycler from Perkin-Elmer Cetus (Norwalk, Conn.). PCR is based on a thermostable DNA polymerase from


Thermus aquaticus.


The PCR technique is a DNA amplification method that mimics the natural DNA replication process in that the number of DNA molecules doubles after each cycle, in a way similar to in vivo replication. The DNA polymerase mediated extension is in a 5′ to 3′ direction. The term “primer” as used herein refers to an oligonucleotide sequence that provides an end to which the DNA polymerase can add nucleotides that are complementary to a nucleotide sequence. The latter nucleotide sequence is referred to as the “template”, to which the primers are annealed. The amplified PCR product is defined as the region comprised between the 5′ ends of the extension primers. Since the primers have defined sequences, the product will have discrete ends, corresponding to the primer sequences. The primer extension reaction was carried out using 20 picomoles (pmoles) of each of the oligonucleotides and 1 picogram of template plasmid DNA for 35 cycles (1 cycle is defined as 94 degrees C. for one minute, 50 degrees C. for two minutes and 72 degrees for three minutes.). The reaction mixture was extracted with an equal volume of phenol/chloroform (50% phenol and 50% chloroform, volume to volume) to remove proteins. The aqueous phase, containing the amplified DNA, and solvent phase were separated by centrifugation for 5 minutes in a microcentrifuge (Model 5414 Eppendorf Inc, Fremont Calif.). To precipitate the amplified DNA the aqueous phase was removed and transferred to a fresh tube to which was added 1/10 volume of 3M NaOAc (pH 5.2) and 2.5 volumes of ethanol (100% stored at minus 20 degrees C.). The solution was mixed and placed on dry ice for 20 minutes. The DNA was pelleted by centrifugation for 10 minutes in a microcentrifuge and the solution was removed from the pellet. The DNA pellet was washed with 70% ethanol, ethanol removed and dried in a speedvac concentrator (Savant, Farmingdale, N.Y.). The pellet was resuspended in 25 microliters of TE (20 mM Tris-HCl pH 7.9, 1 mM EDTA). Alternatively the DNA was precipitated by adding equal volume of 4M NH


4


OAc and one volume of isopropanol [Treco et al., (1988)]. The solution was mixed and incubated at room temperature for 10 minutes and centrifuged. These conditions selectively precipitate DNA fragments larger than ˜20 bases and were used to remove oligonucleotide primers. One quarter of the reaction was digested with restriction enzymes [Higuchi, (1989)] an on completion heated to 70 degrees C. to inactivate the enzymes.




Recovery of Recombinant Plasmids from Ligation Mixes






E. coli


JM101 cells were made competent to take up DNA. Typically, 20 to 100 ml of cells were grown in LB medium to a density of approximately 150 Klett units and then collected by centrifugation. The cells were resuspended in one half culture volume of 50 mM CaCl


2


and held at 4° C. for one hour. The cells were again collected by centrifugation and resuspended in one tenth culture volume of 50 mM CaCl


2


. DNA was added to a 150 microliter volume of these cells, and the samples were held at 4° C. for 30 minutes. The samples were shifted to 42° C. for one minute, one milliliter of LB was added, and the samples were shaken at 37° C. for one hour. Cells from these samples were spread on plates containing ampicillin to select for transformants. The plates were incubated overnight at 37° C. Single colonies were picked, grown in LB supplemented with ampicillin overnight at 37° C. with shaking. From these cultures DNA was isolated for restriction analysis.




Culture Medium




LB medium (Maniatis et al., 1982) was used for growth of cells for DNA isolation. M9 minimal medium supplemented with 1.0% casamino acids, acid hydrolyzed casein, Difco (Detroit, Mich.) was used for cultures in which recombinant hIL-3 was produced. The ingredients in the M9 medium were as follows: 3 g/liter KH


2


PO


4


, 6 g/l Na


2


HPO


4


, 0.5 g/l NaCl, 1 g/l NH


4


Cl, 1.2 mM MgSO


4


, 0.025 mM CaCl


2


, 0.2% glucose (0.2% glycerol with the AraBAD promoter), 1% casamino acids, 0.1 ml/l trace minerals (per liter 108 g FeCl


3


.6H


2


O, 4.0 g ZnSO


4


.7H


2


O, 7.0 CoCl


2


.2H


2


O, 7.0 g Na


2


MoO


4


.2H


2


O, 8.0 g CuSO


4


.5H


2


O, 2.0 g H


3


BO


3


, 5.0 g MnSO


4


.H


2


O, 100 ml concentrated HCl). Bacto agar was used for solid media and ampicillin was added to both liquid and solid LB media at 200 micrograms per milliliter.




DNA Sequence Analysis




The nucleotide sequencing of plasmid DNA was determined using a Genesis 2000 sequencer obtained from DuPont (Wilmington, Del.) according to the methods of Prober et al. (1987) and Sanger et al. (1977). Some DNA sequences were performed using Sequenase™ polymerase (U.S. Biochemicals, Cleveland, Ohio) according to manufacturer's directions.




Production of Recombinant hIL-3 Muteins in


E. coli


with Vectors Employing the recA Promoter






E. coli


strains harboring the plasmids of interest were grown at 37° C. in M9 plus casamino acids medium with shaking in a Gyrotory water bath Model G76 from New Brunswick Scientific (Edison, N.J.). Growth was monitored with a Klett Summerson meter (green 54 filter), Klett Mfg. Co. (New York, N.Y.). At a Klett value of approximately 150, an aliquot of the culture (usually one milliliter) was removed for protein analysis. To the remaining culture, nalidixic acid (10 mg/ml) in 0.1 N NaOH was added to a final concentration of 50 μg/ml. The cultures were shaken at 37° C. for three to four hours after addition of nalidixic acid. A high degree of aeration was maintained throughout the bacterial growth in order to achieve maximal production of the desired gene product. The cells were examined under a light microscope for the presence of refractile bodies (RBs). One milliliter aliquots of the culture were removed for analysis of protein content.




Production of Recombinant hIL-3 Proteins from the pAraBAD Promoter in


E. coli








E. coli


strains harboring the plasmids of interest were grown at 30° C. with shaking in M9 medium plus casamino acids and glycerol. Growth was monitored with a Klett Summerson calorimeter, using a green 54 filter. At a Klett value of about 150, an aliquot of the culture (usually one milliliter) was removed for protein analysis. To the remaining culture, 20% arabinose was added to a final concentration of 0.05%. The cultures were shaken at 30° C. for three to four hours after addition of arabinose. A high degree of aeration was maintained throughout the bacterial growth in order to achieve maximal production of the desired gene product. One milliliter aliquots of the culture were removed for analysis of protein content.




Secretion and Osmotic Shock




Three hour post induction samples were fractionated by osmotic shock [Neu and Heppel (1965)]. The optical density (Klett value) of the cultures was determined and 1 ml of cells were centrifuged in a Sigma microcentrifuge (West Germany) model 202MK in 1.5 mls snap top microcentrifuge tubes for 5 minutes at 10,000 rpm. The cell pellet was resuspended very gently by pipeting in a room temperature sucrose solution (20% sucrose w/v, 30 mM Tris-Hcl pH7.5, 1 mM EDTA), using 1 μl Klett unit. Following a 10 minute incubation at room temperature, the cells were centrifuged for 5 minutes at 10,000 rpm. The sucrose fraction was carefully removed from the cell pellet. The cell pellet was then resuspended very gently by pipeting in ice cold distilled water, using 1 μl/1 Klett unit. Following a 10 minute incubation on ice, the cells were centrifuged for 5 minutes at 12,000 rpm. The water fraction was carefully removed. Equal volumes of the sucrose and water fractions were pooled and aliquoted to provide samples for activity screening.




Analysis of Protein Content of


E. coli


Cultures Producing hIL-3 Mutant Polypeptides




Bacterial cells from cultures treated as described above were collected from the medium by centrifugation. Aliquots of these cells were resuspended in SDS loading buffer (4×: 6 g SDS, 10 ml beta-mercaptoethanol, 25 ml upper Tris gel stock (0.5 M Tris HCl pH 6.8, 0.4% SDS) brought to 50 ml with glycerol, 0.2% bromophenol blue was added) at a concentration of one microliter per Klett unit. These samples were incubated at 85° C. for five minutes and vortexed. Five or ten microliter aliquots of these samples were loaded on 15% polyacrylamide gels prepared according to the method of Laemmli (1970). Protein bands were visualized by staining the gels with a solution of acetic acid, methanol and water at 5:1:5 ratio (volume to volume) to which Coomassie blue had been added to a final concentration of 1%. After staining, the gels were washed in the same solution without the Coomassie blue and then washed with a solution of 7% acetic acid, 5% methanol. Gels were dried on a gel drier Model SE1160 obtained from Hoeffer (San Francisco, Calif.). The amount of stained protein was measured using a densitometer obtained from Joyce-Loebl (Gateshead, England). The values obtained were a measure of the amount of the stained hIL-3 protein compared to the total of the stained protein of the bacterial cells.




Western Blot Analysis of hTL-3 Muteins made in


E. coli






In some


E. coli


cultures producing hIL-3, the level of accumulation of the hIL-3 protein is lower than 5% of total bacterial protein. To detect hIL-3 produced at this level, Western blot analysis was used. Proteins from cultures induced with nalidixic acid or arabinose were run on polyacrylamide gels as described above except that volumes of sample loaded were adjusted to produce appropriate signals. After electrophoresis, the proteins were electroblotted to APT paper, Transa-bind, Schleicher and Schuell (Keene, N.H.) according to the method of Renart et al. (1979). Antisera used to probe these blots had been raised in rabbits, using peptides of the sequence of amino acids 20 to 41 and 94 to 118 of hIL-3 as the immunogens. The presence of bound antibody was detected with Staphylococcal protein A radiolabeled with


125


I, obtained from New England Nuclear (Boston, Mass.).




Fractionation of


E. coli


Cells Producing hIL-3 Proteins in the Cytoplasm




Cells from


E. coli


cultures harboring plasmids that produce hIL-3 muteins were induced with nalidixic acid. After three hours, the hIL-3 muteins accumulated in refractile bodies. The first step in purification of the hIL-3 muteins was to sonicate cells. Aliquots of the culture were resuspended from cell pellets in sonication buffer: 10 mM Tris, pH 8.0, 1 mM EDTA, 50 mM NaCl and 0.1 mM PMSF. These resuspended cells were subjected to several repeated sonication bursts using the microtip from a Sonicator cell disrupter, Model W-375 obtained from Heat Systems-Ultrasonics Inc. (Farmingdale, N.Y.). The extent of sonication was monitored by examining the homogenates under a light microscope. When nearly all of the cells had been broken, the homogenates were fractionated by centrifugation. The pellets, which contain most of the refractile bodies, are highly enriched for hIL-3 muteins.




Methods: Extraction, Refolding and Purification of Interleukin-3 (IL-3) Muteins Expressed as Refractile Bodies in


E. coli






Extraction of Refractile Bodies (RB's)




For each gram of RB's (and typically one gram is obtained from a 300 ml


E. coli


culture), 5 ml of a solution containing 6M guanidine hydrochloride (GnHCl), 50 mM 2-N-cyclohexylaminoethanesulfonic acid (CHES) ph 9.5 and 20 mM dithiothreitol (DTT) was added. The RB's were extracted with a Bio-Homogenizer for 15-30 seconds and gently rocked for 2 hours at 5 degrees centigrade (5° C.) to allow the protein to completely reduce and denature.




Refolding of the IL-3 Muteins




The protein solution was transferred to dialysis tubing (1000 molecular weight cut-off) and dialyzed against at least 100 volumes of 4M GnHCl—50 mM CHES pH 8.0. The dialysis was continued overnight at 5° C. while gently stirring. Subsequently dialysis was continued against at least 100 volumes of 2M GnHCl—50 mM CHES pH 8.0 and dialyzed overnight at 5° C. while gently stirring.




Purification of the IL-3 Muteins




The protein solution was removed from the dialysis tubing and acidified by the addition of 40% acetonitrile (CH


3


CN)—0.2% trifluoroacetic acid (TFA) to a final concentration of 20% CH


3


CN—0.1% TFA. This was centrifuged (16,000×g for 5 minutes) to clarify and the supernatant was loaded onto a Vydac C-18 reversed phase column (10×250 mm) available from Vydac (Hesperia, Calif.) previously equilibrated in 20% CH


3


CN—0.1% TFA. The column was eluted with a linear gradient (0.2% CH


3


CN/minute) between 40-50% CH


3


CN—0.1% TFA at a flow rate of 3 ml/minute while collecting 1.5 ml fractions. The fractions were analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) and the appropriate fractions pooled. The pooled material was dried by lyophilization or in a Speed Vac concentrator. The dry powder was reconstituted with 10 mM ammonium bicarbonate pH 7.5, centrifuged (16,000×g for 5 minutes) to clarify and assayed for protein concentration by the method of Bradford (1976) with bovine serum albumin as the standard. Such protein can be further analyzed by additional techniques such as, SDS-PAGE, electrospray mass spectrometry, reverse phase HPLC, capillary zone electrophoresis, amino acid composition analysis, and ELISA (enzyme-linked immunosorbent assay).




hIL-3 Sandwich ELISA




IL-3 protein concentrations can be determined using a sandwich ELISA based on an affinity purified polyclonal goat anti-rhIL-3. Microtiter plates (Dynatech Immulon II) were coated with 150 μl goat-anti-rhIL-3 at a concentration of approximately 1 μg/ml in 100 mM NaHCO3, pH 8.2. Plates were incubated overnight at room temperature in a chamber maintaining 100% humidity. Wells were emptied and the remaining reactive sites on the plate were blocked with 200 μl of solution containing 10 mM PBS, 3% BSA and 0.05% Tween 20, pH 7.4 for 1 hour at 37° C. and 100% humidity. Wells were emptied and washed 4× with 150 mM NaCl containing 0.05% Tween 20 (wash buffer). Each well then received 150 μl of dilution buffer (10 mM PBS containing 0.1% BSA, 0.01% Tween 20, pH 7.4), containing rhIL-3 standard, control, sample or dilution buffer alone. A standard curve was prepared with concentrations ranging from 0.125 ng/ml to 5 ng/ml using a stock solution of rhIL-3 (concentration determined by amino acid composition analysis). Plates were incubated 2.5 hours at 37° C. and 100% humidity. Wells were emptied and each plate was washed 4× with wash buffer. Each well then received 150 μl of an optimal dilution (as determined in a checkerboard assay format) of goat anti-rhIL-3 conjugated to horseradish peroxidase. Plates were incubated 1.5 hours at 37° C. and 100% humidity. Wells were emptied and each plate was washed 4× with wash buffer. Each well then received 150 ul of ABTS substrate solution (Kirkegaard and Perry). Plates were incubated at room temperature until the color of the standard wells containing 5 ng/ml rhIL-3 had developed enough to yield an absorbance between 0.5-1.0 when read at a test wavelength of 410 nm and a reference wavelength of 570 nm on a Dynatech microtiter plate reader. Concentrations of immunoreactive rhIL-3 in unknown samples were calculated from the standard curve using software supplied with the plate reader.




AML Proliferation Assay for Bioactive Human Interleukin-3




The factor-dependent cell line AML 193 was obtained from the American Type Culture Collection (ATCC, Rockville, Md.). This cell line, established from a patient with acute myelogenous leukemia, is a growth factor dependent cell line which displayed enhanced growth in GM/CSF supplemented medium (Lange, B., et al., (1987); Valtieri, M., et al., (1987). The ability of AML 193 cells to proliferate in the presence of human IL-3 has also been documented. (Santoli, D., et al., (1987)). A cell line variant was used, AML 193 1.3, which was adapted for long term growth in IL-3 by washing out the growth factors and starving the cytokine dependent AML 193 cells for growth factors for 24 hours. The cells were then replated at 1×10


5


cells/well in a 24 well plate in media containing 100 U/ml IL-3. It took approximately 2 months for the cells to grow rapidly in IL-3. These cells were maintained as AML 193 1.3 thereafter by supplementing tissue culture medium (see below) with human IL-3.




AML 193 1.3 cells were washed 6 times in cold Hanks balanced salt solution (HBSS, Gibco, Grand Island, N.Y.) by centrifuging cell suspensions at 250×g for 10 minutes followed by decantation of supernatant. Pelleted cells were resuspended in HBSS and the procedure was repeated until six wash cycles were completed. Cells washed six times by this procedure were resuspended in tissue culture medium at a density ranging from 2×10


5


to 5×10


5


viable cells/ml. This medium was prepared by supplementing Iscove's modified Dulbecco's Medium (IMDM, Hazleton, Lenexa, Kans.) with albumin, transferrin, lipids and 2-mercaptoethanol. Bovine albumin (Boehringer-Mannheim, Indianapolis, Ind.) was added at 500 μg/ml; human transferrin (Boehringer-Mannheim, Indianapolis, Ind.) was added at 100 μg/ml; soybean lipid (Boehringer-Mannheim, Indianapolis, Ind.) was added at 50 μg/ml; and 2-mercaptoethanol (Sigma, St. Louis, Mo.) was added at 5×10


−5


M.




Serial dilutions of human interleukin-3 or human interleukin-3 variant protein (hIL-3 mutein) were made in triplicate series in tissue culture medium supplemented as stated above in 96 well Costar 3596 tissue culture plates. Each well contained 50 μl of medium containing interleukin-3 or interleukin-3 variant protein once serial dilutions were completed. Control wells contained tissue culture medium alone (negative control). AML 193 1.3 cell suspensions prepared as above were added to each well by pipetting 50 μl (2.5×10


4


cells) into each well. Tissue culture plates were incubated at 37° C. with 5% CO


2


in humidified air for 3 days. On day 3, 0.5 μCi


3


H-thymidine (2 Ci/mM, New England Nuclear, Boston, Mass.) was added in 50 μl of tissue culture medium. Cultures were incubated at 37° C. with 5% CO


2


in humidified air for 18-24 hours. Cellular DNA was harvested onto glass filter mats (Pharmacia LKB, Gaithersburg, Md.) using a TOMTEC cell harvester (TOMTEC, Orange, Conn.) which utilized a water wash cycle followed by a 70% ethanol wash cycle. Filter mats were allowed to air dry and then placed into sample bags to which scintillation fluid (Scintiverse II, Fisher Scientific, St. Louis, Mo. or BetaPlate Scintillation Fluid, Pharmacia LKB, Gaithersburg, Md.) was added. Beta emissions of samples from individual tissue culture wells were counted in a LKB Betaplate model 1205 scintillation counter (Pharmacia LKB, Gaithersburg, Md.) and data was expressed as counts per minute of


3


H-thymidine incorporated into cells from each tissue culture well. Activity of each human interleukin-3 preparation or human interleukin-3 variant preparation was quantitated by measuring cell proliferation (


3


H-thymidine incorporation) induced by graded concentrations of interleukin-3 or interleukin-3 variant. Typically, concentration ranges from 0.05 pM-10


5


pM are quantitated in these assays. Activity is determined by measuring the dose of interleukin-3 or interleukin-3 variant which provides 50% of maximal proliferation [EC


50


=0.5×(maximum average counts per minute of


3


H-thymidine incorporated per well among triplicate cultures of all concentrations of interleukin-3 tested—background proliferation measured by


3


H-thymidine incorporation observed in triplicate cultures lacking interleukin-3]. This EC


50


value is also equivalent to 1 unit of bioactivity. Every assay was performed with native interleukin-3 as a reference standard so that relative activity levels could be assigned.




Relative biological activities of IL-3 muteins of the present invention are shown in Table 1. The Relative Biological Activity of IL-3 mutants is calculated by dividing the EC


50


of (1-133) hIL-3 by the EC


50


of the mutant. The Relative Biological Activity may be the average of replicate assays.












TABLE 1











BIOLOGICAL ACTIVITY OF IL-3 MUTEINS

















Relative*







Plasmid




Polypeptide




Biological







Code




Structure




Activity


















Reference (1-133)hIL-3




1















pMON13298




SEQ ID NO. 82




3







pMON13299




SEQ ID NO. 83




2







pMON13300




SEQ ID NO. 84




3







pMON13301




SEQ ID NO. 85




2







pMoN13302




SEQ ID NO. 86




1.2







pMON13303




SEQ ID NO. 87




0.6







pMON13287




SEQ ID NO. 88




26







pMON13288




SEQ ID NO. 89




24







pMON13289




SEQ ID NO. 90




13







pMON13290




SEQ ID NO. 91




20







pMON13292




SEQ ID NO. 92




6







pMON13294




SEQ ID NO. 93




3







pMON13295




SEQ ID NO. 94




3







pMON13312




SEQ ID NO. 95




4







pMON13313




SEQ ID NO. 96




8







pMON13285




SEQ ID NO. 259




32







pMON13286




SEQ ID NO. 260




8







pMON13325




SEQ ID NO. 261




8







pMON13326




SEQ ID NO. 262




25







pMON13330




SEQ ID NO. 263




19







pMON13329




SEQ ID NO. 406




10







pMON13364




SEQ ID NO. 117




13







pMON13475




SEQ ID NO. 280




7







pMON13366




SEQ ID NO. 281




38







pMON13367




SEQ ID NO. 282




36







pMON13368




SEQ ID NO. 278




1.6







pMON13369




SEQ ID NO. 283




10







pMON13370




SEQ ID NO. 284




6







pMON13373




SEQ ID NO. 285




12







pMON13374




SEQ ID NO. 286




6







pMON13375




SEQ ID NO. 287




14







pMON13376




SEQ ID NO. 288




0.4







pMON13377




SEQ ID NO. 289




0.4







pMON13379




SEQ ID NO. 291




0.9







pMON13380




SEQ ID NO. 279




0.05







pMON13381




SEQ ID NO. 293




10







pMON13382




SEQ ID NO. 313




38







pMON13383




SEQ ID NO. 294




0.5







pMON13384




SEQ ID NO. 295




0.25







pMON13385




SEQ ID NO. 292




1







pMON13387




SEQ ID NO. 308




32







pMON13388




SEQ ID NO. 296




23







pMON13389




SEQ ID NO. 297




10







pMON13391




SEQ ID NO. 298




30







pMON13392




SEQ ID NO. 299




17







pMON13393




SEQ ID NO. 300




32







pMON13394




SEQ ID NO. 301




20







pMON13395




SEQ ID NO. 302




11







pMON13396




SEQ ID NO. 303




20







pMON13397




SEQ ID NO. 304




16







pMON13398




SEQ ID NO. 305




36







pMON13399




SEQ ID NO. 306




18







pMON13404




SEQ ID NO. 307




1.3







pMON13417




SEQ ID NO. 310




24







pMON13420




SEQ ID NO. 311




19







pMON13421




SEQ ID NO. 331




0.5







pMON13432




SEQ ID NO. 312




10







pMON13400




SEQ ID NO. 317




0.09







pM0N13402




SEQ ID NO. 318




20







pMON13403




SEQ ID NO. 321




0.03







pMON13405




SEQ ID NO. 267




9







pMON13406




SEQ ID NO. 264




5







pMON13407




SEQ ID NO. 266




16







pMON13408




SEQ ID NO. 269




7







pMON13409




SEQ ID NO. 270




15







pMON13410




SEQ ID NO. 271




0.4







pMON13411




SEQ ID NO. 322




1.2







pMON13412




SEQ ID NO. 323




0.5







pMON13413




SEQ ID NO. 324




0.6







pMON13414




SEQ ID NO. 265




4







pMON13415




SEQ ID NO. 268




4







pMON13418




SEQ ID NO. 326




0.5







pMON13419




SEQ ID NO. 325




0.015







pMON13422




SEQ ID NO. 272




0.4







pMON13423




SEQ ID NO. 273




0.4







pMON13424




SEQ ID NO. 274




3







pMON13425




SEQ ID NO. 275




6







pMON13426




SEQ ID NO. 276




>0.0003







pMON13429




SEQ ID NO. 277




>0.0002







pMoN13440




SEQ ID NO. 319




9







pMON13451




SEQ ID NO. 320




0.1







pMON13459




SEQ ID NO. 328




0.003







pMON13416




SEQ ID NO. 309




19.9







pMON13428




SEQ ID NO. 327




0.008







pMON13467




SEQ ID NO. 329




0.16







pMON13446




SEQ ID NO. 315




21.5







pMON13390




SEQ ID NO. 316




20













*The Relative Biological Activity of IL-3 mutants is calculated by dividing the EC


50


of (1-133) hIL-3 by the EC


50


of the mutant.













The following assay is used to measure IL-3 mediated sulfidoleukotriene release from human mononuclear cells.




IL-3 Mediated Sulfidoleukotriene Release from Human Mononuclear Cells




Heparin-containing human blood was collected and layered onto an equal volume of Ficoll-Paque (Pharmacia # 17-0840-02) ready to use medium (density 1.077 g/ml.). The Ficoll was warmed to room temperature prior to use and clear 50 ml polystyrene tubes were utilized. The Ficoll gradient was spun at 300×g for 30 minutes at room temperature using a H1000B rotor in a Sorvall RT6000B refrigerated centrifuge. The band containing the mononuclear cells was carefully removed, the volume adjusted to 50 mls with Dulbecco's phosphate-buffered saline (Gibco Laboratories cat. # 310-4040PK), spun at 400×g for 10 minutes at 4° C. and the supernatant was carefully removed. The cell pellet was washed twice with HA Buffer [20 mM Hepes (Sigma # H-3375), 125 mM NaCl (Fisher # S271-500), 5 mM KCl (Sigma # P-9541), 0.5 mM glucose (Sigma # G-5000), 0.025% Human Serum Albumin (Calbiochem # 126654) and spun at 300×g, 10 min., 4° C. The cells were resuspended in HACM Buffer (HA buffer supplemented with 1 mM CaCl2 (Fisher # C79-500) and 1 mM MgCl2 (Fisher # M-33) at a concentration of 1×106 cells/ml and 180 μl were transferred into each well of 96 well tissue culture plates. The cells were allowed to acclimate at 37° C. for 15 minutes. The cells were primed by adding 10 μls of a 20× stock of various concentrations of cytokine to each well (typically 100000, 20000, 4000, 800, 160, 32, 6.4, 1.28, 0 fM IL3). The cells were incubated for 15 minutes at 37° C. Sulfidoleukotriene release was activated by the addition of 10 μls of 20× (1000 nM) fmet-leu-phe (Calbiochem # 344252) final concentration 50 nM FMLP and incubated for 10 minutes at 37° C. The plates were spun at 350×g at 4° C. for 20 minutes. The supernatants were removed and assayed for sulfidoleukotrienes using Cayman's Leukotriene C4 EIA kit (Cat. #420211) according to manufacturers' directions. Native (15-125)hIL-3 was run as a standard control in each assay.




Native hIL-3 possesses considerable inflammatory activity and has been shown to stimulate synthesis of the arachidonic acid metabolites LTC


4


, LTD


4


, and LTE


4


; histamine synthesis and histamine release. Human clinical trials with native hIL-3 have documented inflammatory responses (Biesma, et al., BLOOD, 80:1141-1148 (1992) and Postmus, et al., J. CLIN. ONCOL., 10:1131-1140 (1992)). A recent study indicates that leukotrienes are involved in IL-3 actions in vivo and may contribute significantly to the biological effects of IL-3 treatment (Denzlinger, C., et al., BLOOD, 81:2466-2470 (1993))




Some muteins of the present invention may have an improved therapeutic profile as compared to native hIL-3 or (15-125)hIL-3. For example, some muteins of the present invention may have a similar or more potent growth factor activity relative to native hIL-3 or (15-125)hIL-3 without having a similar or corresponding increase in the stimulation of leukotriene or histamine. These muteins would be expected to have a more favorable therapeutic profile since the amount of polypeptide which needs to be given to achieve the desired growth factor activity (e. g. cell proliferation) would have a lesser leukotriene or histamine stimulating effect. In studies with native hIL-3, the stimulation of inflammatory factors has been an undesirable side effect of the treatment. Reduction or elimination of the stimulation of mediators of inflammation would provide an advantage over the use of native hIL-3.




The pMON13288 polypeptide has demonstrated a more potent growth factor activity relative to native hIL-3 in the AML 193 cell proliferation assay (EC


50


=0.8-3.8 pM for pMON13288 and EC


50


=30.2 pM for native hIL-3) without demonstrating a corresponding increase in the stimulation of leukotriene C


4


(LTC


4


) production and histamine release, i. e., it stimulated LTC


4


production and histamine release with a potency similar to that of native hIL-3 while having an improved ability to stimulate cell proliferation compared to native hIL-3. Thus with the pMON13288 polypeptide it would be expected that one would be able to produce a desired therapeutic response, e. g., cell proliferation, with less stimulation of the undesirable inflammatory mediators.




Some muteins of the present invention have antigenic profiles which differ from that of native hIL-3. For example, in a competition ELISA with an affinity purified polyclonal goat anti-hIL-3 antibody, native hIL-3 significantly blocked the binding of labeled hIL-3 to polyclonal anti-hIL-3 antibody whereas the pMON13288 polypeptide failed to block the binding of hIL-3 to anti-hIL-3 antibody.




Table 2 lists the sequences of some oligonucleotides used in making the muteins of the present invention.




Table 3 lists the amino acid sequence of native (15-125)hIL-3 (Peptide #1) and the amino acid sequences of some mutant polypeptides of the present invention. The sequences are shown with the amino acid numbering corresponding to that of native hIL-3 [FIG.


1


].




Table 4 lists the nucleotide sequences of some DNA sequences which encode mutant polypeptides of the present invention.












TABLE 2









OLIGONUCLEOTIDES

























Oligo #1




Length: 000040








CATGGCTAAC TGCTCTATAA TGATCGATGA AATTATACAT




[SEQ ID NO:15]













Oligo #2




Length: 000045







CTTTAAGTGA TGTATAATTT CATCGATCAT TATAGAGCAG TTAGC




[SEQ ID NO:16]













Oligo #3




Length: 000036







CACTTAAAGA GACCACCTGC ACCTTTGCTG GACCCG




[SEQ ID NO:17]













Oligo #4




Length: 000036







GAGGTTGTTC GGGTCCAGCA AAGGTGCAGG TGGTCT




[SEQ ID NO:18]













Oligo #5




Length: 000036







CACTTAAAGA GACCACCTAA CCCTTTGCTG GACCCG




[SEQ ID NO:19]













Oligo #6




Length: 000036







GAGGTTGTTC GGGTCCAGCA AAGGGTTAGG TGGTCT




[SEQ ID NO:20]













Oligo #7




Length: 000036







CACTTAAAGG TTCCACCTGC ACCTTTGCTG GACAGT




[SEQ ID NO:21]













Oligo #8




Length: 000036







GAGGTTGTTA CTGTCCAGCA AAGGTGCAGG TGGAAC




[SEQ ID NO:22]













Oligo #9




Length: 000027







AACAACCTCA ATGCTGAAGA CGTTGAT




[SEQ ID NO:23]













Oligo #10




Length: 000018







ATCAACGTCT TCAGCATT




[SEQ ID NO:24]













Oligo #11




Length: 000027







AACAACCTCA ATTCTGAAGA CATGGAT




[SEQ ID NO:25]













Oligo #12




Length: 000018







ATCCATGTCT TCAGAATT




[SEQ ID NO:26]













Oligo #13




Length: 000022







CATGGGAACC ATATGTCAGG AT




[SEQ ID NO:27]













Oligo #14




Length: 000018







ATCCTGACAT ATGGTTCC




[SEQ ID NO:28]













Oligo #15




Length: 000016







TGAACCATAT GTCAGG




[SEQ ID NO:29]













Oligo #16




Length: 000024







AATTCCTGAC ATATGGTTCA TGCA




[SEQ ID NO:30]













Oligo #17




Length: 000020







AATTCGAACC ATATGTCAGA




[SEQ ID NO:31]













Oligo #18




Length: 000020







AGCTTCTGAC ATATGGTTCG




[SEQ ID NO:32]













Oligo #19




Length: 000022







ATCGAACCAT ATGTCAGATG CA




[SEQ ID NO:33]













Oligo #20




Length: 000018







TCTGACATAT GGTTCGAT




[SEQ ID NO:34]













Oligo #21




Length: 000036







ATCCTGATGG AACGAAACCT TCGACTTCCA AACCTG




[SEQ ID NO:35]













Oligo #22




Length: 000027







AAGTCGAAGG TTTCGTTCCA TCAGGAT




[SEQ ID NO:36]













Oligo #23




Length: 000036







ATCCTGATGG AACGAAACCT TCGAACTCCA AACCTG




[SEQ ID NO:37]













Oligo #24




Length: 000027







AGTTCGAAGG TTTCGTTCCA TCAGGAT




[SEQ ID NO:38]













Oligo #25




Length: 000024







CTCGCATTCG TAAGGGCTGT CAAG




[SEQ ID NO:39]













Oligo #26




Length: 000024







CCTTACGAAT GCGAGCAGGT TTGG




[SEQ ID NO:40]













Oligo #27




Length: 000024







GAGAGCTTCG TAAGGGCTGT CAAG




[SEQ ID NO:41]













Oligo #28




Length: 000024







CCTTACGAAG CTCTCCAGGT TTGG




[SEQ ID NO:42]













Oligo #29




Length: 000015







CACTTAGAAA ATGCA




[SEQ ID NO:43]













Oligo #30




Length: 000020







TTTTCTAAGT GCTTGACAGC




[SEQ ID NO:44]













Oligo #31




Length: 000015







AACTTAGAAA ATGCA




[SEQ ID NO:45]













Oligo #32




Length: 000020







TTTTCTAAGT TCTTGACAGC




[SEQ ID NO:46]













Oligo #33




Length: 000048







GGTGATTGGA TGTCGAGAGG GTGCGGCCGT GGCAGAGGGC AGACATGG




[SEQ ID NO:47]













Oligo #34




Length: 000048







CTGCCCTCTG CCACGGCCGC ACCCTCTCGA CATCCAATCA CCATCAAG




[SEQ ID NO:48]













Oligo #35




Length: 000048







GATGATTGGA TGTCGAGAGG GTGCGGCCGT GGCAGAGGGC AGACATGG




[SEQ ID NO:49]













Oligo #36




Length: 000048







CTGCCCTCTG CCACGGCCGC ACCCTCTCGA CATCCAATCA TCATCAAG




[SEQ ID NO:50]













Oligo #37




Length: 000018







TACGAGATTA CGAAGAAT




[SEQ ID NO:51]













Oligo #38




Length: 000018







CGTAATCTCG TACCATGT




[SEQ ID NO:52]













Oligo #39




Length: 000018







TTGGAGATTA CGAAGAAT




[SEQ ID NO:53]













Oligo #40




Length: 000018







CGTAATCTCC AACCATGT




[SEQ ID NO:54]













Oligo #41




Length: 000019







TGCCTCAATA CCTGATGCA




[SEQ ID NO:55]













Oligo #42




Length: 000021







TCAGGTATTG AGGCAATTCT T




[SEQ ID NO:56]













Oligo #43




Length: 000026







AATTCTTGCC AGTCACCTGC CTTGAT




[SEQ ID NO:57]













Oligo #44




Length: 000016







GCAGGTGACT GCCAAG




[SEQ ID NO:58]













Oligo #45




Length: 000032







AATTCCGGGA AAAACTGACG TTCTATCTGG TT




[SEQ ID NO:59]













Oligo #46




Length: 000037







CTCAAGGGAA ACCAGATAGA ACGTCAGTTT TTCCCGG




[SEQ ID NO:60]













Oligo #47




Length: 000032







ACCCTTGAGC ACGCGCAGGA ACAACAGTAA TA




[SEQ ID NO:61]













Oligo #48




Length: 000027







AGCTTATTAC TGTTGTTCCT GCGCGTG




[SEQ ID NO:62]













Oligo #49




Length: 000032







ACCCTTGAGC AAGCGCAGGA ACAACAGTAA TA




[SEQ ID NO:63]













Oligo #50




Length: 000027







AGCTTATTAC TGTTGTTCCT GCGCTTG




[SEQ ID NO:64]













Oligo #51




Length: 000034







GCCGATACCGCGGCATACTCCCACCATTCAGAGA




[SEQ ID NO:155]













Oligo #52




Length: 000033







GCCGATAAGATCTAAAACGGGTATGGAGAAACA




[SEQ ID NO:156]













Oligo #53







ATAGTCTTCCCCAGATATCTAACGCTTGAG




[SEQ ID NO:157]













Oligo #54




Length: 24







CAATACCTGATGCGTTTTCTAAGT




[SEQ ID NO:158]













Oligo #55




Length: 33







GGTTTCGTTCCATCAGAATGTCCATGTCTTCAG




[SEQ ID NO:159]













Oligo #165




NCOECRV1.REQ Length: 000040







CATGGCTAAC TGCTCTAACA TGATCGATGA AATTATAACA




[SEQ ID NO:162]













Oligo #166




NCOECRV4.REQ Length: 000045







CTTTAAGTGT GTTATAATTT CATCGATCAT GTTAGAGCAG TTAGC




[SEQ ID NO:163]













Oligo #167




NCOECRV2.REQ Length: 000036







CACTTAAAGC AGCCACCTTT GCCTTTGCTG GACTTC




[SEQ ID NO:164]













Oligo #168




NCOECRV5.REQ Length: 000036







GAGGTTGTTG AAGTCCAGCA AAGGCAAAGG TGGCTG




[SEQ ID NO:165]













Oligo #169




2D5M6SUP.REQ Length: 000027







AACAACCTCA ATGACGAAGA CATGTCT




[SEQ ID NO:166]













Oligo #170




2D5M6SLO.REQ Length: 000018







AGACATGTCT TCGTCATT




[SEQ ID NO:167)













Oligo #15(A)




Length: 000016







TGAACCATAT GTCAGG




[SEQ ID NO:168]













Oligo #16(A)




Length: 000024







AATTCCTGAC ATATGGTTCA TGCA




[SEQ ID NO:169]













Oligo #B1




19ALA1.REQ Length: 000040







CATGGCAAAC TGCTCTATAG CTATCGATGA AATTATACAT




[SEQ ID NO:170]













Oligo #B2




19ALA4.REQ Length: 000045







CTTTAAGTGA TGTATAATTT CATCGATAGC TATAGAGCAG TTTGC




[SEQ ID NO:171]













Oligo #B3




191LE1.REQ Length: 000040







CATGGCAAAC TGCTCTATAA TCATCGATGA AATTATACAT




[SEQ ID NO:172]













Oligo #B4




191LE4.REQ Length: 000045







CTTTAAGTGA TGTATAATTT CATCGATGAT TATAGAGCAG TTTGC




[SEQ ID NO:173]













Oligo #B5




49ASP1.REQ Length: 000036







ATCCTGGACG AACGAARCCT TCGAACTCCA AACCTG




[SEQ ID NO:174]













Oligo #B6




49ASP4.REQ Length: 000027







AGTTCGAAGG TTTCGTTCGT CCAGGAT




[SEQ ID NO:175]













Oligo #B7




49ILE1.REQ Length: 000036







ATCCTGATCG AACGAAACCT TCGARCTCCA AACCTG




[SEQ ID NO:176]













Oligo #B8




49ILE4.REQ Length: 000027







AGTTCGAAGG TTTCGTTCGA TCAGGAT




[SEQ ID NO:177]













Oligo #B9




49LEU1.REQ Length: 000036







ATCCTGCTGG AACGAARCCT TCGAACTCCA AACCTG




[SEQ ID NO:178]













Oligo #B1O




49LEU4.REQ Length: 000027







AGTTCGAAGG TTTCGTTCCA GCAGGAT




[SEQ ID NO:179]













Oligo #B11




42S45V3.REQ Length: 000027







AACAACCTCA ATTCTGAAGA CGTTGAT




[SEQ ID NO:180]













Oligo #B12




42S45V6.REQ Length: 000018







ATCARCGTCT TCAGARTT




[SEQ ID NO:181]













Oligo #B13




18I23A5H.REQ Length: 000051







CGCGCCATGG CTAACTGCTC TATAATGATC GATGAAGCAA TACATCACTTA




[SEQ ID NO:182]













Oligo #B14




2341HIN3.REQ Length: 000018







CGCGTCGATA AGCTTATT




[SEQ ID NO:183]













Oligo #B15




2341NC0.REQ Length: 000018







GGAGATATAT CCATGGCT




[SEQ ID NO:184]













Oligo #B16




2A5M6S0D.REQ Length: 000042







TCGGTCCATC AGAATAGACA TGTCTTCAGC ATTGAGGTTG TT




[SEQ ID NO:185]













Oligo #B17




2A5V6S0D.REQ Length: 000042







TCGGTCCATC AGAATAGAAA CGTCTTCAGC ATTGAGGTTG TT




[SEQ ID NO:186]













Oligo #B18




2D5M6S0D.REQ Length: 000042







TCGGTCCATC AGAATAGACA TGTCTTCGTC ATTGAGGTTG TT




[SEQ ID NO:187]













Oligo #B19




2D5V6S0D.REQ Length: 000042







TCGGTCCATC AGAATAGAAA CGTCTTCGTC ATTGAGGTTG TT




[SEQ ID NO:188]













Oligo #B20




2S5M650D.REQ Length: 000042







TCGGTCCATC AGAATAGACA TGTCTTCAGA ATTGAGGTTG TT




[SEQ ID NO:189]













Oligo #B21




2S5V6S0D.REQ Length: 000042







TCGGTCCATC AGAATAGAAA CGTCTTCAGA ATTGAGGTTG TT




[SEQ ID NO:190]













Oligo #B22




100ARG3.REQ Length: 000048







CTGCCCTCTG CCACGGCCGC ACCCTCTCGA CATCCAATCA TCATCCGT




[SEQ ID NO:191]













Oligo #B23




100ARG8.REQ Length: 000026














AATTCTTGCC AGTCACCTGC ACGGAT




[SEQ ID NO:192]













Oligo #B24




101MET4.REQ Length: 000016







ATGGGTGACT GGCAAG




[SEQ ID NO:193]













Oligo #B25




10R01M8.REQ Length: 000026







AATTCTTGCC AGTCACCCAT ACGGAT




[SEQ ID NO:194]













Oligo #B26




23ALA1.REQ Length: 000040







CATGGCTAAC TGCTCTATTA TGATCGATGA AGCAATACAT




[SEQ ID NO:195]













Oligo #B27




23ALA4.REQ Length: 000045







CTTTAAGTGA TGTATTGCTT CATCGATCAT AATAGAGCAG TTAGC




[SEQ ID NO:196]













Oligo #B28




29V2R4S2.REQ Length: 000036







CACTTAAAGG TACCACCTCG CCCTTCCCTG GACCCG




[SEQ ID NO:197]













Oligo #B29




29V2R4S5.REQ Length: 000036







GAGGTTGTTC GGGTCCAGGG AAGGGCGAGG TGGTAC




[SEQ ID NO:198]













Oligo #B30




34SER2.REQ Length: 000036







CACTTAAAGA GACCACCTGC ACCTTCCCTG GACCCG




[SEQ ID NO:199]













Oligo #B31




34SER5.REQ Length: 00003E







GAGGTTGTTC GGGTCCAGGG AAGGTGCAGG TGGTCT




[SEQ ID NO:200]













Oligo #B32




42D45M3.REQ Length: 000027







AACAACCTCA ATGACGAAGA CATGGAT




[SEQ ID NO:201]













Oligo #B33




42D45M6.REQ Length: 000018







ATCCATGTCT TCGTCATT




[SEQ ID NO:202]













Oligo #B34




42D45V3.REQ Length: 000027







AACAACCTCA ATGACGAAGA CGTCGAT




[SEQ ID NO:203]













Oligo #B35




42D45V6.REQ Length: 000018







ATCGACGTCT TCGTCATT




[SEQ ID NO:204]













Oligo #B36




42D5M6S3.REQ Length: 000027







AACAACCTCA ATGACGAAGA CATGTCT




[SEQ ID NO:205]













Oligo #B37




42D5M6S6.REQ Length: 000018







AGACATGTCT TCGTCATT




[SEQ ID NO:206]













Oligo #B38




42D5V6S3.REQ Length: 000027







AACAACCTCA ATGACGAAGA CGTCTCT




[SEQ ID NO:207]













Oligo #B39




42D5V6S6.REQ Length: 000018







AGAGACGTCT TCGTCATT




[SEQ ID NO:208]













Oligo #B40




50ASP1.REQ Length: 000036







ATCCTGATGG ACCGAAACCT TCGACTTCCA AACCTG




[SEQ ID NO:209]













Oligo #B41




50ASP4.REQ Length: 000027







AAGTCGAAGG TTTCGGTCCA TCAGGAT




[SEQ ID NO:210]













Oligo #B42




50D56S1.REQ Length: 000036







ATCCTGATGG ACCGAAACCT TCGACTTAGC AACCTG




[SEQ ID NO:211]













Oligo #B43




56SER5.REQ Length: 000024







CCTTACGAAG CTCTCCAGGT TGCT




[SEQ ID NO:212]













Oligo #B44




82TRP2.REQ Length: 000018







CGTAATCTCT GGCCATGT




[SEQ ID NO:213]













Oligo #B45




82TRP6.REQ Length: 000018







CCAGAGATTA CGAAGAAT




[SEQ ID NO:214]













Oligo #B46




9E12Q6W1.REQ Length: 000032







AATTCCGGGA AAAACTGCAA TTCTATCTGT GG




[SEQ ID NO:215]













Oligo #B47




9E12Q6W3.REQ Length: 000037







CTCAAGGGTC CACAGATAGA ATTGCAGTTT TTCCCGG




[SEQ ID NO:216]













Oligo #B48




9E12Q6V1.REQ Length: 000032







AATTCCGGGA AAAACTGCAA TTCTATCTGG TT




[SEQ ID NO:217]













Oligo #B49




9E12Q6V3.REQ Length: 000037







CTCAAGGGTA ACCAGATAGA ATTGCAGTTT TTCCCGG




[SEQ ID NO:218]













Oligo #B50




S09E16V1.REQ Length: 000023







AATTCCGGGA AAAACTGACG TTC




[SEQ ID NO:219]













Oligo #B51




S09E16V3.REQ Length: 000028







AACCAGATAG AACGTCAGTT TTTCCCGG




[SEQ ID NO:220]













Oligo #B52




S116VD31.REQ Length: 000023







TATCTGGTTA CCCTTGAGTA ATA




[SEQ ID NO:221]













Oligo #B53




SECR1D33.REQ Length: 000018







AGCTTATTAC TTCAAGGGT




[SEQ ID NO:222]













Oligo #B54




S9E2Q6V1.REQ Length: 000023







AATTCCGGGA AAAACTGCAA TTC




[SEQ ID NO:223]













Oligo #B55




S9E2Q6V3.REQ Length: QQOQ28







AACCAGATAG AATTGCAGTT TTTCCCGG




[SEQ ID NO:224]













Oligo #B56




Ent338.Lo Length: 61




[SEQ ID NO:225]







CGATCATTAT AGAGCAGTTA GCCTTGTCAT CGTCGTCCTT GTAATCAGTT







TCTGGATATG C













Oligo #B57




Ent338.UP Length: 63







CATGGCATAT CCAGAAACTG ATTACAAGGA CGACGATGAC AAGGCTAACT




SEQ ID NO:226]







GCTCTATAAT GAT














09L2Q6S1.REQ Length: 000032







AATTCCGGCT TAAACTGCCA TTCTATCTGT CT




[SEQ ID NO:227]














09L2Q6S3.REQ Length: 000037







CTCAAGGGTA GACAGATAGA ATTGCAGTTT AAGCCGG




[SEQ ID NO:228]














117S2.REQ Length: 000032







TCTCTTGAGC AAGCGCAGGA ACAACAGTAA TA




[SEQ ID NO:229]














19I0L3A1.REQ Length: 000040







CATGGCAAAC TGCTCTATAA TACTCGATGA AGCAATACAT




[SEQ ID NO:230]














19I0L3A4.REQ Length: 000045







CTTTAAGTGA TGTATTGCTT CATCGAGTAT TATAGAGCAG TTTGC




[SEQ.ID NO.:231]














20P23A1.REQ Length: 000040







CATGGCAAAC TGCTCTATAA TGCCAGATGA AGCAATACAT




[SEQ. ID NO.:232]














20P23A4.REQ Length: 000045







CTTTAAGTGA TGTATTGCTT CATCTGGCAT TATAGAGCAG TTTGC




[SEQ. ID NO.:233]














23L1.REQ Length: 000040







CATGGCaAAC TGCTCTATAA TGATCGATGA AactgATACAT




[SEQ. ID NO.:234]














23L4.REQ Length: 000045







CTTTAAGTGA TGTATcagTT CATCGATCAT TATAGAGCAG TTtGC




[SEQ. ID NO.:235]














29I4S7S2.REQ Length: 000036







CACTTAAAGA TACCACCTAA CCCTAGCCTG GACAGT




[SEQ. ID NO.:236]














29I4S7S5.REQ Length: 000036







GAGGTTAGCA CTGTCCAGGC TAGGGTTAGG TGGTAT




[SEQ. ID NO.:237]














38A5V6S3.REQ Length: 000027







GCTAACCTCA ATTCCGAAGA CGTCTCT




[SEQ. ID NO.:238]














38A5V6S6.REQ Length: 000018







AGAGACGTCT TCGGAATT




[SEQ. ID NO.:239]














50D51S1.REQ Length: 000036







ATCCTGATGG ACTCCAACCT TCGAACTCCA AACCTG




[SEQ. ID NO.:240]














50D5154.REQ Length: 000027







AGTTCGAAGG TTGGAGTCCA TCAGGAT




[SEQ. ID NO.:241]














5VYWPTT3.REQ Length: 000048







GTTCCCTATT GGACGGCCCC TCCCTCTCGA ACACCAATCA CGATCAAG




[SEQ. ID NO.:242]














5VYWPTT7.REQ Length: 000049







CGTGATTGGT GTTCGAGAGG GAGGGGCCGT CCAATAGGGA ACACATGG




[SEQ. ID NO.:243]














62P3H5S2.REQ Length: 000024







CTCGCATTCC CACATGCTTC TAAG




[SEQ. ID NO.:244]














62P63H2.REQ Length: 000024







CTCGCATTCC CACATGCTGT CAAG




[SEQ. ID NO.:245]














62P63H5.REQ Length: 000024







ATGTGGGAAT GCGAGCAGGT TTGG




[SEQ. ID NO.:246]














65S67Q6.REQ Length: 000020







TTTTCTAATT GCTTAGAAGC




[SEQ. ID NO.:247]














67Q3.REQ Length: 000015







CAATTAGAAA ATGCA




[SEQ. ID NO.:248]














67Q6.REQ Length: 000023







TTTTCTAATT GCTTGACAGC




[SEQ. ID NO.:249]














76P1.REQ Length: 000021







TCAGGTATTG AGCCAATTCT T




[SEQ. ID NO.:250]














76P5.REQ Length: 000019







TGGCTCAATA CCTGATGCA




[SEQ. ID NO.:251]














79S2.REQ Length: 000018







TCTAATCTCC AACCATGT




[SEQ. ID NO.:252)














79S6.REQ Length: 000018







TTGGAGATTA GAAAGAAT




[SEQ. ID NO.:253]














9L2Q67S3.REQ Length: 000037







CTCAAGAGAA GACAGATAGA ATTGCAGTTT AAGCCGG




[SEQ. ID NO.:254]














9LQS1181.REQ Length: 000043







AATTCCGGCT TAAACTGCAA TTCTATCTGT CTACCCTTTA ATA




[SEQ. ID NO.:256]














9LQS1183.REQ Length: 000043







AGCTTATTAA AGGGTAGACA GATAGAATTG CAGTTTAAGC CGG




[SEQ. ID NO.:257]














S9L2Q6S1.REQ Length: 000043







AATTCCGGCT TAAACTGCAA TTCTATCTGT CTACCCTTTA ATA




[SEO. ID NO.:258]






















TABLE 3









POLYPEPTIDES






The numbering of the mutated amino acid positions which describe the following polypeptides corresponds to the sequence of the full-length, native (1-133)hIL-3.

























PEPTIDE #1:




pMON5988 (Example 43), (15-125)hIL-3




SEQ ID NO: 65;






PEPTIDE #2:




pMON13344 (Example 8), (15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A and 45V)




SEQ ID NO: 66;






PEPTIDE #3:




pMON13345 (Example 9), (15-125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S and 45M)




SEQ ID NO: 67;






PEPTIDE #4:




pMON13346 (Example 10), (15-125)hIL-3 (18I, 25H, 29V, 32A, 37S, 42S and 45M)




SEQ ID NO: 68;






PEPTIDE #5:




pMON13347 (Example 12), (15-125)hIL-3 (51R, 55L, 59L, 62V, 67N and 69E)




SEQ ID NO: 69;






PEPTIDE #6:




pMON13348 (Example 13), (15-125)hIL-3 (51R, 55L, 60S, 62V, 67N and 69E)




SEQ ID NO: 70;






PEPTIDE #7:




pMON13349 (Example 14), (15-125)hIL-3 (51R, 55T, 59L, 62V, 67H and 69E)




SEQ ID NO: 71;






PEPTIDE #8:




pMON13350 (Example 16), (15-125)hIL-3 (73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A and 105Q)




SEQ ID NO: 72;






PEPTIDE #9:




pMON13355 (Example 17), (15-125)hIL-3 (73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A and 105Q)




SEQ ID NO: 73;






PEPTIDE #10:




pMON13352 (Example 19), (15-125)hIL-3 (109E, 116V, 120Q and 123E)




SEQ ID NO: 74;






PEPTIDE #11:




pMON13354 (Example 20), (15-125)hIL-3 (109E, 116V, 117S, 120H and 123E)




SEQ ID NO: 75;






PEPTIDE #12:




pMON13360 (Example 21), (15-125)hIL-3 (73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and 123E)




SEQ. ID. NO: 76;






PEPTIDE #13:




pMON13361 (Example 22), (15-125)hIL-3 (73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V, 120Q and 123E),




SEQ ID NO: 77;






PEPTIDE #14:




pMON13362 (Example 23), (15-125)hIL-3 (73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V, 117S, 120H and 123E)




SEQ ID NO: 78;






PEPTIDE #15:




pMON13363 (Example 24), (15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N and 69E)




SEQ ID NO: 79;






PEPTIDE #16:




pMON13364 (Example 25), (15-125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H and 69E)




SEQ ID NO: 80;






PEPTIDE #17:




pMON13365 (Example 26), (15-125)hIL-3 (18I, 25H, 29V, 32A, 37S, 42S, 45M, 51R, 55L, 59L, 62V, 67N and 69E)




SEQ ID NO: 81;






PEPTIDE #18:




pMON13298 (Example 27), Met-Ala-(15-125)hIL-3 (73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and 123E)




SEQ ID NO: 82;






PEPTIDE #19:




pMON13299 (Example 28), Met-Ala-(15-125)hIL-3 (73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V, 120Q and 123E);




SEQ ID NO: 83;






PEPTIDE #20:




pMON13300 (Example 29), Met-Ala-(15-125)hIL-3 (73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V, 117S, 120H and 123E)




SEQ ID NO: 84;






PEPTIDE #21:




pMON13301 (Example 30), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N and 69E)




SEQ ID NO: 85;






PEPTIDE #22:




pMON13302 (Example 31), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H and 69E)




SEQ ID NO: 86;






PEPTIDE #23:




pMON13303 (Example 32), Met-Ala-(15-125)hIL-3 (18I, 25H, 29V, 32A, 37S, 42S, 45M, 51R, 55L, 59L, 62V, 67N and 69E)




SEQ ID NO: 87;






PEPTIDE #24:




pMON13287 (Example 33), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 88;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #25:




pMON13288 (Example 34), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 89;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #26:




pMON13289 (Example 35), Met-Ala-(15-125)hIL-3 (18I, 25H, 29V, 32A, 37S, 42S, 45M, 51R, 55L, 59L, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 90;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #27:




pMON13290 (Example 36), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82V, 87S, 93S, 98T,




SEQ ID NO: 91;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #28:




pMON13292 (Example 37), Met-Ala-(15-125)hIL-3 (18I, 25H, 29V, 32A, 37S, 42S, 45M, 51R, 55L, 59L, 62V, 67N, 69E, 73G, 76A, 79R, 82V, 87S, 93S, 98T,




SEQ ID NO: 92;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #29:




pMON13294 (Example 38), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82V, 87S, 93S, 98T,




SEQ ID NO: 93;







101A, 105Q, 109E, 116V, 117S, 120H and 123E)






PEPTIDE #30:




pMON13295 (Example 39), Met-Ala-(15-125)hIL-3 (18I, 25H, 29V, 32A, 37S, 42S, 45M, 51R, 55L, 59L, 62V, 67N, 69E, 73G, 76A, 79R, 82V, 87S, 93S, 98T,




SEQ ID NO: 94;







101A, 105Q, 109E, 116V, 117S, 120H and 123E)






PEPTIDE #31:




pMON13312 (Example 40), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82V, 87S, 93S, 98T,




SEQ ID NO: 95;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #32:




pMON13313 (Example 41), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82V, 87S, 93S, 98T,




SEQ ID NO: 96;







101A, 105Q, 109E, 116V, 117S, 120H and 123E)






PEPTIDE #A3:




pMON13285 (Example 60), Met-Ala-(15-125)hIL-3 (42D, 45M, 46S, 50D)




SEQ ID NO: 259;






PEPTIDE #A4:




pMON13286 (Example 61), Met-Ala-(15-125)hIL-3 (42D, 45M, 46S)




SEQ ID NO: 260;






PEPTIDE #A5:




pMON13325 (Example 62), Met-Ala-(15-125)hIL-3 (42D, 45M, 46S, 116W)




SEQ ID NO: 261;






PEPTIDE #A6:




pMON13326 (Example 63), Met-Ala-(15-125)hIL-3 (42D, 45M, 46S, 50D, 116W)




SEQ ID NO: 262;






PEPTIDE #A7:




pMON13330 (Example 65), Met-Ala-(15-125)hIL-3 (42D, 45M, 46S, 50D, 95R, 98I, 100R, 116W)




SEQ ID NO: 263;






PEPTIDE #A8:




pMON13329 (Example 66), Met-Ala-(15-125)hIL-3, (42D, 45M, 46S, 98I, 100R, 116W)




SEQ ID NO: 406;






PEPTIDE #B1:




pMON13406 (Example 69), Met-Ala-(15-125)hIL-3 (18I, 19A, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H, 69E, 73G,




SEQ ID NO: 264;







76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B2:




pMON13414 (Example 70), Met-Ala-(15-125)hIL-3 (18I, 19I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 265;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B3:




pMON13407 (Example 71), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45V, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 266;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B4:




pMON13405 (Example 72), Met-Ala-(15-125)hIL-3 (18I, 19A, 25H, 29R, 32N, 37P, 42S, 45V, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 267;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B5:




pMON13415 (Example 73), Met-Ala-(15-125)hIL-3 (18I, 19I, 25H, 29R, 32N, 37P, 42S, 45V, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 268;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B6:




pMON13408 (Example 74), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 49I, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 269;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B7:




pMON13409 (Example 75), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 49L, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 270;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B8:




pMON13410 (Example 76), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 49D, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 271;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B9:




pMON13422 (Example 77), Met-Ala-(15-125)hIL-3 (18I, 19A, 25H, 29R, 32N, 37P, 42S, 45V, 49I, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 272;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B10:




pMON13423 (Example 78), Met-Ala-(15-125)hIL-3 (18I, 19I, 25H, 29R, 32N, 37P, 42S, 45V, 49I, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 273;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B11:




pMON13424 (Example 79), Met-Ala-(15-125)hIL-3 (18I, 19A, 25H, 29R, 32N, 37P, 42S, 45V, 49L, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 274;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B12:




pMON13425 (Example 80), Met-Ala-(15-125)hIL-3 (18I, 19I, 25H, 29R, 32N, 37P, 42S, 45V, 49L, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 275;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B13:




pMON13426 (Example 81), Met-Ala-(15-125)hIL-3 (18I, 19A, 25H, 29R, 32N, 37P, 42S, 45V, 49D, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 276;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B14:




pMON13429 (Example 82), Met-Ala-(15-125)hIL-3 (18I, 19I, 25H, 29R, 32N, 37P, 42S, 45V, 49D, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 277;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B15:




pMON13368 (Example 83), Met-Ala-(15-125)hIL-3 (18I, 23A, 25H, 29V, 32A, 37S, 42S, 45M, 51R, 55L, 59L, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 278;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B16:




pMON13380 (Example 84), Met-Ala-(15-125)hIL-3 (18I, 23A, 25H, 29V, 32A, 37S, 42S, 45M, 51R, 55L, 59L, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 279;







101A, 105Q, 109E, 112Q, 116V, 120Q and 123E)






PEPTIDE #B17:




pMON13475 (Example 86), Met-Ala-(15-125)hIL-3 (18I, 23A, 25H, 29R, 32A, 37P, 42D, 45V, 46S, 50D, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 280;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B18:




pMON13366 (Example 87), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42N, 45V, 46S, 50D, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 281;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B19:




pMON13367 (Example 88), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 46S, 50D, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 282;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B20:




pMON13369 (Example 89), Met-Ala-(15-125)hIL-3-(18I, 25H, 29R, 32A, 37P, 42D, 45V, 46S, 50D, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 283;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B21:




pMON13370 (Example 90), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45M, 46S, 50D, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 284;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B22:




pMON13373 (Example 91), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42D, 45M, 46S, 50D, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 285;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B23:




pMON13374 (Example 92), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42S, 45M, 46S, 50D, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 286;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B24:




pMON13375 (Example 93), Met-Ala-(15-119)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V,)




SEQ ID NO: 287;






PEPTIDE #B25:




pMON13376 (Example 94), Met-Asp-(15-119)hIL-3 (18I, 23A, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 288;







101A, 105Q, 109E, 112Q, 116V)






PEPTIDE #B26:




pMON13377 (Example 95), Met-Ala-(15-119)hIL-3 (18I, 23A, 25H, 29R, 32A, 37P, 42D, 45V, 46S, 50D, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 289;







101A, 105Q, 109E, 112Q, 116V)






PEPTIDE #B27:




pMON13378 (Example 96), Met-Asp-(15-119)hIL-3 (18I, 23A, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 290;







101A, 105Q, 109E, 116V)






PEPTIDE #B28:




pMON13379 (Example 97), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 46S, 50D, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 291;







101A, 105Q, 109E, 112Q, 116V, 120Q and 123E)






PEPTIDE #B29:




pMON13385 (Example 98), Met-Ala-(15-125)hIL-3 (18I, 25H, 29V, 32R, 34S, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 292;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B30:




pMON13381 (Example 99), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82W, 87S, 93S, 98I,




SEQ ID NO: 293;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B31:




pMON13383 (Example 100), Met-Ala-(15-125)hIL-3 (18I, 23A, 25H, 29R, 32A, 37P, 42D, 45V, 46S, 50D, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 294;







101A, 105Q, 109E, 112Q, 116V, 120Q and 123E)






PEPTIDE #B32:




pMON13384 (Example 101), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 295;







101A, 105Q, 109E, 112Q, 116V, 120Q and 123E)






PEPTIDE #B33:




pMON13388 (Example 102), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 50D, 51R, 55L, 56S, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 296;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B34:




pMON13389 (Example 103), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42D, 45M, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 297;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B35:




pMON13391 (Example 104), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 34S, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 298;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B36:




pMON13392 (Example 105), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42D, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A,, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 299;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B37:




pMON13393 (Example 106), Met-Ala-(15-125)hIL-3 (18I, 23A, 25H, 29R, 32A, 34S, 37P, 42D, 45M, 46S, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 300;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B38:




pMON13394 (Example 107), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42D, 45M, 46S, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 301;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B39:




pMON13395 (Example 108), Met-Ala-(15-125)hIL-3 (18I, 23A, 25H, 29V, 32R, 34S, 37P, 42D, 45V, 46S, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 302;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B40:




pMON13396 (Example 109), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 303;







101A, 105Q, 109E, 100R, 101M, 116V, 120Q and 123E)






PEPTIDE #B41:




pMON13397 (Example 110), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82W, 87S, 93S, 98I,




SEQ ID NO: 304;







101A, 105Q, 109E, 100R, 101M, 116V, 120Q and 123E)






PEPTIDE #B42:




pMON13398 (Example 111), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42D, 45V, 46S, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 305;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B43:




pMON13399 (Example 112), Met-Ala-(15-125)hIL-3 (18I, 23A, 25H, 29V, 32R, 34S, 37P, 42D, 45V, 46S, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 306;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B44:




pMON13404 (Example 113), Met-Ala-(15-119)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 307;







101A, 105Q, 109E, 112Q, 116V)






PEPTIDE #B45:




pMON13387 (Example 114), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 50D, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 308;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B46:




pMON13416 (Example 115), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42D, 45V, 46S, 50D, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 309;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B47:




pMON13417 (Example 116), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42D, 45M, 46S, 50D, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 310;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B48:




pMON13420 (Example 117), Met-Ala-(15-125)hIL-3 (18I, 23A, 25H, 29R, 32A, 34S, 37P, 42D, 45V, 46S, 50D, 51R, 55L, 56S, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 311;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B49:




pMON13421 (Example 118), Met-Ala-(15-125)hIL-3 (18I, 23A, 25H, 29R, 32A, 34S, 37P, 42D, 45M, 46S, 50D, 51R, 55L, 56S, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 331;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B50:




pMON13432 (Example 119), Met-Ala-(15-125)hIL-3 (18I, 23A, 25H, 29R, 32A, 34S, 37P, 42D, 45M, 46S, 50D, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 312;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B51:




pMON13382 (Example 120), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 313;







101A, 105Q, 109E, 112Q, 116W, 120Q and 123E)






PEPTIDE #B52:




pMON13476 (Example 85), Met-Asp-(15-125)hIL-3 (18I, 23A, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 314;







101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B53:




pMON13446 (Example 121), Met-Ala-Tyr-Pro-Glu-Thr-Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys-(15-125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V,




SEQ ID NO: 315;







67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #B54:




pMON13390 (Example 122), Met-Ala-Tyr-Pro-Glu-Thr-Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys-(15-125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V,




SEQ ID NO: 316;







67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #C-2:




pMON13400 (Example 124), Met-Ala-(15-125)hIL-3 (18I, 20P, 23A, 25H, 29I, 32N, 34S, 37S, 38A, 42S, 45V, 46S, 51R, 55T, 59L, 62V, 67H, 69E, 73G,




SEQ ID NO: 317;







76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #C-3:




pMON13402 (Example 125), Met-Ala-(15-125)hIL-3 (18I, 23L, 25H, 29I, 32N, 34S, 37S, 38A, 42S, 45V, 46S, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A,




SEQ ID NO: 318;







79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #C-10:




pMON13440 (Example 131), Met-Ala-(15-125)hIL-3 (18I, 23A, 25H, 29I, 32N, 34S, 37S, 38A, 42S, 45V, 46S, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A,




SEQ ID NO: 319;







79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #C-11:




pMON13451 (Example 132), Met-Ala-(15-125)hIL-3 (18I, 19I, 20L, 23A, 25H, 29I, 32N, 34S, 37S, 38A, 42S, 45V, 46S, 51R, 55T, 59L, 62V, 67H, 69E,




SEQ ID NO: 320;







73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #C-4:




pMON13403 (Example 126), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 50D, 51S, 55T, 59L, 62P, 63H, 67Q, 69E, 73G, 76A, 79R, 82Q,




SEQ ID NO: 321;







87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and 123E)






PEPTIDE #C-5:




pMON13411 (Example 127), Met-Ala-(15-125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 322;







101A, 105Q, 109L, 112Q, 116S, 120Q and 123E)






PEPTIDE #C-6:




pMON13412 (Example 128), Met-Ala-(15-118)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,




SEQ ID NO: 323.







101A, 105Q, 109L, 112Q, 116S)






















TABLE 4









DNA SEQUENCES























The numbering of the mutated amino acid positions in the






modified hIL-3 proteins corresponds to the sequence of the






full-length, native (1-133)hIL-3.













DNA Sequence #1: pMON13287 (Example 33), encoding Met-Ala-(15-125)hIL-






3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E,






73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and






123E) SEQ ID NO:97;













DNA Sequence #2: pMON13290 (Example 36), encoding Met-Ala-(15-125)hIL-






3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E,






73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V, 120Q and






123E) SEQ ID NO:98;













DNA Sequence #3: pMON13313 (Example 41), encoding Met-Ala-(15-125)hIL-






3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E,






73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V, 117S, 120H






and 123E) SEQ ID NO:98;













DNA Sequence #4: pMON13288 (Example 34), encoding Met-Ala-(15-125)hIL-






3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H, 69E,






73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and






123E) SEQ ID NO:100;













DNA Sequence #5: pMON13312 (Example 40), encoding Met-Ala-(15-125)hIL-






3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H, 69E,






73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V, 120Q and






123E) SEQ ID NO:101;













DNA Sequence #6: pMON13294 (Example 38), encoding Met-Ala-(15-125)hIL-






3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H, 69E,






73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V, 117S, 120H






and 123E) SEQ ID NO:102;













DNA Sequence #7: pMON13289 (Example 35), encoding Met-Ala-(15-125)hIL-






3 (18I, 25H, 29V, 32A, 37S, 42S, 45M, 51R, 55L, 59L, 62V, 67N, 69E,






73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and






123E) SEQ ID NO:103;













DNA Sequence #8: pMON13292 (Example 37), encoding Met-Ala-(15-125)hIL-






3 (18I, 25H, 29V, 32A, 37S, 42S, 45M, 51R, 55L, 59L, 62V, 67N, 69E,






73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V, 120Q and






123E) SEQ ID NO:104;













DNA Sequence #9: pMON13295 (Example 39), encodlng Met-Ala-(15-125)hIL-






3 (18I, 25H, 29V, 32A, 37S, 42S, 45M, 51R, 55L, 59L, 62V, 67N, 69E,






73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V, 117S, 120H






and 123E) SEQ ID NO:105;













DNA Sequence #10: pMON13344 (Example 8), (15-125)hIL-3 (18I, 25H, 29R,






32A, 37p, 42A and 45V) SEQ ID NO:106;













DNA Sequence #11: pMON13345 (Example 9), (15-125)hIL-3 (18I, 25H, 29R,






32N, 37P, 42S and 45M) SEQ ID NO:107;













DNA Sequence #12: pMON13346 (Example 10), (15-125)hIL-3 (18I, 25H,






29V, 32A, 37S, 42S and 45M) SEQ ID NO:108;













DNA Sequence #13: pMON13347 (Example 12), (15-125)hIL-3 (51R, 55L,






59L, 62V, 67N and 69E) SEQ ID NO:109;













DNA Sequence #14: pMON13348 (Example 13), (15-125)hIL-3 (51R, 55L,






60S, 62V, 67N and 69E) SEQ ID N0:110;













DNA Sequence #15: pMON13349 (Example 14), (15-125)hIL-3 (51R, 55T,






59L, 62V, 67H and 69E) SEQ ID NO:111;













DNA Sequence #16: pMON13350 (Example 16), (15-125)hIL-3 (73G, 76A,






79R, 82Q, 87S, 93S, 98I, 101A and 105Q) SEQ ID NO:112;













DNA Sequence #17: pMON13355 (Example 17), (15-125)hIL-3 (73G, 76A,






79R, 82V, 87S, 93S, 98T, 101A and 105Q) SEQ ID NO:113;













DNA Sequence #18: pMON13352 (Example 19), (15-125)hIL-3 (109E, 116V,






120Q and 123E) SEQ ID NO:114;













DNA Sequence #19: pMON13354 (Example 20), (15-125)hIL-3 (109E, 116V,






117S, 120H and 123E) SEQ ID NO:115;













DNA Sequence #20: pMON13363 (Example 24), (15-125)hIL-3 (18I, 25H,






29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N and 69E)






SEQ ID NO:116;













DNA Sequence #21: pMON13364 (Example 25), (15-125)hIL-3 (18I, 25H,






29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H and 69E)






SEQ ID NO:117;













DNA Sequence #22: pMON13365 (Example 26), (15-125)hIL-3 (18I, 25H,






29V, 32A, 37S, 42S, 45M, 51R, 55L, 59L, 62V, 67N and 69E)






SEQ ID NO:118;













DNA Sequence #23: pM0N13360 (Example 21), (15-125)hIL-3 (73G, 76A,






79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and 123E),






SEQ ID NO:119;













DNA Sequence #24: pMON13361 (Example 22), (15-125)hIL-3 (73G, 76A,






79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V, 120Q and 123E),






SEQ ID NO:120;













DNA Sequence 125: pMON13362 (Example 23), (15-125)hIL-3 (73G, 76A,






79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V, 117S, 120H and 123E)






SEQ ID NO:121;













DNA Sequence #26: pMON13301 (Example 30), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N






and 69E) SEQ ID NO:122;













DNA Sequence #27: pMON13302 (Example 31), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H






and 69E) SEQ ID NO:123;













DNA Sequence #28: pMON13303 (Example 32), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29V, 32A, 37S, 42S, 45M, 51R, 55L, 59L, 62V, 67N






and 69E) SEQ ID NO:124;













DNA Sequence #29: pMON13298 (Example 27), encoding Met-Ala-(15-






125)hIL-3 (73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V,






120Q and 123E) SEQ ID NO:125;













DNA Sequence #30: pMON13299 (Example 28), encoding Met-Ala-(15-






125)hIL-3 (73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V,






120Q and 123E); SEQ ID NO:126;













DNA Sequence #31: pMON13300 (Example 29), encoding Met-Ala-(15-






125)hIL-3 (73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V,






117S, 120H and 123E) SEQ ID No:127;













DNA Sequence #33: pMON13438 (Example 59), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H,






69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q






and 123E) SEQ ID NO:161;













DNA Sequence #A3: pMON13285 (Example 60), encoding Met-Ala-(15-






125)hIL-3 (42D, 45M, 46S, 50D) SEQ ID NO:398;













DNA Sequence #A4: pMON13286 (Example 61), encoding Met-Ala-(15-






125)hIL-3 (42D, 45M, 46S) SEQ ID NO:399;













DNA Sequence #B1: pMON13406 (Example 69), encoding Met-Ala-(15-






125)hIL-3 (18I, 19A, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V,






67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V,






120Q and 123E) SEQ ID NO:332;













DNA Sequence #B2: pMON13414 (Example 70), encoding Met-Ala-(15-






125)hIL-3 (18I, 19I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V,






67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V,






120Q and 123E) SEQ ID NO:333;













DNA Sequence #B3: pMON13407 (Example 71), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45V, 51R, 55T, 59L, 62V, 67H,






69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q






and 123E) SEQ ID NO:334;













DNA Sequence #B4: pMON13405 (Example 72), encoding Met-Ala-(15-






125)hIL-3 (18I, 19A, 25H, 29R, 32N, 37P, 42S, 45V, 51R, 55T, 59L, 62V,






67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V,






120Q and 123E) SEQ ID NO:335;













DNA Sequence #B5: pMON13415 (Example 73), encoding Met-Ala-(15-






125)hIL-3 (18I, 19I, 25H, 29R, 32N, 37P, 42S, 45V, 51R, 55T, 59L, 62V,






67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V,






120Q and 123E) SEQ ID NO:336;













DNA Sequence #B6: pMON13408 (Example 74), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 49I, 51R, 55T, 59L, 62V,






67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V,






120Q and 123E) SEQ ID NO:337;













DNA Sequence #B7: pMON13409 (Example 75), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 49L, 51R, 55T, 59L, 62V,






67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V,






120Q and 123E) SEQ ID NO:338;













DNA Sequence #B8: pMON13410 (Example 76), encoding,Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 49D, 51R, 55T, 59L, 62V,






67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V,






120Q and 123E) SEQ ID NO:339;






(






DNA Sequence #B9: pMON13422 (Example 77), encoding Met-Ala-(15-






125)hIL-3 (18I, 19A, 25H, 29R, 32N, 37P, 42S, 45V, 49I, 51R, 55T, 59L,






62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E,






116V, 120Q and 123E) SEQ ID NO:340;













DNA Sequence #B10: pMON13423 (Example 78), encoding Met-Ala-(15-






125)hIL-3 (18I, 19I, 25H, 29R, 32N, 37P, 42S, 45V, 49I, 51R, 55T, 59L,






62V, 67H, 69E, 73G, 76A, 79R, 82Q; 87S, 93S, 98I, 101A, 105Q, 109E,






116V, 120Q and 23E) SEQ ID NO:341;













DNA Sequence #B11: pMON13424 (Example 79), encoding Met-Ala-(15-






125)hIL-3 (18I, 19A, 25H, 29R, 32N, 37P, 42S, 45V, 49L, 51R, 55T, 59L,






62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E,






116V, 120Q and 123E) SEQ ID NO:342;













DNA Sequence #B12: pMON13425 (Example 80),encoding Met-Ala-(15-






125)hIL-3 (18I, 19I, 25H, 29R, 32N, 37P, 42S, 45V, 49L, 51R, 55T, 59L,






62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E,






116V, 120Q and 123E) SEQ ID NO:343;













DNA Sequence #B13: pMON13426 (Example 81), encoding Met-Ala-(15-






125)hIL-3 (18I, 19A, 25H, 29R, 32N, 37P, 42S, 45V, 49D, 51R, 55T,






59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q,






109E, 116V, 120Q and 123E) SEQ ID NO:344;













DNA Sequence #B14: pMON13429 (Example 82), encoding Met-Ala-(15-






125)hIL-3 (18I, 19I, 25H, 29R, 32N, 37P, 42S, 45V, 49D, 51R, 55T,






59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q,






109E, 116V, 120Q and 123E) SEQ ID NO:345;













DNA Sequence #B15: pMON13368 (Example 83), encoding Met-Ala-(15-






125)hIL-3 (18I, 23A, 25H, 29V, 32A, 37S, 42S, 45M, 51R, 55L, 59L, 62V,






67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V,






120Q and 123E) SEQ ID NO:346;













DNA Sequence #B16: pMON13380 (Example 84), encoding Met-Ala-(15-






125)hIL-3 (18I, 23A, 25H, 29V, 32A, 37S, 42S, 45M, 51R, 55L, 59L, 62V,






67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 112Q,






116V, 120Q and 123E) SEQ ID NO:347;













DNA Sequence #B17: pMON13475 (Example 86), encoding Met-Ala-(15-






125)hIL-3 (18I, 23A, 25H, 29R, 32A, 37P, 42D, 45V, 46S, 50D, 51R, 55L,






60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q,






109E, 116V, 120Q and 123E) SEQ ID NO:348;













DNA Sequence #B18: pMON13366 (Example 87), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42N, 45V, 46S, 50D, 51R, 55L, 60S,






62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E,






116V, 120Q and 123E) SEQ ID NO:349;













DNA Sequence #B19: pMON13367 (Example 88), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 46S, 50D, 51R, 55L, 60S,






62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E,






116V, 120Q and 123E) SEQ ID NO:350;













DNA Sequence #B20: pMON13369 (Example 89), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42D, 45V, 46S, 50D, 51R, 55L, 60S,






62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E,






116V, 120Q and 123E) SEQ ID NO:351;













DNA Sequence #B21: pMON13370 (Example 90), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45M, 46S, 50D, 51R, 55L, 60S,






62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E,






116V, 120Q and 123E) SEQ ID NO:352;













DNA Sequence #B22: pMON13373 (Example 91), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42D, 45M, 46S, 50D, 51R, 55L, 60S,






62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E,






116V, 120Q and 123E) SEQ ID NO:353;













DNA Sequence #B23: pMON13374 (Example 92), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42S, 45M, 46S, 50D, 51R, 55L, 60S,






62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E,






116V, 120Q and 123E) SEQ ID NO:354;













DNA Sequence #B24: pMON13375 (Example 93), encoding Met-Ala-(15-






119)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N,






69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V,) SEQ






ID NO:355;













DNA Sequence #B25: pMON13376 (Example 94), Met-Asp-(15-119)hIL-3 (18I,






23A, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G,






76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 112Q, 116V) SEQ ID






NO:356;













DNA Sequence #B26: pMON13377 (Example 95), encoding Met-Ala-(15-






119)hIL-3 (18I, 23A, 25H, 29R, 32A, 37P, 42D, 45V, 46S, 50D, 51R, 55L,






60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q,






109E, 112Q, 116V) SEQ ID NO:357;













DNA Sequence #B27: pMON13378 (Example 96), Met-Asp-(15-119)hIL-3 (18I,






23A, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G,






76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V) SEQ ID NO:358;






I






DNA Sequence #B28: pMON13379 (Example 97), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 46S, 50D, 51R, 55L, 60S,






62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E,






112Q, 116V, 120Q and 123E) SEQ ID NO:359;













DNA Sequence #B29: pMON13385 (Example 98), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29V, 32R, 34S, 37P, 42A, 45V, 51R, 55L, 60S, 62V,






67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V,






120Q and 123E) SEQ ID NO:360;













DNA Sequence #B30: pMON13381 (Example 99), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N,






69E, 73G, 76A, 79R, 82W, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q






and 123E) SEQ ID NO:361;













DNA Sequence #B31: pMON13383 (Example 100), encoding Met-Ala-(15-






125)hIL-3 (18I, 23A, 25H, 29R, 32A, 37P, 42D, 45V, 46S, 50D, 51R, 55L,






60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q,






109E, 112Q, 116V, 120Q and 123E) SEQ ID NO:362;













DNA Sequence #B32: pMON13384 (Example 101), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N,






69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 112Q, 116V,






120Q and 123E) SEQ ID NO:363;













DNA Sequence #B33: pMON13388 (Example 102), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 50D, 51R, 55L, 56S, 60S,






62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E,






116V, 120Q and 123E) SEQ ID NO:346;













DNA Sequence #B34: pMON13389 (Example 103), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42D, 45M, 51R, 55L, 60S, 62V, 67N,






69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q






and 123E) SEQ ID NO:365;













DNA Sequence #B35: pMON13391 (Example 104), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 34S, 37P, 42A, 45V, 51R, 55L, 60S, 62V,






67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V,






120Q and 123E) SEQ ID NO:366;













DNA Sequence #B36: pMON13392 (Example 105), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42D, 45V, 51R, 55L, 60S, 62V, 67N,






69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q






and 123E) SEQ ID NO:367;













DNA Sequence #B37: pMON13393 (Example 106), encoding Met-Ala-(15-






125)hIL-3 (18I, 23A, 25H, 29R, 32A, 34S, 37P, 42D, 45M, 46S, 51R, 55L,






60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q,






109E, 116V, 120Q and 123E) SEQ ID NO:368;













DNA Sequence #B38: pMON13394 (Example 107), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42D, 45M, 46S, 51R, 55L, 60S, 62V,






67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V,






120Q and 123E) SEQ ID NO:369;













DNA Sequence #B39: pMON13395 (Example 108), encoding Met-Ala-(15-






125)hIL-3 (18I, 23A, 25H, 29V, 32R, 34S, 37P, 42D, 45V, 46S, 51R, 55L,






60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q,






109E, 116V, 120Q and 123E) SEQ ID NO:370;













DNA Sequence #B40: pMON13396 (Example 109), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N,






69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 100R, 101M,






116V, 120Q and 123E) SEQ ID NO:371;













DNA Sequence #B41: pMON13397 (Example 110), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N,






69E, 73G, 76A, 79R, 82W, 87S, 93S, 98I, 101A, 105Q, 109E, 100R, 101M,






116V, 120Q and 123E) SEQ ID NO:372;













DNA Sequence #B42: pMON13398 (Example 111), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42D, 45V, 46S, 51R, 55L, 60S, 62V,






67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V,






120Q and 123E) SEQ ID NO:373;













DNA Sequence #B43: pMON13399 (Example 112), encoding Met-Ala-(15-






125)hIL-3 (18I, 23A, 25H, 29V, 32R, 34S, 37P, 42D, 45V, 46S, 51R, 55L,






60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q,






109E, 116V, 120Q and 123E) SEQ ID NO:374;













DNA Sequence #B44: pMON13404 (Example 113), encoding Met-Ala-(15-






119)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N,






69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 112Q, 116V)






SEQ ID NO:375;













DNA Sequence #B45: pMON13387 (Example 114), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 50D, 51R, 55L, 60S, 62V,






67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V,






120Q and 123E) SEQ ID NO:376;













DNA Sequence #B46: pMON13416 (Example 115), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42D, 45V, 46S, 50D, 51R, 55L, 60S,






62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E,






116V, 120Q and 123E) SEQ ID NO:377;













DNA Sequence #B47: pMON13417 (Example 116), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42D, 45M, 46S, 50D, 51R, 55L, 60S,






62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E,






116V, 120Q and 123E) SEQ ID NO:378;













DNA Sequence #B48: pMON13420 (Example 117), encoding Met-Ala-(15-






125)hIL-3 (18I, 23A, 25H, 29R, 32A, 34S, 37P, 42D, 45V, 46S, 50D, 51R,






55L, 56S, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A,






105Q, 109E, 116V, 120Q and 123E) SEQ ID NO:379;













DNA Sequence #B49: pMON13421 (Example 118), encoding Met-Ala-(15-






125)hIL-3 (18I, 23A, 25H, 29R, 32A, 34S, 37P, 42D, 45M, 46S, 50D, 51R,






55L, 56S, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A,






105Q, 109E, 116V, 120Q and 123E) SEQ ID NO:380;













DNA Sequence #B50: pMON13432 (Example 119), encoding Met-Ala-(15-






125)hIL-3 (18I, 23A, 25H, 29R, 32A, 34S, 37P, 42D, 45M, 46S, 50D, 51R,






55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A,






1O5Q, 109E, 116V, 120Q and 123E) SEQ ID NO:381;













DNA Sequence #B51: pMON13382 (Example 120), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N,






69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 112Q, 116W,






120Q and 123E) SEQ ID NO:382;













DNA Sequence #B52: pMON13476 (Example 85), Met-Asp-(15-125)hIL-3 (18I,






23A, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G,






76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and 123E)






SEQ ID NO:383;













DNA Sequence #B53: pMON13446 (Example 121), encoding Met-Ala-Tyr-Pro-






Glu-Thr-Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys-(15-125)hIL-3 (18I, 25H, 29R,






32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q,






87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and 123E) SEQ ID NO:404;













DNA Sequence #B54: pMON13390 (Example 122), encoding Met-Ala-Tyr-Pro-






Glu-Thr-Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys-(15-125)hIL-3 (18I, 25H, 29R,






32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q,






87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and 123E) SEQ ID NO:405;













DNA Sequence #C-1: pMON13418 (Example 123), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H,






69E, 73G, 76P, 793, 82Q, 85V, 87Y, 88W, 91P, 93S, 95T, 98T, 101A,






105Q, 109E, 116V, 120Q and 123E) SEQ ID NO:393;













DNA Sequence #C-2: pMON13400 (Example 124), encoding Met-Ala-(15-






125)hIL-3 (18I, 20P, 23A, 25H, 29I, 32N, 34S, 37S, 38A, 42S, 45V, 46S,






51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A,






105Q, 109E, 116V, 120Q and 123E) SEQ ID NO:384;













DNA Sequence #C-3: pMON13402 (Example 125), encoding Met-Ala-(15-






125)hIL-3 (18I, 23L, 25H, 291, 32N, 34S, 37S, 38A, 42S, 45V, 46S, 51R,






55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A,






105Q, 109E, 116V, 120Q and 123E) SEQ ID NO:385;













DNA Sequence #C-4: pMON13403 (Example 126), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 50D, 51S, 55T, 59L, 62P,






63H, 67Q, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E,






116V, 120Q and 123E) SEQ ID NO:388;













DNA Sequence #C-5: pMON13411 (Example 127), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H,






69E, 73G, 76A, 79R, 82Q, 87S, 93S, 981, 101A, 105Q, 109L, 112Q, 116S,






120Q and 123E) SEQ ID NO:390;













DNA Sequence #C-6: pMON13412 (Example 128), encoding Met-Ala-(15-






118)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H,






69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109L, 112Q, 1165)






SEQ ID NO:391;













DNA Sequence #C-7: pMON13413 (Example 129), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H,






69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q






and 123E) SEQ ID NO:392;













DNA Sequence #C-8: pMON13419 (Example 126), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 50D, 515, 55T, 59L, 62P,






63H, 65S, 67Q, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 981, 101A, 105Q,






109E, 116V, 120Q and 123E) SEQ ID NO:389;













DNA Sequence #C-9: pMON13428 (Example 133), encoding Met-Ala-(15-






125)hIL-3 (18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H,






69E, 73G, 76P, 79S, 82Q, 85V, 87Y, 91P, 93S, 95T, 98T, 101A, 105Q,






109L, 112Q, 116S, 120Q and 123E) SEQ ID NO:394;













DNA Sequence #C-10: pMON13440 (Example 131), encoding Met-Ala-(15-






125)hIL-3 (18I, 23A, 25H, 29I, 32N, 34S, 37S, 38A, 42S, 45V, 46S, 51R,






55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A,






1O5Q, 109E, 116V, 120Q and 123E) SEQ ID NO:386;













DNA Sequence #C-11: pM0N13451 (Example 132), encoding Met-Ala-(15-






125)hIL-3 (18I, 19I, 20L, 23A, 25H, 29I, 32N, 34S, 37S, 38A, 42S, 45V,






46S, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I,






101A, 105Q, 109E, 116V, 120Q and 123E) SEQ ID NO:387;













DNA Sequence #C-12: pMON13459 (Example 134), encoding Met-Ala-(15-






125)hIL-3 (18I, 23L, 25H, 29I, 32N, 34S, 37S, 38A, 42S, 45V, 46S, 51R,






55T, 59L, 62V, 67H, 69E, 73G, 76P, 795, 82Q, 85V, 87Y, 91P, 93S, 95T,






98T, 101A, 105Q, 109L, 112Q, 116S, 120Q and 123E) SEQ ID NO:395;













DNA Sequence #C-13: pMON13467 (Example 135), encoding Met-Ala-(15-






125)hIL-3 (181, 23L, 25H, 29I, 32N, 34S, 37S, 38A, 42S, 45V, 46S, 51R,






55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A,






105Q, 109L, 112Q, 116S, 120Q and 123E) SEQ ID NO:396;













DNA Sequence #C-14: pMON13492 (Example 136), encoding Met-Ala-(15-






125)hIL-3 (18I, 23L, 25H, 29I, 32N, 34S, 37S, 38A, 42S, 45V, 46S, 51R,






55T, 59L, 62V, 67H, 69E, 73G, 76P, 79S, 82Q, 85V, 87Y, 91P, 93S, 95T,






98T, 101A, 105Q, 109E, 116V, 120Q and 123E) SEQ ID NO:397.














Polypeptides corresponding to [SEQ ID NO. 129] comprising (1-133)hIL-3 containing four of more amino acid substitutions can be made using the procedures described above and in the following examples by starting with the appropriate oligonuctiotides and then constructing the DNA encoding the polypeptide and expressing it in an appropriate host cell. In a similar manner polypeptides which correspond to [SEQ ID NO. 130] and contain four or more amino acid substitutions and wherein from 1 to 14 amino have been sequentially deleted from the N-terminus, or from 1 to 15 amino acids have been deleted from the C-terminus or deletions of amino acids have been made from both the N-terminus and the C-terminus can also be made by following the procedures described above and in the following examples, beginning with the appropriate starting materials.




Further details known to those skilled in the art may be found in T. Maniatis, et al.,


Molecular Cloning, A Laboratory Manual,


Cold Spring Harbor Laboratory (1982) and references cited therein, incorporated herein by references; and in J. Sambrook, et al.,


Molecular Cloning, A Laboratory Manual,


2nd edition, Cold Spring Harbor Laboratory (1989) and references cited therein, incorporated herein by reference.




The following examples will illustrate the invention in greater detail although it will be understood that the invention is not limited to these specific examples.




Amino acids are shown herein by standard one letter or three letter abbreviations as follows:




















Abbreviated Designation





Amino Acid





























A




Ala





Alanine







C




Cys





Cysteine







D




Asp





Aspartic acid







E




Glu





Glutamic acid







F




Phe





Phenylalanine







G




Gly





Glycine







H




His





Histidine







I




Ile





Isoleucine







K




Lys





Lysine







L




Leu





Leucine







M




Met





Methionine







N




Asn





Asparagine







P




Pro





Proline







Q




Gln





Glutamine







R




Arg





Arginine







S




Ser





Serine







T




Thr





Threonine







V




Val





Valine







W




Trp





Tryptophan







Y




Tyr





Tyrosine















Various other examples will be apparent to the person skilled in the art after reading the present disclosure without departing from the spirit and scope of the invention. It is intended that all such other examples be included within the scope of the appended claims.




REFERENCES




Adams, S. P., Kavka, K. S., Wykes, E. J., Holder, S. B. and Galluppi, G. R. Hindered Dialkyamino Nucleoside Phosphate reagents in the synthesis of two DNA 51-mers. J. Am. Chem. Soc., 105, 661-663 (1983).




Atkinson, T. and Smith, M., in Gait, M. J., Oligonucleotide Sythesis (1984) (IRL Press, Oxford England).




Bachmann, B., Pedigrees of some mutant strains of


Escherichia coli


K-12,


Bacteriological Reviews,


36:525-557 (1972).




Bayne, M. L., Expression of a synthetic gene encoding human insulin-like growth factor I in cultured mouse fibroblasts.


Proc., Natl. Acad. Sci. USA


84, 2638-2642 (1987).




Ben-Bassat, A., K. Bauer, S-Y. Chang, K. Myambo, A. Boosman and S. Ching. Processing of the initiating methionine from proteins: properties of the


Escherichia coli


methionine aminopeptidase and its gene structure.


J. Bacteriol,


169: 751-757 (1987).




Biesma, B. et al., Effects of interleukin-3 after chemotherapy for advanced ovarian cancer.


Blood,


80:1141-1148 (1992).




Birnboim, H. C. and J. Doly. A rapid alkaline extraction method for screening recombinant plasmid DNA.


Nuleic Acids Research,


7(6): 1513-1523 (1979).




Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,


Analytical Biochemistry,


72: 248-254 (1976).




Clark-Lewis, I., L. E. Hood and S. B. H. Kent. Role of disulfide bridges in determining the biological activity of interleukin 3,


Proc. Natl. Acad. Sci.,


85: 7897-7901 (1988).




Clement, J. M. and Hofnung, M. Gene sequence of the receptor, an outer membrane protein of


E. coli


K12.


Cell,


27: 507-514 (1981).




Covarrubias, L., L. Cervantes, A. Covarrubias, X. Soberon, I. Vichido, A. Blanco, Y. M. Kupersztoch-Portnoy and F. Bolivar. Construction and characterization of new cloning vehicles. V. Mobilization and coding properties of pBR322 and several deletion derivates including pBR327 and pBR328.


Gene


13: 25-35 (1981).




Deng, W. P. & Nickoloff, J. A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site


Anal. Biohem.


200:81 (1992).




Dente, L., G. Cesareni and R. Cortese, pEMBL: a new family of single stranded plasmids,


Nucleic Acids Research,


11: 1645-1655 (1983).




Dunn, J. J. and Studier, F. W., Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements.


J. Mol. Biol.


166:477-535 (1983).




Falk, S., G. Seipelt, A. Ganser, O. G. Ottmann, D. Hoelzer, H. J. Stutte and K. Hubner.


Hematopathology


95: 355 (1991).




Fling, M. E., et al. Nucleotide sequence of the transposon Tn7 gene encoding an aminoglycoside-modifying enzyme, 3″(9)-O-nucleotidyltransferase.


Nucl. Acids Res.


13:7095-7106 (1985).




Ganser, A., A. Lindemann, G. Seipelt, O. G. Ottmann, F. Herrmann, M. Eder, J. Frisch, G. Schulz, R. Mertelsmann and D. Hoelzer. Effects of Recombinant Human Interleukin-3 in Patients With Normal Hematopoiesis and in Patients with Bone Marrow Failure,


Blood


76: 666 (1990).




Gething and Sambrook, Cell-surface expression of influenza haemagglutinin from a cloned DNA copy of the RNA gene,


Nature,


293: 620-625 (1981).




Gillio, A. P., C. Gasparetto, J. Laver, M. Abboud, M. A. Bonilla, M. B. Garnick and R. J. O'Reilly.


J. Clin. Invest.


85: 1560 (1990).




Gouy, M. and G. Gautier, Codon usage in bacteria: Correlation with gene expressivity,


Nucleic Acids Research,


10: 7055-7074 (1982).




Greenfield, L., T. Boone, and G. Wilcox. DNA sequence of the araBAD promoter in


Escherichia coli


B/r.


Proc. Natl. Acad. Sci. USA,


75: 4724-4728 (1978).




Higuchi, R, (1989) in


PCR Technology,


H. A. Erlich ed., Stockton Press, N.Y. chapter 2-6.




Hunkapiller, M. W., R. W. Hewick, R. J. Dreyer and L. E. Hood. High sensitivity sequencing with a gas-phase sequenator.


Methods in Enzymology


153: 399-413 (1983).




Kaufman, et al., Coamplification and Coexpression of Human Tissue-Type Plasminogen Activator and Murine Dihydrofolate Reductase Sequences in Chinese Hamster Ovary Cells,


Mol. Cell. Biol.,


5(7): 1750-1759 (1985).




Kaufman, R. J. High level production of proteins in mammalian cells, in


Genetic Engineering, Principles and Methods,


Vol. 9, J. K. Setlow, editor, Plenum Press, New York (1987).




Kunkel, T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection.


Proc. Natl. Acad. Sci. USA,


82: 488-492 (1985).




Laemmli, U. K., Cleavage of structural proteins during assembly of the head of bacteriophage T4,


Nature,


227:680-685 (1970).




Lange, B., M. Valtieri, D. Santoli, D. Caracciolo, F. Mavilio, I. Gemperlein, C. Griffin, B. Emanuel, J. Finan, P. Nowell, and G. Rovera. Growth factor requirements of childhood acute leukemia: establishment of GM-CSF-defendent cell lines.


Blood


70:192 (1987).




Mahler, H. R. and E. H. Cordes, in


Biological Chemistry, p.


128, New York, Harper and Row (1966).




Maniatis, T., E. F. Fritsch and J. Sambrook,


Molecular Cloning, A Laboratory Manual.


Cold Spring Harbor Laboratory (1982).




Marinus, M. G. Location of DNA methylation genes on the


Escherichia coli


K-12 genetic map.


Molec. Gen. Genet.


127: 47-55 (1973).




McBride, L. J. and Caruthers, M. H. An investigation of several deoxynucleoside phosphoramidites. Tetrahedron Lett., 24, 245-248 (1983).




Messing, J., A multipurpose cloning system based on the single-stranded DNA bacteriophage M13.


Recombinant DNA Technical Bulletin,


NIH Publication No. 79-99, Vol. 2, No. 2, pp. 43-48 (1979).




Neu, H. C. and L. A. Heppel. The release of enzymes from


Escherichia coli


by osmotic shock and during the formation of spheroplasts.


J. Biol Chem.,


240: 3685-3692 (1965).




Obukowicz, M. G., Staten, N. R. and Krivi, G. G., Enhanced Heterologous Gene Expression in Novel rpoH Mutants of


Escherichia coli. Applied and Environmental Microbiology


58, No. 5, p. 1511-1523 (1992).




Olins, P. O., C. S. Devine, S. H. Rangwala and K. S. Kavka, The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in


Escherichia coli, Gene,


73:227-235 (1988).




Olins, P. O. and S. H. Rangwala, Vector for enhanced translation of foreign genes in


Escherichia coli, Methods in Enzymology


185: 115-119 (1990).




Postmus, et al., Effects of recombinant human interleukin-3 in patients with relapsed small-cell lung cancer treated with chemotherapy: a dose-finding study.


J. Clin. Oncol.,


10:1131-1140 (1992).




Prober, J. M., G. L. Trainor, R. J. Dam, F. W. Hobbs, C. W. Robertson, R. J. Zagursky, A. J. Cocuzza, M. A. Jensen and K. Baumeister. A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides.


Science


238: 336-341 (1987).




Renart J., J. Reiser and G. R. Stark, Transfer of proteins from gels to diazobenzyloxymethyl-paper and detection with anti-sera: a method for studying antibody specificity and antigen structure,


Proc. Natl. Acad. Sci. USA,


76:3116-3120 (1979).




Saiki, R. K., Schorf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A. and Arnheim, N., Enzymatic Amplification of β-Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia,


Science,


230: 1350-1354 (1985).




Sambrook, J., et al.,


Molecular Cloning, A Laboratory Manual,


2nd edition, Cold Spring Harbor Laboratory (1989).




Sancar, A., C. Stachelek, W. Konigsberg and W. D. Rupp, Sequences of the recA gene and protein,


Proc. Natl. Acad. Sci.


77: 2611-2615 (1980).




Sanger, F., S. Nicklen and A. R. Coulson. DNA sequencing with chain-terminating inhibitors.


Proc. Natl. Acad. Sci. U. S. A.


74: 5463-5467 (1977).




Santoli, D., Y. Yang, S. C. Clark, B. L. Kreider, D. Caracciolo, and G. Rovera. Synergistic and antagonistic effects of recombinant human interleukin (IL-3), IL-1 , granulocyte and macrophage colony-stimulating factors (G-CSF and M-CSF) on the growth of GM-CSF-dependent leukemic cell lines.


J. Immunol.


139:348 (1987).




Smith, M. In vitro mutagenesis.


Ann. Rev. Genet.,


19:423-462 (1985).




Soberon, X., L. Covarrubias and F. Bolivar, Construction and characterization of new cloning vehicles. IV. Deletion derivatives of pBR322 and pBR325,


Gene,


9: 211-223 (1980).




Stader, J. A. and T. J. Silhavy. Engineering


Escherichia coli


to secrete heterologous gene products,


Methods in Enzymology,


185: 166-87 (1990).




Summers, M. D. and G. E. Smith. A manual of methods for Baculovirus vectors and insect cell culture procedures.


Texas Agricultural Experiment Station Bulletin No.


1555 (1987).




Taylor, J. W., Ott, J. and Eckstein, F.. The rapid generation of oligonucleotide-directed mutants at high frequency using phosphorothioate modified DNA.


Nucl. Acids Res.,


13:8764-8785 (1985).




Treco, D. A., (1989) in Current protocols in


Molecular Biology,


Seidman et al., eds. J Wiley N.Y., unit 2.1.




Valtieri, M., D. Santoli, D. Caracciolo, B. L. Kreider, S. W. Altmann, D. J. Tweardy, I. Gemperlein, F. Mavilio, B. J. Lange and G. Rovera. Establishment and characterization of an undifferentiated human T leukemia cell line which requires granulocyte-macrophage colony stimulating factor for growth.


J. Immunol.


138:4042 (1987).




Voet, D., W. B. Gatzer, R. A. Cox, P. Doty. Absorption spectra of the common bases.


Biopolymers


1: 193 (1963).




Wells, J. A., Vasser, M., and Powers, D. B. Cassette mutagenesis: an effective method for generation of multiple mutants at defined sites.


Gene,


34:315-323 (1985).




Wong, Y. Y., R. Seetharam, C. Kotts, R. A. Heeren, B. K. Klein, S. B. Braford, K. J. Mathis, B. F. Bishop, N. R. Siegel, C. E. Smith and W. C. Tacon. Expression of secreted IGF-1 in


Escherichia coli. Gene,


68: 193-203 (1988).




Yanisch-Perron, C., J. Viera and J. Messing. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors.


Gene


33: 103-119 (1985).




Zoller, M. J. and Smith, M. Oligonucleotide-directed mutagenesis using M13-derived vectors: an efficient and general procedure for the production of point mutations in any fragment of DNA.


Nucleic Acid Research,


10: 6487-6500 (1982).




Zoller, M. J. and Smith, M. Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors.


Methods in Enzymology,


100:468-500 (1983).




Zoller, M. J. and Smith, M. Oligonucleotide-directed Mutagenesis: A simple method using two oligonucleotide primers and a single-stranded DNA template.


DNA,


3: 479 (1984).




EXAMPLE 1




Construction of pMON 5846 (

FIG. 4

) which Encodes [Met-(1-133) hIL-3 (Arg


129


)]




A plasmid containing the gene for the cDNA of hIL-3 cloned into pUC18 on an EcoRI to HindIII fragment was obtained from British Biotechnology Limited (Cambridge, England). This plasmid was designated pPO518. The purified plasmid DNA was cleaved by the restriction endonucleases NheI and BamHI. Approximately 0.5 micrograms of cleaved plasmid DNA was ligated to 1.0 picomoles of a pair of annealed oligonucleotides with the following sequence:













5′-CTAGCGATCTTTTAATAAGCTTG-3′




[SEQ ID NO: 1]













    3′-GCTAGAAAATTATTCGAACCTAG-5′




[SEQ ID NO: 2]











The ligation mixture was used to transform competent JM101 cells to ampicillin resistance. Colonies were picked, and plasmid DNA was purified and subjected to restriction enzyme analysis. An isolate was identified in which the above oligonucleotide sequence had replaced the portion of the gene that encodes the extreme C terminus. Within the new sequence was a new stop codon, TAA, and a recognition site for the enzyme HindIII. The new plasmid was designated pMON5846.




EXAMPLE 2




(a) Construction of Expression Vector Plasmid pMON2341




The plasmid pMON2341 was used to supply the particular replicon and expression elements used for construction of many of the plasmids used to produce hIL-3 and hIL-3 muteins in


E. coli.


These expression elements are described in the materials and methods section. pMON2341 is derived from pMON5515 (Olins et al., 1988) and from pMON2429. pMON2429 consists of the phage mp18 (Yanisch-Perron et al., 1985) with a BclI fragment carrying the chloramphenicol acetyl transferase (cat) gene from pBR328 (Covarrubias et al., 1981) inserted into the BamHI site. The cat gene in pMON2429 has been altered from that in pBR328 by site directed mutagenesis (Kunkel, 1985). The recognition sites for NcoI and EcoRI which occur in the native gene were altered so that these two restriction enzymes no longer recognize these sites. The changes did not alter the protein specified by the gene. Also, an NcoI site was introduced at the N-terminus of the coding sequence so that it overlaps the codon for initiator methionine.




The steps involved in construction of pMON2341 are listed below:




(1) The DNAs of pMON5515 and pMON2429 were treated with NcoI and HindIII. The fragments were ligated and used to transform competent


E. coli


to ampicillin resistance. From these colonies, some were identified that were chloramphenicol resistant. From one of these colonies, plasmid DNA was isolated in which the rat atriopeptigen gene of pMON5515 had been replaced by the NcoI to HindIII fragment containing the cat gene from pMON2429. This fragment contains the recognition sites for several restriction enzymes in the portion derived from the multilinker region of mp18. The new plasmid was designated pMON2412.




(2) pMON2412 was treated with the enzyme ClaI which cleaves at one location in the pBR327 derived portion of the DNA. The protruding ends were rendered blunt by treatment with Klenow in the presence of nucleotide precursors. This DNA was mixed with an isolated 514 bp RsaI fragment derived from pEMBL8 (Dente et al., 1983). This RsaI fragment contains the origin of replication of phage f1. This ligation mixture was used to transform competent


E. coli


cells to ampicillin resistance. Among the plasmid DNAs isolated from these cells was pMON5578. This plasmid has the structure of pMON2412 with the f1 origin region inserted into the ClaI site. This is illustrated in the Figures and in Olins and Rangwala (1990).




(3) The DNA of pMON5578 was treated with restriction enzymes HindIII and MstII. The DNA was then treated with Klenow enzyme in the presence of nucleotide precursors to render the ends blunt. This treated DNA was ligated and used to transform competent


E. coli


to ampicillin resistance. From the ampicillin resistant colonies, one plasmid was recovered from which the portion between HindIII and MstII was absent. This deletion resulted in the removal of sequences from the plasmid which are recognized by a number of restriction endonuclease sites. The new plasmid was designated pMON5582.




(4) The DNA of pMON5582 was treated with SstII and BclII and ligated in the presence of annealed oligonucleotides with the sequences shown below.












5′-  GGCAACAATTTCTACAAAACACTTGATACTGTATGAGCAT-






3′-CGCCGTTGTTAAAGATGTTTTGTGAACTATGACATACTCGTA-













ACAGTATAATTGCTTCAACAGAACAGATC-3′ [SEQ ID NO:3]






TGTCATATTAACGAAGTTGTCTTGT-5′ [SEQ ID NO:4]











This sequence encodes the essential elements of the recA promoter of


E. coli


including the transcription start site and the lexA repressor binding site (the operator) (Sancar et al., 1980). The plasmid recovered from the ligation mixes contained this recA promoter in place of the one in pMON5582 (and in pMON5515). The functionality of the recA promoter was illustrated by Olins and Rangwala (1990). The new plasmid was designated pMON5594.




(5) To eliminate the single EcoRI site in pMON5594, the DNA was treated with EcoRI, then with Klenow in the presence of nucleotide precursors to render the ends blunt and then the DNA was ligated. From this ligation mix a plasmid was recovered whose DNA was not cleaved with EcoRI. This plasmid was designated pMON5630.




(6) To alter the single recognition site for PstI, plasmid pMON5630 was subjected to site directed mutagensis (Kunkel, 1985). The oligonucleotide used in this procedure has the sequence shown below.




5′-CCATTGCTGCCGGCATCGTGGTC-3′ [SEQ ID NO:5]




The result of the procedure was to construct pMON2341 which differs from pMON5630 in that the PstI site in the beta-lactamase gene was altered so that PstI no longer recognizes the site. The single nucleotide change does not alter the amino acid sequence of the beta-lactamase protein.




(b) Construction of pMON5847 (

FIG. 5

) which Encodes [Met-(1-133)hIL-3 (Arg


129


)]




Plasmid pMON2341 was used to supply the replicon, promotor, ribosome binding site, transcription terminator and antibiotic resistance marker for the plasmids used to produce hIL-3 in


E. coli


from cDNA derived hIL-3 genes.




Plasmid pMON2341 was treated with restriction enzymes NcoI and HindIII. The restriction fragment containing the replication origin was purified. The DNA of plasmid pMON5846 was treated with NcoI and HindIII. The restriction fragment containing the hIL-3 gene was gel purified. These purified restriction fragments were mixed and ligated. The ligation mixture was used to transform competent JM101 cells to ampicillin resistance. Colonies were picked, and plasmid DNA was purified and analyzed using restriction enzymes. pMON5847 was identified as a plasmid with the replicon of pMON2341 and the hIL-3 gene in place of the chloramphenicol acetyl transferase gene. JM101 cells harboring this plasmid were cultured in M9 medium and treated with nalidixic acid as described above. Samples of the culture were examined for protein content. It was found that this hIL-3 mutein was produced at about 6% of total cell protein as measured on Coomassie stained polyacrylamide gels.




EXAMPLE 3




Construction of pMON5854 (

FIG. 7

) which Encodes [Met-(1-133)hTL-3 (Arg


129


)]




To increase the accumulation of hIL-3 in


E. coli,


the coding sequence of the amino terminal portion of the protein was altered to more closely reflect the codon bias found in


E. coli


genes that produce high levels of proteins (Gouy and Gautier, 1982). To change the coding sequence for the amino terminal portion of the gene, a pair of synthetic oligonucleotides were inserted between the NcoI and HpaI sites within the coding sequence. About 0.5 micrograms of DNA of the plasmid pMON5847 (Example 2) was treated with NcoI and HpaI. This DNA was mixed with an annealed pair of oligonucleotides with the following sequence:














5′-CATGGCTCCAATGACTCAGACTACTTCTCTTAAGACT-







    3′-CGAGGTTACTGAGTCTGATGAAGAGAATTCTGA-















TCTTGGGTT-3′ [SEQ ID NO:6]







AGAACCCAA-5′ [SEQ ID NO:7]











The fragments were ligated. The ligation mixture was used to transform competent JM101 to ampicillin resistance. Colonies were picked into broth. From the cultures plasmid DNA was made and examined for the presence of a DdeI site (CTNAG) which occurs in the synthetic sequence but not between the NcoI and HpaI sites in the sequence of pMON5847. The new recombinant plasmid was designated pMON5854. The nucleotide sequence of the DNA in the coding sequence of the amino terminal portion of the hIL-3 gene in pMON5854 was determined by DNA sequencing and found to be the same as that of the synthetic oligonucleotide used in ligation. Cultures of JM101 cells harboring this plasmid were grown and treated with nalidixic acid to induce production of the hIL-3 mutant protein. Analysis of the proteins on Coomassie gels showed that the accumulation of hIL-3 mutein was about 25% of total cell protein in cultures harboring pMON5854, significantly higher than it was in cultures harboring pMON5847.




EXAMPLE 4




Construction of pMON5887 (

FIG. 12

) which Encodes [Met-(1-125)hIL-3]




The plasmid DNA of pMON5854 (Example 3) was treated with EcoRI and HindIII and the larger fragment gel was purified. About 0.5 microgram of this DNA was ligated to 1 picomole of an annealed pair of oligonucleotides which encode amino acids 107 through 125 of hIL-3. The sequences of these oligonucleotides are shown below.












EcoRI to HindIII






5′-AATTCCGTCGTAAACTGACCTTCTATCTGAAAA-






    3′-GGCAGCATTTGACTGGAAGATAGACTTTT-


















[SEQ ID NO:8]











CCTTGGAGAACGCGCAGGCTCAACAGTAATA-3′


















[SEQ ID NO:9]











GGAACCTCTTGCGCGTCCGAGTTGTCATTATTCGA-5′











After ligation, the DNA was used to transform competent JM101 cells to ampicillin resistance. Colonies were picked into broth and plasmid DNA was isolated from each culture. Restriction analysis of the plasmid DNA showed the presence of an EcoRI to HindIII fragment smaller than that of pMON5854. The nucleotide sequence of the portion of the coding sequence between the EcoRI and HindIII sites was determined to confirm the accuracy of the replaced sequence. The new plasmid was designated pMON5887 encoding Met-(1-125)hIL-3 which has the following amino acid sequence:













[SEQ ID NO:10]












Met Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr













Ser Trp Val Asn Cys Ser Asn Met Ile Asp Glu Ile













Ile Thr His Leu Lys Gln Pro Pro Leu Pro Leu Leu













Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile













Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu













Ala Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala













Ser Ala Ile Glu Ser Ile Leu Lys Asn Leu Leu Pro













Cys Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg His













Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe













Arg Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu













Asn Ala Gln Ala Gln Gln











EXAMPLE 5




Construction of pMON5967 which Encodes [Met-Ala-(15-125) hIL-3]




Plasmid DNA of pMON5887 isolated from


E. coli


GM48 (dam-) was cleaved with NcoI and ClaI and ligated to 1 picomole of an annealed pair of oligonucleotides, encoding amino acids [Met Ala (15-20)hIL-3]. The sequence of these oligonucleotides is shown below.




5′-CATGGCTAACTGCTCTAACATGAT-3′ [SEQ ID NO:11]




3′-CGATTGACGAGATTGTACTAGC-5′ [SEQ ID NO:12]




The resulting ligation mix was used to transform competent


E. coli


JM101 cells to ampicillin resistant colonies. Plasmid DNA was isolated from these cells and the size of the inserted fragment was determined to be smaller than that of pMON5887 by restriction analysis using NcoI and NsiI. The nucleotide sequence of the region between NcoI and ClaI was determined and found to be that of the synthetic oligonucleotides. The new plasmid was designated pMON5967 and cells containing it were induced for protein production. Sonicated cell pellets and supernatants were used for protein purification and bio-assay.




EXAMPLE 6




Construction of pMON5978 which Encodes [Met-Ala-(15-125)hIL-3]




Plasmid DNA of pMON5967 isolated from


E. coli


GM48(dam-) was cleaved with ClaI and NsiI and ligated to 1 picomole of an annealed assembly of six oligonucleotides encoding hIL-3 amino acids 20-70 (FIG.


2


). This synthetic fragment encodes three unique restriction sites, EcoRV, XhoI and PstI. The sequence of these oligonucleotides is shown in FIG.


2


.




The resulting ligation mix was used to transform competent


E. coli


JM101 cells to ampicillin resistant colonies. Plasmid DNA was isolated and screened with XbaI and EcoRV for the presence of the new restriction site EcoRV. The DNA sequence of the region between ClaI and NsiI was determined and found to be the same as that of the synthetic oligonucleotides. The new plasmid was designated pMON5978, and cells containing it were induced for protein production. Sonicated cell pellets and supernatants were used for protein purification and bio-assay.




Plasmid pMON5978 encodes [Met-Ala-(15-125)hIL-3] which has the following amino acid sequence:













[SEQ ID NO:13]












Met Ala Asn Cys Ser Asn Met Ile Asp Glu Ile Ile













Thr His Leu Lys Gln Pro Pro Leu Pro Leu Leu Asp













Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile Leu













Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala













Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser













Ala Ile Glu Ser Ile Leu Lys Asn Leu Leu Pro Cys













Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg His Pro













Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg













Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn













Ala Gln Ala Gln Gln











EXAMPLE 7




Construction of pMON13356




Plasmid pMON5988 DNA was digested with restriction enzymes NcoI and EcoRV, and the resulting 4190 base pair NcoI,EcoRV fragment contains the following genetic elements: beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, pAraBAD promoter, g10L ribosome binding site, lamB secretion leader and the bases encoding amino acids 47-125 of (15-125)hIL-3. The 4190 base pair NcoI,EcoRV restriction fragment from pMON5988 was ligated to the following annealed complementary oligonucleotides from Table (2).




Oligo #13 [SEQ ID NO:27]




Oligo #14 [SEQ ID NO:28]




The ligation reaction mixture was used to transform


E. coli


K-12 strain JM101 and transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated from a colony grown in LB broth and the size of the inserted fragment was determined by restriction analysis employing restriction enzymes NcoI and HindIII in double digest. In the resulting plasmid the 99 bases between the NcoI and EcoRV restriction sites in the (15-125) hIL-3 gene are replaced with 22 bases from the above mentioned oligonucleotides. This linker also contains a NdeI recognition sequence.




EXAMPLE 8




Construction of pMON13344




Plasmid pMON13356 DNA was digested with restriction enzymes NcoI and EcoRV, and the resulting 4190 base pair NcoI,EcoRV fragment contains the following genetic elements: beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, pAraBAD promoter, g10L ribosome binding site, lamB secretion leader and the bases encoding amino acids 47-125 of (15-125)hIL-3. The second DNA fragment was generated by synthetic gene assembly using the following complementary oligonucleotide pairs that have overlapping ends:




Oligo #1 [SEQ ID NO:15]




Oligo #2 [SEQ ID NO:16]




Oligo #3 [SEQ ID NO:17]




Oligo #4 [SEQ ID NO:18]




Oligo #9 [SEQ ID NO:23]




Oligo #10 [SEQ ID NO:24]




The assembled oligonucleotides create NcoI and EcoRV restriction ends and the DNA sequence that encodes amino acids 15-46 of (15-125)hIL-3 with the following amino acid substitutions: 18I, 25H, 29R, 32A, 37P, 42A and 45V. The codons encoding amino acids 15-46 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those, positions where amino acid substitutions were made. The 4190 base pair NcoI,EcoRV restriction fragment from pMON13356 was ligated with the pairs of annealed oligonucleotides. The ligation reaction was digested with NdeI and subsequently used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated from a colony grown in LB broth. The DNA sequence was determined to be that of the oligonucleotides. The plasmid, pMON13344, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #2














        Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu




[SEQ ID NO:66]














Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala













Glu Asp Val Asp Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn













Leu Glu Ala Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser













Ala Ile Glu Ser Ile Leu Lys Asn Leu Leu Pro Cys Leu Pro Leu













Ala Thr Ala Ala Pro Thr Arg His Pro Ile His Ile Lys Asp Gly













Asp Trp Asn Glu Phe Arg Arg Lys Leu Thr Phe Tyr Leu Lys Thr













Leu Glu Asn Ala Gln Ala Gln Gln











DNA sequence #10 [SEQ ID NO:106) codes for the foregoing pMON13344 polypeptide.




EXAMPLE 9




Construction of pMON13345




The 4190 base pair NcoI,EcoRV restriction fragment from pMON13356 was ligated with the following pairs of annealed complementary oligonucleotides:




Oligo #1 [SEQ ID NO:15]




Oligo #2 [SEQ ID NO:16]




Oligo #5 [SEQ ID NO:19]




Oligo #6 [SEQ ID NO:20]




Oligo #11 [SEQ ID NO:25]




Oligo #12 [SEQ ID NO:26]




The assembled oligonucleotides create NcoI and EcoRV restriction ends and the DNA sequence that encodes amino acids 15-46 of (15-125)hIL-3 with the following amino acid substitutions: 18I, 25H, 29R, 32N, 37P, 42S and 45M. The codons encoding amino acids 15-46 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The ligation reaction was digested with NdeI and used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated from a colony grown in LB broth. The DNA was sequenced to determine that the sequence was that of the oligonucleotides. The plasmid, pMON13345, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #3













[SEQ ID NO:67]












        Asn Cys Ser Ile Met Ile Asp Glu Ile Ile













His His Leu Lys Arg Pro Pro Asn Pro Leu Leu Asp













Pro Asn Asn Leu Asn Ser Glu Asp Met Asp Ile Leu













Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala













Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser













Ala Ile Glu Ser Ile Leu Lys Asn Leu Leu Pro Cys













Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg His Pro













Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg













Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn













Ala Gln Ala Gln Gln











DNA sequence #11 [SEQ ID NO:107] codes for the foregoing pMON13345 polypeptide.




EXAMPLE 10




Construction of pMON13346




The 4190 base pair NcoI,EcoRV restriction fragment from pMON13356 was ligated with the following pairs of annealed complementary oligonucleotides:




Oligo #1 [SEQ ID NO:15]




Oligo #2 [SEQ ID NO:16]




Oligo #7 [SEQ ID NO:21]




Oligo #8 [SEQ ID NO:22]




Oligo #11 [SEQ ID NO:25]




Oligo #12 [SEQ ID NO:26]




The assembled oligonucleotides create NcoI and EcoRV restriction ends and the DNA sequence that encodes amino acids 15-46 of (15-125)hIL-3 with the following amino acid substitutions: 18I, 25H, 29V, 32A, 37S, 42S and 45M. The codons encoding amino acids 15-46 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The ligation reaction was digested with NdeI and used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated from a colony grown in LB broth and DNA sequenced to determine that the sequence was that of the oligonucleotides. The plasmid, pMON13346, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #4













[SEQ ID NO:68]












        Asn Cys Ser Ile Met Ile Asp Glu Ile Ile













His His Leu Lys Val Pro Pro Ala Pro Leu Leu Asp













Ser Asn Asn Leu Asn Ser Glu Asp Met Asp Ile Leu













Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala













Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser













Ala Ile Glu Ser Ile Leu Lys Asn Leu Leu Pro Cys













Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg His Pro













Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg













Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn













Ala Gln Ala Gln Gln











DNA sequence #12 (SEQ ID NO:108] codes for the foregoing pMON13346 polypeptide.




EXAMPLE 11




Construction of pMON13357




Plasmid pMON5988 DNA was digested with restriction enzymes EcoRV and NsiI, and the resulting 4218 base pair EcoRV,NsiI fragment contains the following genetic elements: beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, pAraBAD promoter, g10L ribosome binding site, lamB secretion leader and the bases encoding amino acids 15-46 and 72-125 of (15-125)hIL-3.




The 4218 base pair EcoRV,NsiI restriction fragment from pMON5988 was ligated to the following annealed complementary oligonucleotides:




Oligo #19 [SEQ ID NO:33]




Oligo #20 [SEQ ID NO:34]




The ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated from a colony grown in LB broth, and the size of the inserted fragment was determined by restriction analysis employing restriction enzymes NcoI and HindIII in double digest. In the resulting plasmid the 71 bases between the EcoRV and NsiI restriction sites in the (15-125)hIL-3 gene are replaced with 22 bases from the above mentioned oligonucleotides. This linker also contains a NdeI recognition sequence.




EXAMPLE 12




Construction of pMON13347




The 4218 base pair EcoRV,NsiI restriction fragment from pMON13357 was ligated with the following pairs of annealed complementary oligonucleotides:




Oligo #21 [SEQ ID NO:35]




Oligo #22 [SEQ ID NO:36]




Oligo #25 [SEQ ID NO:39]




Oligo #26 [SEQ ID NO:40]




Oligo #31 [SEQ ID NO:45]




Oligo #32 [SEQ ID NO:46]




The assembled oligonucleotides create EcoRV and NsiI restriction ends and the DNA sequence that encodes amino acids 47-71 of (15-125)hIL-3 with the following amino acid substitutions: 51R, 55L, 59L, 62V, 67N and 69E. The codons encoding amino acids 47-71 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The ligation reaction was digested with NdeI and used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated from a colony grown in LB broth. The DNA was sequenced to determine that the sequence was that of the oligonucleotides. The plasmid, pMON13347, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #5













[SEQ ID NO:69]












        Asn Cys Ser Asn Met Ile Asp Glu Ile Ile













Thr His Leu Lys Gln Pro Pro Leu Pro Leu Leu Asp













Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile Leu













Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Leu Ala













Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser













Ala Ile Glu Ser Ile Leu Lys Asn Leu Leu Pro Cys













Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg His Pro













Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg













Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn













Ala Gln Ala Gln Gln











DNA sequence #13 [SEQ ID NO:109] codes for the foregoing pMON13347 polypeptide.




EXAMPLE 13




Construction of pMON-13348




The 4218 base pair EcoRV,NsiI restriction fragment from pMON13357 was ligated with the following pairs of annealed complementary oligonucleotides:




Oligo #21 [SEQ ID NO:35]




Oligo #22 [SEQ ID NO:36]




Oligo #27 [SEQ ID NO:41]




Oligo #28 [SEQ ID NO:42]




Oligo #31 [SEQ ID NO:45]




Oligo #32 [SEQ ID NO:46]




The assembled oligonucleotides create EcoRV and NsiI restriction ends and the DNA sequence that encodes amino acids 47-71 of (15-125)hIL-3 with the following amino acid substitutions: 51R, 55L, 60S, 62V, 67N and 69E. The codons encoding amino acids 47-71 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The ligation reaction was digested with NdeI and used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated from a colony grown in LB broth. The DNA was sequenced to determine that the sequence was that of the oligonucleotides. The plasmid, pMON13348, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #6













[SEQ ID NO:70]












        Asn Cys Ser Asn Met Ile Asp Glu Ile Ile













Thr His Leu Lys Gln Pro Pro Leu Pro Leu Leu Asp













Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile Leu













Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser













Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser













Ala Ile Glu Ser Ile Leu Lys Asn Leu Leu Pro Cys













Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg His Pro













Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg













Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn













Ala Gln Ala Gln Gln











DNA sequence #14 [SEQ ID NO:110] encodes the foregoing pMON13348 polypeptide.




EXAMPLE 14




Construction of pMON13349




The 4218 base pair EcoRV,NsiI restriction fragment from pMON13357 was ligated with the following pairs of annealed complementary oligonucleotides:




Oligo #23 [SEQ ID NO:37]




Oligo #24 [SEQ ID NO:38]




Oligo #25 [SEQ ID NO:39]




Oligo #26 [SEQ ID NO:40]




Oligo #29 [SEQ ID NO:43]




Oligo #30 [SEQ ID NO:44]




The assembled oligonucleotides create EcoRV and NsiI restriction ends and the DNA sequence that encodes amino acids 47-71 of (15-125)hIL-3 with the following amino acid substitutions: 51R, 55T, 59L, 62V, 67H and 69E. The codons encoding amino acids 47-71 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The ligation reaction was digested with NdeI and used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated from a colony grown in LB broth and the DNA was sequenced to determine that the sequence was that of the oligonucleotides. The plasmid, pMON13349, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #7













[SEQ ID NO:71]












        Asn Cys Ser Asn Met Ile Asp Glu Ile Ile













Thr His Leu Lys Gln Pro Pro Leu Pro Leu Leu Asp













Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile Leu













Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala













Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser













Ala Ile Glu Ser Ile Leu Lys Asn Leu Leu Pro Cys













Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg His Pro













Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg













Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn













Ala Gln Ala Gln Gln











DNA sequence #15 [SEQ ID NO:111] encodes the foregoing pMON13349 polypeptide.




EXAMPLE 15




Construction of pMON13358




Plasmid pMON5988 DNA was digested with restriction enzymes NsiI and EcoRI and the resulting 4178 base pair NsiI,EcoRI fragment contains the following genetic elements: beta-latamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, pAraBAD promoter, g10L ribosome binding site, lamB secretion leader and the bases encoding amino acids 15-71 and 106-125 of (15-125)hIL-3. The 4178 base pair NsiI,EcoRI restriction fragment from pMON5988 was ligated to the following annealed complementary oligonucleotides.




Oligo #15 [SEQ ID NO:29]




Oligo #16 [SEQ ID NO:30]




The ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated from a colony grown in LB broth, and the size of the inserted fragment was determined by restriction analysis employing restriction enzymes NcoI and HindIII in double digest. In the resulting plasmid the 111 bases between the NsiI and EcoRI restriction sites in the (15-125) hIL-3 gene are replaced with 24 bases from the above mentioned oligonucleotides. This linker also contains a NdeI recognition sequence.




EXAMPLE 16




Construction of pMON13350




The 4178 base pair NsiI,EcoRI restriction fragment from pMON13358 was ligated with the following pairs of annealed complementary oligonucleotides:




Oligo #41 [SEQ ID NO:55]




Oligo #42 [SEQ ID NO:56]




Oligo #39 [SEQ ID NO:53]




Oligo #40 [SEQ ID NO:54]




Oligo #35 [SEQ ID NO:49]




Oligo #36 [SEQ ID NO:50]




Oligo #43 [SEQ ID NO:57]




Oligo #44 [SEQ ID NO:58]




The assembled oligonucleotides create NsiI and EcoRI restriction ends and the DNA sequence that encodes amino acids 72-105 of (15-125)hIL-3 with the following amino acid substitutions: 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A and 105Q. The codons encoding amino acids 72-105 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The ligation reaction was digested with NdeI and used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated from a colony grown in LB broth. The DNA was sequenced to determine that the sequence was that of the oligonucleotides. The plasmid, pMON13350, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #8













[SEQ ID NO:72]












        Asn Cys Ser Asn Met Ile Asp Glu Ile Ile













Thr His Leu Lys Gln Pro Pro Leu Pro Leu Leu Asp













Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile Leu













Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala













Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser













Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys













Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro













Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg













Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn













Ala Gln Ala Gln Gln











DNA sequence #16 [SEQ ID NO:112] codes for the foregoing pMON13350 polypeptide.




EXAMPLE 17




Construction of pMON13355




The 4178 base pair NsiI,EcoRI restriction fragment from pMON13358 was ligated with the following pairs of annealed complementary oligonucleotides:




Oligo #41 [SEQ ID NO:55]




Oligo #42 [SEQ ID NO:56]




Oligo #37 [SEQ ID NO:51]




Oligo #38 [SEQ ID NO:52]




Oligo #33 [SEQ ID NO:47]




Oligo #34 [SEQ ID NO:48]




Oligo #43 [SEQ ID NO:57]




Oligo #44 [SEQ ID NO:58]




The assembled oligonucleotides create NsiI and EcoRI restriction ends and the DNA sequence that encodes amino acids 72-105 of (15-125)hIL-3 with the following amino acid substitutions: 73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A and 1050. The codons encoding amino acids 72-105 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The ligation reaction was digested with NdeI and used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated from a colony grown in LB broth. The DNA was sequenced to determine that the sequence was that of the oligonucleotides. The plasmid, pMON13355, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #9













[SEQ ID NO:73]












        Asn Cys Ser Asn Met Ile Asp Glu Ile Ile













Thr His Leu Lys Gln Pro Pro Leu Pro Leu Leu Asp













Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile Leu













Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala













Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser













Gly Ile Glu Ala Ile Leu Arg Asn Leu Val Pro Cys













Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro













Ile Thr Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg













Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn













Ala Gln Ala Gln Gln











DNA sequence #17 [SEQ ID NO:113] codes for the foregoing pMON13355 polypeptide.




EXAMPLE 18




Construction of pMON13359




Plasmid pMON5988 DNA was digested with restriction enzymes EcoRI and HindIII, and the resulting 4225 base pair EcoRI,HindIII fragment contains the following genetic elements: beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, pAraBAD promoter, g10L ribosome binding site, lamB secretion leader and the bases encoding amino acids 15-105 of (15-125)hIL-3. The 4225 base pair EcoRI,HindIII restriction fragment from pMON5988 was ligated to the following annealed complementary oligonucleotides.




Oligo #17 [SEQ ID NO:31]




Oligo #18 [SEQ ID NO:32]




The ligation reaction was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated from a colony grown in LB broth, and the size of the inserted fragment was determined by restriction analysis employing restriction enzymes NcoI and HindIII in double digest. In the resulting plasmid the 64 bases between the EcoRI and HindIII restriction sites in the (15-125)hIL-3 gene are replaced with 20 bases from the above mentioned oligonucleotides. This linker also contains an NdeI recognition sequence.




EXAMPLE 19




Construction of pMON13352




The 4225 base pair EcoRI,HindIII restriction fragment from pMON13359 was ligated with the following pairs of annealed complementary oligonucleotides:




Oligo #45 [SEQ ID NO:59]




Oligo #46 [SEQ ID NO:60]




Oligo #49 [SEQ ID NO:63]




Oligo #50 [SEQ ID NO:64]




The assembled oligonucleotides create EcoRI and HindIII restriction ends and the DNA sequence that encodes amino acids 106-125 of (15-125)hIL-3 with the following amino acid substitutions: 109E, 116V, 120Q and 123E. The codons encoding amino acids 106-125 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The ligation reaction was digested with NdeI and used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated from a colony grown in LB broth. The DNA was sequenced to determine that the sequence was that of the oligonucleotides. The plasmid, pMON13352, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #10













[SEQ ID NO:74]












        Asn Cys Ser Asn Met Ile Asp Glu Ile Ile













Thr His Leu Lys Gln Pro Pro Leu Pro Leu Leu Asp













Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile Leu













Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala













Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser













Ala Ile Glu Ser Ile Leu Lys Asn Leu Leu Pro Cys













Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg His Pro













Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg













Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln













Ala Gln Glu Gln Gln











DNA sequence #18 [SEQ ID NO:114] codes for the foregoing pMON13352 polypeptide.




EXAMPLE 20




Construction of pMON13354




The 4225 base pair EcoRI,HindIII restriction fragment from pMON13359 was ligated with the following pairs of annealed complementary oligonucleotides:.




Oligo #45 [SEQ ID NO:59]




Oligo #46 [SEQ ID NO:60]




Oligo #47 [SEQ ID NO:61]




Oligo #48 [SEQ ID NO:62]




The assembled oligonucleotides create EcoRI and HindIII restriction ends and the DNA sequence that encodes amino acids 106-125 of (15-125)hIL-3 with the following amino acid substitutions: 109E, 116V, 117S, 120H and 123E. The codons encoding amino acids 106-125 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The ligation reaction was digested with NdeI and used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated from a colony grown in LB broth, and the DNA was sequenced to determine that the sequence was that of the oligonucleotides. The plasmid, pMON13354, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #11













[SEQ ID NO:75]












        Asn Cys Ser Asn Met Ile Asp Glu Ile Ile













Thr His Leu Lys Gln Pro Pro Leu Pro Leu Leu Asp













Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile Leu













Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala













Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser













Ala Ile Glu Ser Ile Leu Lys Asn Leu Leu Pro Cys













Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg His Pro













Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg













Glu Lys Leu Thr Phe Tyr Leu Val Ser Leu Glu His













Ala Gln Glu Gln Gln











DNA sequence #19 [SEQ ID NO:115] codes for the foregoing pMON13354 polypeptide.




EXAMPLE 21




Construction of pMON13360




Plasmid pMON13352 DNA was digested with restriction enzymes NsiI and EcoRI, resulting in a 4178 base pair NsiI,EcoRI fragment. The genetic elements derived from pMON13352 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, pAraBAD promoter, g10L ribosome binding site, lamB secretion leader and the bases encoding amino acids 15-71 and 106-125 of (15-125)hIL-3. Plasmid pMON13350 DNA was digested with NsiI and EcoRI. The resulting 111 base pair NsiI, EcoRI fragment encodes amino acids 72-105 of (15-125)hIL-3. The eluted restriction fragments were concentrated and desalted using Centricon 30 concentrators. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated and analyzed by restriction analysis. Clones containing the correct insert lost a XmnI site as compared with pMON13352. Positive clones were identified by the loss of a 615 base pair XmnI fragment. The DNA was sequenced to confirm the correct insert. The resulting (15-125)hIL-3 variant has the following amino acid substitutions: 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and 123E. The codons encoding amino acids 72-125 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13360, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #12













[SEQ ID NO:76]












        Asn Cys Ser Asn Met Ile Asp Glu Ile Ile













Thr His Leu Lys Gln Pro Pro Leu Pro Leu Leu Asp













Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile Leu













Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala













Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser













Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys













Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro













Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg













Glu Lya Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln













Ala Gln Glu Gln Gln











DNA sequence #23 [SEQ ID NO:119] encodes the foregoing pMON13360 polypeptide.




EXAMPLE 22




Construction of pMON13361




Plasmid pMON13352 DNA was digested with restriction enzymes NsiI and EcoRI, resulting in a 4178 base pair NsiI,EcoRI fragment. The genetic elements derived from pMON13352 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, pAraBAD promoter, g10L ribosome binding site, lamB secretion leader and the bases encoding amino acids 15-71 and 106-125 of (15-125)hIL-3. Plasmid pMON13355 DNA was digested with NsiI and EcoRI. The resulting 111 base pair NsiI, EcoRI fragment encodes amino acids 72-105 of (15-125)hIL-3. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Clones containing the correct insert contained an additional RsaI site which results in a 1200 base pairs RsaI fragment. The DNA was sequenced to confirm the correct insert. The resulting (15-125)hIL-3 variant has the following amino acid substitutions: 73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V, 120Q and 123E. The codons encoding amino acids 72-125 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13361, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #13













[SEQ ID NO:77]












        Asn Cys Ser Asn Met Ile Asp Glu Ile Ile













Thr His Leu Lys Gln Pro Pro Leu Pro Leu Leu Asp













Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile Leu













Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala













Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser













Gly Ile Glu Ala Ile Leu Arg Asn Leu Val Pro Cys













Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro













Ile Thr Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg













Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln













Ala Gln Glu Gln Gln











DNA sequence #24 [SEQ ID NO:120] codes for the foregoing pMON13361 polypeptide.




EXAMPLE 23




Construction of pMON13362




Plasmid pMON13354 DNA was digested with restriction enzymes NsiI and EcoRI, resulting in a 4178 base pair NsiI,EcoRI fragment. The genetic elements derived from pMON13354 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, pAraBAD promoter, g10L ribosome binding site, lamB secretion leader and the bases encoding amino acids 15-71 and 106-125 of (15-125)hIL-3. Plasmid pMON13355 DNA was digested with NsiI and EcoRI. The resulting 111 base pair NsiI, EcoRI fragment encodes amino acids 72-105 of (15-125)hIL-3. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Clones containing the correct insert contained an additional RsaI site which results in a 1200 base pairs RsaI fragment. The DNA was sequenced to confirm the correct insert. The resulting (15-125)hIL-3 variant has the following amino acid substitutions: 73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V, 117S, 120H and 123E. The codons encoding amino acids 72-125 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13362, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #14













[SEQ ID No:78]












        Asn Cys Ser Asn Met Ile Asp Glu Ile Ile













Thr His Leu Lys Gln Pro Pro Leu Prc Leu Leu Asp













Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile Leu













Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala













Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser













Gly Ile Glu Ala Ile Leu Arg Asn Leu Val Pro Cys













Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro













Ile Thr Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg













Glu Lys Leu Thr Phe Tyr Leu Val Ser Leu Glu His













Ala Gln Glu Gln Gln











DNA sequence #25 [SEQ ID NO:121] codes for the foregoing pMON13362 polypeptide.




EXAMPLE 24




Construction of pMON13363




Plasmid pMON13344 DNA was digested with restriction enzymes NsiI and EcoRV, resulting in a 4218 base pair NsiI,EcoRV fragment. The genetic elements derived from pMON13344 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, pAraBAD promoter, g10L ribosome binding site, lamB secretion leader and the bases encoding amino acids 15-46 and 72-125 of (15-125)hIL-3. Plasmid pMON13348 DNA was digested with NsiI and EcoRV. The resulting 71 base pair NsiI, EcoRV fragment encodes amino acids 47-71 of (15-125)hIL-3. The restriction fragments were ligated with T4 ligase, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Clones containing the correct insert contained an additional DdeI site which results in DdeI restriction fragments of 806 and 167 base pairs compared to 973 base pairs in pMON13344. The DNA was sequenced to confirm the correct insert. The resulting (15-125)hIL-3 variant has the following amino acid substitutions: 18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N and 69E. The codons encoding amino acids 15-71 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13363, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #15













[SEQ ID NO:79]












        Asn Cys Ser Tle Met Ile Asp Glu Ile Ile













His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp













Pro Asn Asn Leu Asn Ala Glu Asp Val Asp Ile Leu













Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser













Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser













Ala Ile Glu Ser Ile Leu Lys Asn Leu Leu Pro Cys













Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg His Pro













Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg













Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn













Ala Gln Ala Gln Gln











DNA sequence #20 [SEQ ID NO:116] codes for the foregoing pMON13363 polypeptide.




EXAMPLE 25




Construction of pMON13364




Plasmid pMON13345 DNA was digested with restriction enzymes NsiI and EcoRV, resulting in a 4218 base pair NsiI,EcoRV fragment. The genetic elements derived from pMON13345 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, pAraBAD promoter, g10L ribosome binding site, lamB secretion leader and the bases encoding amino acids 15-46 and 72-125 of (15-125)hIL-3. Plasmid pMON13349 DNA was digested with NsiI and EcoRV. The resulting 71 base pair NsiI, EcoRV fragment encodes amino acids 47-71 of (15-125)hIL-3. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Clones containing the correct insert contained an additional DdeI site which results in DdeI restriction fragments of 806 and 167 base pairs compared to 973 base pairs in pMON13344. The DNA was sequenced to confirm the correct insert. The resulting (15-125)hIL-3 variant has the following amino acid substitutions: 18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H and 69E. The codons encoding amino acids 15-71 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13364, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #16












[SEQ ID NO:80]











        Asn Cys Ser Ile Met Ile Asp Glu Ile Ile













His His Leu Lys Arg Pro Pro Asn Pro Leu Leu Asp













Pro Asn Asn Leu Asn Ser Glu Asp Met Asp Ile Leu













Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala













Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser













Ala Ile Glu Ser Ile Leu Lys Asn Leu Leu Pro Cys













Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg His Pro













Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg













Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn













Ala Gln Ala Gln Gln











DNA sequence #21 [SEQ ID NO:117] codes for the foregoing pMON13364 polypeptide.




EXAMPLE 26




Construction of pMON13365




Plasmid pMON13346 DNA was digested with restriction enzymes NsiI and EcoRV, resulting in a 4218 base pair NsiI,EcoRV fragment. The genetic elements derived from pMON13346 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, pAraBAD promoter, g10L ribosome binding site, lamB secretion leader and the bases encoding amino acids 15-46 and 72-125 of (15-125)hIL-3. Plasmid pMON13347 DNA was digested with NsiI and EcoRV. The resulting 71 base pair NsiI, EcoRV fragment encodes amino acids 47-71 of (15-125)hIL-3. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Clones containing the correct insert contained an additional DdeI site which results in DdeI restriction fragments of 806 and 167 base pairs compared to 973 base pairs in pMON13344. The DNA was sequenced to confirm the correct insert. The resulting (15-125)hIL-3 variant has the following amino acid substitutions: 18I, 25H, 29V, 32A, 37S, 425, 45M, 51R, 55L, 59L, 62V, 67N and 69E. The codons encoding amino acids 15-71 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13365, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #17













[SEQ ID NO:81]












        Asn Cys Ser Ile Met Ile Asp Glu Ile Ile













His His Leu Lys Val Pro Pro Ala Pro LGu Leu Asp













Ser Asn Asn Leu Asn Ser Glu Asp Met Asp Ile Leu













Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Leu Ala













Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser













Ala Ile Glu Ser Ile Leu Lys Asn Leu Leu Pro Cys













Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg His Pro













Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg













Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn













Ala Gln Ala Gln Gln











DNA sequence #22 [SEQ ID NO:118] codes for the foreging pMON13365 polypeptide.




EXAMPLE 27




Construction of pMON13298




Plasmid pMON5978 DNA was digested with restriction enzymes NsiI and HindIII, resulting in a 3789 base pair NsiI,HindIII fragment. The genetic elements derived from pMON5978 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, precA promoter, g10L ribosome binding site, and the bases encoding amino acids 15-71 of (15-125)hIL-3. Plasmid pMON13360 DNA was digested with NsiI and HindIII. The resulting 175 base pair NsI, HindIII fragment encodes amino acids 72-125 of (15-125)hIL-3. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The resulting (15-125)hIL-3 variant has the following amino acid substitutions: 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and 123E. The codons encoding amino acids 72-125 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13298, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #18












[SEQ ID NO:82]











Met Ala Asn Cys Ser Asn Met Ile Asp Glu Ile Ile













Thr His Leu Lys Gln Pro Pro Leu Pro Leu Leu Asp













Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile Leu













Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala













Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser













Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys













Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro













Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg













Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln













Ala Gln Glu Gln Gln











DNA sequence #29 [SEQ ID NO:125] codes for the foregoing pMON13298 polypeptide.




EXAMPLE 28




Construction of pMON13299




Plasmid pMON5978 DNA was digested with restriction enzymes NsiI and HindIII, resulting in a 3789 base pair NsiI,HindIII fragment. The genetic elements derived from pMON5978 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, precA promoter, g10L ribosome binding site and the bases encoding amino acids 15-71 of (15-125)hIL-3. Plasmid pMON13361 DNA was digested with NsiI and HindIII, the resulting 175 base pair NsiI, HindIII fragment encodes amino acids 72-125 of (15-125)hIL-3. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The resulting (15-125)hIL-3 variant has the following amino acid substitutions: 73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116v, 120Q and 123E. The codons encoding amino acids 72-125 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13299, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #19













[SEQ ID NO:83]












Met Ala Asn Cys Ser Asn Met Ile Asp Glu Ile Ile













Thr His Leu Lys Gln Pro Pro Leu Pro Leu Leu Asp













Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile Leu













Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala













Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser













Gly Ile Glu Ala Ile Leu Arg Asn Leu Val Pro Cys













Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro













Ile Thr Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg













Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln













Ala Gln Glu Gln Gln











DNA sequence #30 [SEQ ID NO:126] codes for the foregoing pMON13299 polypeptide.




EXAMPLE 29




Construction of pMON13300




Plasmid pMON5978 DNA was digested with restriction enzymes NsiI and HindIII, resulting in a 3789 base pair NsiI,HindIII fragment. The genetic elements derived from pMON5978 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, precA promoter, g10L ribosome binding site, and the bases encoding amino acids 15-71 of (15-125)hIL-3. Plasmid pMON13362 DNA was digested with NsiI and HindIII. The resulting 175 base pair NsiI, HindIII fragment encodes amino acids 72-125 of (15-125)hIL-3. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The resulting (15-125)hIL-3 variant has the following amino acid substitutions: 73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V, 117S, 120H and 123E. The codons encoding amino acids 72-125 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13300, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #20












[SEQ ID NO:84]











Met Ala Asn Cys Ser Asn Met Ile Asp Glu Ile Ile













Thr His Leu Lys Gln Pro Pro Leu Pro Leu Leu Asp













Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile Leu













Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala













Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser













Gly Ile Glu Ala Ile Leu Arg Asn Leu Val Pro Cys













Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro













Ile Thr Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg













Glu Lys Leu Thr Phe Tyr Leu Val Ser Leu Glu His













Ala Gln Glu Gln Gln











DNA sequence #31 [SEQ ID NO:127] codes for the foregoing pMON13300 polypeptide.




EXAMPLE 30




Construction of pMON13301




Plasmid pMON5978 DNA was digested with restriction enzymes NcoI and NsiI, resulting in a 3794 base pair NcoI,NsiI fragment. The genetic elements derived from pMON5978 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, precA promoter, g10L ribosome binding site and the bases encoding amino acids 72-125 of (15-125)hIL-3. Plasmid pMON13363 DNA was digested with NcoI and NsiI. The resulting 170 base pair NcoI, NsiI fragment encodes amino acids 15-71 of (15-125)hIL-3. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The resulting (15-125)hIL-3 variant has the following amino acid substitutions: 18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N and 69E. The codons encoding amino acids 15-71 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13301, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #21












[SEQ ID NO:85]











Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile













His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp













Pro Asn Asn Leu Asn Ala Glu Asp Val Asp Ile Leu













Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser













Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser













Ala Ile Glu Ser Ile Leu Lys Asn Leu Leu Pro Cys













Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg His Pro













Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg













Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn













Ala Gln Ala Gln Gln











DNA sequence #26 [SEQ ID NO:122] codes for the foregoing pMON13301 polypeptide.




EXAMPLE 31




Construction of pMON13302




Plasmid pMON5978 DNA was digested with restriction enzymes NcoI and NsiI, resulting in a 3794 base pair NcoI, NsiI fragment. The genetic elements derived from pMON5978 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, precA promoter, g10L ribosome binding site, and the bases encoding amino acids 72-125 of (15-125)hIL-3. Plasmid pMON13364 DNA was digested with NcoI and NsiI. The resulting 170 base pair NcoI, NsiI fragment encodes amino acids 15-71 of (15-125)hIL-3. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The resulting (15-125)hIL-3 variant has the following amino acid substitutions: 18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H and 69E. The codons encoding amino acids 15-71 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13302, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #22













[SEQ ID NO:86]












Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile













His His Leu Lys Arg Pro Pro Asn Pro Leu Leu Asp













Pro Asn Asn Leu Asn Ser Glu Asp Met Asp Ile Leu













Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala













Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser













Ala Ile Glu Ser Ile Leu Lys Asn Leu Leu Pro Cys













Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg His Pro













Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg













Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn













Ala Gln Ala Gln Gln











DNA sequence #27 [SEQ ID NO:123] codes for the foregoing pMON13302 polypeptide.




EXAMPLE 32




Construction of pMON13303




Plasmid pMON5978 DNA was digested with restriction enzymes NcoI and NsiI, resulting in a 3794 base pair NcoI,NsiI fragment. The genetic elements derived from pMON5978 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, precA promoter, g10L ribosome binding site, and the bases encoding amino acids 72-125 of (15-125)hIL-3. Plasmid pMON13365 DNA was digested with Ncol and NsiI. The resulting 170 base pair NcoI, NsiI fragment encodes amino acids 15-71 of (15-125)hIL-3. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The resulting (15-125)hIL-3 variant has the following amino acid substitutions: 18I, 25H, 29V, 32A, 37S, 42S, 45M, 51R, 55L, 59L, 62V, 67N and 69E. The codons encoding amino acids 15-71 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13303, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #23













[SEQ ID NO:87]












Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile













His His Leu Lys Val Pro Pro Ala Pro Leu Leu Asp













Ser Asn Asn Leu Asn Ser Glu Asp Met Asp Ile Leu













Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Leu Ala













Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser













Ala Ile Glu Ser Ile Leu Lys Asn Leu Leu Pro Cys













Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg His Pro













Ile His I1e Lys Asp Gly Asp Trp Asn Glu Phe Arg













Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn













Ala Gln Ala Gln Gln











DNA sequence #28 [SEQ ID NO:124] codes for the foregoing pMON13303 polypeptide.




EXAMPLE 33




Construction of pMON13287




Plasmid pMON2341 DNA was digested with restriction enzymes NcoI and HindIII, resulting in a 3619 base pair NcoI,HindIII fragment. The genetic elements derived from pMON2341 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, precA promoter and g10L ribosome binding site. Plasmid pMON13363 DNA was digested with NcoI and NsiI. The resulting 170 base pair NcoI, NsiI fragment encodes amino acids 15-71 of (15-125)hIL-3. Plasmid pMON13360 DNA was digested with NsiI and HindIII. The resulting 175 base pair NsiI, HindIII fragment encodes amino acids 72-125 of (15-125)hIL-3. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The resulting (15-125)hIL-3 variant has the following amino acid substitutions: 18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and 123E. The codons encoding amino acids 15-125 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13287, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #24












[SEQ ID NO:88]











Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile













His His Leu Lys Arg Pro Pro Ala Pro Leu Leu Asp













Pro Asn Asn Leu Asn Ala Glu Asp Val Asp Ile Leu













Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser













Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser













Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys













Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro













Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg













Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln













Ala Gln Glu Gln Gln











DNA sequence #1 [SEQ ID NO:97] codes for the foregoing pMON13287 polypeptide.




EXAMPLE 34




Construction of pMON13288




Plasmid pMON2341 DNA was digested with restriction enzymes NcoI and HindIII, resulting in a 3619 base pair NcoI,HindIII fragment. The genetic elements derived from pMON2341 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, precA promoter and g10L ribosome binding site. Plasmid pMON13364 DNA was digested with NcoI and NsiI. The resulting 170 base pair NcoiI, NsiI fragment encodes amino acids 15-71 of (15-125)hIL-3. Plasmid pMON13360 DNA was digested with NsiI and HindIII. The resulting 175 base pair NsiI, HindIII fragment encodes amino acids 72-125 of (15-125)hIL-3. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The resulting (15-125)hIL-3 variant has the following amino acid substitutions: 18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and 123E. The codons encoding amino acids 15-125 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13288, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #25












[SEQ ID NO:89]











Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile













His His Leu Lys Arg Pro Pro Asn Pro Leu Leu Asp













Pro Asn Asn Leu Asn Ser Glu Asp Met Asp Ile Leu













Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala













Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser













Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys













Leu Pro Ser Ala Thr Ala Ala Prc Ser Arg His Pro













Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg













Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln













Ala Gln Glu Gln Gln











DNA sequence 44 [SEQ ID NO:100] codes for the foregoing pMON13288 polypeptide.




EXAMPLE 35




Construction of pMON13289




Plasmid pMON2341 DNA was digested with restriction enzymes NcoI and HindIII, resulting in a 3619 base pair NcoI,HindIII fragment. The genetic elements derived from pMON2341 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, precA promoter and g10L ribosome binding site. Plasmid pMON13365 DNA was digested with NcoI and NsiI. The resulting 170 base pair Ncoi, NsiI fragment encodes amino acids 15-71 of (15-125)hIL-3. Plasmid pMON13360 DNA was digested with NsiI and HindIII. The resulting 175 base pair NsiI, HindIII fragment encodes amino acids 72-125 of (15-125)hIL-3. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The resulting (15-125)hIL-3 variant has the following amino acid substitutions: 18I, 25H, 29V, 32A, 37S, 42S, 45M, 51R, 55L, 59L, 62V, 67N, 69E, 73G, 76A, 79R, 82Q, 87S, 935, 98I, 101A, 105Q, 109E, 116V, 120Q and 123E. The codons encoding amino acids 15-125 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13289, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #26














Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu




[SEQ ID NO:90]














Lys Val Pro Pro Ala Pro Leu Leu Asp Ser Asn Asn Leu Asn Ser













Glu Asp Met Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn













Leu Leu Ala Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser













Gly Ile Glu Ala Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser













Ala Thr Ala Ala Pro Ser Arg His Pro Ile Ile Ile Lys Ala Giy













Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr













Leu Glu Gln Ala Gln Glu Gln Gln











DNA sequence #7 [SEQ ID NO:103] codes for the foregoing pMON13289 polypeptide.




EXAMPLE 36




Construction of pMON13290




Plasmid pMON2341 DNA was digested with restriction enzymes NcoI and HindIII, resulting in a 3619 base pair NcoI,HindIII fragment. The genetic elements derived from pMON2341 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, precA promoter and g10L ribosome binding site. Plasmid pMON13363 DNA was digested with NcoI and NsiI. The resulting 170 base pair NcoI, NsiI fragment encodes amino acids 15-71 of (15-125)hIL-3. Plasmid pMON13361 DNA was digested with NsiI and HindIII. The resulting 175 base pair NsiI, HindIII fragment encodes amino acids 72-125 of (15-125)hIL-3. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The resulting (15-125)hIL-3 variant has the following amino acid substitutions: 18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V, 120Q and 123E. The codons encoding amino acids 15-125 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13290, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #27














Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu




[SEQ ID NO:91]














Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala













Glu Asp Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu PrO Asn













Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser













Gly Ile Glu Ala Ile Leu Arg Asn Leu Val Pro Cys Leu Pro Ser













Ala Thr Ala Ala Pro Ser Arg His Pro Ile Thr Ile Lys Ala Gly













Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr













Leu Glu Gln Ala Gln Glu Gln Gln











DNA sequence #2 [SEQ ID NO:98] codes for the foregoing pMON13290 polypeptide.




EXAMPLE 37




Construction of pMON13292




Plasmid pMON2341 DNA was digested with restriction enzymes NcoI and HindIII, resulting in a 3619 base pair NcoI,HindIII fragment. The genetic elements derived from pMON2341 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, precA promoter and g10L ribosome binding site. Plasmid pMON13365 DNA was digested with NcoI and NsiI. The resulting 170 base pair NcoI, NsiI fragment encodes amino acids 15-71 of (15-125)hIL-3. Plasmid pMON13361 DNA was digested with NsiI and HindIII. The resulting 175 base pair NsiI, HindIII fragment encodes amino acids 72-125 of (15-125)hIL-3. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The resulting (15-125)hIL-3 variant has the following amino acid substitutions: 18I, 25H, 29V, 32A, 37S, 42S, 45M, 51R, 55L, 59L, 62V, 67N, 69E, 73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V, 120Q and 123E. The codons encoding amino acids 15-125 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13292, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #28














Met Ala Asn cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu




[SEQ ID NO:92]














Lys Val Pro Pro Ala Pro Leu Leu Asp Ser Asn Asn Leu Asn Ser













Glu Asp Met Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn













Leu Leu Ala Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser













Gly Ile Glu Ala Ile Leu Arg Asn Leu Val Pro Cys Leu Pro Ser













Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr













Leu Glu Gln Ala Gln Glu Gln Gln











DNA sequence #8 [SEQ ID NO:104] codes for the foregoing pMON13292 polypeptide.




EXAMPLE 38




Construction of pMON13294




Plasmid pMON2341 DNA was digested with restriction enzymes NCoI and HindIII, resulting in a 3619 base pair NcoI,HindIII fragment. The genetic elements derived from pMON2341 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, precA promoter and g10L ribosome binding site. Plasmid pMON13364 DNA was digested with NcoI and NsiI. The resulting 170 base pair NcoI, NsiI fragment encodes amino acids 15-71 of (15-125)hIL-3. Plasmid pMON13362 DNA was digested with NsiI and HindIII. The resulting 175 base pair NsiI, HindIII fragment encodes amino acids 72-125 of (15-125)hIL-3. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The resulting (15-125)hIL-3 variant has the following amino acid substitutions: 18I, 25H, 29R, 32N, 35 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V, 117S, 120H and 123E. The codons encoding amino acids 15-125 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13294, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #29














Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu




[SEQ ID NO:93]














Lys Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser













Glu Asp Met AsP Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn













Leu Leu Ala Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser













Gly Ile Glu Ala Ile Leu Arg Asn Leu Val Pro Cys Leu Pro Ser













Ala Thr Ala Ala Pro Ser Arg His Pro Ile Thr Ile Lys Ala Gly













Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Ser













Leu Glu His Ala Gln Glu Gln Gln











DNA sequence #6 [SEQ ID NO:102] codes for the foregoing pMON13294 polypeptide.




EXAMPLE 39




Construction of pMON13295




Plasmid pMON2341 DNA was digested with restriction enzymes NcoI and HindIII, resulting in a 3619 base pair NcoI,HindIII fragment. The genetic elements derived from pMON2341 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, precA promoter and g10L ribosome binding site. Plasmid pMON13365 DNA was digested with NcoI and NsiI. The resulting 170 base pair NcoI, NsiI fragment encodes amino acids 15-71 of (15-125)hIL-3. Plasmid pMON13362 DNA was digested with NsiI and HindIII. The resulting 175 base pair NsiI, HindIII fragment encodes amino acids 72-125 of (15-125)hIL-3. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The resulting (15-125)hIL-3 variant has the following amino acid substitutions: 18I, 25H, 29V, 32A, 37S, 42S, 45M, 51R, 55L, 59L, 62V, 67N, 69E, 73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V, 117S, 120H and 123E. The codons encoding amino acids 15-125 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13295, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #30














Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu




[SEQ ID NO:94]














Lys Val Pro Pro Ala Pro Leu Leu Asp Ser Asn Asn Leu Asn Ser













Glu Asp Met Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn













Leu Leu Ala Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser













Gly Ile Glu Ala Ile Leu Arg Asn Leu Val Pro Cys Leu Pro Ser













Ala Thr Ala Ala Pro Ser Arg His Pro Ile Thr Ile Lys Ala Gly













Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Ser













Leu Glu His Ala Gln Glu Gln Gln











DNA sequence #9 [SEQ ID NO:105] codes for the foregoing pMON13295 polypeptide.




EXAMPLE 40




Construction of pMON13312




Plasmid pMON2341 DNA was digested with restriction enzymes NcoI and HindIII, resulting in a 3619 base pair NcoI,HindIII fragment. The genetic elements derived from pMON2341 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, precA promoter and g10L ribosome binding site. Plasmid pMON13364 DNA was digested with NcoI and NsiI. The resulting 170 base pair NcoI, NsiI fragment encodes amino acids 15-71 of (15-125)hIL-3. Plasmid pMON13361 DNA was digested with NsiI and HindIII. The resulting 175 base pair NsiI, HindIII fragment encodes amino acids 72-125 of (15-125)hIL-3. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The resulting (15-125)hIL-3 variant has the following amino acid substitutions: 18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H, 69E, 73G, 76A, 79R, 82V, 87S, 93S, 98T, 101A, 105Q, 109E, 116V, 120Q and 123E. The codons encoding amino acids 15-125 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13312, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #31














Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu




[SEQ ID NO:95]














Lys Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser













Glu Asp Met Asp Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn













Leu Leu Ala Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser













Gly Ile Glu Ala Ile Leu Arg Asn Leu Val Pro Cys Leu Pro Ser













Ala Thr Ala Ala Pro Ser Arg His Pro Ile Thr Ile Lys Ala Gly













Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Thr













Leu Glu Gln Ala Gln Glu Gln Gln











DNA sequence #5 [SEQ ID NO:101] codes for the foregoing pMON13312 polypeptide.




EXAMPLE 41




Construction of pMON13313




Plasmid pMON2341 DNA was digested with restriction enzymes NcoI and HindIII, resulting in a 3619 base pair NcoI,HindIII fragment. The genetic elements derived from pMON2341 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, precA promoter and g10L ribosome binding site. Plasmid pMON13363 DNA was digested with NcoI and NsiI. The resulting 170 base pair NcoI, NsiI fragment encodes amino acids 15-71 of (15-125)hIL-3. Plasmid pMON13362 DNA was digested with NsiI and HindIII. The resulting 175 base pair NsiI, HindIII fragment encodes amino acids 72-125 of (15-125)hIL-3. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis, and sequenced to confirm the correct insert. The resulting (15-125)hIL-3 variant has the following amino acid substitutions: 18I, 25H, 29R, 32A, 37P, 42A, 45V, 51R, 55L, 60S, 62V, 67N, 69E, 73G, 76A, 79R, 82V, 87S, 935, 98T, 101A, 105Q, 109E, 116V, 117S, 120H and 123E. The codons encoding amino acids 15-125 of (15-125)hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13313, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




Peptide #32














Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu




[SEQ ID NO:96]














Lys Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala













Glu Asp Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn













Leu Glu Ser Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser













Gly Ile Glu Ala Ile Leu Arg Asn Leu Val Pro Cys Leu Pro Ser













Ala Thr Ala Ala Pro Ser Arg His Pro Ile Thr Ile Lys Ala Gly













Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr Phe Tyr Leu Val Ser













Leu Glu His Ala Gln Glu Gln Gln











DNA sequence #3 [SEQ ID NO:99] codes for the foregoing pMON13313 polypeptide.




EXAMPLE 42




Construction of pMON5987




Plasmid pMON6458 DNA was digested with restriction enzymes NcoI and HindIII, resulting in a 3940 base pair NcoI,HindIII fragment. The genetic elements derived from pMON6458 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, pAraBAD promoter, g10L ribosome binding site and lamB secretion leader. Plasmid pMON5978 DNA was digested with NcoI and NsiI. The resulting 170 base pair NcoI, NsiI fragment encodes amino acids 15-71 of (15-125)hIL-3. Plasmid pMON5976 DNA was digested with NsiI and HindIII. The resulting 175 base pair NsiI,HindIII fragment encodes amino acids 72-125 of (15-125)hIL-3. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated and screened for the restriction sites EcoRV and NheI and DNA sequenced to confirm the correct insert.




EXAMPLE 43




Construction of pMON5988




The plasmid DNA of pMON5987 was digested with NheI and EcoRI, resulting in a 3903 base pair NheI, EcoRI fragment. The 3903 base pair NheI, EcoRI fragment was ligated to 1.0 picomoles of the following annealed oligonucleotides:












5′-CTAGCCACGGCCGCACCCACGCGACATCCAATCCATATCAA-













    3′-GGTGCCGGCGTGGGTGCGCTGTAGGTTAGGTATAGTT-













GGACGGTGACTGGAATG-3′ [SEQ ID NO:131]













CCTGCCACTGACCTTACAATT-5′ [SEQ ID NO:132]











The ligation reaction mixture was used to transform


E. coli


K-12 strain JM101 and transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated and sequenced to confirm positive clones. This plasmid was constructed to change alanine 101 to aspartic acid in the hIL-3 gene (15-125). This plasmid was designated pMON5988.




EXAMPLE 44




Construction of pMON5853 (

FIG. 6

) which Encodes [Met-(15-133)hIL-3 (Arg


129


)]




Plasmid DNA of pMON5847 (Example 2) was treated with NcoI. The restriction enzyme was inactivated by heat treatment (65° C. for 10 minutes). The DNA was then treated with large fragment of DNA polymerase I (Klenow) in the presence of all four nucleotide precursors. This produces DNA termini with non-overlapping ends. After 5 minutes at 37° C., the polymerase was inactivated by heat treatment at 65° C. for 10 minutes. The DNA was then treated with HpaI, an enzyme which produces non-overlapping termini. The DNA was ethanol precipitated and ligated. The ligation reaction mixture was used to transform competent JM101 cells to ampicillin resistance. Colonies were picked and plasmid DNA was analyzed by restriction analysis. A plasmid designated pMON5853 was identified as one containing a deletion of the amino terminal 14 codons of the hIL-3 gene. The DNA sequence for the junction of the ribosome binding site to the (15-133) hIL-3 gene was determined to be the following:












5′-AAGGAGATATATCCATGAACTGCTCTAAC-3′[SEQ ID NO:133]






                M   N  C  S  N     [SEQ ID NO:134]











The lower line contains the one letter code for the amino acids specified by the coding sequence of the amino terminus of the 15-133 hIL-3 gene. These are methionine, asparagine, cysteine, serine and asparagine.




When cultures of JM101 cells harboring this plasmid were induced with nalidixic acid, it was found that hIL-3 (15-133) accumulated at levels higher than hIL-3 (pMON5847).




The plasmid, pMON5853, encodes Met-(15-133) hIL-3 (Arg


129


) which has the following amino acid sequence:












[SEQ ID NO:135]











    Met Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr













His Leu Lys Gln Pro Pro Leu Pro Leu Leu Asp Phe Asn













Asn Leu Asn Gly Glu Asp Gln Asp Ile Leu Met Glu Asn













Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe Asn Arg Ala













Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser Ile













Leu Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala













Ala Pro Thr Arg His Pro Ile His Ile Lys Asp Gly Asp













Trp Asn Glu Phe Arg Arg Lys Leu Thr Phe Tyr Leu Lys













Thr Leu Glu Asn Ala Gln Ala Gln Gln Thr Thr Leu Arg













Leu Ala Ile Phe











EXAMPLE 45




Construction of pMON5873 which Encodes [Met-(1-133)hIL-3]




The gene obtained from British Biotechnology, Ltd. specified arginine at codon position 129. The amino acid specified in the native hIL-3 cDNA is serine. To produce a protein with the native sequence at this position, the portion of the coding sequence between the EcoRI site at codons 106 and 107 and the NheI site at codons 129 and 130 was replaced. Plasmid DNA of pMON5854 (Example 3) and pMON5853 (Example 44) were treated with EcoRI and NheI. The larger fragments of each were gel purified. These were ligated to a pair of an annealed oligonucleotides with the following sequences:














5′-AATTCCGTCGTAAACTGACCTTCTATCTGAAAACC-




[SEQ ID NO: 136]














    3′-GGCAGCATTTGACTGGAAGATAGACTTTTGG-













TTGGAGAACGCGCAGGCTCAACAGACCACTCTGTCG-3′













AACCTCTTGCGCGTCCGAGTTGTCTGGTGAGACAGCGATC-5′




[SEQ ID NO:137]











The ligation reaction mixtures were used to transform competent JM101 cells to ampicillin resistance. Colonies were picked into broth and grown. Plasmid DNA was isolated and screened for the presence of a new StyI recognition site present in the synthetic DNA and not in pMON5854 and pMON5853. The nucleotide sequence of the gene in the region between EcoRI and NheI was determined and found to be that of the synthetic oligonucleotides. The new plasmids were designated pMON5873 encoding [Met-(1-133)hIL-3] and pMON5872 encoding [Met-(15-133)hIL-3].




The plasmid, pMON5873, encodes Met-(1-133)hIL-3 which has the following amino acid sequence:












[SEQ ID NO:128]











Met Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser













Trp Val Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr













His Leu Lys Gln Pro Pro Leu Pro Leu Leu Asp Phe Asn













Asn Leu Asn Gly Glu Asp Gln Asp Ile Leu Met Glu Asn













Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe Asn Arg Ala













Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser Ile













Leu Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala













Ala Pro Thr Arg His Pro Ile His Ile Lys Asp Gly Asp













Trp Asn Glu Phe Arg Arg Lys Leu Thr Phe Tyr Leu Lys













Thr Leu Glu Asn Ala Gln Ala Gln Gln Thr Thr Leu Ser













Leu Ala Ile Phe











EXAMPLE 46




Construction of pMON6458




Plasmid pMON6525 was digested with restriction enzymes HindIII and SalI and the resulting 3172 base pair fragment was isolated from a 1% agarose gel by interception onto DEAE membrane. The genetic elements derived from pMON6525 are the beta-lactamase gene (AMP), pBR327 origin of replication, and phage f1 origin of replication as the transcription terminator. (The genetic elements derived from plasmid pMON6525 are identical to those in plasmid pMON2341 which could also be used to construct pMON6458.) Plasmid pMON6457 was digested with restriction enzymes HindIII and SalI and the resulting 1117 base pair fragment was isolated by PAGE and crush and soak elution. The genetic elements derived from pMON6457 are the pAraBAD promoter, g10L ribosome binding site, lamB secretion leader and the (15-125) hIL-3 gene. The restriction fragments were ligated and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated and the size of the inserted fragment was determined by restriction analysis employing restriction enzymes NcoI and HindIII in double digest. Clones containing the hIL-3 gene (encoding amino acids 15-125) contained a 345 base pair NcoI, HindIII restriction fragment. This construct was designated pMON6458. This plasmid was constructed to eliminate an EcoRI restriction site outside the hIL-3 gene coding region in plasmid pMON6457.




EXAMPLE 47




Construction of pMON5976 which Encodes [Met-(15-125)hIL-3 (Ala


101


)]




The plasmid DNA of pMON5941 isolated from the dam-


E. coli


strain GM48 was cleaved with ClaI and NsiI and ligated to 1 picomole of an annealed assembly of six oligonucleotides encoding amino acids 20-70 of hIL-3 (FIG.


2


). This synthetic fragment encodes three unique restriction sites, EcoRV, XhoI and PstI. The sequence of these oligonucleotides is shown in FIG.


2


.




The resulting ligation mix was used to transform competent


E. coli


JM101 cells to ampicillin resistant colonies. Plasmid DNA was isolated and the inserted fragment was determined to have both an EcoRV and NheI site. The nucleotide sequence of the region between ClaI and NsiI was determined and found to be that of the synthetic oligonucleotides. At codons 86-87 of a nucleotide sequence coding for (15-125)hIL-3, an NheI site was introduced. The plasmid with this alteration was designated pMON5941. This plasmid encodes Met-(15-125)hIL-3 which is altered at position 101 by replacement of aspartate by alanine.




Plasmid pMON5976 encodes Met-(15-125)hIL-3(Ala


101


) which has the following amino acid sequence:













[SEQ ID NO:138]












    Met Asn Cys Ser Asn Met Ile Asp Glu Ile Ile













Thr His Leu Lys Gln Pro Pro Leu Pro Leu Leu Asp













Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile Leu













Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala













Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser













Ala Ile Glu Ser Ile Leu Lys Asn Leu Leu Pro Cys













Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg His Pro













Ile His Ile Lys Ala Gly Asp Trp Asn Glu Phe Arg













Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn













Ala Gln Ala Gln Gln











EXAMPLE 48




Construction of pMON5917 which Encodes [Met-(15-8)hIL-3]




The plasmid DNA of pMON5853 was cleaved with NsiI and HindIII and ligated to an annealed pair of oligonucleotides encoding (70-88)hIL-3 with a new NheI endonuclease restriction site at codons 86-87. The sequence of these oligonucleotides is shown in Example 18.




The ligation mixture was used to transform competent


E. coli


JM101 cells, and ampicillin resistant colonies were picked. Plasmid DNA isolated from individual colonies was screened for the presence of the new NheI restriction site. The nucleotide sequence of the substituted portion was determined and found to be that of the synthetic oligonucleotides. The new plasmid was designated pMON5917 encoding Met-(15-88)hIL-3 containing a new NheI site at codons 86-87.




Plasmid pMON5917 encodes Met-(15-88)hIL-3 which has the following amino acid sequence:













[SEQ ID NO:139]












    Met Asn Cys Ser Asn Met Ile Asp Glu Ile Ile













Thr His Leu Lys Gln Pro Pro Leu Pro Leu Leu Asp













Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile Leu













Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala













Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser













Ala Ile Glu Ser Ile Leu Lys Asn Leu Leu Pro Cys













Leu Pro Leu Ala











EXAMPLE 49




Construction of pmon5941 which Encodes [Met-(15-125) hIL-3 Ala


101


]




The plasmid DNA of pMON5917 was cleaved with NheI and HindIII and ligated to two annealed pairs of oligonucleotides which encode amino acids 86-106 and 107-125 of hIL-3. The sequences of these oligonucleotides is shown below.














NheI to EcoRI








5′-CTAGCCACGGCCGCACCCACGCGACATCCAATCCATATCAAGGCTG-






    3′-GGTGCCGGCGTGGGTGCGCTGTAGGTTAGGTATAGTTCCGAC-













GTGACTGGAATG-3′




[SEQ ID NO:140]






CACTGACCTTACTTAA-5′




[SEQ ID NO:141]













EcoRI to HindIII






5′-AATTCCGTCGTAAACTGACCTTCTATCTGAAAACCTTGGAGAACGCGCA-






    3′-GGCAGCATTTGACTGGAAGATAGACTTTTGGAACCTCTTGCGCGT-













GGCTCAACAGTAATA-3′




[SEQ ID NO:142]






CCGAGTTGTCATTATTCGA-5′




[SEQ ID NO:143]











The ligation mixture was used to transform competent


E. coli


JM101 cells to ampicillin resistant colonies. Plasmid DNA was isolated from these cells and the size of the inserted fragment was determined to be larger by restriction analysis with NcoI and HindIII. The Asp to Ala 101 change is encoded on the NheI to EcoRI fragment. The nucleotide sequence of the portion of the coding region between the NheI and HindIII sites was determined and found to be that of the synthetic oligonucleotides. The new plasmid was designated pMON5941.




The plasmid, pMON5941, encodes Met-(15-125)hIL-3(Ala


101


) and contains a new NheI restriction site.




EXAMPLE 50




Construction of pMON6455




Plasmid pMON5905 was digested with restriction enzymes HindIII and NcoI resulting in a 3936 base pair fragment. The genetic elements derived from pMON5905 are the beta-lactamase gene (AMP), pBR327 origin of replication, pAraBAD promoter, g10L ribosome binding site, lamB secretion leader and phage f1 origin of replication as the transcription terminator. The following genetic elements; beta-lactamase gene (AMP), pBR327 origin of replication, g10L ribosome binding site and phage f1 origin of replication as the transcription terminator, derived from plasmid pMON5905 are identical to these in plasmid pMON5594 which could also be used to construct pMON6455. The AraBAD promoter is identical to that described in pMON6235. The lamB signal peptide sequence used in pMON6455 is that shown in

FIG. 8

fused to hIL-3 (15-125) at the NcoI site. Plasmid pMON5887 was digested with restriction enzymes HindIII and NcoI, resulting in a 384 base pair NcoI, HindIII fragment. The restriction fragments were ligated, and the ligation reaction mixture was used to transform into


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated and the size of the inserted fragment was determined by restriction analysis employing restriction enzymes NcoI and HindIII in double digest. Positive clones containing the hIL-3 gene (encoding amino acids 1-125) contained a 384 base pair NcoI, HindIII restriction fragment. This construct was designated pMON6455.




EXAMPLE 51




Construction of pMON6456




Plasmid pMON5905 was digested with restriction enzymes HindIII and NcoI resulting in a 3936 base pair fragment. The genetic elements derived from pMON5905 are the beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, pAraBAD promoter, g10L ribosome binding site and the lamB secretion leader. Plasmid pMON5871 was digested with restriction enzymes HindIII and NcoI, resulting in a 330 base pair NcoI, HindIII fragment. The genetic element derived from pMON5871 encompassed the bases encoding the (1-107) hIL-3 gene. The restriction fragments were ligated, and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated and the size of the inserted fragment was determined by restriction analysis employing restriction enzymes NcoI and HindIII in double digest. Clones containing the hIL-3 gene (encoding amino acids 1-107) contained a 330 base pair NcoI, HindIII restriction fragment. This construct was designated pMON6456.




EXAMPLE 52




Construction of pMON6457




Plasmid pMON6455 DNA grown in


E. coli


strain GM48 (dam-)was digested with restriction enzymes NcoI and ClaI, resulting in a 4263 base pair NcoI, ClaI fragment. The restriction fragment was ligated to 1.0 picomoles of annealed oligonucleotides with the following sequence coding for Met Ala 14-20 hIL-3:




5′-CATGGCTAACTGCTCTAACATGAT-3′ [SEQ ID NO:151]




3′-CGATTGACGAGATTGTACTAGC-5′ [SEQ ID NO:152]




The resulting DNA was transformed into


E. coli


K-12 strain JM101 and transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated and the size of the inserted fragment was determined by restriction analysis employing restriction enzymes XbaI and EcoRI in double digest. Positive clones containing the hIL-3 gene (encoding aa 15-125 of hIL-3) contained a 433 base pair XbaI, EcoRI restriction fragment. This construct was designated pMON6457. This plasmid was constructed to delete the first 14 amino acids of hIL-3. The coding sequence of the resulting gene begins as follows:















5′ ATG GCT AAC TGC . . . 3′




[SEQ ID NO:153]







   Met Ala Asn Cys . . .




[SEQ ID NO:154]







            15











The first two amino acids (Methionine, Alanine) create an NcoI restriction site and a signal peptidase cleavage site between the lamB signal peptide and (15-125) hIL-3. Plasmid pMON6457 encodes (15-125) hIL-3 which has the amino acid sequence designated SEQ ID NO:65.




EXAMPLE 53




Construction of pMON6235




One of the DNA fragments used to create this plasmid was generated by site-directed mutagenesis employing PCR techniques described previously using the following oligonucleotides, Oligo #51 [SEQ ID NO:155] and Oligo #52 [SEQ ID NO:156], were used as primers in this procedure. The template for the PCR reaction was


E. coli


strain W3110 chromosomal DNA, prepared as described in Maniatis (1982). The oligonucleotide primers were designed to amplify the AraBAD promoter (Greenfield et al., 1978). The resulting DNA product was digested with the restriction enzymes SacII and BglII. The reaction mixture was purified as described previously. Plasmid, pMON5594, DNA was digested with SacII and BglII, resulting in a 4416 base pair SacII,BglII restriction fragment which contains the following genetic elements; beta-lactamase gene (AMP), pBR327 origin of replication, G10L ribosome binding site, phage f1 origin of replication as the transcription terminator and the chloramphenicol acetyl transferase (cat) gene. The 4416 base pair SacII,BglII restriction fragment from pMON5594 was ligated to the PCR-generated SacII, BglII DNA fragment. The ligation mixture was used to transform


E. coli


K-112 strain JM101. Positive clones contained a 323 base pair SacII,BglII fragment and were DNA sequenced to confirm that the SacII,BglII fragment was the AraBAD promoter. This construct was designated pMON6235.




EXAMPLE 54




Construction of pMON5647




Plasmid pMON5585 [prepared as disclosed in EP 0241446 incorporated herein by reference in its entirety] DNA was digested with restriction enzymes NcoI and HindIII resulting in a 3273 base pair NcoI,HindIII fragment. The genetic elements derived from pMON5585 are the pBR327 origin of replication, precA promoter, g10L ribosome binding protein, bovine somatotropin gene (bST), beta-lactamase gene (AMP) and T7 transcription terminator. Plasmid pMON3267 [prepared as disclosed in EP 0241446 incorporated herein by reference in its entirety] DNA was digested with NcoI and HindIII enzymes resulting in a 580 base pair NcoI,HindIII fragment which contains the porcine somatotropin (pST) gene. The restriction fragments were ligated and the ligation reaction mixture was used to transform


E. coli


strain JM101. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis and sequenced to confirm the correct insert.




EXAMPLE 55




Construction of pMON710




Plasmid pMON709 consists of a 1614 base pair AvaI,EcoRI fragment of transposon TN7, containing the streptomycin adenylyltransferase gene (Fling et al., 1985) and a pUC9 linker (XmaI,HindIII) cloned between the HindIII and EcoRI sites of pUC19. The streptomycin adenylyltransferase gene COnfers resistance to streptomycin and spectinomycin. Plasmid pMON709 was mutagenized by oligonucleotide site-directed mutagenesis (methods described in Zoller and Smith, 1982) to introduce an EcoRV site at the 3′ end of the streptomycin adenylyltransferase gene. The oligonucleotide, Oligo # 53 [SEQ ID NO:157], was used in this procedure to introduce the EcoRV site. The resulting plasmid was designated pMON710.




EXAMPLE 56




Construction of pMON5723




Plasmid pMON5647 DNA was digested with restriction enzymes DraI and SspI resulting in a 2916 base pair DraI, SspI fragment. The genetic elements derived from pMON5647 are the pBR327 origin of replication, precA promoter, g10L ribosome binding protein, porcine somatotropin gene (pST) and T7 transcription terminator (Dunn and Strudier, 1983). Plasmid pMON710 DNA was digested with restriction enzymes HincII and EcoRV resulting in 940 base pair HincII,EcoRV fragment containing the streptomycin adenylyltransferase gene which infers resistance to streptomycin and spectinomycin. The restriction fragments were ligated and the ligation reaction mixture was used to transform


E. coli


strain JM101. The DraI, SspI, HincII and EcoRV restriction sites are lost as a result of the cloning. Transformant bacteria were selected on spectinomycin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis and sequenced to confirm the correct insert.




EXAMPLE 57




Construction of pMON13361




Plasmid pMON13288 was mutagenized by oligonucleotide site-directed mutagenesis (method described in Kunkel, 1985) to eliminate a NsiI site in the (15-125) hIL-3 variant coding region. Codon 70 of (15-125) hIL-3, encoding asparagine, was converted from AAT to AAC destroying the NsiI recognition site. The oligonucleotide, Oligo # 54 [SEQ ID NO:158], was used in this procedure to eliminate the NsiI site. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis to confirm the loss of the NsiI site and sequenced to confirm the sequence of the (15-125) hIL-3 variant gene. The plasmid, pMON13361, encodes the (15-125) hIL-3 variant with the amino acid sequence of PEPTIDE #25 [SEQ ID NO:89]. DNA sequence # 32 [SEQ ID NO:160] codes for the foregoing pMON13361 polypeptide.




EXAMPLE 58




Construction of pMON14058




Plasmid pMON13361 was mutagenized by oligonucleotide site-directed mutagenesis (method described by Taylor et al., 1985 using a kit from Amersham, Arlington Heights, Ill.) to eliminate a EcoRV site in the (15-125) hIL-3 variant coding region. Codon 46 and 47 of (15-125) hIL-3, encoding asparagine and isoleucine, were converted from GAT to GAC and ATC to ATT respectively, destroying the EcoRV recognition site. The oligonucleotide, Oligo # 55 [SEQ ID NO:159], was used in this procedure to eliminate the EcoRV site. Transformant bacteria were selected on ampicillin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis to confirm the loss of the EcoRV site and sequenced to confirm the sequence of the (15-125) hIL-3 variant gene. The plasmid, pMON14058, encodes the (15-125) hIL-3 variant with the amino acid sequence of PEPTIDE #25 [SEQ ID NO:89]. DNA sequence # 33 [SEQ ID NO:161] codes for the foregoing pMON14058 polypeptide.




EXAMPLE 59




Construction of pMON13438




Plasmid pMON5723 DNA was digested with restriction enzymes NcoI and HindIII resulting in a 3278 NcoI,HindIII fragment. The genetic elements derived from pMON5723 are the pBR327 origin of replication, precA promoter, g10L ribosome binding protein, T7 transcription terminator and streptomycin adenylyltransferase gene. Plasmid pMON14058 DNA was digested with NcoI and HindIII resulting in a 345 base pair NcoI,HindIII fragment which contains the (15-125) hIL-3 gene with the following amino acid substitutions: 18I, 25H, 29R, 32N, 37P, 42S, 45M, 51R, 55T, 59L, 62V, 67H, 69E,73G, 76A, 79R, 83Q, 87S, 93S, 98I, 101A, 105Q, 109E, 116V, 120Q and 123E. The restriction fragments were ligated and the ligation reaction mixture was used to transform


E. coli


strain JM101. Transformant bacteria were selected on spectinomycin-containing plates. Plasmid DNA was isolated, analyzed by restriction analysis and sequenced to confirm the correct insert. The plasmid, pMON13438, encodes the (15-125) hIL-3 variant with the amino acid sequence of PEPTIDE #25 [SEQ ID NO:89]. DNA sequence # 33 [SEQ ID NO:161] codes for the foregoing pMON13438 polypeptide.




EXAMPLE 60




Construction of pMON13285




Plasmid pMON13252 DNA was digested with restriction enzymes NcoI and EcoRV and the resulting 3669 base pair NcoI,EcoRV fragment contains the following genetic elements; streptomycin adenyltransferase gene, pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, recA promoter, g10L ribosome binding site and the bases encoding amino acids 47-125 of (15-125) hIL-3 with the following amino acid substitution, 50D. The 3669 base pair NcoI,EcoRV restriction fragment from pMON13252 was ligated to the following annealed complementary oligonucleotides.




Oligo #165 [SEQ ID NO:162]




Oligo #166 [SEQ ID NO:163]




Oligo #167 [SEQ ID NO:164]




Oligo #168 [SEQ ID NO:165]




Oligo #169 [SEQ ID NO:166]




Oligo #170 [SEQ ID NO:167]




When assembled, the oligonucleotides create NcoI and EcoRV restriction ends and the DNA sequence that encodes amino acids 15-46 of (15-125) hIL-3 with the following amino acid substitutions; 42D, 45M and 46S. The codons encoding amino acids 15-46 of (15-125) hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13285, encodes the (15-125) hIL-3 variant with the following amino acid sequence:




Peptide #A3 [SEQ ID NO:259]




DNA sequence #A3 pMON13285 42D, 45M 46S, 50D













[SEQ ID NO:398]














ATGGCTAACT GCTCTAACAT GATCGATGAA ATCATCACCC















ACCTGAAGCA GCCACCGCTG CCGCTGCTGG ACTTCAACAA















CCTCAATGAC GAAGACATGT CTATCCTGAT GGACAATAAC















CTTCGTCGTC CAAACCTCGA GGCATTCAAC CGTGCTGTCA















AGTCTCTGCA GAATGCATCA GCAATTGAGA GCATTCTTAA















AAATCTCCTG CCATGTCTGC CCCTGGCCAC GGCCGCACCC















ACGCGACATC CAATCCATAT CAAGGACGGT GACTGGAATG















AATTCCGTCG TAAACTGACC TTCTATCTGA AAACCTTGGA















GAACGCGCAG GCTCAACAG











EXAMPLE 61




Construction of pMON13286




Plasmid pMON5978 DNA was digested with restriction enzymes NcoI and EcoRV and the resulting 3865 base pair NcoI,EcoRV fragment contains the following genetic elements; beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, precA promoter, g10L ribosome binding site and the bases encoding amino acids 47-125 of (15-125) hIL-3. The 3865 base pair NcoI,EcoRV restriction fragment from pMON5978 was ligated to the following annealed complementary oligonucleotides.




Oligo #165 [SEQ ID NO:162]




Oligo #166 [SEQ ID NO:163]




Oligo #167 [SEQ ID NO:164]




Oligo #168 [SEQ ID NO:165]




Oligo #169 [SEQ ID NO:166]




Oligo #170 [SEQ ID NO:167]




When assembled, the oligonucleotides create NcoI and EcoRV restriction ends and the DNA sequence that encodes amino acids 15-46 of (15-125) hIL-3 with the following amino acid substitutions; 42D, 45M and 46S. The codons encoding amino acids 15-46 of (15-125) hIL-3 are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. The plasmid, pMON13286, encodes the (15-125) hIL-3 variant with the following amino acid sequence:




Peptide #A4 [SEQ ID NO:260]




DNA sequence #A4 pMON13286 42D, 45M, 46S













[SEQ ID NO:399]














ATGGCTAACT GCTCTAACAT GATCGATGAA ATCATCACCC















ACCTGAAGCA GCCACCGCTG CCGCTGCTGG ACTTCAACAA















CCTCAATGAC GAAGACATGT CTATCCTGAT GGAAAATAAC















CTTCGTCGTC CAAACCTCGA GGCATTCAAC CGTGCTGTCA















AGTCTCTGCA GAATGCATCA GCAATTGAGA GCATTCTTAA















AAATCTCCTG CCATGTCTGC CCCTGGCCAC GGCCGCACCC















ACGCGACATC CAATCCATAT CAAGGACGGT GACTGGAATG















AATTCCGTCG TAAACTGACC TTCTATCTGA AAACCTTGGA















GAACGCGCAG GCTCAACAG











EXAMPLE 62




Construction of pMON13325




The 3704 base pair EcoRI, HindIII DNA fragment from plasmid pMON13286 is ligated to the 64 base pair EcoRI, HindIII DNA fragment from plasmid pMON13215. The following genetic elements are derived from pMON13286; beta-lactamase gene (AMP), pBR327 origin of replication, phage F1 origin of replication as the transcription terminator, precA promoter, g10L ribosome binding site and the bases encoding amino acids 15-105 of the (15-125) hIL-3 gene with the following changes, 42D, 45M, and 46S.




The bases encoding amino acids 106-125 of the (15-125) gene with the following change, 116W, are derived from pMON13215. The resulting plasmid, pMON13325, encodes the (15-125) hIL-3 variant with the following amino acid sequence:




Peptide # A5 [SEQ ID NO:261]




EXAMPLE 63




Construction of pMON13326




The 3683 base pair NcoI, EcoRI DNA fragment from plasmid pMON13215 is ligated to the 281 base pair NcoI, EcoRI DNA fragment from plasmid pMON13285. The following genetic elements are derived from pMON13215; beta-lactamase gene (AMP), pBR327 origin of replication, phage F1 origin of replication as the transcription terminator, precA promoter, g10L ribosome binding site and the bases encoding amino acids 106-125 of the (15-125) hIL-3 gene with the following change, 116W. The bases encoding amino acids 15-105 of the (15-125) gene with the following change, 42D, 45M, 46S and 50D derived from pMON13285. The resulting plasmid, pMON13326, encodes the (15-125) hIL-3 variant with the following amino acid sequence:




Peptide # A6 [SEQ ID NO:262]




EXAMPLE 64




Construction of pMON13332




Plasmid pMON13326 DNA is digested with restriction enzymes NsiI and EcoRI and the resulting 3853 base pair NsiI,EcoRI fragment contains the following genetic elements; beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, recA promoter, g10L ribosome binding site and the bases encoding amino acids 15-71 and 106-125 of (15-125) hIL-3 gene with the following changes 42D, 45M, 46S, 50D and 116W. The 3853 base pair NsiI,EcoRI restriction fragment from pMON13326 is ligated to the following annealed complementary oligonucleotides.




Oligo #15(A) [SEQ ID NO:168]




Oligo #16(A) [SEQ ID NO:169]




In the resulting plasmid the 111 bases between the NsiI and EcoRI restriction sites in the (15-125) hIL-3 gene are replaced with 24 bases from the above mentioned oligonucleotides. This linker also creates a NdeI recognition sequence.




EXAMPLE 65




Construction of pMON13330




The 3846 base pair PstI, EcoRI DNA fragment from plasmid pMON13332 is ligated to the 118 base pair PstI, EcoRI DNA fragment from plasmid pMON13305. The following genetic elements are derived from pMON13332; beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, recA promoter, g10L ribosome binding site and the bases encoding amino acids 15-69 and 106-125 of the (15-125) hIL-3 gene with the following change, 42D, 45M, 46S, 50D and 116W. The bases encoding amino acids 70-105 of the (15-125) gene with the following change, 95R, 98I and 100R are derived from pMON13305. The resulting plasmid, pMON13330, encodes the (15-125) hIL-3 variant with the following amino acid sequence:




Peptide # A7 [SEQ ID NO:263]




EXAMPLE 66




Construction of pMON13329




The 3846 base pair PstI, EcoRI DNA fragment from plasmid pMON13332 is ligated to the 118 base pair PstI, EcoRI DNA fragment from plasmid pMON13304. The following genetic elements are derived from pMON13332; beta-lactamase gene (AMP), pBR327 origin of replication, phage f1 origin of replication as the transcription terminator, recA promoter, g10L ribosome binding site and the bases encoding amino acids 15-69 and 106-125 of the (15-125) hIL-3 gene with the following change, 42D, 45M, 46S, and 116W. The bases encoding amino acids 70-105 of the (15-125) gene with the following change, 98I and 100R are derived from pMON13304. The resulting plasmid, pMON13329, encodes the (15-125) hIL-3 variant with the following amino acid sequence:




Peptide # A8 [SEQ ID NO:406]




EXAMPLE 67




Construction of pMON5853 (

FIG. 6

) which Encodes [Met-(15-133)hIL-3 (Arg


129


)]




Plasmid DNA of pMON5847 (Example 2) was treated with NcoI. The restriction enzyme was inactivated by heat treatment (65° C. for 10 minutes). The DNA was then treated with large fragment of DNA polymerase I (Klenow) in the presence of all four nucleotide precursors. This produces DNA termini with non-overlapping ends. After 5 minutes at 37° C., the polymerase was inactivated by heat treatment at 65° C. for 10 minutes. The DNA was then treated with HpaI, an enzyme which produces non-overlapping termini. The DNA was ethanol precipitated and ligated. The ligation reaction mixture was used to transform competent JM101 cells to ampicillin resistance. Colonies were picked and plasmid DNA was analyzed by restriction analysis. A plasmid designated pMON5853 was identified as one containing a deletion of the amino terminal 14 codons of the hIL-3 gene. The DNA sequence for the junction of the ribosome binding site to the (15-133) hIL-3 gene was determined to be the following:












5′-AAGGAGATATATCCATGAACTGCTCTAAC-3′[SEQ ID NO:400]






                 M  N  C  S  N     [SEQ ID NO:401]











The lower line contains the one-letter code for the amino acids specified by the coding sequence of the amino terminus of the 15-133 hIL-3 gene. These are methionine, asparagine, cysteine, serine and asparagine.




When cultures of JM101 cells harboring this plasmid were induced with nalidixic acid, it was found that hIL-3 (15-133) accumulated at levels higher than hIL-3 (pMON5847).




The plasmid, pMON5853, encodes Met-(15-133) hIL-3 (Arg


129


) which has the following amino acid sequence:













[SEQ ID NO:402]












    Met Asn Cys Ser Asn Met Ile Asp Glu Ile Ile













Thr His Leu Lys Gln Pro Pro Leu Pro Leu Leu Asp













Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile Leu













Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala













Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser













Ala Ile Glu Ser Ile Leu Lys Asn Leu Leu Pro Cys













Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg His Pro













Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg













Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn













Ala Gln Ala Gln Gln Thr Thr Leu Arg Leu Ala Ile













Phe











EXAMPLE 68




Construction of pMON13252




Plasmid, pMON2341, DNA was digested with restriction enzymes NcoI and HindIII resulting in a 3619 base pair NcoI/HindIII fragment. The genetic elements derived from pMON2341 are the beta-lactamase gene (AMP), pBR327 origin of replication F1 phage origin of replication as the transcription terminator, precA, g10L ribosome binding site. The plasmid encoding the hIL-3 (15-125) Asp


(50)


variant, was digested with NcoI and HindIII resulting in a 345 base pair NcoI/HindIII fragment. This 345 Base pair NcoI/HindIII fragment was ligated with the 3619 base pair fragment from pMON2341 and the ligation reaction mixture was used to transform


E. coli


K-12 strain JM101. Plasmid DNA was isolated and screened by restriction analysis using NcoI and HindIII. Positive clones contained a 345 base pair NcoI/HindIII fragment. This construct was designated pMON13252. The plasmid, pMON13252, encodes the (15-125)hIL-3 variant with the following amino acid sequence:




PEPTIDE A10; (15-125)HIL-3 Asp


(50)


pMON13252














        Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu




[SEQ ID NO:407]







        15                  20                  25













Lys Gln Pro Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly






        30                  35                  40













Glu Asp Gln Asp Ile Leu Met Asp Asn Asn Leu Arg Arg Pro Asn






        45                  50                  55













Leu Glu Ala Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser






        60                  65                  70













Ala Ile Glu Ser Ile Leu Lys Asn Leu Leu Pro Cys Leu Pro Leu






        75                  80                  85













Ala Thr Ala Ala Pro Thr Arg His Pro Ile His Ile Lys Asp Gly






        90                  95                  100













Asp Trp Asn Glu Phe Arg Arg Lys Leu Thr Phe Tyr Leu Lys Thr






        105                 110                 115













Leu Glu Asn Ala Gln Ala Gln Gln






        120                 125











DNA sequence #A10 pMON13252 50D













[SEQ ID NO:408]














ATGGCTAACT GCTCTAACAT GATCGATGAA ATCATCACCC















ACCTGAAGCA GCCACCGCTG CCGCTGCTGG ACTTCAACAA















CCTCAATGGT GAAGACCAAG ATATCCTGAT GGAACAATAAC















CTTCGTCGTC CAAACCTCGA GGCATTCAAC CGTGCTGTCA















ACTCTCTGCA GAATGCATCA GCAATTGAGA GCATTCTTAA















AAATCTCCTG CCATGTCTGC CCCTGGCCAC GGCCGCACCC















ACGCGACATC CAATCCATAT CAAGGACGGT GACTGGAATG















AATTCCGTCG TAAACTGACC TTCTATCTGA AAACCTTGGA















GAACGCGCAG GCTCAACAG











EXAMPLES 69-76




The variants in Table 5 were constructed by cassette mutagenesis using methods described in the Materials and Methods and the Examples contained herein, particularly Examples 54-58. Parental plasmid DNA (Table 5), digested with the appropriate restriction enzymes (Table 5), was ligated with the indicated annealed pairs of complementary oligonucleotides (Table 5). The assembled oligonucleotides create appropriate restriction ends and a portion of the (15-125) hIL-3 gene sequence (pMON13288 [SEQ ID NO:100]). Individual isolates were screened by restriction analysis and DNA sequenced to confirm that the desired changes in the (15-125) hIL-3 variant gene were made. The oligonucleotides create change(s) in the (15-125) hIL-3 gene which encode the corresponding amino acid substitution(s) in the variant polypeptide (Table 5). The amino acids substitutions in addition to and/or different from those in polypeptide # 25 [SEQ ID NO:89] are indicated in Table 5. The table also shows the plasmid designation (pMON number), DNA sequence identification number for the mutated hIL-3 gene and the identification number for the the resulting variant polypeptide. The biological activity (growth promoting activity in AML 193 cells) for some of the variants in Table 5 is shown in Table 1.




EXAMPLES 77-82




The variants in Table 6 were constructed by methods described in the Materials and Methods and the Examples contained herein, particularly in Examples 60 and 61. Parental plasmid DNA (Table 6), digested with the appropriate restriction enzymes (Table 6), was ligated with the indicated restriction fragment (Table 6). Individual isolates were screened by restriction analysis and DNA sequenced to confirm that the desired changes in the (15-125) hIL-3 variant gene were made. The resulting mutated (15-125) hIL-3 genes encode the corresponding amino acid substitutions in the variant polypeptides (Table 6). The amino acids substitutions in addition to and/or different from those in polypeptide # 25 [SEQ ID NO:89] are indicated in Table 6. The table also shows the plasmid designation (pMON number), DNA sequence identification number for the mutated hIL-3 gene and the identification number for the the resulting variant polypeptide. The biological activity (growth promoting activity in AML 193 cells) for some of the variants in Table 6 is shown in Table 1.




EXAMPLE 83




Construction of pMON13368




One of the DNA fragments to construct the plasmid, pMON13368, was generated by site-directed mutagenesis employing PCR techniques described in the Materials and Methods and the Examples contained herein, particularly Example 53. The template for the PCR reaction was plasmid, pMON13289, DNA using the oligonucleotides, Oligo #B13 18I123A25H [SEQ ID NO: 182] and Oligo #B14 2341HIN3 [SEQ ID NO:183], as primers. The resulting DNA product was digested with the restriction enzymes NcoI and HindIII. Upon completion, the digest was heated at 70° C. for 15 minutes to inactivate the enzymes. The restriction fragment was purified by phenol/chloroform extraction and precipitation with equal volume isopropanol in the presence of 2M NH4OAc. The oligonucleotide, Oligo #B13 18I23A25H [SEQ ID NO:182], changes the codon at position 23 of (15-125) hIL-3 variant gene pMON13289 [SEQ ID NO:103] from ‘ATT’ to ‘GCA’ (Ile to Ala). The 3619 base pair NcoI, HindIII restriction fragment from pMON2341 was ligated to the PCR-generated NcoI, HindIII restriction fragment. Individual isolates were screened by restriction analysis and DNA sequenced to confirm that the desired changes in the (15-125) hIL-3 variant gene were made. The plasmid, pMON13368, contains the (15-125) hIL-3 variant gene (DNA sequence #B15 [SEQ ID NO:346]) which encodes the (15-125) hIL-3 variant polypeptide with the following amino acid sequence:




Polypeptide #B15 [SEQ ID NO. :278]




EXAMPLE 84




Construction of pMON13380




Plasmid, pMON13368, DNA was digested with restriction enzymes EcoRI and HindIII. The resulting 3900 base pair EcoRI,HindIII fragment contains the following genetic elements; beta-lactamase gene (AMP), pBR327 origin of replication, phage F1 origin of replication as the transcription terminator, precA promoter, g10L ribosome binding site and the DNA sequence encoding amino acids 15-105 of the variant pMON13368. The 3900 base pair EcoRI,HindIII restriction fragment from pMON13368 was ligated to the following annealed complementary oligonucleotides.
















Oligo # B48




9E12Q6V1




[SEQ ID NO:217]







Oligo # B49




9E12Q6V3




[SEQ ID NO:218]















Oligo # 49




120Q123E2




[SEQ ID NO:63]







Oligo # 50




120Q123E4




[SEQ ID NO:64]











When assembled, the oligonucleotides create EcoRI and HindIII restriction ends and the DNA sequence that encodes amino acids 106-125 of (15-125) hIL-3 with the following amino acid substitution; 109E, 112Q, 116V, 120Q and 123E. The codons used in the (15-125) hIL-3 gene are those found in the hIL-3 cDNA sequence except at those positions where amino acid substitutions were made. Individual isolates were screened by restriction analysis and DNA sequenced to confirm that the desired changes in the (15-125) hIL-3 variant gene were made. The plasmid, pMON13380, contains the (15-125) hIL-3 variant gene (DNA sequence #B16 [SEQ ID NO:347]) which encodes the (15-125) hIL-3 variant polypeptide with the following amino acid sequence:




Polypeptide #B16 [SEQ ID NO.:279]




EXAMPLE 85




Construction of pMON13476




One of the DNA fragments to construct the plasmid, pMON13476, was generated by site-directed mutagenesis employing PCR techniques described in the Materials and Methods and the Examples contained herein, particularly Example 54. The template for the PCR reaction was plasmid, pMON13287, DNA using the oligonucleotides, Oligo #B13 18I23A25H [SEQ ID NO:182] and Oligo #B14 2341HIN3 [SEQ ID NO.:183] as primers. The resulting DNA product was digested with the restriction enzymes NcoI and HindIII. Upon completion, the digest was heated at 70° C. for 15 minutes to inactivate the enzymes. The restriction fragment was purified by phenol/chloroform extraction and precipitation with equal volume isopropanol in the presence of 2M NH4OAc. The oligonucleotide, Oligo #B13 18I23A25H [SEQ ID NO.:182], changes the codon at position 23 of (15-125) hIL-3 variant gene, pMON13287, [SEQ ID NO:97] from ‘ATT’ to ‘GCA’ (Ile to Ala). The 3619 base pair NcoI, HindIII restriction fragment from pMON2341 was ligated to the PCR-generated NcoI, HindIII restriction fragment. Individual isolates were screened by restriction analysis and DNA sequenced to confirm that the desired changes in the (15-125) hIL-3 variant gene were made. The resulting clone also contained a change, that was not designed in the mutagenic oligonucleotide, which changed the codon at position −1 from ‘GCT’ to ‘GAT’ which changes the amino acid from Alanine to Aspartic Acid. The plasmid, pMON13476, contains the (15-125) hIL-3 variant gene (DNA sequence #B52 [SEQ ID NO:303]) which encodes the (15-125) hIL-3 variant polypeptide with the following amino acid sequence:




Polypeptide #B52 [SEQ ID NO.:314]




EXAMPLES 86-92




The variants in Table 7 were constructed by PCR techniques using methods described in the Materials and Methods and the Example contained herein, particularly Example 51. Two sequential PCR reactions were used to create the variants. In the first PCR reaction pMON13287 plasmid DNA served as the template and the two oligonucleotides indicated in Table 7 served as the primers. Following the PCR extension reaction, the PCR product was partially purified to remove primer that was not extended. In the second PCR reaction pMON13287 plasmid DNA served as the template, the purified PCR product from the first PCR reaction served as one of the primers and the Oligo #B14 2341Hin3 [SEQ ID NO:183] as the second primer. The product from the second PCR reaction was partially purified and digested with restriction enzymes NcoI and HindIII and ligated with the 3619 base pair NcoI,HindIII fragment from pMON2341. Individual isolates were screened by restriction analysis and DNA sequenced to confirm that the desired changes in the (15-125) hIL-3 variant gene were made. The amino acids substitutions in addition to and/or different from those in polypeptide # A 24 [SEQ ID NO:88] are indicated in Table 7. The table also shows the plasmid designation (pMON number), DNA sequence identification number for the mutated hIL-3 gene and the identification number for the the resulting variant polypeptide. The biological activity (growth promoting activity in AML 193 cells) for some of the variants in Table 7 is shown in Table 1.




EXAMPLES 93-120




The variants in Table 8 were constructed by cassette mutagenesis using methods described in the Materials and Methods and the Examples contained here, particularly Examples 54-58. Parental plasmid DNA (Table 8), digested with the appropriate restriction enzymes (Table 8), was ligated with the indicated annealed pairs of complementary oligonucleotides (Table 8). The assembled oligonucleotides create the appropriate restriction ends and a portion of (15-125) hIL-3 gene (pMON13288 [SEQ ID NO:100]) sequence. The oligonucleotides create change(s) in the (15-125) hIL-3 variant gene which encode the corresponding amino acid substitution(s); and/or deletions from the C-terminus of the variant polypeptide (Table 8). Individual isolates were screened by restriction analysis and DNA sequenced to confirm that the desired changes in the (15-125) hIL-3 variant gene were made. The amino acids substitutions in addition to and/or different from those in polypeptide # 25 [SEQ ID NO:88] are indicated in Table 8. The table also shows the plasmid designation (pMON number), DNA sequence identification number for the mutated hIL-3 gene and the identification number for the the resulting variant polypeptide. The biological activity (growth promoting activity in AML 193 cells) for some of the variants in Table 5 is shown in Table 1.




EXAMPLE 121




Construction of pMON13446




Plasmid, pMON13287, DNA (purified from the


E. coli


strain GM48 {dam-}) was digested with restriction enzymes NcoI and ClaI. The resulting 3942 base pair NcoI,ClaI fragment contains the following genetic elements; beta-lactamase gene (AMP), pBR327 origin of replication, phage F1 origin of replication as the transcription terminator, precA promoter, g10L ribosome binding site and the DNA sequence encoding amino acids 21-125 of the (15-125) hIL-3 variant pMON13287. The 3942 base pair NcoI,ClaI restriction fragment from pMON13368 was ligated to the following annealed complementary oligonucleotides.
















Oligo #B57




338UP




[SEQ ID NO:226]















Oligo #B56




338D0WN




[SEQ ID NO:225]











When assembled, the oligonucleotides create NcoI and ClaI restriction ends and the DNA sequence that encodes the following 14 amino acid sequence; Met Ala Tyr Pro Glu Thr Asp Tyr Lys Asp Asp Asp Asp Lys [SEQ ID NO:403] and the DNA sequence which encodes amino acids 15-20 of the (15-125) hIL-3 variant gene, pMON13287 [SEQ ID NO:97]. The resulting variant polypeptide has a 14 amino acid N-terminal extension fused to the (15-125) hIL-3 variant polypeptide, pMON13288 [SEQ ID NO: 88]. The plasmid, pMON13446, contains the (15-125) hIL-3 variant gene (DNA sequence #B53 [SEQ ID NO:404]) which encodes the (15-125) hIL-3 variant polypeptide with the following amino acid sequence:




Polypeptide #B53 [SEQ ID NO.:315]




EXAMPLE 122




Construction of pMON13390




Plasmid, pMON13288, DNA (purified from the


E. coli


strain GM48 {dam-}) was digested with restriction enzymes NcoI and ClaI. The resulting 3942 base pair NcoI,ClaI fragment contains the following genetic elements; beta-lactamase gene (AMP), pBR327 origin of replication, phage F1 origin of replication as the transcription terminator, precA promoter, g10L ribosome binding site and the DNA sequence encoding amino acids 21-125 of the (15-125) hIL-3 variant pMON13288. The 3942 base pair NcoI,ClaI restriction fragment from pMON13288 was ligated to the following annealed complementary oligonucleotides.
















Oligo #B57




338UP




[SEQ ID NO:226]















Oligo #B56




338DOWN




[SEQ ID NO:225]











When assembled, the oligonucleotides create NcoI and ClaI restriction ends and the DNA sequence which encodes the following 14 amino acid sequence; Met Ala Tyr Pro Glu Thr Asp Tyr Lys Asp Asp Asp Asp Lys [SEQ ID NO:403] and the DNA sequence which encodes amino acids 15-20 of the (15-125) hIL-3 variant gene pMON13288 [SEQ ID NO:100]. The resulting variant has a 14 amino acid N-terminal extension fused to the (15-125) hIL-3 variant polypeptide, pMON13288 [SEQ ID NO:88]. The plasmid, pMON13390, containes the (15-125) hIL-3 variant gene (DNA sequence #B54 [SEQ ID NO.:405] which encodes the (15-125) hIL-3 variant polypeptide with the following amino acid sequence:




Polypeptide #B54 [SEQ ID NO:316]




EXAMPLES 133-136




The variants in Table 10 were constructed by methods described in Materials and Methods and in Examples contained herein, particularly Examples 54-58. Parental plasmid DNA (Table 10), digested with the appropriate restriction enzymes (Table 10) was ligated with the indicated restriction fragment containing the changes listed (Table 10). The resulting mutated (15-125) IL-3 genes encode the corresponding amino acid substitutions in the variant polypeptides (Table 10). The amino acid substitutions in addition to and/or different from those in polypeptide #25 [SEQ ID NO: 89] are indicated in Table 10. The biological activity (growth promoting activity in AML 193 cells) for some of the variants in Table 10 is shown in Table 1.




EXAMPLES 123-132




The variants in Table 9 were constructed by cassett mutagenesis using methods described in Materials and Methods and in Examples 54-58 contained herein. Parental plasmid DNA (Table 9), digested with the appropriate restriction enzymes (Table 9), was ligated with the indicated annealed pairs of complementry oligonucleoties (Table 9). The assembled oligonucleotides create the appropriate restriction fragment which was inserted into the (15-125) hIL-3 gene (pMON13288 [SEQ ID NO:100] between these restriction sites. The deletions or substitutions encoded by the oligonucleotide in the (15-125) IL-3 gene correspond to the amino acid deletions or substitutions in the variant polypeptide (Table 9). The amino acid substitutions or deletions, in addition to and/or different from those in the polypeptide #25 [SEQ ID NO:89] are indicated in Table 9. The biological activity (growth promoting activity in AML 193 cells) for some of the variants in Table 9 is shown in Table 1.




Formula XI shown below is a representation of a [(15-125)hIL-3 mutein] with numbers in bold type added above the amino acids to represent the position at which the amino acid below the bolded number appears in native (1-133)hIL-3 [e. g. the amino acid at position 1 of Formula XI corresponds to the Asn which appears at position 15 in native (1-133)hIL-3]. The number shown in bold indicates the amino acids that correspond to the native IL-3(1-133). The non-bold members below the amino acids sequences are for Seq Id reference numbers. When the muteins are expressed the initial amino acid may be preceded by Met- or Met-Ala-.














 15                 20                   25




[SEQ ID NO:23]







Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys Gln






 1                5                  10                  15













 30                 35                   40






Pro Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp






                 20                  25                  30






 45                 50                   55






Gln Asp Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu






                 35                  40                  45













 60                 65                   70






Ala Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile






                 50                  55                  60













 75                 80                   85






Glu Ser Ile Leu Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr






                 65                  70                  75













 90                 95                  100






Ala Ala Pro Thr Arg His Pro Ile His Ile Lys Asp Gly Asp Trp






                 80                  85                  90













105                 110                  115






Asn Glu Phe Arg Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu






                 95                 100                 105













120                 125






Asn Ala Gln Ala Gln Gln






        110


























TABLE 5











Parental plasmid/







amino acid




resulting






Example




pMON number




restriction digest




oligo pair 1,4




oligo pair 2,5




oligo pair 3,6




changes




polypeptide











Example 69




pMON13406




pMON13288/




19Ala1




29R32N37P2




42S45M3




19Ala




polypeptide B1







SEQ ID NO:332




NcoI, EcoRV




OLIGO#B1




OLIGO#5




OLIGO#11





SEQ ID NO:264









SEQ ID NO:170




SEQ ID NO:19




SEQ ID NO:25









19Ala4




29R32N37P5




42S45M6









OUGO#B2




OLIGO#6




OLIGO#12









SEQ ID NO:171




SEQ ID NO:20




SEQ ID NO:26






Example 70




pMON13414




pMON13288/




19Ile1




29R32N37P2




42S45M3




19Ile




polypeptide B2







SEQ ID NO:333




NcoI, EcoRV




OLIGO#B3




OLIGO#5




OLIGO#11





SEQ ID NO:265









SEQ ID NO:172




SEQ ID NO:19




SEQ ID NO:25









19Ile4




29R32N37P5




42S45M6









OLIGO#B4




OLIGO#6




OLIGO#12









SEQ ID NO:173




SEQ ID NO:20




SEQ ID NO:26






Example 71




pMON13407




pMON13288/




18125H1




29R32N37P2




42S45V3




45Val




polypeptide B3







SEQ ID NO:334




NcoI, EcoRV




OLIGO#1




OLIGO#5




OLIGO#B11





SEQ ID NO:266









SEQ ID NO:15




SEQ ID NO:19




SEQ ID NO:180









18125H4




29R32N37P5




42S45V6









OLIGO#2




OLIGO#6




OLIGO#B12









SEQ ID NO:16




SEQ ID NO:20




SEQ ID NO:181






Example 72




pMON13405




pMON13288/




19Ala1




29R32N37P2




42S45V3




19Ala,45Val




polypeptide B4







SEQ ID NO:335




NcoI, EcoRV




OLIGO#B1




OLIGO#5




OLIGO#B11





SEQ ID NO:267









SEQ ID NO:170




SEQ ID NO:19




SEQ ID NO:180









19Ala4




29R32N37P5




42S45V6









OLIGO#B2




OLIGO#6




OLIGO#B12









SEQ ID NO:171




SEQ ID NO:20




SEQ ID NO:181






Example 73




pMON13415




pMON13288/




19Ile1




29R32N37P2




42S45V3




19Ile,45Val




polypeptide B5







SEQ ID NO:336




NcoI, EcoRV




OLIGO#B3




OLIGO#5




OLIGO#B11





SEQ ID NO:268









SEQ ID NO:172




SEQ ID NO:19




SEQ ID NO:180









19Ile4




29R32N37P5




42S45V6









OLIGO#B4




OLIGO#6




OLIGO#B12









SEQ ID NO:173




SEQ ID NO:20




SEQ ID NO:181






Example 74




pMON13408




pMON13288/




49Ile1




59L62V2




67H69E3




49ILe




polypeptlde B6







SEQ ID NO:337




EcoRV, NsiI




OLIGO#B7




OLIGO#25




OLIGO#29





SEQ ID NO:269









SEQ ID NO:176




SEQ ID NO:39




SEQ ID NO:43









49Ile4




59L62V5




67H69E6









OLIGO#B8




OLIGO#26




OLIGO#30









SEQ ID NO:177




SEq ID NO:40




SEQ ID NO:44






n






Example 75




pMON13409




pMON13288/




49Leu1




59L62V2




67H69E3




49Leu




polypeptide B7







SEQ ID NO:338




EcoRV, NsiI




SEQ ID NO:178




OLIGO#25




OLIGO#29





SEQ ID NO:270









OLIGO#B9




SEQ ID NO:39




SEQ ID NO:43









49Leu4




59L612V5




67H69E6









OLIGO#B10




OLIGO#26




OLIGO#30









SEQ ID NO:179




SEQ ID NO:40




SEQ ID NO:44






Example 76




PMON1341O




pMON13288/




49Asp1




59L62V2




67H69E3




49Asp




polypeptide







SEQ ID NO:339




EeoRV, NsiI




OLIGO#B5




OLIGO#25




OLIGO#29





SEQ ID NO:271









SEQ ID NO:174




SEq ID NO:39




SEQ ID NO:43









49Asp4




59L62V5




67H69E6









OLIGO#B6




OLIGO#26




OLIGO#30









SEQ ID NO:175




SEQ ID NO:40




SEQ ID NO:44



























TABLE 6










plasmid pMON




Parental plasmid/




restriction




amino add




resulting






Example No




number




restriction digest




fragment




substitutions




polypeptide











Example 77




pMON13422




pMON13408/




99 base pair




19Ala,




polypeptide B9







SEQ ID NO:340




NcoI, EcoRV




NcoI, EcoRV




45Val,




SEQ ID NO:272









fragment from




49Ile









pMON13405






Example 78




pMON13423




pMON13408/




99 base pair




19Ile,




polypeptide B10







SEQ ID NO:341




NcoI, EcoRV




NcoI, EcoRV




45Val,




SEQ ID NO:273









fragrament from




49Ile









pMON13415






Example 79




pMON13424




PMON13409/




99 base pair




19Ala,




polypeptide B11







SEQ ID NO:342




NcoI, EcoRV




NcoI, EcoRV




45Val,




SEQ ID NO:274









fragment from




49Leu









pMON13405






Example 80




pMON13425




pMON13409/




99 base pair




19Ile,




polypeptide B12







SEQ ID NO:343




NcoI, EcoRV




NcoI, EcoRV




45Val,




SEQ ID NO:275









fragment from




49Leu









pMON13415






Eumple 81




pMON13426




pMON13410/




99 base pair




19Ala,




polypeptide B13







SEQ ID NO:344




NcoI, EcoRV




NcoI, EcoRV




45Val,




SEQ ID NO:276









fragment from




49Asp









pMON13405






Example 82




pMON13429




pMON13410/




99 base pair




19Ile,




polypeptide B14







SEQ ID NO:345




NcoI, EcoRV




NcoI, EcoRV




45Val,




SEQ ID NO:277









fragment from




49Asp









pMON13415






























TABLE 7










pMON





Step one




Step one




Step two




Step two




Amino Acid







Example




number




template




PCR primer1




PCR primer2




PCR primer1




PCR primer2




Substitutions




Polypeptide











Example 86




pMON13475




pMON13287




18I23A25H




42D45V46S50D




product from




2341HIN3




23A,46S,42D,




Polypeptide







SEQ ID NO:





OLIGO#B13




OLIGO#B19




step one




OLIGO#B14




50D




#B17







348





SEQ ID NO:182




SEQ ID NO:188





SEQ ID NO:183





SEQ ID NO 280






Example 87




pMON13366




pMON13287




2341NCO




42D45V46S50D




product from




2341HIN3




42N,46S,50D




Polypeptide







SEQ ID NO:





OLIGO#B15




OLIGO#B19




step one




OLIGO#B14





#B18







349





SEQ ID NO:184




SEQ ID NO:188





SEQ ID NO:183





SEQ ID NO 281






Example 88




pMON13367




pMON13287




2341NCO




42A45V46S50D




product from




2341HIN3




46S,50D




Polypeptide







SEQ ID NO:





OLIGO#B15




OLIGO#B17




step one




OLIGO#B14





#B19







350





SEQ ID NO:184




SEQ ID NO:186





SEQ ID NO:183





SEQ ID NO 282






Example 89




pMON13369




pMON13287




2341NCO




42D45V46S50D




product from




2341HIN3




42D,46S,50D




Polypeptide







SEQ ID NO:





OLIGO#B15




OLIGO#B21




step one




OLIGO#B14





#B20







351





SEQ ID NO:184




SEQ ID NO:190





SEQ ID NO:183





SEQ ID NO 283






Example 90




pMON13370




PMON13287




2341NCO




42A45M46S50D




product from




2341HIN3




45M,46S,50D




Polypeptide







SEQ ID NO:





OLIGO#B15




OLIGO#B16




step one




OLIGO#B14





#B21







352





SEQ ID NO:184




SEQ ID NO:185





SEQ ID NO:183





SEQ ID NO 284






Example 91




pMON13373




pMON13287




2341NCO




42D45M46S50D




product from




2341HIN3




42D,45M,46S




Polypeptide







SEQ ID NO:





OLIGO#B15




OLIGO#B18




step one




OLIGO#B14




50D




#B22







353





SEQ ID NO:184




SEQ ID NO:187





SEQ ID NO:183





SEQ ID NO 285






Example 92




pMON13374




pMON13287




2341NCO




42S45M46S50D




product from




2341HIN3




42S,45M,46S




Polypeptide







SEQ ID NO:





OLIGO#B15




OLIGO#B20




step one




OLIGO#B14




50D




#B23







354





SEQ ID NO:184




SEQ ID NO:189





SEQ ID NO:183





SEQ ID NO 286






























TABLE 8











parental








resulting amino







Example




plasmid




plasmid




oligo pair




oligo pair




oligo pair




oligo pair




acid sub(s)




polypeptide











Example




pMON13375




pMON13287/




S09E16V1




S116VD31






15-119




polypeptide






93




SEQ ID NO:




EcoR1,HindIII




OLIGO#B50




OLIGO#B52







B24 SEQ ID







355





SEQ ID NO:219




SEQ ID NO:221







NO:397









S09E16V3




SECR1D33









OLIGO#B51




OLIGO#B53









SEQ ID NO:220




SEQ ID NO:222






Example




pMON13376




pMON13476/




S9E2Q6V1




S116VD31






15-119,23A,




polypeptide






94




SEQ ID NO:




EcoR1,HindIII




OLIGO#B54




OLIGO#B52





112Q




B25 SEQ ID







356





SEQ ID NO:223




SEQ ID NO:221







NO: 288









59E2Q6V3




SECR1D33









OLIGO#B55




OLIGO#B53









SEQ ID NO:224




SEQ ID NO:222






Example




pMON13377




pMON13475/




S9E2Q6V1




S116VD31






15-119,23A,




polypeptide






95




SEQ ID NO:




EcoR1,HindIII




OLIGO#B54




OLIGO#B52






42D,46S,50D,




B26 SEQ ID







357





SEQ ID NO:223




SEQ ID NO:221






112Q




NO:289









59E2Q6V3




SECRID33









OLIGO#B55




OLIGO#B53









SEQ ID NO:224




SEQ ID NO:222






Example




pMON13378




pMON13365/




S09E16V1




S116VD31






15-119,23A




polypeptide






96




SEQ ID NO:




EcoR1,HindIII




OLIGO#B50




OLIGO#B52






B27 SEQ ID







358





SEQ ID NO:219




SEQ ID NO:221






NO:290









SQ9E16V3




SECR1D33









OLIGO#B51




OLIGO#B53









SEQ ID NO:220




SEQ ID NO:222






Example




pMON13379




pMON13367/




9E12Q6V1




120Q123E2






46S,50D,112Q




polypeptide






97




SEQ ID NO:




EcoR1,HindIII




OLIGO#B48




OLIGO#49






B28 SEQ ID







359





SEQ ID NO:217




SED ID NO:63






NO:291









9E12Q6V3




12QQ123E4









OLIGO#B49




OLIGO#50









SEQ ID NO:218




SED ID NO:64






Example




pMON13385




pMON13287/




18I25H1




29V32R34S2




42A45V3





29V,32R,34S




polypeptide






98




SEQ ID NO:




NcoI,EcoRV




OLIGO#1




OLIGO#B28




OLIGO#9






B29 SEQ ID







360





SEQ ID NO:15




SEQ ID NO:197




SEQ ID NO:23






NO:292









18I25H4




29V32R34D5




42A45V6









OLIGO#2




OLIGO#B29




OLIGO#10









SEQ ID NO:16




SED ID NO:198




SEQ ID NO:24






Example




pMON13381




pMON132B7/




73G76A1




82TRP2




87S93S98I3




101A105Q4




82W




polypeptide






99




SEQ ID NO:




NsiI,EcoRI




OLIGO#41




OLIGO#B44




OLIGO#35




OLIGO#43





B30 SEQ ID







361





SEQ ID NO:55




SEQ ID NO:213




SEQ ID NO:49




SEQ ID NO:57





NO:293









73G76A4




82TRP5




87S93S98I7




101A105Q88









OLIGO#42




OLIGO#B45




OLIGO#36




OLIGO#44









SEQ ID NO:56




SEQ ID NO:214




SEQ ID NO:50




SEQ ID NO:58






Example




pMON13383




pMON13475/




9E12O6V1




120Q123E2






23A,42D,46S,




polypeptide






100




SEQ ID NO:




EcoR1,NindIII




OLIGO#B48




OLIGO#49






50D,112Q




B31 SEQ ID







362





SEQ ID NO:217




SED ID NO:63







NO:294









9E12Q6V5




12QQ123E4









OLIGO#B49




OLIGO#50









SEQ ID NO:218




SED ID NO:64






Example




pMON13384




pMON13287/




9E12Q6V1




120Q123E2






112Q




polypeptide






101




SEQ ID NO:




EcoR1,HindIII




OLIGO#B48




OLIGO#49







B32 SEQ ID







363





SEQ ID NO:217




SED ID NO:63







NO:295









9E12QEV5




120Q123E4









OLIGO#B49




OLIGO#50









SEQ ID NO:218




SED ID NO:64






Example




pMON13388




pMON13287/




50D56S1




60S62V2




67N69E3





50D,56S




polypeptide






102




SEQ ID NO:




EcoRV,NsiI




OLIGO#B42




OLIGO#27




OLIGO#31






B33 SEQ ID







364





SEQ ID NO:211




SEQ ID NO:41




SEQ ID NO:45






NO:296









50ASP4




56SERS




67N69E6









OLIGO#B41




OLIGO#B43




OLIGO#32









SEQ ID NO:210




SEQ ID NO:212




SEQ ID NO:46






Example




pMON13389




pMON13287/




18I25H1




29R32A37P2




42D45N3





42D,45M




polypeptide






103




SEQ ID NO:




NcoI,ECORV




OLIGO#1




OLIGO#3




OLIGO#B32






B34 SEQ ID







365





SEQ ID NO:15




SEQ ID NO:17




SEQ ID NO:201






NO:297









18I25H4




29R32A37P5




42D45N6









OLIGO#2




OLIGO#4




OLIGO#B33









SEQ ID NO:16




SEQ ID NO:18




SEQ ID NO:202






Example




pMON13391




pMON13287/




18I25H1




34SER1




42A45V3





34S




polypeptide






104




SEQ ID NO:




NcoI,EcORV




OLIGO#1




OLIGO#B30




OLIGO#9






B35 SEQ ID







366





SEQ ID NO:15




SEQ ID NO:199




SEQ ID NO:23






NO:298









18I25H4




34SERS




42A45V6









OLIGO#2




OLIGO#B31




OLIGO#10









SEQ ID NO:16




SEQ ID NO:200




SEQ ID NO:24






Example




pMON13392




pMON13287/




18I25H1




29R32A37P2




42D45V3





42D




polypeptide






105




SEQ ID NO:




NcoI,EcoRV




OLIGO#1




OLIGO#3




OLIGO#B34






B36 SEQ ID







367





SEQ ID NO:15




SEQ ID NO:17




SEQ ID NO:203






NO:299









18I25H4




29R32A37P5




42D45V6









OLIGO#2




OLIGO#4




OLIGO#B35









SEQ ID NO:16




SEQ ID NO:18




SEQ ID NO:204






Example




pMON13393




pMON13287/




23ALA1




34SER1




42D45M46S3





23A,34S,42D




polypeptide






106




SEQ ID NO:




NcoI,EcoRV




OLIGO#B26




OLIGO#30




OLIGO#B36





45M,46S




B37 SEQ ID







368





SEQ ID NO:195




SEQ ID NO:199




SEQ ID NO:205






NO:300









23ALA4




34SER5




42D45M4656









OLIGO#B27




OLIGO#B31




OLIGO#B37









SEQ ID NO:196




SEQ ID NO:206




SEQ ID NO:206






Example




pMON13394




pMON13287/




18I25H1




29R32A37P2




42D45M4653





42D,45M,45S




polypetide






107




SEQ ID NO:




NcoI, EcoRV




OILGO#1




OLIGO#3




OLIGO#B36






B38 SEQ ID







369





SEQ ID NO:15




SEQ ID NO:17




SEQ ID NO:205






NO:301









18125N4




29R32A37P5




42D45N4656









OLIGO#2




OLIGO#4




OLIGO#B37









SEQ ID NO:16




SEQ ID NO:18




SEQ ID ND:206






Example




pMON13395




pMON13287/




23ALA1




29V32R34S2




42D45V46S3





23A,29V,32R,




polypeptide






108




SEQ ID NO:




NcoI,EcoRV




OLIGO#B26




OLIGO#B28




OLIGo#B38





34S,42D,46S




B39 SEQ ID







370





SEQ ID NO:195




SED ID NO:197




SEQ ID NO:207






NO:302









23ALA4




29V32R34S5




42D45V46S6









OLIGO#B27




OLIGO#B29




OLIGO#B39









SEQ ID NO:196




SED ID NO:198




SEQ ID NO:208






Example




pMON13396




pMON132871




73G76A1




79R82Q2




100ARG3




100NET4




IGCR.101N




polypeptide






109




SEQ ID NO:




NcoI,EcoRV




OLIGO#41




OLIGO#B39




SEQ ID NO:




OLIGO#B24





B40 SEQ ID







371





SEQ ID NO:55




SEQ ID NO:53




87S93S98I7




SEQ ID NO:193





NO:303









73G76A4




79R82Q5




OLIGO#36




10R01M8









OLIGO#42




OLIGO#B40




SEQ ID NO:50




OLIGO#B25









SEQ ID NO:56




SEQ ID NO:54





SEQ ID NO:194






Example




pMON13397




pMON132871




73C76A1




82TRP2




100ARC3




100MET4




82M,100R,




polypeptide






110




SEQ ID NO:




Ncol,EcoRV




OLIGO#41




OLIGO#B44




OLIGO#B22




OLIGO#B24




101M




B41 SEQ ID







372





SEQ ID NO:55




SEQ ID NO:213




SEQ ID NO:191




SEQ ID NO:193





NO:304









73G7EA4




82TRPS




87S93S98I7




10R01M8









OLIGO#42




OLIGO#B45




OLIGO#36




OLIGO#B25









SEQ ID NO:56




SEQ ID NO:214




SEQ ID NO:50




SEQ ID NO:194






Example




pMON13398




pMON13287/




18I25H1




29R32A37P2




42D45V46S3





42D,465




polypeptide






111




SEQ ID NO:




NcoI,EcoRV




OLIGO#81




OLIGO#3




OLIGO#B38





B42 SEQ ID







373





SEQ ID NO:15




SEQ ID NO:17




SEQ ID NO:207






NO:305









18I25H4




29P32A37P5




42D45V46S6









OLIGO#2




OLIGO#4




OLIGO#B39









SEQ ID NO:16




SEQ ID NO:18




SEQ ID NO:208






Example




pMON13399




pMON13388/




23ALA1




29V32R34S2




42D45V46S3





23A,29V,32R,




polypeptide






112




SEQ ID NO:




NcoI,EcoRV




OLIGO#B26




OLIGO#B28




OLIGO#B38





34D,42D,46S




B43 SEQ ID







374





SEQ ID NO:195




SED ID NO:197




SEQ ID NO:207






NO:306









23ALA4




29V32R34S5




42D45V46S6









OLIGO#B27




OLIGO#B29




OLIGO#B39









SEQ ID NO:196




SED ID NO:198




SEQ ID NO:208






Example




pMON13404




pMON13287/




59E2Q6V1




S116VD31






15-119




polypeptide






113




SEQ ID NO:




EcoRI,HindIII




OLIGO#B54




OLIGO#B52






1120




B44 SEQ ID







375





SEQ ID NO:223




SEQ ID NO:221







NO:307









S9E2Q6V3




SECRID33









OLIGO#B55




OLIGO#53









SEQ ID NO:221




SEQ ID NO:222






Example




pMON13387




pMON3287/




SOASP1




6QS62V2




67N69E3





50D




polypeptide






114




SEQ ID NO:




EcORV,NsiI




OLIGO#940




OLIGO#27




OLIGO#31






B45 SEQ ID







376





SEQ ID NO:209




SEQ ID NO:41




SEQ ID NO:45






NO:308









S0ASP4




60S62V5




67N69E6









OLIGO#B41




OLIGO#28




OLIGO#32









SEQ ID NO:210




SEQ ID NO:42




SEQ ID NO:46






Example




pMON13416




pMON13387/




18I25H1




29R32A37P2




42D41V46S3





42D,46S,50D




polypeptide






115




SEQ ID NO:




NcoI,EcoRV




OLIGO#1




OLIGO#3




OLIGO#B38






B46 SEQ ID







377





SEQ ID NO:15




SEQ ID NO:17




SEQ ID NO:207






NO:309









18t25N4




29R32A37P5




42D45V4656









OLIGO#2




OLIGO#4




OLIGO#B35









SEQ ID NO:16




SEQ ID NO:18




SEQ ID NO:208






Example




pMON13417




pMON13387/




18I2SH1




29R32A37P2




42D45M46S3





42D,45N,46S,




polypeptide






116




SEQ ID NO:




NcoI,EcoRV




OLIGO#1




OLIGO#3




OLIGO#B36





50D




B47 SEQ ID







378





SEQ ID NO:15




SEQ ID NO:17




SEQ ID NO:205






NO:310









18I25H4




29R32A37P5




42D45M46S6









OLIGO#2




OLIGO#4




OLIGO#B37









SEQ ID NO:16




SEQ ID NO:18




SEQ ID NO:206






Example




pMON13420




pMON13388/




23ALA1




345ER1




42D45V4653





23A,34S,42D,




polypeptide






117




SEQ ID NO:




NcoI,EcoRV




OLIGO#B26




OLIGO#B30




OLIGO#B38





46S,50D,565




B48 SEQ ID







379





SEQ ID NO:195




SEQ ID NO:199




SEQ ID NO:207






NO:311









23ALA4




34SER5




42D45V46S6









OLIGO#B27




OLIGO#B31




OLIGO#B39









SEQ ID NO:196




SEQ ID NO:200




SEQ ID NO:208






Example




pMON13421




pMON13388/




23ALA1




34SER1




42D41M46S3





23A,34S,42D,




polypeptide






118




SEQ ID NO:




NcoI,EcoRV




OLIGO#B26




OLIGO#B30




OLIGO#B36





45N,46S,




B49 SEQ ID







380





SEQ ID NO:195




SEQ ID NO:199




SEQ ID NO:205





50D,56S




NO:331









23ALA4




34SER5




42D45M46S6









OLIGO#B27




OLIGO#B31




OLIGO#B37









SEQ ID NO:196




SEQ ID NO:200




SEQ ID NO:206






Example




pMON13432




pMON133B7/




23ALAT




345ER1




42D45N4653





23A,34S,42D,




polypeptide






119




SEQ ID NO:




NcoI,EcoRV




OILGO#B26




OLIGO#B30




OLIGO#B36





45M,465,50D




B50 SEQ ID







381





SEQ ID NO:195




SEQ ID NO:199




SEQ ID NO:205






NO:312









23ALA4




34SER5




42D45M46S6









OLIGO#B27




OLIGO#B31




OLIGO#B37









SEQ ID NO:196




SEQ ID NO:200




SEQ ID NO:206






Example




pMON13382




pMON13287/




9E12Q6W1




120Q123E2






112Q,11EW




polypeptide






120




SEQ ID NO:




EcoRI,HindIII




OLIGO#B46




OLIGO#49







B51 SEQ ID







382





SEQ ID NO:215




SED ID NO:63







NO:313









9E12Q16W3




120Q123E4









OLIGO#41




OLIGO#50









SEQ ID NO:216




SEQ ID NO:64






























TABLE 9











Parental














Plasmid/






Example





Restriction




Amino acid






No.




Plasmid




Digest




Oligo pair




Oligo pair




Oligo pair




Oligo pair




changes




Polypeptide











Example




pMON13400




pMON13288




20P23Al




29I4S752




38A5V6S3





20P 23A




Polypeptide






124




SEQ ID NO:




Restriction




SEQ ID NO:232




SEQ ID NO:236




SEQ ID NO:238





29I 34S




C-2 SEQ ID







384




NcoI-EcoRV




20P23A4




29I4S7S5




38A5V6S3





37S 38A




NO:317









SEQ ID NO:233




SEQ ID NO:237




SEQ ID NO:239





45V 46S






Example




pMON13402




pMON13288




23L1




29I4S7S2




38A5V6S3





23L 29I




Polypeptide






125




SEQ ID NO:




Restriction




SEQ ID NO:234




SEQ ID NO:236




SEQ ID NO:238





34S 37S




C-3 SEQ ID







385




NcoI-EcoRV




23IA




29I4S7S5




38A5V6S3





38A 45V




NO:318









SEQ ID NO:235




SEQ ID NO:237




SEQ ID NO:239





46S






Example




pMON13440




pMON13288




18I3A5H1




29I4S752




38A5V6S3





18I 23A 25H




Polypeptide






131




SEQ ID NO:




Restriction




SEQ ID NO:195




SEQ ID NO:236




SEQ ID NO:238





29I 34S 37S




C-10 SEQ ID







386




NcoI-EcoRV




18I3A5H4




29I4S7S5




38A5V6S3





38A 45V




NO:319









SEQ ID NO:196




SEQ ID NO:237




SEQ ID NO:239





46S






Example




pMON13451




pMON13288




19IOL3A1




29I4S7S2




38A5V6S3





19I 20L 23A




Polypeptide






132




SEQ ID NO:




Restriction




SEQ ID NO:230




SEQ ID NO:236




SEQ ID NO:238





29I 34S 37S




C-11 SEQ ID







387




NcoI-EcoRV




19I0L3A4




29I4S7S5




38A5V6S3





38A 45V




NO:320









SEQ ID NO:231




SEQ ID NO:237




SEQ ID NO:239





46S






Example




pMON13419




pMON13288




50D5151




62P3H5S2




67Q3





50D 51S 62P




Polypeptide






130




SEQ ID NO:




Restriction




SEQ ID NO:240




SEQ ID NO:244




SEQ ID NO:248





63H




C-8 SEQ ID







389




EcoRV-NsiI




50D51S4




62P3H5




65S67Q6





65S 67Q




NO:325









SEQ ID NO:241




SEQ ID NO:246




SEQ ID NO:247






Example




pMON13403




pMON13288




50D51S1




62P3H2




67Q3





50D 51S




Polypeptide






126




SEQ ID NO:




Restriction




SEQ ID NO:240




SEQ ID NO:245




SEQ ID NO:248





62P 63H




C-4 SEQ ID







388




EcoRV-NsiI




50D51S4




62P3H5




67Q6





67Q




NO:321









SEQ ID NO:241




SEQ ID NO:246




SEQ ID NO:249






Example




pMON13418




pMON13288




76P1




5VYWPTT3




10YM05Qt





76P 79B




Polypeptide






123




SEQ ID NO:




Restriction




SEQ ID NO:250




SEQ ID NO:252




SEQ ID NO:242




SEQ ID NO:57




8SV 8TY




C-1 SEQ ID







393




NsiI-EcoRI




76P5




79S6




5VYWPTT7




101A10508




88W91P




NO:326









SEQ ID NO:251




SEQ ID NO:253




SEQ ID NO:243




SEQ ID NO:58




95T 98T






Example




pMON13411




pMON13288




09L2Q6S1




120Q123E2






109L 112Q




Polypeptide






127




SEQ ID NO:




Restriction




Seq ID NO:227




SEQ ID NO:63






116S




C-5 SEQ ID







390




EcoRI-HindIII




09L2Q6S3




120Q123E4







NO:322









SEQ ID NO:228




SEQ ID NO:64






Example




pMON13412




pMON13288




9LQS1181






15-118




Polypeptide






128




SEQ ID NO:




Restriction




Seq ID NO:255






109L 112Q




C-6 SEQ ID







391




EcoRI-HindIII




9LQS1183






116S




NO:323









SEQ ID NO:256






Example




pMON13413




pMON13288




09L2Q6S1




11752






109L 112Q




Polypeptide






129




SEQ ID NO:




Restriction




Seq ID NO:227




SEQ ID NO:229






118S 117S




C-7 SEQ ID







392




EcoRI-HindIII




09L2Q6S3




120Q123E4







NO:324









SEQ ID NO:228




SEQ ID NO:64



























TABLE 10











Parental











plasmid/






Example





Restriction




Restriction




Amino Acid






No




Plasmid




digest




fragment




changes




Polypeptide











Example 133




pMON13428




pMON13411




102 bp




76P 79S 85V




Polypeptide







SEQ ID




Nsil-EcoRI




Nsil-EcoRI




87Y 91P 95T




C-9







NO:394





fragment from




98T 109L




SEQ ID









pMON13418




112Q 116S




NO:327






Example 134




pMON13459




pMON13428




170 bp




23L 29I 34S




Polypeptide







SEQ ID




NcoI-Nsil




NcoI-Nsil




37S 38A 45V




C-12







NO:395





fragment from




46S 76P 79S




SEQ ID









pMON13402




85V 87Y 91P




NO:328










95T 98T 109L










112Q 116S






Example 135




pMON13467




pMON13413




170 bp




23L 291 34S




Polypeptide







SEQ ID




NcoI-Nsil




NcoI-Nsil




37S 38A 45V




C-13







NO:396





fragment from




46S 109L




SEQ ID









pMON13402




112Q 116S




NO:329










109L 112Q










116S 117S






Example 136




pMON13492




pMON13418




170 bp




23L 29I 34S




Polypeptide







SEQ ID




NcoI-Nsil




NcoI-Nsil




37S 38A 45V




C-14







NO:397





fragment from




46S 76P 79S




SEQ ID









pMON13402




85V 87Y 91P




NO:330










95T 98T

















415





23 base pairs


nucleic acid


single


linear




DNA (synthetic)



1
CTAGCGATCT TTTAATAAGC TTG 23






23 base pairs


nucleic acid


single


linear




DNA (synthetic)



2
GATCCAAGCT TATTAAAAGA TCG 23






69 base pairs


nucleic acid


single


linear




DNA (synthetic)



3
GGCAACAATT TCTACAAAAC ACTTGATACT GTATGAGCAT ACAGTATAAT TGCTTCAACA 60
GAACAGATC 69






67 base pairs


nucleic acid


single


linear




DNA (synthetic)



4
TGTTCTGTTG AAGCAATTAT ACTGTATGCT CATACAGTAT CAAGTGTTTT GTAGAAATTG 60
TTGCCGC 67






23 base pairs


nucleic acid


single


linear




DNA (synthetic)



5
CCATTGCTGC CGGCATCGTG GTC 23






46 base pairs


nucleic acid


single


linear




DNA (synthetic)



6
CATGGCTCCA ATGACTCAGA CTACTTCTCT TAAGACTTCT TGGGTT 46






42 base pairs


nucleic acid


single


linear




DNA (synthetic)



7
AACCCAAGAA GTCTTAAGAG AAGTAGTCTG AGTCATTGGA GC 42






64 base pairs


nucleic acid


single


linear




DNA (synthetic)



8
AATTCCGTCG TAAACTGACC TTCTATCTGA AAACCTTGGA GAACGCGCAG GCTCAACAGT 60
AATA 64






64 base pairs


nucleic acid


single


linear




DNA (synthetic)



9
AGCTTATTAC TGTTGAGCCT GCGCGTTCTC CAAGGTTTTC AGATAGAAGG TCAGTTTACG 60
ACGG 64






126 amino acids


amino acid


linear




peptide



10
Met Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn
1 5 10 15
Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys Gln Pro Pro
20 25 30
Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile
35 40 45
Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe Asn Arg
50 55 60
Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser Ile Leu Lys
65 70 75 80
Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg His
85 90 95
Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg Arg Lys Leu
100 105 110
Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln Gln
115 120 125






24 base pairs


nucleic acid


single


linear




DNA (synthetic)



11
CATGGCTAAC TGCTCTAACA TGAT 24






22 base pairs


nucleic acid


single


linear




DNA (synthetic)



12
CGATCATGTT AGAGCAGTTA GC 22






113 amino acids


amino acid


linear




peptide



13
Met Ala Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys
1 5 10 15
Gln Pro Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp
20 25 30
Gln Asp Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala
35 40 45
Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser
50 55 60
Ile Leu Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro
65 70 75 80
Thr Arg His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg
85 90 95
Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln
100 105 110
Gln






27 amino acids


amino acid


linear




peptide



14
Met Met Ile Thr Leu Arg Lys Leu Pro Leu Ala Val Ala Val Ala Ala
1 5 10 15
Gly Val Met Ser Ala Gln Ala Met Ala Asn Cys
20 25






133 amino acids


amino acid


linear




peptide




Modified-site



/note= “Met- may or may not precede the
amino acid in position 1”






Modified-site


17



/note= “Xaa at position 17 is Ser,
Lys, Gly, Asp, Met, Gln, or Arg”






Modified-site


18



/note= “Xaa at position 18 is Asn,
His, Leu, Ile, Phe, Arg, or Gln”






Modified-site


19



/note= “Xaa at positiion 19 is Met,
Phe, Ile, Arg, Gly, Ala, or Cys”






Modified-site


20



/note= “Xaa at position 20 is Ile,
Cys, Gln, Glu, Arg, Pro, or Ala”






Modified-site


21



/note= “Xaa at position 21 is Asp,
Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn, Thr, Ser,
or Val”






Modified-site


22



/note= “Xaa at position 22 is Glu,
Trp, Pro, Ser, Ala, His, Asp, Asn, Gln, Leu, Val,
or Gly”






Modified-site


23



/note= “Xaa at position 23 is Ile,
Val, Ala, Leu, Gly, Trp, Lys, Phe, Ser, or
Arg”






Modified-site


24



/note= “Xaa at position 24 is Ile,
Gly, Val, Arg, Ser, Phe, or Leu”






Modified-site


25



/note= “Xaa at position 25 is Thr,
His, Gly, Gln, Arg, Pro, or Ala”






Modified-site


26



/note= “Xaa at position 26 is His,
Thr, Phe, Gly, Arg, Ala, or Trp”






Modified-site


27



/note= “Xaa at position 27 is Leu,
Gly, Arg, Thr, Ser, or Ala”






Modified-site


28



/note= “Xaa at position 28 is Lys,
Arg, Leu, Gln, Gly, Pro, Val, or Trp”






Modified-site


29



/note= “Xaa at position 29 is Gln,
Asn, Leu, Pro, Arg, or Val”






Modified-site


30



/note= “Xaa at position 30 is Pro,
His, Thr, Gly, Asp, Gln, Ser, Leu, or Lys”






Modified-site


31



/note= “Xaa at position 31 is Pro,
Asp, Gly, Ala, Arg, Leu, or Gln”






Modified-site


32



/note= “Xaa at position 32 is Leu,
Val, Arg, Gln, Asn, Gly, Ala, or Glu”






Modified-site


33



/note= “Xaa at position 33 is Pro,
Leu, Gln, Ala, Thr, or Glu”






Modified-site


34



/note= “Xaa at position 34 is Leu,
Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg, Ala, Phe,
Ile, or Met”






Modified-site


35



/note= “Xaa at position 35 is Leu,
Ala, Gly, Asn, Pro, Gln, or Val”






Modified-site


36



/note= “Xaa at position 36 is Asp,
Leu, or Val”






Modified-site


37



/note= “Xaa at position 37 is Phe,
Ser, Pro, Trp, or Ile”






Modified-site


38



/note= “Xaa at position 38 is Asn,
or Ala”






Modified-site


40



/note= “Xaa at position 40 is Leu,
Trp, or Arg”






Modified-site


41



/note= “Xaa at position 41 is Asn,
Cys, Arg, Leu, His, Met, or Pro”






Modified-site


42



/note= “Xaa at position 42 is Gly,
Asp, Ser, Cys, Asn, Lys, Thr, Leu, Val, Glu, Phe, Tyr,
Ile, Met, or Ala”






Modified-site


43



/note= “Xaa at position 43 is Glu,
Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln, Arg, Thr, Gly,
or Ser”






Modified-site


44



/note= “Xaa at position 44 is Asp,
Ser, Leu, Arg, Lys, Thr, Met, Trp, Glu, Asn, Gln, Ala,
or Pro”






Modified-site


45



/note= “Xaa at position 45 is Gln,
Pro, Phe, Val, Met, Leu, Thr, Lys, Trp, Asp, Asn, Arg,
Ser, Ala, Ile, Glu, or His”






Modified-site


46



/note= “Xaa at position 46 is Asp,
Phe, Ser, Thr, Cys, Glu, Asn, Gln, Lys, His, Ala, Tyr,
Ile, Val, or Gly”






Modified-site


47



/note= “Xaa at position 47 is Ile,
Gly, Val, Ser, Arg, Pro, or His”






Modified-site


48



/note= “Xaa at position 48 is Leu,
Ser, Cys, Arg, Ile, His, Phe, Glu, Lys, Thr, Ala, Met,
Val, or Asn”






Modified-site


49



/note= “Xaa at position 49 is Met,
Arg, Ala, Gly, Pro, Asn, His, or Asp”






Modified-site


50



/note= “Xaa at position 50 is Glu,
Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala, Ile, Val, His,
Phe, Met, or Gln”






Modified-site


51



/note= “Xaa at position 51 is Asn,
Arg, Met, Pro, Ser, Thr, or His”






Modified-site


52



/note= “Xaa at position 52 is Asn,
His, Arg, Leu, Gly, Ser, or Thr”






Modified-site


53



/note= “Xaa at position 53 is
Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or Met”






Modified-site


54



/note= “Xaa at position 54 is Arg,
Asp, Ile, Ser, Val, Thr, Gln, Asn, Lys, His, Ala,
or Leu”






Modified-site


55



/note= “Xaa at position 55 is Arg,
Thr, Val, Ser, Leu, or Gly”






Modified-site


56



/note= “Xaa at position 56 is Pro,
Gly, Cys, Ser, Gln, Glu, Arg, His, Thr, Ala, Tyr,
Phe, Leu, Val, or Lys”






Modified-site


57



/note= “Xaa at position 57 is Asn
or Gly”






Modified-site


58



/note= “Xaa at position 58 is Leu,
Ser, Asp, Arg, Gln, Val, or Cys”






Modified-site


59



/note= “Xaa at position 59 is Glu,
Tyr, His, Leu, Pro, or Arg”






Modified-site


60



/note= “Xaa at position 60 is Ala,
Ser, Pro, Tyr, Asn, or Thr”






Modified-site


61



/note= “Xaa at position 61 is Phe,
Asn, Glu, Pro, Lys, Arg, or Ser”






Modified-site


62



/note= “Xaa at position 62 is Asn,
His, Val, Arg, Pro, Thr, Asp, or Ile”






Modified-site


63



/note= “Xaa at position 63 is Arg,
Tyr, Trp, Lys, Ser, His, Pro, or Val”






Modified-site


64



/note= “Xaa at position 64 is Ala,
Asn, Pro, Ser, or Lys”






Modified-site


65



/note= “Xaa at position 65 is Val,
Thr, Pro, His, Leu, Phe, or Ser”






Modified-site


66



/note= “Xaa at position 66 is Lys,
Ile, Arg, Val, Asn, Glu, or Ser”






Modified-site


67



/note= “Xaa at position 67 is Ser,
Ala, Phe, Val, Gly, Asn, Ile, Pro, or His”






Modified-site


68



/note= “Xaa at position 68 is Leu,
Val, Trp, Ser, Ile, Phe, Thr, or His”






Modified-site


69



/note= “Xaa at position 69 is Gln,
Ala, Pro, Thr, Glu, Arg, Trp, Gly, or Leu”






Modified-site


70



/note= “Xaa at position 70 is Asn,
Leu, Val, Trp, Pro, or Ala”






Modified-site


71



/note= “Xaa at position 71 is
Ala,Met,Leu,Pro,Arg,Glu,Thr,Gln,Trp,or Asn”






Modified-site


72



/note= “Xaa at position 72 is Ser,
Glu, Met, Ala, His, Asn, Arg, or Asp”






Modified-site


73



/note= “Xaa at position 73 is Ala,
Glu, Asp, Leu, Ser, Gly, Thr, or Arg”






Modified-site


74



/note= “Xaa at position 74 is Ile,
Met, Thr, Pro, Arg, Gly, or Ala”






Modified-site


75



/note= “Xaa at position 75 is
Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser, Gln,
or Leu”






Modified-site


76



/note= “Xaa at position 76 is Ser,
Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp”






Modified-site


77



/note= “Xaa at position 77 is Ile,
Ser, Arg, Thr, or Leu”






Modified-site


78



/note= “Xaa at position 78 is Leu,
Ala, Ser, Glu, Phe, Gly, or Arg”






Modified-site


79



/note= “Xaa at position 79 is Lys, Thr,
Asn, Met, Arg, Ile, Gly, or Asp”






Modified-site


80



/note= “Xaa at position 80 is Asn,
Trp, Val, Gly, Thr, Leu, Glu, or Arg”






Modified-site


81



/note= “Xaa at position 81 is Leu,
Gln, Gly, Ala, Trp, Arg, Val, or Lys”






Modified-site


82



/note= “Xaa at position 82 is Leu,
Gln, Lys, Trp, Arg, Asp, Glu, Asn, His, Thr, Ser, Ala,
Tyr, Phe, Ile, Met, or Val”






Modified-site


83



/note= “Xaa at position 83 is Pro,
Ala, Thr, Trp, Arg, or Met”






Modified-site


84



/note= “Xaa at position 84 is Cys,
Glu, Gly, Arg, Met, or Val”






Modified-site


85



/note= “Xaa at position 85 is Leu,
Asn, Val, or Gln”






Modified-site


86



/note= “Xaa at position 86 is Pro,
Cys, Arg, Ala, or Lys”






Modified-site


87



/note= “Xaa at position 87 is Leu,
Ser, Trp, or Gly”






Modified-site


88



/note= “Xaa at position 88 is Ala,
Lys, Arg, Val, or Trp”






Modified-site


89



/note= “Xaa at position 89 is Thr,
Asp, Cys, Leu, Val, Glu, His, Asn, or Ser”






Modified-site


90



/note= “Xaa at position 90 is Ala,
Pro, Ser, Thr, Gly, Asp, Ile, or Met”






Modified-site


91



/note= “Xaa at position 91 is Ala,
Pro, Ser, Thr, Phe, Leu, Asp, or His”






Modified-site


92



/note= “Xaa at position 92 is Pro,
Phe, Arg, Ser, Lys, His, Ala, Gly, Ile, or Leu”






Modified-site


93



/note= “Xaa at position 93 is Thr,
Asp, Ser, Asn, Pro, Ala, Leu, or Arg”






Modified-site


94



/note= “Xaa at position 94 is Arg,
Ile, Ser, Glu, Leu, Val, Gln, Lys, His, Ala, or Pro”






Modified-site


95



/note= “Xaa at position 95 is His,
Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn, Lys, Ser, Ala,
Trp, Phe, Ile, or Tyr”






Modified-site


96



/note= “Xaa at position 96 is Pro,
Lys, Tyr, Gly, Ile, or Thr”






Modified-site


97



/note= “Xaa at position 97 is Ile,
Val, Lys, Ala, or Asn”






Modified-site


98



/note= “Xaa at position 98 is His,
Ile, Asn, Leu, Asp, Ala, Thr, Glu, Gln, Ser, Phe, Met,
Val, Lys, Arg, Tyr, or Pro”






Modified-site


99



/note= “Xaa at position 99 is Ile,
Leu, Arg, Asp, Val, Pro, Gln, Gly, Ser, Phe,
or His”






Modified-site


100



/note= “Xaa at position 100 is
Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or Pro”






Modified-site


101



/note= “Xaa at position 101 is
Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu, Asn, Ser,
Ala, Gly, Ile, Leu, or Gln”






Modified-site


102



/note= “Xaa at position 102 is Gly,
Leu, Glu, Lys, Ser, Tyr, or Pro”






Modified-site


103



/note= “Xaa at position 103 is Asp,
or Ser”






Modified-site


104



/note= “Xaa at position 104 is
Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gln, Lys, Ala,
Phe, or Gly”






Modified-site


105



/note= “Xaa at position 105 is
Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr, Leu, Lys, Ile,
Asp, or His”






Modified-site


106



/note= “Xaa at position 106 is Glu,
Ser, Ala, Lys, Thr, Ile, Gly, or Pro”






Modified-site


108



/note= “Xaa at position 108 is Arg,
Lys, Asp, Leu, Thr, Ile, Gln, His, Ser, Ala, or Pro”






Modified-site


109



/note= “Xaa at position 109 is Arg,
Thr, Pro, Glu, Tyr, Leu, Ser, or Gly”






Modified-site


110



/note= “Xaa at position 110 is Lys,
Ala, Asn, Thr, Leu, Arg, Gln, His, Glu, Ser,
or Trp”






Modified-site


111



/note= “Xaa at position 111 is Leu,
Ile, Arg, Asp, or Met”






Modified-site


112



/note= “Xaa at position 112 is Thr,
Val, Gln, Tyr, Glu, His, Ser, or Phe”






Modified-site


113



/note= “Xaa at position 113 is Phe,
Ser, Cys, His, Gly, Trp, Tyr, Asp, Lys, Leu, Ile, Val,
or Asn”






Modified-site


114



/note= “Xaa at position 114 is Tyr,
Cys, His, Ser, Trp, Arg, or Leu”






Modified-site


115



/note= “Xaa at position 115 is
Leu, Asn, Val, Pro, Arg, Ala, His, Thr, Trp, or
Met”






Modified-site


116



/note= “Xaa at position 116 is Lys,
Leu, Pro, Thr, Met, Asp, Val, Glu, Arg, Trp, Ser,
Asn, His, Ala, Tyr, Phe, Glu, or Ile”






Modified-site


117



/note= “Xaa at position 117 is Thr,
Ser, Asn, Ile, Trp, Lys, or Pro”






Modified-site


118



/note= “Xaa at position 118 is Leu,
Ser, Pro, Ala, Glu, Cys, Asp, or Tyr”






Modified-site


119



/note= “Xaa at position 119 is Glu,
Ser, Lys, Pro, Leu, Thr, Tyr, or Arg”






Modified-site


120



/note= “Xaa at position 120 is Asn,
Ala, Pro, Leu, His, Val, or Gln”






Modified-site


121



/note= “Xaa at position 121 is Ala,
Ser, Ile, Asn, Pro, Lys, Asp, or Gly”






Modified-site


122



/note= “Xaa at position 122 is
Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr,
or Cys”






Modified-site


123



/note= “Xaa at position 123 is Ala,
Met, Glu, His, Ser, Pro, Tyr, or Leu”





15
Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn Cys
1 5 10 15
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
20 25 30
Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
35 40 45
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
50 55 60
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
65 70 75 80
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
85 90 95
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa Xaa Xaa
100 105 110
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu
115 120 125
Ser Leu Ala Ile Phe
130






133 amino acids


amino acid


linear




peptide




Modified-site



/note= “Met- may or may not precede
the amino acid in position 1”






Modified-site


17



/note= “Xaa at position 17 is Ser,
Gly, Asp, Met, or Gln”






Modified-site


18



/note= “Xaa at position 18 is Asn,
His, Leu, Ile, Phe, Arg, or Gln”






Modified-site


19



/note= “Xaa at position 19 is Met,
Phe, Ile, Arg, or Ala”






Modified-site


20



/note= “Xaa at position 20 is Ile
or Pro”






Modified-site


21



/note; “Xaa at position 21 is Asp
or Glu”






Modified-site


23



/note= “Xaa at position 23 is Ile,
Val, Ala, Leu, or Gly”






Modified-site


24



/note= “Xaa at position 24 is Ile,
Val, Phe, or Leu”






Modified-site


25



/note= “Xaa at position 25 is Thr,
His, Gly, Gln, Arg, Pro, or Ala”






Modified-site


26



/note= “Xaa at position 26 is His,
Phe, Gly, Arg, or Ala”






Modified-site


28



/note= “Xaa at position 28 is Lys,
Leu, Gln, Gly, Pro, or Val”






Modified-site


29



/note= “Xaa at position 29 is Gln,
Asn, Leu, Arg, or Val”






Modified-site


30



/note= “Xaa at position 30 is Pro,
His, Thr, Gly, or Gln”






Modified-site


31



/note= “Xaa at position 31 is Pro,
Asp, Gly, Ala, Arg, Leu, or Gln”






Modified-site


32



/note= “Xaa at position 32 Leu,
Arg, Gln, Asn, Gly, Ala, or Glu”






Modified-site


33



/note= “Xaa at position 33 is Pro,
Leu, Gln, Ala, or Glu”






Modified-site


34



/note= “Xaa at position 34 is Leu,
Val, Gly, Ser, Lys, Ala, Arg, Gln, Glu, Ile, Phe,
Thr, or Met”






Modified-site


35



/note= “Xaa at position 35 is Leu,
Ala, Asn, Pro, Gln, or Val”






Modified-site


36



/note= “Xaa at position 36 is Asp
or Leu”






Modified-site


37



/note= “Xaa at position 37 is Phe,
Ser, Pro, Trp, or Ile”






Modified-site


38



/note= “Xaa at position 38 is Asn
or Ala”






Modified-site


41



/note= “Xaa at position 41 is Asn,
Cys, Arg, His, Met, or Pro”






Modified-site


42



/note= “Xaa at position 42 is Gly,
Asp, Ser, Cys, Ala, Asn, Ile, Leu, Met, Tyr, Val,
or Arg”






Modified-site


44



/note=“Xaa at position 44 is Asp or
Glu”






Modified-site


45



/note= “Xaa at position 45 is Gln,
Val, Met, Leu, Thr, Lys, Ala, Asn, Glu, Ser, or Trp”






Modified-site


46



/note= “Xaa at position 46 is Asp,
Phe, Ser, Thr, Cys, Ala, Asn, Gln, Glu, His, Ile, Lys,
Tyr, Val, or Gly”






Modified-site


47



/note= “Xaa at position 47 is Ile, Val,
or His”






Modified-site


49



/note= “Xaa at position 49 is Met,
Asn, or Asp”






Modified-site


50



/note= “Xaa at position 50 is Glu,
Thr, Ala, Asn, Ser, or Asp”






Modified-site


51



/note= “Xaa at position 51 is Asn,
Arg, Met, Pro, Ser, Thr, or His”






Modified-site


52



/note= “Xaa at position 52 is Asn
or Gly”






Modified-site


53



/note= “Xaa at position 53 is Leu,
Met, or Phe”






Modified-site


54



/note= “Xaa at position 54 is Arg
Ala, or Ser”






Modified-site


55



/note= “Xaa at position 55 is Arg,
Thr, Val, Leu, or Gly”






Modified-site


56



/note= “Xaa at position 56 is Pro,
Gly, Cys, Ser, Gln, Ala, Arg, Asn, Glu, His, Leu, Thr,
Val, or Lys”






Modified-site


59



/note= “Xaa at position 59 is Glu,
Tyr, His, Leu, or Arg”






Modified-site


60



/note= “Xaa at position 60 is Ala,
Ser, Asn, or Thr”






Modified-site


61



/note= “Xaa at position 61 is Phe
or Ser”






Modified-site


62



/note= “Xaa at position 62 is Asn,
Val, Pro, Thr, or Ile”






Modified-site


63



/note= “Xaa at position 63 is Arg,
Tyr, Lys, Ser, His, or Val”






Modified-site


64



/note= “Xaa at position 64 is Ala
or Asn”






Modified-site


65



/note= “Xaa at position 65 is Val,
Thr, Leu, or Ser”






Modified-site


66



/note= “Xaa at position 66 is Lys,
Ile, Arg, Val, Asn, Glu, or Ser”






Modified-site


67



/note= “Xaa at position 67 is Ser,
Phe, Val, Gly, Asn, Ile, or His”






Modified-site


68



/note= “Xaa at position 68 is Leu,
Val, Ile, Phe, or His”






Modified-site


69



/note= “Xaa at position 69 is Gln,
Ala, Pro, Thr, Glu, Arg, or Gly”






Modified-site


70



/note= “Xaa at position 70 is Asn
or Pro”






Modified-site


71



/note= “Xaa at position 71 is Ala,
Met, Pro, Arg, Glu, Thr, or Gln”






Modified-site


72



/note= “Xaa at position 72 is Ser,
Glu, Met, Ala, His, Asn, Arg, or Asp”






Modified-site


73



/note= “Xaa at position 73 is Ala,
Glu, Asp, Leu, Ser, Gly, Thr, Arg, or Pro”






Modified-site


74



/note= “Xaa at position 74 is Ile
or Met”






Modified-site


75



/note= “Xaa at position 75 is Glu,
Gly, Asp, Ser, or Gln”






Modified-site


76



/note= “Xaa at position 76 is Ser,
Val, Ala, Asn, Glu, Pro, Gly, or Asp”






Modified-site


77



/note= “Xaa at position 77 is Ile,
Ser, or Leu”






Modified-site


79



/note= “Xaa at position 79 is Lys,
Thr, Asn, Met, Arg, Ile, Gly, or Asp”






Modified-site


80



/note= “Xaa at position 80 is Asn,
Val, Gly, Thr, Leu, Glu, or Arg”






Modified-site


81



/note= “Xaa at position 81 is Leu
or Val”






Modified-site


82



/note= “Xaa at position 82 is Leu,
Gln, Trp, Arg, Asp, Ala, Asn, Glu, His, Met, Phe,
Ser, Thr, Tyr, or Val”






Modified-site


83



/note= “Xaa at position 83 is Pro,
Ala, Thr, Trp, or Met”






Modified-site


85



/note= “Xaa at position 85 is Leu
or Val”






Modified-site


87



/note= “Xaa at position 87 is Leu
or Ser”






Modified-site


88



/note= “Xaa at position 88 is Ala,
Arg, or Trp”






Modified-site


89



/note= “Xaa at position 89 is Thr,
Asp, Glu, His, Asn, or Ser”






Modified-site


90



/note= “Xaa at position 90 is Ala,
Asp, or Met”






Modified-site


91



/note= “Xaa at position 91 is Ala,
Pro, Ser, Thr, Phe, Leu, or Asp”






Modified-site


92



/note= “Xaa at position 92 is Pro
or Ser”






Modified-site


93



/note= “Xaa at position 93 is Thr,
Asp, Ser, Pro, Ala, Leu, or Arg”






Modified-site


95



/note= “Xaa at position 95 is His,
Pro, Arg, Val, Leu, Gly, Asn, Ile, Phe, Ser,
or Thr”






Modified-site


96



/note= “Xaa at position 96 is Pro
or Tyr”






Modified-site


97



/note= “Xaa at position 97 is Ile,
Val, or Ala”






Modified-site


98



/note= “Xaa at position 98 is His,
Ile, Asn, Leu, Asp, Ala, Thr, Arg, Gln, Glu,
Lys, Met, Ser, Tyr, Val, or Pro”






Modified-site


99



/note= “Xaa at position 99 is Ile,
Leu, Val, or Phe”






Modified-site


100



/note= “Xaa at position 100 is Lys,
Leu, His, Arg, Ile, Gln, Pro, or Ser”






Modified-site


101



/note= “Xaa at position 101 is Asp,
Pro, Met, Lys, His, Thr, Val, Asn, Ile, Leu, or Tyr”






Modified-site


102



/note= “Xaa at position 102 is Gly,
Glu, Lys, or Ser”






Modified-site


104



/note= “Xaa at position 104 is Trp,
Val, Tyr, Met, or Leu”






Modified-site


105



/note= “Xaa at position 105 is
Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr, Leu, Lys,
Ile, Asp or His”






Modified-site


106



/note= “Xaa at position 106 is Glu,
Ser, Ala, or Gly”






Modified-site


108



/note= “Xaa at position 108 is Arg,
Ala, Gln, Ser, or Lys”






Modified-site


109



/note= “Xaa at position 109 is Arg,
Thr, Glu, Leu, Ser, or Gly”






Modified-site


112



/note= “Xaa at position 112 is Thr,
Val, Gln, Glu, His, or Ser”






Modified-site


114



/note= “Xaa at position 114 is Tyr
or Trp”






Modified-site


115



/note= “Xaa at position 115 is Leu
or Ala”






Modified-site


116



/note= “Xaa at position 116 is Lys,
Thr, Met, Val, Trp, Ser, Leu, Ala, Asn, Gln, His, Met,
Phe, Tyr, or Ile”






Modified-site


117



/note= “Xaa at position 117 is Thr,
Ser, or Asn”






Modified-site


119



/note= “Xaa at position 119 is
Glu, Ser, Pro, Leu, Thr, or Tyr”






Modified-site


120



/note= “Xaa at position 120 is Asn,
Pro, Leu, His, Val, or Gln”






Modified-site


121



/note= “Xaa at position 121 is Ala,
Ser, Ile, Asn, Pro, Lys, Asp, or Gly”






Modified-site


122



/note= “Xaa at position 122 is
Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr,
or Cys”






Modified-site


123



/note= “Xaa at position 123 is Ala,
Met, Glu, His, Ser, Pro, Tyr, or Leu”





16
Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn Cys
1 5 10 15
Xaa Xaa Xaa Xaa Xaa Glu Xaa Xaa Xaa Xaa Leu Xaa Xaa Xaa Xaa Xaa
20 25 30
Xaa Xaa Xaa Xaa Xaa Xaa Asn Leu Xaa Xaa Glu Xaa Xaa Xaa Xaa Leu
35 40 45
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Leu Xaa Xaa Xaa Xaa Xaa Xaa
50 55 60
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Xaa Xaa
65 70 75 80
Xaa Xaa Xaa Cys Xaa Pro Xaa Xaa Xaa Xaa Xaa Xaa Xaa Arg Xaa Xaa
85 90 95
Xaa Xaa Xaa Xaa Xaa Xaa Asp Xaa Xaa Xaa Phe Xaa Xaa Lys Leu Xaa
100 105 110
Phe Xaa Xaa Xaa Xaa Leu Xaa Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu
115 120 125
Ser Leu Ala Ile Phe
130






133 amino acids


amino acid


linear




peptide




Modified-site



/note= “Met- may or may not precede
the amino acid in position 1”






Modified-site


17



/note= “Xaa at position 17 is Ser,
Gly, Asp, Met, or Gln”






Modified-site


18



/note= “Xaa at position 18 is Asn,
His, or Ile”






Modified-site


19



/note= “Xaa at position 19 is Met
or Ile”






Modified-site


21



/note= “Xaa at position 21 is Asp
or Glu”






Modified-site


23



/note= “Xaa at position 23 is Ile,
Ala, Leu, or Gly”






Modified-site


24



/note= “Xaa at position 24 is Ile,
Val, or Leu”






Modified-site


25



/note= “Xaa at position 25 is Thr,
His, Gln, or Ala”






Modified-site


26



/note= “Xaa at position 26 is His
or Ala”






Modified-site


29



/note= “Xaa at position 29 is Gln,
Asn, or Val”






Modified-site


30



/note= “Xaa at position 30 is Pro,
Gly, or Gln”






Modified-site


31



/note= “Xaa at position 31 is Pro,
Asp, Gly, or Gln”






Modified-site


32



/note= “Xaa at position 32 is Leu,
Arg, Gln, Asn, Gly, Ala, or Glu”






Modified-site


33



/note= “Xaa at position 33 is Pro
or Glu”






Modified-site


34



/note= “Xaa at position 34 is Leu,
Val, Gly, Ser, Lys, Ala, Arg, Gln, Glu, Ile, Phe
Thr, or Met”






Modified-site


35



/note= “Xaa at position 35 is Leu,
Ala, Asn, Pro, Gln, or Val”






Modified-site


37



/note= “Xaa at position 37 is Phe,
Ser, Pro, or Trp”






Modified-site


38



/note= “Xaa at position 38 is Asn
or Ala”






Modified-site


42



/note= “Xaa at position 42 is Gly,
Asp, Ser, Cys, Ala, Asn, Ile, Leu, Met, Tyr, or Arg”






Modified-site


44



/note= “Xaa at position 44 is Asp
or Glu”






Modified-site


45



/note= “Xaa at position 45 is Gln,
Val, Met, Leu, Thr, Ala, Asn, Glu, Ser, or Lys”






Modified-site


46



/note= “Xaa at position 46 is Asp,
Phe, Ser, Thr, Ala, Asn, Gln, Glu, His, Ile, Lys,
Tyr, Val, or Cys”






Modified-site


50



/note= “Xaa at position 50 is Glu,
Ala, Asn, Ser, or Asp”






Modified-site


51



/note= “Xaa at position 51 is Asn,
Arg, Met, Pro, Ser, Thr, or His”






Modified-site


54



/note= “Xaa at position 54 is Arg
or Ala”






Modified-site


55



/note= “Xaa at position 55 is Arg,
Thr, Val, Leu, or Gly”






Modified-site


56



/note= “Xaa at position 56 is Pro,
Gly, Ser, Gln, Ala, Arg, Asn, Glu, Leu, Thr, Val,
or Lys”






Modified-site


60



/note= “Xaa at position 60 is Ala
or Ser”






Modified-site


62



/note= “Xaa at position 62 is Asn,
Pro, Thr, or Ile”






Modified-site


63



/note= “Xaa at position 63 is Arg
or Lys”






Modified-site


64



/note= “Xaa at position 64 is Ala
or Asn”






Modified-site


65



/note= “Xaa at position 65 is Val
or Thr”






Modified-site


66



/note= “Xaa at position 66 is Lys
or Arg”






Modified-site


67



/note= “Xaa at position 67 is Ser
Phe or His”






Modified-site


68



/note= “Xaa at position 68 is Leu,
Ile, Phe, or His”






Modified-site


69



/note= “Xaa at position 69 is Gln,
Ala, Pro, Thr, Glu, Arg, or Gly”






Modified-site


71



/note= “Xaa at position 71 is Ala,
Pro, or Arg”






Modified-site


72



/note= “Xaa at position 72 is Ser,
Glu, Arg, or Asp”






Modified-site


73



/note= “Xaa at position 73 is Ala
or Leu”






Modified-site


76



/note= “Xaa at position 76 is Ser,
Val, Ala, Asn, Glu, Pro, or Gly”






Modified-site


77



/note= “Xaa at position 77 is Ile
or Leu”






Modified-site


79



/note= “Xaa at position 79 is
Lys, Thr, Asn, Met, Arg, Ile, Gly, or Asp”






Modified-site


80



/note= “Xaa at position 80 is Asn,
Gly, Glu, or Arg”






Modified-site


82



/note= “Xaa at position 82 is Leu,
Gln, Trp, Arg, Asp, Ala, Asn, Glu, His, Ile, Met,
Phe, Ser, Thr, Tyr, or Val”






Modified-site


83



/note= “Xaa at position 83 is Pro
or Thr”






Modified-site


85



/note= “Xaa at position 85 is Leu
or Val”






Modified-site


87



/note= “Xaa at position 87 is Leu
or Ser”






Modified-site


88



/note= “Xaa at position 88 is Ala
or Trp”






Modified-site


91



/note= “Xaa at position 91 is Ala
or Pro”






Modified-site


93



/note= “Xaa at position 93 is Thr,
Asp, Ser, Pro, Ala, Leu, or Arg”






Modified-site


95



/note= “Xaa at position 95 is His,
Pro, Arg, Val, Leu, Gly, Asn, Phe, Ser, or Thr”






Modified-site


96



/note= “Xaa at position 96 is Pro
or Tyr”






Modified-site


97



/note= “Xaa at position 97 is Ile
or Val”






Modified-site


98



/note= “Xaa at position 98 is His,
Ile, Asn, Leu, Ala, Thr, Arg, Gln, Lys,
Met, Ser, Tyr, Val, or Pro”






Modified-site


99



/note= “Xaa at position 99 is Ile,
Leu, or Val”






Modified-site


100



/note= “Xaa at position 100 is Lys,
Arg, Ile, Gln, Pro, or Ser”






Modified-site


101



/note= “Xaa at position 101 is Asp,
Pro, Met, Lys, His, Thr, Pro, Asn, Ile, Leu, or Tyr”






Modified-site


104



/note= “Xaa at position 104 is Trp
or Leu”






Modified-site


105



/note= “Xaa at position 105 is
Asn, Pro, Ala, Ser, Trp, Gln, Tyr, Leu, Lys, Ile,
Asp, or His”






Modified-site


106



/note= “Xaa at position 106 is Glu
or Gly”






Modified-site


109



/note= “Xaa at position 109 is Arg,
Thr, Glu, Leu, or Ser”






Modified-site


112



/note= “Xaa at position 112 is Thr,
Val, or Gln”






Modified-site


114



/note= “Xaa at position 114 is Tyr
or Trp”






Modified-site


115



/note= “Xaa at position 115 is Leu
or Ala”






Modified-site


116



/note= “Xaa at position 116 is Lys,
Thr, Val, Trp, Ser, Ala, His, Met, Phe, Tyr, or Ile”






Modified-site


117



/note= “Xaa at position 117 is Thr
or Ser”






Modified-site


120



/note= “Xaa at position 120 is Asn,
Pro, Leu, His, Val, or Gln”






Modified-site


121



/note= “Xaa at position 121 is Ala,
Ser, Ile, Asn, Pro, Asp, or Gly”






Modified-site


122



/note= “Xaa at position 122 is
Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr,
or Cys”






Modified-site


123



/note= “Xaa at position 123 is Ala,
Met, Glu, His, Ser, Pro, Tyr, or Leu”





17
Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn Cys
1 5 10 15
Xaa Xaa Xaa Ile Xaa Glu Xaa Xaa Xaa Xaa Leu Lys Xaa Xaa Xaa Xaa
20 25 30
Xaa Xaa Xaa Asp Xaa Xaa Asn Leu Asn Xaa Glu Xaa Xaa Xaa Ile Leu
35 40 45
Met Xaa Xaa Asn Leu Xaa Xaa Xaa Asn Leu Glu Xaa Phe Xaa Xaa Xaa
50 55 60
Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Ile Glu Xaa Xaa Leu Xaa Xaa
65 70 75 80
Leu Xaa Xaa Cys Xaa Pro Xaa Xaa Thr Ala Xaa Pro Xaa Arg Xaa Xaa
85 90 95
Xaa Xaa Xaa Xaa Xaa Gly Asp Xaa Xaa Xaa Phe Xaa Xaa Lys Leu Xaa
100 105 110
Phe Xaa Xaa Xaa Xaa Leu Glu Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu
115 120 125
Ser Leu Ala Ile Phe
130






133 amino acids


amino acid


linear




peptide




Modified-site



/note= “Met- may or may not precede
the amino acid in position 1”






Modified-site


17



/note= “Xaa at position 17 is Ser,
Gly, Asp, or Gln”






Modified-site


18



/note= “Xaa at position 18 is Asn,
His, or Ile”






Modified-site


23



/note= “Xaa at position 23 is Ile,
Ala, Leu, or Gly”






Modified-site


25



/note= “Xaa at position 25 is Thr,
His, or Gln”






Modified-site


26



/note= “Xaa at position 26 is His
or Ala”






Modified-site


29



/note=“Xaa at position 29 is Gln
or Asn”






Modified-site


30



/note= “Xaa at position 30 is Pro
or Gly”






Modified-site


32



/note= “Xaa at position 32 is Leu,
Arg, Asn, or Ala”






Modified-site


34



/note= “Xaa at position 34 is Leu,
Val, Ser, Ala, Arg, Gln, Glu, Ile, Phe, Thr, or Met”






Modified-site


35



/note= “Xaa at position 35 is Leu,
Ala, Asn, or Pro”






Modified-site


38



/note= “Xaa at position 38 is Asn
or Ala”






Modified-site


42



/note= “Xaa at position 42 is Gly,
Asp, Ser, Ala, Asn, Ile, Leu, Met, Tyr, or Arg”






Modified-site


45



/note= “Xaa at position 45 is Gln,
Val, Met, Leu, Ala, Asn, Glu, or Lys”






Modified-site


46



/note= “Xaa at position 46 is Asp,
Phe, Ser, Gln, Glu, His, Val, or Thr”






Modified-site


50



/note= “Xaa at position 50 is Glu,
Asn, Ser, or Asp”






Modified-site


51



/note= “Xaa at position 51 is Asn,
Arg, Pro, Thr, or His”






Modified-site


55



/note= “Xaa at position 55 is Arg,
Leu, or Gly”






Modified-site


56



/note= “Xaa at position 56 is Pro,
Gly, Ser, Ala, Asn, Val, Leu, or Gln”






Modified-site


62



/note= “Xaa at position 62 is Asn,
Pro, or Thr”






Modified-site


64



/note= “Xaa at position 64 is Ala
or Asn”






Modified-site


65



/note= “Xaa at position 65 is Val
or Thr”






Modified-site


67



/note= “Xaa at position 67 is Ser
or Phe”






Modified-site


68



/note= “Xaa at position 68 is Leu
or Phe”






Modified-site


69



/note= “Xaa at position 69 is Gln,
Ala, Glu, or Arg”






Modified-site


76



/note= “Xaa at position 76 is Ser,
Val, Asn, Pro, or Gly”






Modified-site


77



/note= “Xaa at position 77 is Ile
or Leu”






Modified-site


79



/note= “Xaa at position 79 is Lys,
Asn, Met, Arg, Ile, or Gly”






Modified-site


80



/note= “Xaa at position 80 is Asn,
Gly, Glu, or Arg”






Modified-site


82



/note= “Xaa at position 82 is Leu,
Gln, Trp, Arg, Asp, Asn, Glu, His, Met, Phe, Ser,
Thr, Tyr, or Val”






Modified-site


87



/note= “Xaa at position 87 is Leu
or Ser”






Modified-site


88



/note= “Xaa at position 88 is Ala
or Trp”






Modified-site


91



/note= “Xaa at position 91 is Ala
or Pro”






Modified-site


93



/note= “Xaa at position 93 is Thr,
Asp, or Ala”






Modified-site


95



/note= “Xaa at position 95 is His,
Pro, Arg, Val, Gly, Asn, Ser, or Thr”






Modified-site


98



/note= “Xaa at position 98 is His,
Ile, Asn, Ala, Thr, Arg, Gln, Glu, Lys, Met, Ser,
Tyr, Val, or Leu”






Modified-site


99



/note= “Xaa at position 99 is Ile
or Leu”






Modified-site


100



/note= “Xaa at position 100 is Lys
or Arg”






Modified-site


101



/note= “Xaa at position 101 is Asp,
Pro, Met, Lys, Thr, His, Pro, Asn, Ile, Leu, or Tyr”






Modified-site


105



/note= “Xaa at position 105 is Asn,
Pro, Ser, Ile, or Asp”






Modified-site


108



/note= “Xaa at position 108 is Arg,
Ala, or Ser”






Modified-site


109



/note= “Xaa at position 109 is Arg,
Thr, Glu, Leu, or Ser”






Modified-site


112



/note= “Xaa at position 112 is Thr
or Gln”






Modified-site


116



/note= “Xaa at position 116 is Lys,
Val, Trp, Ala, His, Phe, Tyr, or Ile”






Modified-site


117



/note= “Xaa at position 117 is Thr
or Ser”






Modified-site


120



/note= “Xaa at position 120 is Asn,
Pro, Leu, His, Val, or Gln”






Modified-site


121



/note= “Xaa at position 121 is Ala,
Ser, Ile, Pro, or Asp”






Modified-site


122



/note= “Xaa at position 122 is Gln,
Met, Trp, Phe, Pro, His, Ile, or Tyr”






Modified-site


123



/note= “Xaa at position 123 is Ala,
Met, Glu, Ser, or Leu”





18
Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn Cys
1 5 10 15
Xaa Xaa Met Ile Asp Glu Xaa Ile Xaa Xaa Leu Lys Xaa Xaa Pro Xaa
20 25 30
Pro Xaa Xaa Asp Phe Xaa Asn Leu Asn Xaa Glu Asp Xaa Xaa Ile Leu
35 40 45
Met Xaa Xaa Asn Leu Arg Xaa Xaa Asn Leu Glu Ala Phe Xaa Arg Xaa
50 55 60
Xaa Lys Xaa Xaa Xaa Asn Ala Ser Ala Ile Glu Xaa Xaa Leu Xaa Xaa
65 70 75 80
Leu Xaa Pro Cys Leu Pro Xaa Xaa Thr Ala Xaa Pro Xaa Arg Xaa Pro
85 90 95
Ile Xaa Xaa Xaa Xaa Gly Asp Trp Xaa Glu Phe Xaa Xaa Lys Leu Xaa
100 105 110
Phe Tyr Leu Xaa Xaa Leu Glu Xaa Xaa Xaa Xaa Gln Gln Thr Thr Leu
115 120 125
Ser Leu Ala Ile Phe
130






111 amino acids


amino acid


linear




peptide




Modified-site



/note= “Met- or Met-Ala- may or may
not precede the amino acid in position 1”






Modified-site



/note= “Xaa at position 3 is Ser,
Lys, Gly, Asp, Met, Gln, or Arg”






Modified-site



/note= “Xaa at position 4 is Asn,
His, Leu, Ile, Phe, Arg, or Gln”






Modified-site



/note= “Xaa at position 5 is Met,
Phe, Ile, Arg, Gly, Ala, or Cys”






Modified-site



/note= “Xaa at position 6 is Ile,
Cys, Gln, Glu, Arg, Pro, or Ala”






Modified-site



/note= “Xaa at position 7 is Asp,
Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn, Thr, Ser,
or Val”






Modified-site



/note= “Xaa at position 8 is Glu,
Trp, Pro, Ser, Ala, His, Asp, Asn, Gln, Leu, Val,
or Gly”






Modified-site



/note= “Xaa at position 9 is
Ile, Val, Ala, Leu, Gly, Trp, Lys, Phe, Ser
or Arg”






Modified-site


10



/note= “Xaa at position 10 is Ile,
Gly, Val, Arg, Ser, Phe, or Leu”






Modified-site


11



/note= “Xaa at position 11 is Thr,
His, Gly, Gln, Arg, Pro, or Ala”






Modified-site


12



/note= “Xaa at position 12 is His,
Thr, Phe, Gly, Arg, Ala, or Trp”






Modified-site


13



/note= “Xaa at position 13 is Leu,
Gly, Arg, Thr, Ser, or Ala”






Modified-site


14



/note= “Xaa at position 14 is Lys,
Arg, Leu, Gln, Gly, Pro, Val, or Trp”






Modified-site


15



/note= “Xaa at position 15 is Gln,
Asn, Leu, Pro, Arg, or Val”






Modified-site


16



/note= “Xaa at position 16 is Pro,
His, Thr, Gly, Asp, Gln, Ser, Leu, or Lys”






Modified-site


17



/note= “Xaa at position 17 is Pro,
Asp, Gly, Ala, Arg, Leu, or Gln”






Modified-site


18



/note= “Xaa at position 18 is Leu,
Val, Arg, Gln, Asn, Gly, Ala, or Glu”






Modified-site


19



/note= “Xaa at position 19 is Pro,
Leu, Gln, Ala, Thr, or Glu”






Modified-site


20



/note= “Xaa at position 20 is Leu,
Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg, Ala, Phe,
Ile, or Met”






Modified-site


21



/note= “Xaa at position 21 is Leu,
Ala, Gly, Asn, Pro, Gln, or Val”






Modified-site


22



/note= “Xaa at position 22 is Asp,
Leu, or Val”






Modified-site


23



/note= “Xaa at position 23 is Phe,
Ser, Pro, Trp, or Ile”






Modified-site


24



/note= “Xaa at position 24 is Asn
or Ala”






Modified-site


26



/note= “Xaa at position 26 is Leu,
Trp, or Arg”






Modified-site


27



/note= “Xaa at position 27 is Asn,
Cys, Arg, Leu, His, Met, or Pro”






Modified-site


28



/note= “Xaa at position 28 is Gly,
Asp, Ser, Cys, Ala, Lys, Asn, Thr, Leu, Val, Glu,
Phe, Tyr, Ile, or Met”






Modified-site


29



/note= “Xaa at position 29 is Glu,
Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln, Arg, Thr,
Gly, or Ser”






Modified-site


30



/note= “Xaa at position 30 is Asp,
Ser, Leu, Arg, Lys, Thr, Met, Trp, Glu, Asn, Gln,
Ala, or Pro”






Modified-site


31



/note= “Xaa at position 31 is Gln,
Pro, Phe, Val, Met, Leu, Thr, Lys, Asp, Asn, Arg,
Ser, Ala, Ile, Glu, His, or Trp”






Modified-site


32



/note= “Xaa at position 32 is Asp,
Phe, Ser, Thr, Cys, Glu, Asn, Gln, Lys, His, Ala,
Tyr, Ile, Val, or Gly”






Modified-site


33



/note= “Xaa at position 33 is Ile,
Gly, Val, Ser, Arg, Pro, or His”






Modified-site


34



/note= “Xaa at position 34 is Leu,
Ser, Cys, Arg, Ile, His, Phe, Glu, Lys, Thr, Ala,
Met, Val, or Asn”






Modified-site


35



/note= “Xaa at position 35 is Met,
Arg, Ala, Gly, Pro, Asn, His, or Asp”






Modified-site


36



/note= “Xaa at position 36 is Glu,
Leu, Thr, Asp, Tyr, Lys, Asn, Ser, Ala, Ile, Val,
His, Phe, Met, or Gln”






Modified-site


37



/note= “Xaa at position 37 is Asn,
Arg, Met, Pro, Ser, Thr, or His”






Modified-site


38



/note= “Xaa at position 38 is Asn,
His, Arg, Leu, Gly, Ser, or Thr”






Modified-site


39



/note= “Xaa at position 39 is
Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or Met”






Modified-site


40



/note= “Xaa at position 40 is Arg,
Asp, Ile, Ser, Val, Thr, Gln, Asn, Lys, His,
Ala, or Leu”






Modified-site


41



/note= “Xaa at position 41 is Arg,
Thr, Val, Ser, Leu, or Gly”






Modified-site


42



/note= “Xaa at position 42 is Pro,
Gly, Cys, Ser, Gln, Glu, Arg, His, Thr, Ala, Tyr,
Phe, Leu, Val, or Lys”






Modified-site


43



/note= “Xaa at position 43 is Asn
or Gly”






Modified-site


44



/note= “Xaa at position 44 is Leu,
Ser, Asp, Arg, Gln, Val, or Cys”






Modified-site


45



/note= “Xaa at position 45 is Glu,
Tyr, His, Leu, Pro, or Arg”






Modified-site


46



/note= “Xaa at position 46 is Ala,
Ser, Pro, Tyr, Asn, or Thr”






Modified-site


47



/note= “Xaa at position 47 is Phe,
Asn, Glu, Pro, Lys, Arg, or Ser”






Modified-site


48



/note= “Xaa at position 48 is Asn,
His, Val, Arg, Pro, Thr, Asp, or Ile”






Modified-site


49



/note= “Xaa at position 49 is Arg,
Tyr, Trp, Lys, Ser, His, Pro, or Val”






Modified-site


50



/note= “Xaa at position 50 is Ala,
Asn, Pro, Ser, or Lys”






Modified-site


51



/note= “Xaa at position 51 is Val,
Thr, Pro, His, Leu, Phe, or Ser”






Modified-site


52



/note= “Xaa at position 52 is Lys,
Ile, Arg, Val, Asn, Glu, or Ser”






Modified-site


53



/note= “Xaa at position 53 is Ser,
Ala, Phe, Val, Gly, Asn, Ile, Pro, or His”






Modified-site


54



/note= “Xaa at position 54 is Leu,
Val, Trp, Ser, Ile, Phe, Thr, or His”






Modified-site


55



/note= “Xaa at position 55 is Gln,
Ala, Pro, Thr, Glu, Arg, Trp, Gly, or Leu”






Modified-site


56



/note= “Xaa at position 56 is Asn,
Leu, Val, Trp, Pro, or Ala”






Modified-site


57



/note= “Xaa at position 57 is Ala,
Met, Leu, Pro, Arg, Glu, Thr, Gln, Trp, or Asn”






Modified-site


58



/note= “Xaa at position 58 is Ser,
Glu, Met, Ala, His, Asn, Arg, or Asp”






Modified-site


59



/note= “Xaa at position 59 is Ala,
Glu, Asp, Leu, Ser, Gly, Thr, or Arg”






Modified-site


60



/note= “Xaa at position 60 is Ile,
Met, Thr, Pro, Arg, Gly, Ala”






Modified-site


61



/note= “Xaa at position 61 is
Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser, Gln,
or Leu”






Modified-site


62



/note= “Xaa at position 62 is Ser,
Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp”






Modified-site


63



/note= “Xaa at position 63 is Ile,
Ser, Arg, Thr, or Leu”






Modified-site


64



/note= “Xaa at position 64 is Leu,
Ala, Ser, Glu, Phe, Gly, or Arg”






Modified-site


65



/note= “Xaa at position 65 is Lys,
Thr, Gly, Asn, Met, Arg, Ile, or Asp”






Modified-site


66



/note= “Xaa at position 66 is Asn,
Trp, Val, Gly, Thr, Leu, Glu, or Arg”






Modified-site


67



/note= “Xaa at position 67 is Leu,
Gln, Gly, Ala, Trp, Arg, Val, or Lys”






Modified-site


68



/note= “Xaa at position 68 is Leu,
Gln, Lys, Trp, Arg, Asp, Glu, Asn, His, Thr, Ser, Ala,
Tyr, Phe, Ile, Met, or Val”






Modified-site


69



/note= “Xaa at position 69 is Pro,
Ala, Thr, Trp, Arg, or Met”






Modified-site


70



/note= “Xaa at position 70 is Cys,
Glu, Gly, Arg, Met, or Val”






Modified-site


71



/note= “Xaa at position 71 is Leu,
Asn, Val, or Gln”






Modified-site


72



/note= “Xaa at position 72 is Pro,
Cys, Arg, Ala, or Lys”






Modified-site


73



/note= “Xaa at position 73 is Leu,
Ser, Trp, or Gly”






Modified-site


74



/note= “Xaa at position 74 is Ala,
Lys, Arg, Val, or Trp”






Modified-site


75



/note= “Xaa at position 75 is Thr,
Asp, Cys, Leu, Val, Glu, His, Asn, or Ser”






Modified-site


76



/note= “Xaa at position 76 is Ala,
Pro, Ser, Thr, Gly, Asp, Ile, or Met”






Modified-site


77



/note= “Xaa at position 77 is Ala,
Pro, Ser, Thr, Phe, Leu, Asp, or His”






Modified-site


78



/note= “Xaa at position 78 is Pro,
Phe, Arg, Ser, Lys, His, Ala, Gly, Ile, or Leu”






Modified-site


79



/note= “Xaa at position 79 is Thr,
Asp, Ser, Asn, Pro, Ala, Leu, or Arg”






Modified-site


80



/note= “Xaa at position 80 is Arg,
Ile, Ser, Glu, Leu, Val, Gln, Lys, His, Ala, or Pro”






Modified-site


81



/note= “Xaa at position 81 is His,
Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn, Lys, Ser,
Ala, Trp, Phe, Ile, or Tyr”






Modified-site


82



/note= “Xaa at position 82 is Pro,
Lys, Tyr, Gly, Ile, or Thr”






Modified-site


83



/note= “Xaa at position 83 is Ile,
Val, Lys, Ala, or Asn”






Modified-site


84



/note= “Xaa at position 84 is His,
Ile, Asn, Leu, Asp, Ala, Thr, Glu, Gln, Ser,
Phe, Met, Val, Lys, Arg, Tyr, or Pro”






Modified-site


85



/note= “Xaa at position 85 is
Ile, Leu, Arg, Asp, Val, Pro, Gln, Gly, Ser,
Phe, or His”






Modified-site


86



/note= “Xaa at position 86 is
Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or Pro”






Modified-site


87



/note= “Xaa at position 87 is
Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu, Asn,
Ser, Ala, Gly, Ile, Leu, or Gln”






Modified-site


88



/note= “Xaa at position 88 Gly,
Leu, Glu, Lys, Ser, Tyr, or Pro”






Modified-site


89



/note= “Xaa at position 89 is Asp
or Ser”






Modified-site


90



/note= “Xaa at position 90 is
Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gln, Lys,
Ala, Phe, or Gly”






Modified-site


91



/note= “Xaa at position 91 is
Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr, Leu, Lys,
Ile, Asp, or His”






Modified-site


92



/note= “Xaa at position 92 is Glu,
Ser, Ala, Lys, Thr, Ile, Gly, or Pro”






Modified-site


94



/note= “Xaa at position 94 is Arg,
Lys, Asp, Leu, Thr, Ile, Gln, His, Ser, Ala, or Pro”






Modified-site


95



/note= “Xaa at position 95 is Arg,
Thr, Pro, Glu, Tyr, Leu, Ser, or Gly”






Modified-site


96



/note= “Xaa at position 96 is Lys,
Asn, Thr, Leu, Gln, Arg, His, Glu, Ser, Ala,
or Trp”






Modified-site


97



/note= “Xaa at position 97 is Leu,
Ile, Arg, Asp, or Met”






Modified-site


98



/note= “Xaa at position 98 is Thr,
Val, Gln, Tyr, Glu, His, Ser, or Phe”






Modified-site


99



/note= “Xaa at position 99 is Phe,
Ser, Cys, His, Gly, Trp, Tyr, Asp, Lys, Leu, Ile,
Val, or Asn”






Modified-site


100



/note= “Xaa at position 100 is Tyr,
Cys, His, Ser, Trp, Arg, or Leu”






Modified-site


101



/note= “Xaa at position 101 is Leu,
Asn, Val, Pro, Arg, Ala, His, Thr, Trp, or Met”






Modified-site


102



/note= “Xaa at position 102 is
Lys, Leu, Pro, Thr, Met, Asp, Val, Glu, Arg, Trp,
Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile”






Modified-site


103



/note= “Xaa at position 103 is Thr,
Ser, Asn, Ile, Trp, Lys, or Pro”






Modified-site


104



/note= “Xaa at position 104 is Leu,
Ser, Pro, Ala, Glu, Cys, Asp, or Tyr”






Modified-site


105



/note= “Xaa at position 105 is Glu,
Ser, Lys, Pro, Leu, Thr, Tyr, or Arg”






Modified-site


106



/note= “Xaa at position 106 is Asn,
Ala, Pro, Leu, His, Val or Gln”






Modified-site


107



/note= “Xaa at position 107 is Ala,
Ser, Ile, Asn, Pro, Lys, Asp, or Gly”






Modified-site


108



/note= “Xaa at position 108 is
Gln, Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr,
or Cys”






Modified-site


109



/note= “Xaa at position 109 is Ala,
Met, Glu, His, Ser, Pro, Tyr, or Leu”





19
Asn Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
1 5 10 15
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Xaa
20 25 30
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
35 40 45
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
50 55 60
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
65 70 75 80
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa
85 90 95
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gln Gln
100 105 110






111 amino acids


amino acid


linear




peptide




Modified-site



/note= “Met- or Met-Ala- may or may
not precede the amino acid in position 1”






Modified-site



/note= “Xaa at position 3 is Ser,
Gly, Asp, Met, or Gln”






Modified-site



/note= “Xaa at position 4 is Asn,
His, Leu,Ile, Phe, Arg, or Gln”






Modified-site



/note= “Xaa at position 5 is Met,
Phe, Ile, Arg, or Ala”






Modified-site



/note= “Xaa at position 6 is Ile or
Pro”






Modified-site



/note= “Xaa at position 7 is Asp or
Glu”






Modified-site



/note= “Xaa at position 9 is Ile,
Val, Ala, Leu, or Gly”






Modified-site


10



/note= “Xaa at position 10 is Ile,
Val, Phe, or Leu”






Modified-site


11



/note= “Xaa at position 11 is Thr,
His, Gly, Gln, Arg, Pro, or Ala”






Modified-site


12



/note= “Xaa at position 12 is His,
Phe, Gly, Arg, or Ala”






Modified-site


14



/note= “Xaa at position 14 is Lys,
Leu, Gln, Gly, Pro, or Val”






Modified-site


15



/note= “Xaa at position 15 is Gln,
Asn, Leu, Arg, or Val”






Modified-site


16



/note= “Xaa at position 16 is Pro,
His, Thr, Gly, or Gln”






Modified-site


17



/note= “Xaa at position 17 is Pro,
Asp, Gly, Ala, Arg, Leu, or Gln”






Modified-site


18



/note= “Xaa at position 18 is Leu,
Arg, Gln, Asn, Gly, Ala or Glu”






Modified-site


19



/note= “Xaa at poisiton 19 is Pro,
Leu, Gln, Ala, or Glu”






Modified-site


20



/note= “Xaa at positon 20 is Leu,
Val, Gly, Ser, Lys, Ala, Arg, Gln, Glu, Ile, Phe,
Thr, or Met”






Modified-site


21



/note= “Xaa at position 21 is Leu,
Ala, Asn, Pro, Gln, or Val”






Modified-site


22



/note= “Xaa at position 22 is Asp
or Leu”






Modified-site


23



/note= “Xaa at position 23 is Phe,
Ser, Pro, Trp, or Ile”






Modified-site


24



/note= “Xaa at position 24 is Asn
or Ala”






Modified-site


27



/note= “Xaa at position 27 is Asn,
Cys, Arg, His, Met, or Pro”






Modified-site


28



/note= “Xaa at position 28 is Gly,
Asp, Ser, Cys, Ala, Asn, Ile, Leu, Met, Tyr, or Arg”






Modified-site


30



/note= “Xaa at position 30 is Asp
or Glu”






Modified-site


31



/note= “Xaa at position 31 is Gln,
Val, Met, Leu, Thr, Lys, Ala, Asn, Glu, Ser, or Trp”






Modified-site


32



/note= “Xaa at position 32 is Asp,
Phe, Ser, Thr, Cys, Ala, Asn, Gln, Glu, His, Ile,
Lys, Tyr, Val, or Gly”






Modified-site


33



/note= “Xaa at position 33 is Ile,
Val, or His”






Modified-site


35



/note= “Xaa at position 35 is Met,
Asn, or Asp”






Modified-site


36



/note= “Xaa at position 36 is Glu,
Thr, Ala, Asn, Ser, or Asp”






Modified-site


37



/note= “Xaa at position 37 is Asn,
Arg, Met, Pro, Ser, Thr, or His”






Modified-site


38



/note= “Xaa at position 38 is Asn
or Gly”






Modified-site


39



/note= “Xaa at position 39 is Leu,
Met, or Phe”






Modified-site


40



/note= “Xaa at position 40 is Arg,
Ala, or Ser”






Modified-site


41



/note= “Xaa at position 41 is Arg,
Thr, Val, Leu, or Gly”






Modified-site


42



/note= “Xaa at position 42 is Pro,
Gly, Cys, Ser, Gln, Ala, Arg, Asn, Glu, His, Leu,
Thr, Val, or Lys”






Modified-site


45



/note= “Xaa at position 45 is Glu,
Tyr, His, Leu, or Arg”






Modified-site


46



/note= “Xaa at position 46 is Ala,
Ser, Asn, or Thr”






Modified-site


47



/note= “Xaa at position 47 is Phe
or Ser”






Modified-site


48



/note= “Xaa at position 48 is Asn,
Val, Pro, Thr, or Ile”






Modified-site


49



/note= “Xaa at position 49 is Arg,
Tyr, Lys, Ser, His, or Val”






Modified-site


50



/note= “Xaa at position 50 is Ala
or Asn”






Modified-site


51



/note= “Xaa at position 51 is Val,
Thr, Leu, or Ser”






Modified-site


52



/note= “Xaa at position 52 is Lys,
Ile, Arg, Val, Asn, Glu, or Ser”






Modified-site


53



/note= “Xaa at position 53 is Ser,
Phe, Val, Gly, Asn, Ile, or His”






Modified-site


54



/note= “Xaa at position 54 is Leu,
Val, Ile, Phe, or His”






Modified-site


55



/note= “Xaa at position 55 is Gln,
Ala, Pro, Thr, Glu, Arg, or Gly”






Modified-site


56



/note= “Xaa at position 56 is Asn
or Pro”






Modified-site


57



/note= “Xaa at position 57 is Ala,
Met, Pro, Arg, Glu, Thr, or Gln”






Modified-site


58



/note= “Xaa at position 58 is Ser,
Glu, Met, Ala, His, Asn, Arg, or Asp”






Modified-site


59



/note= “Xaa at position 59 is Ala,
Glu, Asp, Leu, Ser, Gly, Thr, Arg, or Pro”






Modified-site


60



/note= “Xaa at position 60 is Ile
or Met”






Modified-site


61



/note= “Xaa at position 61 is Glu,
Gly, Asp, Ser, or Gln”






Modified-site


62



/note= “Xaa at position 62 is Ser,
Val, Ala, Asn, Glu, Pro, Gly, or Asp”






Modified-site


63



/note= “Xaa at position 63 is Ile,
Ser, or Leu”






Modified-site


65



/note= “Xaa at position 65 is Lys,
Thr, Gly, Asn, Met, Arg, Ile, or Asp”






Modified-site


66



/note= “Xaa at position 66 is Asn,
Val, Gly, Thr, Leu, Glu, or Arg”






Modified-site


67



/note= “Xaa at position 67 is Leu
or Val”






Modified-site


68



/note= “Xaa at position 68 is Leu,
Gln, Trp, Arg, Asp, Ala, Asn, Glu, His, Met, Phe,
Ser, Thr, Tyr, or Val”






Modified-site


69



/note= “Xaa at position 69 is Pro,
Ala, Thr, Trp, or Met”






Modified-site


71



/note= “Xaa at position 71 is Leu
or Val”






Modified-site


73



/note= “Xaa at position 73 is Leu
or Ser”






Modified-site


74



/note= “Xaa at position 74 is Ala,
Arg, or Trp”






Modified-site


75



/note= “Xaa at position 75 is Thr,
Asp, Glu, His, Asn, or Ser”






Modified-site


76



/note= “Xaa at position 76 is Ala,
Asp, or Met”






Modified-site


77



/note= “Xaa at position 77 is Ala,
Pro, Ser, Thr, Phe, Leu, or Asp”






Modified-site


78



/note= “Xaa at position 78 is Pro
or Ser”






Modified-site


79



/note= “Xaa at position 79 is Thr,
Asp, Ser, Pro, Ala, Leu, or Arg”






Modified-site


81



/note= “Xaa at position 81 is His,
Pro, Arg, Val, Leu, Gly, Asn, Ile, Phe, Ser, or Thr”






Modified-site


82



/note= “Xaa at position 82 is Pro
or Tyr”






Modified-site


83



/note= “Xaa at position 83 is Ile,
Val, or Ala”






Modified-site


84



/note= “Xaa at position 84 is His,
Ile, Asn, Leu, Asp, Ala, Thr, Arg, Gln, Glu, Lys,
Met, Ser, Tyr, Val, or Pro”






Modified-site


85



/note= “Xaa at position 85 is Ile,
Leu, Val, or Phe”






Modified-site


86



/note= “Xaa at position 86 is Lys,
Leu, His, Arg, Ile, Gln, Pro, or Ser”






Modified-site


87



/note= “Xaa at position 87 is Asp,
Pro, Met, Lys, His, Thr, Val, Asn, Ile, Leu, or Tyr”






Modified-site


88



/note= “Xaa at position 88 is Gly,
Glu, Lys, or Ser”






Modified-site


90



/note= “Xaa at position 90 is Trp,
Val, Tyr, Met, or Leu”






Modified-site


91



/note=
“Xaa at position 91 is Asn, Pro, Ala, Phe, Ser,
Trp, Gln, Tyr, Leu, Lys, Ile, Asp, or His”






Modified-site


92



/note= “Xaa at position 92 is Glu,
Ser, Ala, or Gly”






Modified-site


94



/note= “Xaa at position 94 is Arg,
Ala, Gln, Ser, or Lys”






Modified-site


95



/note= “Xaa at position 95 Arg,
Thr, Glu, Leu, Ser, or Gly”






Modified-site


98



/note= “Xaa at position 98 is Thr,
Val, Gln, Glu, His, or Ser”






Modified-site


100



/note= “Xaa at position 100 is Tyr
or Trp”






Modified-site


101



/note= “Xaa at position 101 is Leu
or Ala”






Modified-site


102



/note= “Xaa at position 102 is Lys,
Thr, Met, Val, Trp, Ser, Leu, Ala, Asn, Gln, His,
Met, Phe, Tyr, or Ile”






Modified-site


103



/note= “Xaa at position 103 is Thr,
Ser, or Asn”






Modified-site


105



/note= “Xaa at position 105 is Glu,
Ser, Pro, Leu, Thr, or Tyr”






Modified-site


106



/note= “Xaa at position 106 is Asn,
Pro, Leu, His, Val, or Gln”






Modified-site


107



/note= “Xaa at position 107 is Ala,
Ser, Ile, Asn, Pro, Lys, Asp, or Gly”






Modified-site


108



/note=
“Xaa at position 108 is Gln, Ser, Met, Trp, Arg, Phe,
Pro, His, Ile, Tyr, or Cys”






Modified-site


109



/note= “Xaa at position 109 is Ala,
Met, Glu, His, Ser, Pro, Tyr, or Leu”





20
Asn Cys Xaa Xaa Xaa Xaa Xaa Glu Xaa Xaa Xaa Xaa Leu Xaa Xaa Xaa
1 5 10 15
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Leu Xaa Xaa Glu Xaa Xaa Xaa
20 25 30
Xaa Leu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Leu Xaa Xaa Xaa Xaa
35 40 45
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu
50 55 60
Xaa Xaa Xaa Xaa Xaa Cys Xaa Pro Xaa Xaa Xaa Xaa Xaa Xaa Xaa Arg
65 70 75 80
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asp Xaa Xaa Xaa Phe Xaa Xaa Lys
85 90 95
Leu Xaa Phe Xaa Xaa Xaa Xaa Leu Xaa Xaa Xaa Xaa Xaa Gln Gln
100 105 110






111 amino acids


amino acid


linear




peptide




Modified-site



/note= “Met- or Met-Ala- may or may
not precede the amino acid in position 1”






Modified-site



/note= “Xaa at position 3 is Ser,
Gly, Asp, Met, or Gln”






Modified-site



/note= “Xaa at position 4 is Asn,
His, or Ile”






Modified-site



/note= “Xaa at position 5 is Met
or Ile”






Modified-site



/note= “Xaa at position 7 is Asp or Glu”






Modified-site



/note= “Xaa at position 9 is Ile,
Ala, Leu, or Gly”






Modified-site


10



/note= “Xaa at position 10 is Ile,
Val, or Leu”






Modified-site


11



/note= “Xaa at position 11 is Thr,
His, Gln, or Ala”






Modified-site


12



/note= “Xaa at position 12 is His
or Ala”






Modified-site


15



/note= “Xaa at position 15 is Gln,
Asn, or Val”






Modified-site


16



/note= “Xaa at position 16 is Pro,
Gly, or Gln”






Modified-site


17



/note= “Xaa at position 17 is Pro,
Asp, Gly, or Gln”






Modified-site


18



/note= “Xaa at position 18 is Leu,
Arg, Gln, Asn, Gly, Ala, or Glu”






Modified-site


19



/note= “Xaa at position 19 is Pro
or Glu”






Modified-site


20



/note= “Xaa at position 20 is Leu,
Val, Gly, Ser, Lys, Ala, Arg, Gln, Glu, Ile, Phe,
Thr, or Met”






Modified-site


21



/note= “Xaa at position 21 is Leu,
Ala, Asn, Pro, Gln, or Val”






Modified-site


23



/note= “Xaa at position 23 is Phe,
Ser, Pro, or Trp”






Modified-site


24



/note= “Xaa at position 24 is Asn
or Ala”






Modified-site


28



/note= “Xaa at position 28 is Gly,
Asp, Ser, Cys, Ala, Asn, Ile, Leu, Met, Tyr, or Arg”






Modified-site


30



/note= “Xaa at position 30 is Asp
or Glu”






Modified-site


31



/note= “Xaa at position 31 is Gln,
Val, Met, Leu, Thr, Ala, Asn, Glu, Ser, or Lys”






Modified-site


32



/note= “Xaa at position 32 is Asp,
Phe, Ser, Thr, Ala, Asn, Gln, Glu, His, Ile, Lys,
Tyr, Val, or Cys”






Modified-site


36



/note= “Xaa at position 36 is Glu,
Ala, Asn, Ser, or Asp”






Modified-site


37



/note= “Xaa at position 37 is Asn,
Arg, Met, Pro, Ser, Thr, or His”






Modified-site


40



/note= “Xaa at position 40 is Arg
or Ala”






Modified-site


41



/note= “Xaa at position 41 is Arg,
Thr, Val, Leu, or Gly”






Modified-site


42



/note= “Xaa at position 42 is Pro,
Gly, Ser, Gln, Ala, Arg, Asn, Glu, Leu, Thr, Val,
or Lys”






Modified-site


46



/note= “Xaa at position 46 is Ala
or Ser”






Modified-site


48



/note= “Xaa at position 48 is Asn,
Pro, Thr, or Ile”






Modified-site


49



/note= “Xaa at position 49 is Arg
or Lys”






Modified-site


50



/note= “Xaa at position 50 is Ala
or Asn”






Modified-site


51



/note= “Xaa at position 51 is Val
or Thr”






Modified-site


52



/note= “Xaa at position 52 is Lys
or Arg”






Modified-site


53



/note= “Xaa at position 53 is Ser,
Phe, or His”






Modified-site


54



/note= “Xaa at position 54 is Leu,
Ile, Phe, or His”






Modified-site


55



/note= “Xaa at position 55 is Gln,
Ala, Pro, Thr, Glu, Arg, or Gly”






Modified-site


57



/note= “Xaa at position 57 is Ala,
Pro, or Arg”






Modified-site


58



/note= “Xaa at position 58 is Ser,
Glu, Arg, or Asp”






Modified-site


59



/note= “Xaa at position 59 is Ala
or Leu”






Modified-site


62



/note= “Xaa at position 62 is Ser,
Val, Ala, Asn, Glu, Pro, or Gly”






Modified-site


63



/note= “Xaa at position 63 is Ile
or Leu”






Modified-site


65



/note= “Xaa at position 65 is Lys,
Thr, Gly, Asn, Met, Arg, Ile, Gly, or Asp”






Modified-site


66



/note= “Xaa at position 66 is Asn,
Gly, Glu, or Arg”






Modified-site


68



/note= “Xaa at position 68 is Leu,
Gln, Trp, Arg, Asp, Ala, Asn, Glu, His, Ile, Met,
Phe, Ser, Thr, Tyr, or Val”






Modified-site


69



/note= “Xaa at position 69 is Pro
or Thr”






Modified-site


71



/note= “Xaa at position 71 is Leu
or Val”






Modified-site


73



/note= “Xaa at position 73 is Leu
or Ser”






Modified-site


74



/note= “Xaa at position 74 is Ala
or Trp”






Modified-site


77



/note= “Xaa at position 77 is Ala
or Pro”






Modified-site


79



/note= “Xaa at position 79 is Thr,
Asp, Ser, Pro, Ala, Leu, or Arg”






Modified-site


81



/note= “Xaa at position 81 is His,
Pro, Arg, Val, Leu, Gly, Asn, Phe, Ser, or Thr”






Modified-site


82



/note= “Xaa at position 82 is Pro
or Tyr”






Modified-site


83



/note= “Xaa at position 83 is Ile
or Val”






Modified-site


84



/note= “Xaa at position 84 is His,
Ile, Asn, Leu, Ala, Thr, Arg, Gln, Lys,
Met, Ser, Tyr, Val, or Pro”






Modified-site


85



/note= “Xaa at position 85 is Ile,
Leu, or Val”






Modified-site


86



/note= “Xaa at position 86 is Lys,
Arg, Ile, Gln, Pro, or Ser”






Modified-site


87



/note= “Xaa at position 87 is Asp,
Pro, Met, Lys, His, Thr, Asn, Ile, Leu, or Tyr”






Modified-site


90



/note= “Xaa at position 90 is Trp
or Leu”






Modified-site


91



/note=“Xaa at position 91 is Asn,
Pro, Ala, Ser, Trp, Gln, Tyr, Leu, Lys, Ile, Asp,
or His”






Modified-site


92



/note= “Xaa at position 92 is Glu
or Gly”






Modified-site


94



/note= “Xaa at position 94 is Arg,
Ala, or Ser”






Modified-site


95



/note= “Xaa at position 95 is Arg,
Thr, Glu, Leu, or Ser”






Modified-site


98



/note= “Xaa at position 98 is Thr,
Val, or Gln”






Modified-site


100



/note= “Xaa at position 100 is Tyr
or Trp”






Modified-site


101



/note= “Xaa at position 101 is Leu
or Ala”






Modified-site


102



/note= “Xaa at position 102 is Lys,
Thr, Val, Trp, Ser, Ala, His, Met, Phe, Tyr, or Ile”






Modified-site


103



/note= “Xaa at position 103 is Thr
or Ser”






Modified-site


106



/note= “Xaa at position 106 is Asn,
Pro, Leu, His, Val, or Gln”






Modified-site


107



/note= “Xaa at position 107 is Ala,
Ser, Ile, Asn, Pro, Asp, or Gly”






Modified-site


108



/note= “Xaa at position 108 is Gln,
Ser, Met, Trp, Arg, Phe, Pro, His, Ile, Tyr, or Cys”






Modified-site


109



/note= “Xaa at position 109 is Ala,
Met, Glu, His, Ser, Pro, Tyr, or Leu”





21
Asn Cys Xaa Xaa Xaa Ile Xaa Glu Xaa Xaa Xaa Xaa Leu Lys Xaa Xaa
1 5 10 15
Xaa Xaa Xaa Xaa Xaa Asp Xaa Xaa Asn Leu Asn Xaa Glu Xaa Xaa Xaa
20 25 30
Ile Leu Met Xaa Xaa Asn Leu Xaa Xaa Xaa Asn Leu Glu Xaa Phe Xaa
35 40 45
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Ile Glu Xaa Xaa Leu
50 55 60
Xaa Xaa Leu Xaa Xaa Cys Xaa Pro Xaa Xaa Thr Ala Xaa Pro Xaa Arg
65 70 75 80
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Asp Xaa Xaa Xaa Phe Xaa Xaa Lys
85 90 95
Leu Xaa Phe Xaa Xaa Xaa Xaa Leu Glu Xaa Xaa Xaa Xaa Gln Gln
100 105 110






111 amino acids


amino acid


linear




peptide




Modified-site



/note= “Met- or Met-Ala- may or may
not precede the amino acid in position 1”






Modified-site



/note= “Xaa at position 3 is Ser,
Gly, Asp, or Gln”






Modified-site



/note= “Xaa at position 4 is Asn,
His, or Ile”






Modified-site



/note= “Xaa at position 9 is Ile,
Ala, Leu, or Gly”






Modified-site


11



/note= “Xaa at position 11 is Thr,
His, or Gln”






Modified-site


12



/note= “Xaa at position 12 is His
or Ala”






Modified-site


15



/note= “Xaa at position 15 is Gln
or Asn”






Modified-site


16



/note= “Xaa at position 16 is Pro
or Gly”






Modified-site


18



/note= “Xaa at position 18 is Leu,
Arg, Asn, or Ala”






Modified-site


20



/note= “Xaa at position 20 is Leu,
Val, Ser, Ala, Arg, Gln, Glu, Ile, Phe, Thr, or Met”






Modified-site


21



/note= “Xaa at position 21 is Leu,
Ala, Asn, or Pro”






Modified-site


24



/note= “Xaa at position 24 is Asn
or Ala”






Modified-site


28



/note= “Xaa at position 28 is Gly,
Asp, Ser, Ala, Asn, Ile, Leu, Met, Tyr, or Arg”






Modified-site


31



/note= “Xaa at position 31 is Gln,
Val, Met, Leu, Ala, Asn, Glu, or Lys”






Modified-site


32



/note= “Xaa at position 32 is Asp,
Phe, Ser, Ala, Gln, Glu, His, Val, or Thr”






Modified-site


36



/note= “Xaa at position 36 is Glu,
Asn, Ser, or Asp”






Modified-site


37



/note= “Xaa at position 37 is Asn,
Arg, Pro, Thr, or His”






Modified-site


41



/note= “Xaa at position 41 is Arg,
Leu, or Gly”






Modified-site


42



/note= “Xaa at position 42 is Pro,
Gly, Ser, Ala, Asn, Val, Leu, or Gln”






Modified-site


48



/note= “Xaa at position 48 is Asn,
Pro, or Thr”






Modified-site


50



/note= “Xaa at position 50 is Ala
or Asn”






Modified-site


51



/note= “Xaa at position 51 is Val
or Thr”






Modified-site


53



/note= “Xaa at position 53 is Ser
or Phe”






Modified-site


54



/note= “Xaa at position 54 is Leu
or Phe”






Modified-site


55



/note= “Xaa at position 55 is Gln,
Ala, Glu, or Arg”






Modified-site


62



/note= “Xaa at position 62 is Ser,
Val, Asn, Pro, or Gly”






Modified-site


63



/note= “Xaa at position 63 is Ile
or Leu”






Modified-site


65



/note= “Xaa at position 65 is Lys,
Asn, Met, Arg, Ile, or Gly”






Modified-site


66



/note= “Xaa at position 66 is Asn,
Gly, Glu, or Arg”






Modified-site


68



/note= “Xaa at position 68 is Leu,
Gln, Trp, Arg, Asp, Asn, Glu, His, Met, Phe, Ser,
Thr, Tyr, or Val”






Modified-site


73



/note= “Xaa at position 73 is Leu
or Ser”






Modified-site


74



/note= “Xaa at position 74 is Ala
or Trp”






Modified-site


77



/note= “Xaa at position 77 is Ala
or Pro”






Modified-site


79



/note= “Xaa at position 79 is Thr,
Asp, or Ala”






Modified-site


81



/note= “Xaa at position 81 is His,
Pro, Arg, Val, Gly, Asn, Ser, or Thr”






Modified-site


84



/note= “Xaa at position 84 is His,
Ile, Asn, Ala, Thr, Arg, Gln, Glu, Lys, Met,
Ser, Tyr, Val, or Leu”






Modified-site


85



/note= “Xaa at position 85 is Ile
or Leu”






Modified-site


86



/note= “Xaa at position 86 is Lys
or Arg”






Modified-site


87



/note= “Xaa at position 87 is Asp,
Pro, Met, Lys, His, Pro, Asn, Ile, Leu, or Tyr”






Modified-site


91



/note= “Xaa at position 91 is Asn,
Pro, Ser, Ile, or Asp”






Modified-site


94



/note= “Xaa at position 94 is Arg,
Ala, or Ser”






Modified-site


95



/note= “Xaa at position 95 is Arg,
Thr, Glu, Leu, or Ser”






Modified-site


98



/note= “Xaa at position 98 is Thr
or Gln”






Modified-site


102



/note= “Xaa at position 102 is Lys,
Val, Trp, or Ile”






Modified-site


103



/note= “Xaa at position 103 is Thr,
Ala, His, Phe, Tyr, or Ser”






Modified-site


106



/note= “Xaa at position 106 is Asn,
Pro, Leu, His, Val, or Gln”






Modified-site


107



/note= “Xaa at position 107 is Ala,
Ser, Ile, Pro, or Asp”






Modified-site


108



/note= “Xaa at position 108 is Gln,
Met, Trp, Phe, Pro, His, Ile, or Tyr”






Modified-site


109



/note= “Xaa at position 109 is Ala,
Met, Glu, Ser, or Leu”





22
Asn Cys Xaa Xaa Met Ile Asp Glu Xaa Ile Xaa Xaa Leu Lys Xaa Xaa
1 5 10 15
Pro Xaa Pro Xaa Xaa Asp Phe Xaa Asn Leu Asn Xaa Glu Asp Xaa Xaa
20 25 30
Ile Leu Met Xaa Xaa Asn Leu Arg Xaa Xaa Asn Leu Glu Ala Phe Xaa
35 40 45
Arg Xaa Xaa Lys Xaa Xaa Xaa Asn Ala Ser Ala Ile Glu Xaa Xaa Leu
50 55 60
Xaa Xaa Leu Xaa Pro Cys Leu Pro Xaa Xaa Thr Ala Xaa Pro Xaa Arg
65 70 75 80
Xaa Pro Ile Xaa Xaa Xaa Xaa Gly Asp Trp Xaa Glu Phe Xaa Xaa Lys
85 90 95
Leu Xaa Phe Tyr Leu Xaa Xaa Leu Glu Xaa Xaa Xaa Xaa Gln Gln
100 105 110






27 base pairs


nucleic acid


single


linear




DNA (synthetic)



23
AACAACCTCA ATGCTGAAGA CGTTGAT 27






18 base pairs


nucleic acid


single


linear




DNA (synthetic)



24
ATCAACGTCT TCAGCATT 18






27 base pairs


nucleic acid


single


linear




DNA (synthetic)



25
AACAACCTCA ATTCTGAAGA CATGGAT 27






18 base pairs


nucleic acid


single


linear




DNA (synthetic)



26
ATCCATGTCT TCAGAATT 18






22 base pairs


nucleic acid


single


linear




DNA (synthetic)



27
CATGGGAACC ATATGTCAGG AT 22






18 base pairs


nucleic acid


single


linear




DNA (synthetic)



28
ATCCTGACAT ATGGTTCC 18






16 base pairs


nucleic acid


single


linear




DNA (synthetic)



29
TGAACCATAT GTCAGG 16






24 base pairs


nucleic acid


single


linear




DNA (synthetic)



30
AATTCCTGAC ATATGGTTCA TGCA 24






20 base pairs


nucleic acid


single


linear




DNA (synthetic)



31
AATTCGAACC ATATGTCAGA 20






20 base pairs


nucleic acid


single


linear




DNA (synthetic)



32
AGCTTCTGAC ATATGGTTCG 20






22 base pairs


nucleic acid


single


linear




DNA (synthetic)



33
ATCGAACCAT ATGTCAGATG CA 22






18 base pairs


nucleic acid


single


linear




DNA (synthetic)



34
TCTGACATAT GGTTCGAT 18






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



35
ATCCTGATGG AACGAAACCT TCGACTTCCA AACCTG 36






27 base pairs


nucleic acid


single


linear




DNA (synthetic)



36
AAGTCGAAGG TTTCGTTCCA TCAGGAT 27






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



37
ATCCTGATGG AACGAAACCT TCGAACTCCA AACCTG 36






27 base pairs


nucleic acid


single


linear




DNA (synthetic)



38
AGTTCGAAGG TTTCGTTCCA TCAGGAT 27






24 base pairs


nucleic acid


single


linear




DNA (synthetic)



39
CTCGCATTCG TAAGGGCTGT CAAG 24






24 base pairs


nucleic acid


single


linear




DNA (synthetic)



40
CCTTACGAAT GCGAGCAGGT TTGG 24






24 base pairs


nucleic acid


single


linear




DNA (synthetic)



41
GAGAGCTTCG TAAGGGCTGT CAAG 24






24 base pairs


nucleic acid


single


linear




DNA (synthetic)



42
CCTTACGAAG CTCTCCAGGT TTGG 24






15 base pairs


nucleic acid


single


linear




DNA (synthetic)



43
CACTTAGAAA ATGCA 15






20 base pairs


nucleic acid


single


linear




DNA (synthetic)



44
TTTTCTAAGT GCTTGACAGC 20






15 base pairs


nucleic acid


single


linear




DNA (synthetic)



45
AACTTAGAAA ATGCA 15






20 base pairs


nucleic acid


single


linear




DNA (synthetic)



46
TTTTCTAAGT TCTTGACAGC 20






48 base pairs


nucleic acid


single


linear




DNA (synthetic)



47
GGTGATTGGA TGTCGAGAGG GTGCGGCCGT GGCAGAGGGC AGACATGG 48






48 base pairs


nucleic acid


single


linear




DNA (synthetic)



48
CTGCCCTCTG CCACGGCCGC ACCCTCTCGA CATCCAATCA CCATCAAG 48






48 base pairs


nucleic acid


single


linear




DNA (synthetic)



49
GATGATTGGA TGTCGAGAGG GTGCGGCCGT GGCAGAGGGC AGACATGG 48






48 base pairs


nucleic acid


single


linear




DNA (synthetic)



50
CTGCCCTCTG CCACGGCCGC ACCCTCTCGA CATCCAATCA TCATCAAG 48






18 base pairs


nucleic acid


single


linear




DNA (synthetic)



51
TACGAGATTA CGAAGAAT 18






18 base pairs


nucleic acid


single


linear




DNA (synthetic)



52
CGTAATCTCG TACCATGT 18






18 base pairs


nucleic acid


single


linear




DNA (synthetic)



53
TTGGAGATTA CGAAGAAT 18






18 base pairs


nucleic acid


single


linear




DNA (synthetic)



54
CGTAATCTCC AACCATGT 18






19 base pairs


nucleic acid


single


linear




DNA (synthetic)



55
TGCCTCAATA CCTGATGCA 19






21 base pairs


nucleic acid


single


linear




DNA (synthetic)



56
TCAGGTATTG AGGCAATTCT T 21






26 base pairs


nucleic acid


single


linear




DNA (synthetic)



57
AATTCTTGCC AGTCACCTGC CTTGAT 26






16 base pairs


nucleic acid


single


linear




DNA (synthetic)



58
GCAGGTGACT GGCAAG 16






32 base pairs


nucleic acid


single


linear




DNA (synthetic)



59
AATTCCGGGA AAAACTGACG TTCTATCTGG TT 32






37 base pairs


nucleic acid


single


linear




DNA (synthetic)



60
CTCAAGGGAA ACCAGATAGA ACGTCAGTTT TTCCCGG 37






32 base pairs


nucleic acid


single


linear




DNA (synthetic)



61
ACCCTTGAGC ACGCGCAGGA ACAACAGTAA TA 32






27 base pairs


nucleic acid


single


linear




DNA (synthetic)



62
AGCTTATTAC TGTTGTTCCT GCGCGTG 27






32 base pairs


nucleic acid


single


linear




DNA (synthetic)



63
ACCCTTGAGC AAGCGCAGGA ACAACAGTAA TA 32






27 base pairs


nucleic acid


single


linear




DNA (synthetic)



64
AGCTTATTAC TGTTGTTCCT GCGCTTG 27






111 amino acids


amino acid


linear




peptide



65
Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys Gln Pro
1 5 10 15
Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp
20 25 30
Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe Asn
35 40 45
Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser Ile Leu
50 55 60
Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg
65 70 75 80
His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg Arg Lys
85 90 95
Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln Gln
100 105 110






111 amino acids


amino acid


linear




peptide



66
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro
1 5 10 15
Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp Val Asp
20 25 30
Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe Asn
35 40 45
Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser Ile Leu
50 55 60
Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg
65 70 75 80
His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg Arg Lys
85 90 95
Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln Gln
100 105 110






111 amino acids


amino acid


linear




peptide



67
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro
1 5 10 15
Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp Met Asp
20 25 30
Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe Asn
35 40 45
Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser Ile Leu
50 55 60
Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg
65 70 75 80
His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg Arg Lys
85 90 95
Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln Gln
100 105 110






111 amino acids


amino acid


linear




peptide



68
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Val Pro
1 5 10 15
Pro Ala Pro Leu Leu Asp Ser Asn Asn Leu Asn Ser Glu Asp Met Asp
20 25 30
Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe Asn
35 40 45
Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser Ile Leu
50 55 60
Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg
65 70 75 80
His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg Arg Lys
85 90 95
Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln Gln
100 105 110






111 amino acids


amino acid


linear




peptide



69
Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys Gln Pro
1 5 10 15
Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp
20 25 30
Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Leu Ala Phe Val
35 40 45
Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Ala Ile Glu Ser Ile Leu
50 55 60
Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg
65 70 75 80
His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg Arg Lys
85 90 95
Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln Gln
100 105 110






111 amino acids


amino acid


linear




peptide



70
Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys Gln Pro
1 5 10 15
Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp
20 25 30
Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val
35 40 45
Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Ala Ile Glu Ser Ile Leu
50 55 60
Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg
65 70 75 80
His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg Arg Lys
85 90 95
Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln Gln
100 105 110






111 amino acids


amino acid


linear




peptide



71
Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys Gln Pro
1 5 10 15
Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp
20 25 30
Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala Phe Val
35 40 45
Arg Ala Val Lys His Leu Glu Asn Ala Ser Ala Ile Glu Ser Ile Leu
50 55 60
Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg
65 70 75 80
His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg Arg Lys
85 90 95
Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln Gln
100 105 110






111 amino acids


amino acid


linear




peptide



72
Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys Gln Pro
1 5 10 15
Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp
20 25 30
Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe Asn
35 40 45
Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Gly Ile Glu Ala Ile Leu
50 55 60
Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg
65 70 75 80
His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Arg Lys
85 90 95
Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln Gln
100 105 110






111 amino acids


amino acid


linear




peptide



73
Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys Gln Pro
1 5 10 15
Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp
20 25 30
Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe Asn
35 40 45
Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Gly Ile Glu Ala Ile Leu
50 55 60
Arg Asn Leu Val Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg
65 70 75 80
His Pro Ile Thr Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Arg Lys
85 90 95
Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln Gln
100 105 110






111 amino acids


amino acid


linear




peptide



74
Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys Gln Pro
1 5 10 15
Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp
20 25 30
Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe Asn
35 40 45
Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser Ile Leu
50 55 60
Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg
65 70 75 80
His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg Glu Lys
85 90 95
Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln
100 105 110






111 amino acids


amino acid


linear




peptide



75
Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys Gln Pro
1 5 10 15
Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp
20 25 30
Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe Asn
35 40 45
Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser Ile Leu
50 55 60
Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg
65 70 75 80
His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg Glu Lys
85 90 95
Leu Thr Phe Tyr Leu Val Ser Leu Glu His Ala Gln Glu Gln Gln
100 105 110






111 amino acids


amino acid


linear




peptide



76
Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys Gln Pro
1 5 10 15
Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp
20 25 30
Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe Asn
35 40 45
Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Gly Ile Glu Ala Ile Leu
50 55 60
Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg
65 70 75 80
His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys
85 90 95
Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln
100 105 110






111 amino acids


amino acid


linear




peptide



77
Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys Gln Pro
1 5 10 15
Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp
20 25 30
Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe Asn
35 40 45
Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Gly Ile Glu Ala Ile Leu
50 55 60
Arg Asn Leu Val Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg
65 70 75 80
His Pro Ile Thr Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys
85 90 95
Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln
100 105 110






111 amino acids


amino acid


linear




peptide



78
Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys Gln Pro
1 5 10 15
Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp
20 25 30
Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe Asn
35 40 45
Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Gly Ile Glu Ala Ile Leu
50 55 60
Arg Asn Leu Val Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg
65 70 75 80
His Pro Ile Thr Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys
85 90 95
Leu Thr Phe Tyr Leu Val Ser Leu Glu His Ala Gln Glu Gln Gln
100 105 110






111 amino acids


amino acid


linear




peptide



79
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro
1 5 10 15
Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp Val Asp
20 25 30
Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val
35 40 45
Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Ala Ile Glu Ser Ile Leu
50 55 60
Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg
65 70 75 80
His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg Arg Lys
85 90 95
Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln Gln
100 105 110






111 amino acids


amino acid


linear




peptide



80
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro
1 5 10 15
Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp Met Asp
20 25 30
Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala Phe Val
35 40 45
Arg Ala Val Lys His Leu Glu Asn Ala Ser Ala Ile Glu Ser Ile Leu
50 55 60
Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg
65 70 75 80
His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg Arg Lys
85 90 95
Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln Gln
100 105 110






111 amino acids


amino acid


linear




peptide



81
Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Val Pro
1 5 10 15
Pro Ala Pro Leu Leu Asp Ser Asn Asn Leu Asn Ser Glu Asp Met Asp
20 25 30
Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Leu Ala Phe Val
35 40 45
Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Ala Ile Glu Ser Ile Leu
50 55 60
Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg
65 70 75 80
His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg Arg Lys
85 90 95
Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln Gln
100 105 110






113 amino acids


amino acid


linear




peptide



82
Met Ala Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys
1 5 10 15
Gln Pro Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp
20 25 30
Gln Asp Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala
35 40 45
Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



83
Met Ala Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys
1 5 10 15
Gln Pro Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp
20 25 30
Gln Asp Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala
35 40 45
Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Val Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Thr Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



84
Met Ala Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys
1 5 10 15
Gln Pro Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp
20 25 30
Gln Asp Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala
35 40 45
Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Val Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Thr Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Ser Leu Glu His Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



85
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp
20 25 30
Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Ala Ile Glu Ser
50 55 60
Ile Leu Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro
65 70 75 80
Thr Arg His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg
85 90 95
Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



86
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Ala Ile Glu Ser
50 55 60
Ile Leu Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro
65 70 75 80
Thr Arg His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg
85 90 95
Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



87
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Val Pro Pro Ala Pro Leu Leu Asp Ser Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Ala Ile Glu Ser
50 55 60
Ile Leu Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro
65 70 75 80
Thr Arg His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg
85 90 95
Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



88
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp
20 25 30
Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



89
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



90
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Val Pro Pro Ala Pro Leu Leu Asp Ser Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



91
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp
20 25 30
Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Val Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Thr Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



92
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Val Pro Pro Ala Pro Leu Leu Asp Ser Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Val Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Thr Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



93
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Val Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Thr Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Ser Leu Glu His Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



94
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Val Pro Pro Ala Pro Leu Leu Asp Ser Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Val Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Thr Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Ser Leu Glu His Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



95
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Val Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Thr Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



96
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp
20 25 30
Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Val Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Thr Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Ser Leu Glu His Ala Gln Glu Gln
100 105 110
Gln






339 base pairs


nucleic acid


double


linear




DNA (genomic)



97
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGCT GAAGACGTCG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



98
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGCT GAAGACGTCG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCGTA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCACCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



99
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGCT GAAGACGTCG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCGTA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCACCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTTCCCTTGA GCACGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



100
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCT GAAGACATGG ATATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



101
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCT GAAGACATGG ATATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCGTA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCACCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



102
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCT GAAGACATGG ATATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCGTA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCACCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTTCCCTTGA GCACGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



103
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGGT TCCACCTGCA 60
CCTTTGCTGG ACAGTAACAA CCTCAATTCC GAAGACATGG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



104
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGGT TCCACCTGCA 60
CCTTTGCTGG ACAGTAACAA CCTCAATTCC GAAGACATGG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCGTA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCACCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



105
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGGT TCCACCTGCA 60
CCTTTGCTGG ACAGTAACAA CCTCAATTCC GAAGACATGG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCGTA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCACCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTTCCCTTGA GCACGCGCAG GAACAACAG 339






333 base pairs


nucleic acid


double


linear




DNA (genomic)



106
AACTGCTCTA TAATGATCGA TGAAATTATA CATCACTTAA AGAGACCACC TGCACCTTTG 60
CTGGACCCGA ACAACCTCAA TGCTGAAGAC GTCGATATCC TGATGGAAAA TAACCTTCGT 120
CGTCCAAACC TCGAGGCATT CAACCGTGCT GTCAAGTCTC TGCAGAATGC ATCAGCAATT 180
GAGAGCATTC TTAAAAATCT CCTGCCATGT CTGCCCCTGG CCACGGCCGC ACCCACGCGA 240
CATCCAATCC ATATCAAGGA CGGTGACTGG AATGAATTCC GTCGTAAACT GACCTTCTAT 300
CTGAAAACCT TGGAGAACGC GCAGGCTCAA CAG 333






333 base pairs


nucleic acid


double


linear




DNA (genomic)



107
AACTGCTCTA TAATGATCGA TGAAATTATA CATCACTTAA AGAGACCACC TAACCCTTTG 60
CTGGACCCGA ACAACCTCAA TTCTGAAGAC ATGGATATCC TGATGGAAAA TAACCTTCGT 120
CGTCCAAACC TCGAGGCATT CAACCGTGCT GTCAAGTCTC TGCAGAATGC ATCAGCAATT 180
GAGAGCATTC TTAAAAATCT CCTGCCATGT CTGCCCCTGG CCACGGCCGC ACCCACGCGA 240
CATCCAATCC ATATCAAGGA CGGTGACTGG AATGAATTCC GTCGTAAACT GACCTTCTAT 300
CTGAAAACCT TGGAGAACGC GCAGGCTCAA CAG 333






333 base pairs


nucleic acid


double


linear




DNA (genomic)



108
AACTGCTCTA TAATGATCGA TGAAATTATA CATCACTTAA AGGTTCCACC TGCACCTTTG 60
CTGGACAGTA ACAACCTCAA TTCCGAAGAC ATGGATATCC TGATGGAAAA TAACCTTCGT 120
CGTCCAAACC TCGAGGCATT CAACCGTGCT GTCAAGTCTC TGCAGAATGC ATCAGCAATT 180
GAGAGCATTC TTAAAAATCT CCTGCCATGT CTGCCCCTGG CCACGGCCGC ACCCACGCGA 240
CATCCAATCC ATATCAAGGA CGGTGACTGG AATGAATTCC GTCGTAAACT GACCTTCTAT 300
CTGAAAACCT TGGAGAACGC GCAGGCTCAA CAG 333






333 base pairs


nucleic acid


double


linear




DNA (genomic)



109
AACTGCTCTA ACATGATCGA TGAAATCATC ACCCACCTGA AGCAGCCACC GCTGCCGCTG 60
CTGGACTTCA ACAACCTCAA TGGTGAAGAC CAAGATATCC TGATGGAACG AAACCTTCGA 120
CTTCCAAACC TGCTCGCATT CGTAAGGGCT GTCAAGAACT TAGAAAATGC ATCAGCAATT 180
GAGAGCATTC TTAAAAATCT CCTGCCATGT CTGCCCCTGG CCACGGCCGC ACCCACGCGA 240
CATCCAATCC ATATCAAGGA CGGTGACTGG AATGAATTCC GTCGTAAACT GACCTTCTAT 300
CTGAAAACCT TGGAGAACGC GCAGGCTCAA CAG 333






333 base pairs


nucleic acid


double


linear




DNA (genomic)



110
AACTGCTCTA ACATGATCGA TGAAATCATC ACCCACCTGA AGCAGCCACC GCTGCCGCTG 60
CTGGACTTCA ACAACCTCAA TGGTGAAGAC CAAGATATCC TGATGGAACG AAACCTTCGA 120
CTTCCAAACC TGGAGAGCTT CGTAAGGGCT GTCAAGAACT TAGAAAATGC ATCAGCAATT 180
GAGAGCATTC TTAAAAATCT CCTGCCATGT CTGCCCCTGG CCACGGCCGC ACCCACGCGA 240
CATCCAATCC ATATCAAGGA CGGTGACTGG AATGAATTCC GTCGTAAACT GACCTTCTAT 300
CTGAAAACCT TGGAGAACGC GCAGGCTCAA CAG 333






333 base pairs


nucleic acid


double


linear




DNA (genomic)



111
AACTGCTCTA ACATGATCGA TGAAATCATC ACCCACCTGA AGCAGCCACC GCTGCCGCTG 60
CTGGACTTCA ACAACCTCAA TGGTGAAGAC CAAGATATCC TGATGGAACG AAACCTTCGA 120
ACTCCAAACC TGCTCGCATT CGTAAGGGCT GTCAAGCACT TAGAAAATGC ATCAGCAATT 180
GAGAGCATTC TTAAAAATCT CCTGCCATGT CTGCCCCTGG CCACGGCCGC ACCCACGCGA 240
CATCCAATCC ATATCAAGGA CGGTGACTGG AATGAATTCC GTCGTAAACT GACCTTCTAT 300
CTGAAAACCT TGGAGAACGC GCAGGCTCAA CAG 333






333 base pairs


nucleic acid


double


linear




DNA (genomic)



112
AACTGCTCTA ACATGATCGA TGAAATCATC ACCCACCTGA AGCAGCCACC GCTGCCGCTG 60
CTGGACTTCA ACAACCTCAA TGGTGAAGAC CAAGATATCC TGATGGAAAA TAACCTTCGT 120
CGTCCAAACC TCGAGGCATT CAACCGTGCT GTCAAGTCTC TGCAGAATGC ATCAGGTATT 180
GAGGCAATTC TTCGTAATCT CCAACCATGT CTGCCCTCTG CCACGGCCGC ACCCTCTCGA 240
CATCCAATCA TCATCAAGGC AGGTGACTGG CAAGAATTCC GTCGTAAACT GACCTTCTAT 300
CTGAAAACCT TGGAGAACGC GCAGGCTCAA CAG 333






333 base pairs


nucleic acid


double


linear




DNA (genomic)



113
AACTGCTCTA ACATGATCGA TGAAATCATC ACCCACCTGA AGCAGCCACC GCTGCCGCTG 60
CTGGACTTCA ACAACCTCAA TGGTGAAGAC CAAGATATCC TGATGGAAAA TAACCTTCGT 120
CGTCCAAACC TCGAGGCATT CAACCGTGCT GTCAAGTCTC TGCAGAATGC ATCAGGTATT 180
GAGGCAATTC TTCGTAATCT CGTACCATGT CTGCCCTCTG CCACGGCCGC ACCCTCTCGA 240
CATCCAATCA CCATCAAGGC AGGTGACTGG CAAGAATTCC GTCGTAAACT GACCTTCTAT 300
CTGAAAACCT TGGAGAACGC GCAGGCTCAA CAG 333






333 base pairs


nucleic acid


double


linear




DNA (genomic)



114
AACTGCTCTA ACATGATCGA TGAAATCATC ACCCACCTGA AGCAGCCACC GCTGCCGCTG 60
CTGGACTTCA ACAACCTCAA TGGTGAAGAC CAAGATATCC TGATGGAAAA TAACCTTCGT 120
CGTCCAAACC TCGAGGCATT CAACCGTGCT GTCAAGTCTC TGCAGAATGC ATCAGCAATT 180
GAGAGCATTC TTAAAAATCT CCTGCCATGT CTGCCCCTGG CCACGGCCGC ACCCACGCGA 240
CATCCAATCC ATATCAAGGA CGGTGACTGG AATGAATTCC GGGAAAAACT GACGTTCTAT 300
CTGGTTACCC TTGAGCAAGC GCAGGAACAA CAG 333






333 base pairs


nucleic acid


double


linear




DNA (genomic)



115
AACTGCTCTA ACATGATCGA TGAAATCATC ACCCACCTGA AGCAGCCACC GCTGCCGCTG 60
CTGGACTTCA ACAACCTCAA TGGTGAAGAC CAAGATATCC TGATGGAAAA TAACCTTCGT 120
CGTCCAAACC TCGAGGCATT CAACCGTGCT GTCAAGTCTC TGCAGAATGC ATCAGCAATT 180
GAGAGCATTC TTAAAAATCT CCTGCCATGT CTGCCCCTGG CCACGGCCGC ACCCACGCGA 240
CATCCAATCC ATATCAAGGA CGGTGACTGG AATGAATTCC GGGAAAAACT GACGTTCTAT 300
CTGGTTTCCC TTGAGCACGC GCAGGAACAA CAG 333






333 base pairs


nucleic acid


double


linear




DNA (genomic)



116
AACTGCTCTA TAATGATCGA TGAAATTATA CATCACTTAA AGAGACCACC TGCACCTTTG 60
CTGGACCCGA ACAACCTCAA TGCTGAAGAC GTCGATATCC TGATGGAACG AAACCTTCGA 120
CTTCCAAACC TGGAGAGCTT CGTAAGGGCT GTCAAGAACT TAGAAAATGC ATCAGCAATT 180
GAGAGCATTC TTAAAAATCT CCTGCCATGT CTGCCCCTGG CCACGGCCGC ACCCACGCGA 240
CATCCAATCC ATATCAAGGA CGGTGACTGG AATGAATTCC GTCGTAAACT GACCTTCTAT 300
CTGAAAACCT TGGAGAACGC GCAGGCTCAA CAG 333






333 base pairs


nucleic acid


double


linear




DNA (genomic)



117
AACTGCTCTA TAATGATCGA TGAAATTATA CATCACTTAA AGAGACCACC TAACCCTTTG 60
CTGGACCCGA ACAACCTCAA TTCTGAAGAC ATGGATATCC TGATGGAACG AAACCTTCGA 120
ACTCCAAACC TGCTCGCATT CGTAAGGGCT GTCAAGCACT TAGAAAATGC ATCAGCAATT 180
GAGAGCATTC TTAAAAATCT CCTGCCATGT CTGCCCCTGG CCACGGCCGC ACCCACGCGA 240
CATCCAATCC ATATCAAGGA CGGTGACTGG AATGAATTCC GTCGTAAACT GACCTTCTAT 300
CTGAAAACCT TGGAGAACGC GCAGGCTCAA CAG 333






333 base pairs


nucleic acid


double


linear




DNA (genomic)



118
AACTGCTCTA TAATGATCGA TGAAATTATA CATCACTTAA AGGTTCCACC TGCACCTTTG 60
CTGGACAGTA ACAACCTCAA TTCCGAAGAC ATGGATATCC TGATGGAACG AAACCTTCGA 120
CTTCCAAACC TGCTCGCATT CGTAAGGGCT GTCAAGAACT TAGAAAATGC ATCAGCAATT 180
GAGAGCATTC TTAAAAATCT CCTGCCATGT CTGCCCCTGG CCACGGCCGC ACCCACGCGA 240
CATCCAATCC ATATCAAGGA CGGTGACTGG AATGAATTCC GTCGTAAACT GACCTTCTAT 300
CTGAAAACCT TGGAGAACGC GCAGGCTCAA CAG 333






333 base pairs


nucleic acid


double


linear




DNA (genomic)



119
AACTGCTCTA ACATGATCGA TGAAATCATC ACCCACCTGA AGCAGCCACC GCTGCCGCTG 60
CTGGACTTCA ACAACCTCAA TGGTGAAGAC CAAGATATCC TGATGGAAAA TAACCTTCGT 120
CGTCCAAACC TCGAGGCATT CAACCGTGCT GTCAAGTCTC TGCAGAATGC ATCAGGTATT 180
GAGGCAATTC TTCGTAATCT CCAACCATGT CTGCCCTCTG CCACGGCCGC ACCCTCTCGA 240
CATCCAATCA TCATCAAGGC AGGTGACTGG CAAGAATTCC GGGAAAAACT GACGTTCTAT 300
CTGGTTACCC TTGAGCAAGC GCAGGAACAA CAG 333






333 base pairs


nucleic acid


double


linear




DNA (genomic)



120
AACTGCTCTA ACATGATCGA TGAAATCATC ACCCACCTGA AGCAGCCACC GCTGCCGCTG 60
CTGGACTTCA ACAACCTCAA TGGTGAAGAC CAAGATATCC TGATGGAAAA TAACCTTCGT 120
CGTCCAAACC TCGAGGCATT CAACCGTGCT GTCAAGTCTC TGCAGAATGC ATCAGGTATT 180
GAGGCAATTC TTCGTAATCT CGTACCATGT CTGCCCTCTG CCACGGCCGC ACCCTCTCGA 240
CATCCAATCA CCATCAAGGC AGGTGACTGG CAAGAATTCC GGGAAAAACT GACGTTCTAT 300
CTGGTTACCC TTGAGCAAGC GCAGGAACAA CAG 333






333 base pairs


nucleic acid


double


linear




DNA (genomic)



121
AACTGCTCTA ACATGATCGA TGAAATCATC ACCCACCTGA AGCAGCCACC GCTGCCGCTG 60
CTGGACTTCA ACAACCTCAA TGGTGAAGAC CAAGATATCC TGATGGAAAA TAACCTTCGT 120
CGTCCAAACC TCGAGGCATT CAACCGTGCT GTCAAGTCTC TGCAGAATGC ATCAGGTATT 180
GAGGCAATTC TTCGTAATCT CGTACCATGT CTGCCCTCTG CCACGGCCGC ACCCTCTCGA 240
CATCCAATCA CCATCAAGGC AGGTGACTGG CAAGAATTCC GGGAAAAACT GACGTTCTAT 300
CTGGTTTCCC TTGAGCACGC GCAGGAACAA CAG 333






339 base pairs


nucleic acid


double


linear




DNA (genomic)



122
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGCT GAAGACGTCG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GCAATTGAGA GCATTCTTAA AAATCTCCTG CCATGTCTGC CCCTGGCCAC GGCCGCACCC 240
ACGCGACATC CAATCCATAT CAAGGACGGT GACTGGAATG AATTCCGTCG TAAACTGACC 300
TTCTATCTGA AAACCTTGGA GAACGCGCAG GCTCAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



123
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCT GAAGACATGG ATATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GCAATTGAGA GCATTCTTAA AAATCTCCTG CCATGTCTGC CCCTGGCCAC GGCCGCACCC 240
ACGCGACATC CAATCCATAT CAAGGACGGT GACTGGAATG AATTCCGTCG TAAACTGACC 300
TTCTATCTGA AAACCTTGGA GAACGCGCAG GCTCAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



124
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGGT TCCACCTGCA 60
CCTTTGCTGG ACAGTAACAA CCTCAATTCC GAAGACATGG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GCAATTGAGA GCATTCTTAA AAATCTCCTG CCATGTCTGC CCCTGGCCAC GGCCGCACCC 240
ACGCGACATC CAATCCATAT CAAGGACGGT GACTGGAATG AATTCCGTCG TAAACTGACC 300
TTCTATCTGA AAACCTTGGA GAACGCGCAG GCTCAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



125
ATGGCTAACT GCTCTAACAT GATCGATGAA ATCATCACCC ACCTGAAGCA GCCACCGCTG 60
CCGCTGCTGG ACTTCAACAA CCTCAATGGT GAAGACCAAG ATATCCTGAT GGAAAATAAC 120
CTTCGTCGTC CAAACCTCGA GGCATTCAAC CGTGCTGTCA AGTCTCTGCA GAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



126
ATGGCTAACT GCTCTAACAT GATCGATGAA ATCATCACCC ACCTGAAGCA GCCACCGCTG 60
CCGCTGCTGG ACTTCAACAA CCTCAATGGT GAAGACCAAG ATATCCTGAT GGAAAATAAC 120
CTTCGTCGTC CAAACCTCGA GGCATTCAAC CGTGCTGTCA AGTCTCTGCA GAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCGTA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCACCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



127
ATGGCTAACT GCTCTAACAT GATCGATGAA ATCATCACCC ACCTGAAGCA GCCACCGCTG 60
CCGCTGCTGG ACTTCAACAA CCTCAATGGT GAAGACCAAG ATATCCTGAT GGAAAATAAC 120
CTTCGTCGTC CAAACCTCGA GGCATTCAAC CGTGCTGTCA AGTCTCTGCA GAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCGTA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCACCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTTCCCTTGA GCACGCGCAG GAACAACAG 339






134 amino acids


amino acid


linear




peptide



128
Met Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn
1 5 10 15
Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys Gln Pro Pro
20 25 30
Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile
35 40 45
Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe Asn Arg
50 55 60
Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser Ile Leu Lys
65 70 75 80
Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg His
85 90 95
Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg Arg Lys Leu
100 105 110
Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln Gln Thr Thr
115 120 125
Leu Ser Leu Ala Ile Phe
130






133 amino acids


amino acid


linear




peptide




Modified-site



/note= “Met- may or may not precede
the amino acid in position 1”






Modified-site


18



/note= “Xaa at position 18 is Asn
or Ile”






Modified-site


19



/note= “Xaa at position 19 is Met,
Ala, or Ile”






Modified-site


20



/note= “Xaa at position 20 is Ile,
Pro, or Leu”






Modified-site


23



/note= “Xaa at position 23 is Ile,
Ala, or Leu”






Modified-site


25



/note= “Xaa at position 25 is Thr
or His”






Modified-site


29



/note= “Xaa at position 29 is Gln,
Arg, Val, or Leu”






Modified-site


32



/note= “Xaa at position 32 is Leu,
Ala, Asn, or Arg”






Modified-site


34



/note= “Xaa at position 34 is Leu
or Ser”






Modified-site


37



/note= “Xaa at position 37 is Phe,
Pro, or Ser”






Modified-site


; 38



/note= “Xaa at position 38 is Asn
or Ala”






Modified-site


42



/note= “Xaa at position 42 is Gly,
Ala, Ser, Asp, or Asn”






Modified-site


45



/note= “Xaa at position 45 is Gln,
Val, or Met”






Modified-site


46



/note= “Xaa at position 46 is Asp
or Ser”






Modified-site


49



/note= “Xaa at position 49 is Met,
Ile, Leu, or Asp”






Modified-site


50



/note= “Xaa at position 50 is Glu
or Asp”






Modified-site


51



/note= “Xaa at position 51 is Asn,
Arg, or Ser”






Modified-site


55



/note= “Xaa at position 55 is Arg,
Leu, or Thr”






Modified-site


56



/note= “Xaa at position 56 is Pro
or Ser”






Modified-site


59



/note= “Xaa at position 59 is Glu
or Leu”






Modified-site


60



/note= “Xaa at position 60 is Ala
or Ser”






Modified-site


62



/note= “Xaa at position 62 is Asn
Val, or Pro”






Modified-site


63



/note= “Xaa at position 63 is Arg
or His”






Modified-site


65



/note= “Xaa at position 65 is Val
or Ser”






Modified-site


67



/note= “Xaa at position 67 is Ser,
Asn, His, or Gly”






Modified-site


69



/note= “Xaa at position 69 is Gln
or Glu”






Modified-site


73



/note= “Xaa at position 73 is Ala
or Gly”






Modified-site


76



/note= “Xaa at position 76 is Ser,
Ala, or Pro”






Modified-site


79



/note= “Xaa at position 79 is Lys,
Arg, or Ser”






Modified-site


82



/note= “Xaa at position 82 is Leu,
Glu, Val, or Trp”






Modified-site


85



/note= “Xaa at position 85 is Leu
or Val”






Modified-site


87



/note= “Xaa at position 87 is Leu,
Ser, or Trp”






Modified-site


88



/note= “Xaa at position 88 is Ala
or Trp”






Modified-site


91



/note= “Xaa at position 91 is Ala
or Pro”






Modified-site


93



/note= “Xaa at position 93 is Pro
or Ser”






Modified-site


95



/note= “Xaa at position 95 is His
or Thr”






Modified-site


98



/note= “Xaa at position 98 is His,
Ile, or Thr”






Modified-site


100



/note= “Xaa at position 100 is Lys
or Arg”






Modified-site


101



/note= “Xaa at position 101 is Asp,
Ala, or Met”






Modified-site


105



/note= “Xaa at position 105 is Asn
or Gln”






Modified-site


109



/note= “Xaa at position 109 is Arg,
Glu, or Leu”






Modified-site


112



/note= “Xaa at position 112 is Thr
or Gln”






Modified-site


116



/note= “Xaa at position 116 is Lys,
Val, Trp, or Ser”






Modified-site


117



/note= “Xaa at position 117 is Thr
or Ser”






Modified-site


120



/note= “Xaa at position 120 is Asn,
Gln, or His”






Modified-site


123



/note= “Xaa at position 123 is Ala
or Glu”





129
Ala Pro Met Thr Gln Thr Thr Ser Leu Lys Thr Ser Trp Val Asn Cys
1 5 10 15
Ser Xaa Xaa Xaa Asp Glu Xaa Ile Xaa His Leu Lys Xaa Pro Pro Xaa
20 25 30
Pro Xaa Leu Asp Xaa Xaa Asn Leu Asn Xaa Glu Asp Xaa Xaa Ile Leu
35 40 45
Xaa Xaa Xaa Asn Leu Arg Xaa Xaa Asn Leu Xaa Xaa Phe Xaa Xaa Ala
50 55 60
Xaa Lys Xaa Leu Xaa Asn Ala Ser Xaa Ile Glu Xaa Ile Leu Xaa Asn
65 70 75 80
Leu Xaa Pro Cys Xaa Pro Xaa Xaa Thr Ala Xaa Pro Xaa Arg Xaa Pro
85 90 95
Ile Xaa Ile Xaa Xaa Gly Asp Trp Xaa Glu Phe Arg Xaa Lys Leu Xaa
100 105 110
Phe Tyr Leu Xaa Xaa Leu Glu Xaa Ala Gln Xaa Gln Gln Thr Thr Leu
115 120 125
Ser Leu Ala Ile Phe
130






111 amino acids


amino acid


linear




peptide




Modified-site



/note= “Met- or Met-Ala may or may
not precede the amino acid in position 1”






Modified-site



/note= “Xaa at position 4 is Asn or
Ile”






Modified-site



/note= “Xaa at position 5 is Met,
Ala, or Ile”






Modified-site



/note= “Xaa at position 6 is Ile,
Pro, or Leu”






Modified-site



/note= “Xaa at position 9 is Ile,
Ala, or Leu”






Modified-site


11



/note= “Xaa at position 11 is Thr
or His”






Modified-site


15



/note= “Xaa at position 15 is Gln,
Arg, Val, or Leu”






Modified-site


18



/note= “Xaa at position 18 is Leu,
Ala, Asn, or Arg”






Modified-site


20



/note= “Xaa at position 20 is Leu
or Ser”






Modified-site


23



/note= “Xaa at position 23 is Phe,
Pro, or Ser”






Modified-site


24



/note= “Xaa at position 24 is Asn
or Ala”






Modified-site


28



/note= “Xaa at position 28 is Gly,
Ala, Ser, Asp, or Asn”






Modified-site


31



/note= “Xaa at position 31 is Gln,
Val, or Met”






Modified-site


32



/note= “Xaa at position 32 is Asp
or Ser”






Modified-site


35



/note= “Xaa at position 35 is Met,
Ile, Leu, or Asp”






Modified-site


36



/note= “Xaa at position 36 is Glu
or Asp”






Modified-site


37



/note= “Xaa at position 37 is Asn,
Arg, or Ser”






Modified-site


41



/note= “Xaa at position 41 is Arg,
Leu, or Thr”






Modified-site


42



/note= “Xaa at position 42 is Pro
or Ser”






Modified-site


45



/note= “Xaa at position 45 is Glu
or Leu”






Modified-site


46



/note= “Xaa at position 46 is Ala
or Ser”






Modified-site


48



/note= “Xaa at position 48 is Asn,
Val, or Pro”






Modified-site


49



/note= “Xaa at position 49 is Arg
or His”






Modified-site


51



/note= “Xaa at position 51 is Val
or Ser”






Modified-site


53



/note= “Xaa at position 53 is Ser,
Asn, His, or Gly”






Modified-site


55



/note= “Xaa at position 55 is Gln
or Glu”






Modified-site


59



/note= “Xaa at position 59 is Ala
or Gly”






Modified-site


62



/note= “Xaa at position 62 is Ser,
Ala, or Pro”






Modified-site


65



/note= “Xaa at position 65 is Lys,
Arg, or Ser”






Modified-site


67



/note= “Xaa at position 67 is Leu,
Glu, or Val”






Modified-site


68



/note= “Xaa at position 68 is Leu,
Glu, Val, or Trp”






Modified-site


71



/note= “Xaa at position 71 is Leu
or Val”






Modified-site


73



/note= “Xaa at position 73 is Leu,
Ser, or Trp”






Modified-site


74



/note= “Xaa at position 74 is Ala
or Trp”






Modified-site


77



/note= “Xaa at position 77 is Ala
or Pro”






Modified-site


79



/note= “Xaa at position 79 is Pro
or Ser”






Modified-site


81



/note= “Xaa at position 81 is His
or Thr”






Modified-site


84



/note= “Xaa at position 84 is His,
Ile, or Thr”






Modified-site


86



/note= “Xaa at position 86 is Lys
or Arg”






Modified-site


87



/note= “Xaa at position 87 is Asp,
Ala, or Met”






Modified-site


91



/note= “Xaa at position 91 is Asn
or Glu”






Modified-site


95



/note= “Xaa at position 95 is Arg,
Glu, or Leu”






Modified-site


98



/note= “Xaa at position 98 is Thr
or Gln”






Modified-site


102



/note= “Xaa at position 102 is Lys,
Val, Trp, or Ser”






Modified-site


103



/note= “Xaa at position 103 is Thr
or Ser”






Modified-site


106



/note= “Xaa at position 106 is Asn,
Gln, or His”






Modified-site


109



/note= “Xaa at position 109 is Ala
or Glu”





130
Asn Cys Ser Xaa Xaa Xaa Asp Glu Xaa Ile Xaa His Leu Lys Xaa Pro
1 5 10 15
Pro Xaa Pro Xaa Leu Asp Xaa Xaa Asn Leu Asn Xaa Glu Asp Xaa Xaa
20 25 30
Ile Leu Xaa Xaa Xaa Asn Leu Arg Xaa Xaa Asn Leu Xaa Xaa Phe Xaa
35 40 45
Xaa Ala Xaa Lys Xaa Leu Xaa Asn Ala Ser Xaa Ile Glu Xaa Ile Leu
50 55 60
Xaa Asn Xaa Xaa Pro Cys Xaa Pro Xaa Xaa Thr Ala Xaa Pro Xaa Arg
65 70 75 80
Xaa Pro Ile Xaa Ile Xaa Xaa Gly Asp Trp Xaa Glu Phe Arg Xaa Lys
85 90 95
Leu Xaa Phe Tyr Leu Xaa Xaa Leu Glu Xaa Ala Gln Xaa Gln Gln
100 105 110






58 base pairs


nucleic acid


single


linear




DNA (synthetic)



131
CTAGCCACGG CCGCACCCAC GCGACATCCA ATCCATATCA AGGACGGTGA CTGGAATG 58






58 base pairs


nucleic acid


single


linear




DNA (synthetic)



132
TTAACATTCC AGTCACCGTC CTTGATATGG ATTGGATGTC GCGTGGGTGC GGCCGTGG 58






29 base pairs


nucleic acid


double


linear




DNA (genomic)



133
AAGGAGATAT ATCCATGAAC TGCTCTAAC 29






5 amino acids


amino acid


linear




peptide



134
Met Asn Cys Ser Asn
1 5






120 amino acids


amino acid


linear




peptide



135
Met Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys Gln
1 5 10 15
Pro Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln
20 25 30
Asp Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe
35 40 45
Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser Ile
50 55 60
Leu Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro Thr
65 70 75 80
Arg His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg Arg
85 90 95
Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln Gln
100 105 110
Thr Thr Leu Arg Leu Ala Ile Phe
115 120






71 base pairs


nucleic acid


single


linear




DNA (synthetic)



136
AATTCCGTCG TAAACTGACC TTCTATCTGA AAACCTTGGA GAACGCGCAG GCTCAACAGA 60
CCACTCTGTC G 71






71 base pairs


nucleic acid


single


linear




DNA (synthetic)



137
CTAGCGACAG AGTGGTCTGT TGAGCCTGCG CGTTCTCCAA GGTTTTCAGA TAGAAGGTCA 60
GTTTACGACG G 71






112 amino acids


amino acid


linear




peptide



138
Met Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys Gln
1 5 10 15
Pro Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln
20 25 30
Asp Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe
35 40 45
Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser Ile
50 55 60
Leu Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro Thr
65 70 75 80
Arg His Pro Ile His Ile Lys Ala Gly Asp Trp Asn Glu Phe Arg Arg
85 90 95
Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln Gln
100 105 110






75 amino acids


amino acid


linear




peptide



139
Met Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys Gln
1 5 10 15
Pro Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln
20 25 30
Asp Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe
35 40 45
Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser Ile
50 55 60
Leu Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala
65 70 75






58 base pairs


nucleic acid


single


linear




DNA (synthetic)



140
CTAGCCACGG CCGCACCCAC GCGACATCCA ATCCATATCA AGGCTGGTGA CTGGAATG 58






58 base pairs


nucleic acid


single


linear




DNA (synthetic)



141
AATTCATTCC AGTCACCAGC CTTGATATGG ATTGGATGTC GCGTGGGTGC GGCCGTGG 58






64 base pairs


nucleic acid


single


linear




DNA (synthetic)



142
AATTCCGTCG TAAACTGACC TTCTATCTGA AAACCTTGGA GAACGCGCAG GCTCAACAGT 60
AATA 64






64 base pairs


nucleic acid


single


linear




DNA (synthetic)



143
AGCTTATTAC TGTTGAGCCT GCGCGTTCTC CAAGGTTTTC AGATAGAAGG TCAGTTTACG 60
ACGG 64






408 base pairs


nucleic acid


double


linear




DNA (genomic)



144
ATGGCTCCAA TGACTCAGAC TACTTCTCTT AAGACTTCTT GGGTTAACTG CTCTAACATG 60
ATCGATGAAA TTATAACACA CTTAAAGCAG CCACCTTTGC CTTTGCTGGA CTTCAACAAC 120
CTCAATGGGG AAGACCAAGA CATTCTGATG GAAAATAACC TTCGAAGGCC AAACCTGGAG 180
GCATTCAACA GGGCTGTCAA GAGTTTACAG AATGCATCAG CAATTGAGAG CATTCTTAAA 240
AATCTCCTGC CATGTCTGCC CCTGGCCACG GCCGCACCCA CGCGACATCC AATCCATATC 300
AAGGACGGTG ACTGGAATGA ATTCCGTCGT AAACTGACCT TCTATCTGAA AACCTTGGAG 360
AACGCGCAGG CTCAACAGAC CACTCTGTCG CTAGCGATCT TTTAATAA 408






157 base pairs


nucleic acid


double


linear




DNA (genomic)




CDS


1..156




145
ATC GAT GAA ATC ATC ACC CAC CTG AAG CAG CCA CCG CTG CCG CTG CTG 48
Ile Asp Glu Ile Ile Thr His Leu Lys Gln Pro Pro Leu Pro Leu Leu
1 5 10 15
GAC TTC AAC AAC CTC AAT GGT GAA GAC CAA GAT ATC CTG ATG GAA AAT 96
Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile Leu Met Glu Asn
20 25 30
AAC CTT CGT CGT CCA AAC CTC GAG GCA TTC AAC CGT GCT GTC AAG TCT 144
Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe Asn Arg Ala Val Lys Ser
35 40 45
CTG CAG AAT GCA T 157
Leu Gln Asn Ala
50






52 amino acids


amino acid


linear




protein



146
Ile Asp Glu Ile Ile Thr His Leu Lys Gln Pro Pro Leu Pro Leu Leu
1 5 10 15
Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp Ile Leu Met Glu Asn
20 25 30
Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe Asn Arg Ala Val Lys Ser
35 40 45
Leu Gln Asn Ala
50






414 base pairs


nucleic acid


double


linear




DNA (genomic)



147
CCATGGCTCC AATGACTCAG ACTACTTCTC TTAAGACTTC TTGGGTTAAC TGCTCTAACA 60
TGATCGATGA AATTATAACA CACTTAAAGC AGCCACCTTT GCCTTTGCTG GACTTCAACA 120
ACCTCAATGG GGAAGACCAA GACATTCTGA TGGAAAATAA CCTTCGAAGG CCAAACCTGG 180
AGGCATTCAA CAGGGCTGTC AAGAGTTTAC AGAATGCATC AGCAATTGAG AGCATTCTTA 240
AAAATCTCCT GCCATGTCTG CCCCTGGCCA CGGCCGCACC CACGCGACAT CCAATCCATA 300
TCAAGGACGG TGACTGGAAT GAATTCCGTC GTAAACTGAC CTTCTATCTG AAAACCTTGG 360
AGAACGCGCA GGCTCAACAG ACCACTCTGT CGCTAGCGAT CTTTTAATAA GCTT 414






414 base pairs


nucleic acid


double


linear




DNA (genomic)



148
AAGCTTATTA AAAGATCGCT AGCGACAGAG TGGTCTGTTG AGCCTGCGCG TTCTCCAAGG 60
TTTTCAGATA GAAGGTCAGT TTACGACGGA ATTCATTCCA GTCACCGTCC TTGATATGGA 120
TTGGATGTCG CGTGGGTGCG GCCGTGGCCA GGGGCAGACA TGGCAGGAGA TTTTTAAGAA 180
TGCTCTCAAT TGCTGATGCA TTCTGTAAAC TCTTGACAGC CCTGTTGAAT GCCTCCAGGT 240
TTGGCCTTCG AAGGTTATTT TCCATCAGAA TGTCTTGGTC TTCCCCATTG AGGTTGTTGA 300
AGTCCAGCAA AGGCAAAGGT GGCTGCTTTA AGTGTGTTAT AATTTCATCG ATCATGTTAG 360
AGCAGTTAAC CCAAGAAGTC TTAAGAGAAG TAGTCTGAGT CATTGGAGCC ATGG 414






81 base pairs


nucleic acid


double


linear




DNA (genomic)



149
ATGATGATTA CTCTGCGCAA ACTTCCTCTG GCGGTTGCCG TCGCAGCGGG CGTAATGTCT 60
GCTCAGGCCA TGGCTAACTG C 81






81 base pairs


nucleic acid


double


linear




DNA (genomic)



150
GCAGTTAGCC ATGGCCTGAG CAGACATTAC GCCCGCTGCG ACGGCAACCG CCAGAGGAAG 60
TTTGCGCAGA GTAATCATCA T 81






24 base pairs


nucleic acid


single


linear




DNA (synthetic)



151
CATGGCTAAC TGCTCTAACA TGAT 24






22 base pairs


nucleic acid


single


linear




DNA (synthetic)



152
CGATCATGTT AGAGCAGTTA GC 22






12 base pairs


nucleic acid


double


linear




DNA (genomic)



153
ATGGCTAACT GC 12






4 amino acids


amino acid


linear




peptide



154
Met Ala Asn Cys
1






34 base pairs


nucleic acid


single


linear




DNA (synthetic)



155
GCCGATACCG CGGCATACTC CCACCATTCA GAGA 34






33 base pairs


nucleic acid


single


linear




DNA (synthetic)



156
GCCGATAAGA TCTAAAACGG GTATGGAGAA ACA 33






30 base pairs


nucleic acid


single


linear




DNA (synthetic)



157
ATAGTCTTCC CCAGATATCT AACGCTTGAG 30






24 base pairs


nucleic acid


single


linear




DNA (synthetic)



158
CAATACCTGA TGCGTTTTCT AAGT 24






33 base pairs


nucleic acid


single


linear




DNA (synthetic)



159
GGTTTCGTTC CATCAGAATG TCCATGTCTT CAG 33






339 base pairs


nucleic acid


double


linear




DNA (genomic)



160
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCT GAAGACATGG ATATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAACGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






338 base pairs


nucleic acid


double


linear




DNA (genomic)



161
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCT GAAGACATGG ACATTTGATG GAACGAAACC 120
TTCGAACTCC AAACCTGCTC GCATTCGTAA GGGCTGTCAA GCACTTAGAA AACGCATCAG 180
GTATTGAGGC AATTCTTCGT AATCTCCAAC CATGTCTGCC CTCTGCCACG GCCGCACCCT 240
CTCGACATCC AATCATCATC AAGGCAGGTG ACTGGCAAGA ATTCCGGGAA AAACTGACGT 300
TCTATCTGGT TACCCTTGAG CAAGCGCAGG AACAACAG 338






40 base pairs


nucleic acid


single


linear




DNA (synthetic)



162
CATGGCTAAC TGCTCTAACA TGATCGATGA AATTATAACA 40






45 base pairs


nucleic acid


single


linear




DNA (synthetic)



163
CTTTAAGTGT GTTATAATTT CATCGATCAT GTTAGAGCAG TTAGC 45






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



164
CACTTAAAGC AGCCACCTTT GCCTTTGCTG GACTTC 36






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



165
GAGGTTGTTG AAGTCCAGCA AAGGCAAAGG TGGCTG 36






27 base pairs


nucleic acid


single


linear




DNA (synthetic)



166
AACAACCTCA ATGACGAAGA CATGTCT 27






18 base pairs


nucleic acid


single


linear




DNA (synthetic)



167
AGACATGTCT TCGTCATT 18






16 base pairs


nucleic acid


single


linear




DNA (synthetic)



168
TGAACCATAT GTCAGG 16






24 base pairs


nucleic acid


single


linear




DNA (synthetic)



169
AATTCCTGAC ATATGGTTCA TGCA 24






40 base pairs


nucleic acid


single


linear




DNA (synthetic)



170
CATGGCAAAC TGCTCTATAG CTATCGATGA AATTATACAT 40






45 base pairs


nucleic acid


single


linear




DNA (synthetic)



171
CTTTAAGTGA TGTATAATTT CATCGATAGC TATAGAGCAG TTTGC 45






40 base pairs


nucleic acid


single


linear




DNA (synthetic)



172
CATGGCAAAC TGCTCTATAA TCATCGATGA AATTATACAT 40






45 base pairs


nucleic acid


single


linear




DNA (synthetic)



173
CTTTAAGTGA TGTATAATTT CATCGATGAT TATAGAGCAG TTTGC 45






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



174
ATCCTGGACG AACGAAACCT TCGAACTCCA AACCTG 36






27 base pairs


nucleic acid


single


linear




DNA (synthetic)



175
AGTTCGAAGG TTTCGTTCGT CCAGGAT 27






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



176
ATCCTGATCG AACGAAACCT TCGAACTCCA AACCTG 36






27 base pairs


nucleic acid


single


linear




DNA (synthetic)



177
AGTTCGAAGG TTTCGTTCGA TCAGGAT 27






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



178
ATCCTGCTGG AACGAAACCT TCGAACTCCA AACCTG 36






27 base pairs


nucleic acid


single


linear




DNA (synthetic)



179
AGTTCGAAGG TTTCGTTCCA GCAGGAT 27






27 base pairs


nucleic acid


single


linear




DNA (synthetic)



180
AACAACCTCA ATTCTGAAGA CGTTGAT 27






18 base pairs


nucleic acid


single


linear




DNA (synthetic)



181
ATCAACGTCT TCAGAATT 18






51 base pairs


nucleic acid


single


linear




DNA (synthetic)



182
CGCGCCATGG CTAACTGCTC TATAATGATC GATGAAGCAA TACATCACTT A 51






18 base pairs


nucleic acid


single


linear




DNA (synthetic)



183
CGCGTCGATA AGCTTATT 18






18 base pairs


nucleic acid


single


linear




DNA (synthetic)



184
GGAGATATAT CCATGGCT 18






42 base pairs


nucleic acid


single


linear




DNA (synthetic)



185
TCGGTCCATC AGAATAGACA TGTCTTCAGC ATTGAGGTTG TT 42






42 base pairs


nucleic acid


single


linear




DNA (synthetic)



186
TCGGTCCATC AGAATAGAAA CGTCTTCAGC ATTGAGGTTG TT 42






42 base pairs


nucleic acid


single


linear




DNA (synthetic)



187
TCGGTCCATC AGAATAGACA TGTCTTCGTC ATTGAGGTTG TT 42






42 base pairs


nucleic acid


single


linear




DNA (synthetic)



188
TCGGTCCATC AGAATAGAAA CGTCTTCGTC ATTGAGGTTG TT 42






42 base pairs


nucleic acid


single


linear




DNA (synthetic)



189
TCGGTCCATC AGAATAGACA TGTCTTCAGA ATTGAGGTTG TT 42






42 base pairs


nucleic acid


single


linear




DNA (synthetic)



190
TCGGTCCATC AGAATAGAAA CGTCTTCAGA ATTGAGGTTG TT 42






48 base pairs


nucleic acid


single


linear




DNA (synthetic)



191
CTGCCCTCTG CCACGGCCGC ACCCTCTCGA CATCCAATCA TCATCCGT 48






26 base pairs


nucleic acid


single


linear




DNA (synthetic)



192
AATTCTTGCC AGTCACCTGC ACGGAT 26






16 base pairs


nucleic acid


single


linear




DNA (synthetic)



193
ATGGGTGACT GGCAAG 16






26 base pairs


nucleic acid


single


linear




DNA (synthetic)



194
AATTCTTGCC AGTCACCCAT ACGGAT 26






40 base pairs


nucleic acid


single


linear




DNA (synthetic)



195
CATGGCTAAC TGCTCTATTA TGATCGATGA AGCAATACAT 40






45 base pairs


nucleic acid


single


linear




DNA (synthetic)



196
CTTTAAGTGA TGTATTGCTT CATCGATCAT AATAGAGCAG TTAGC 45






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



197
CACTTAAAGG TACCACCTCG CCCTTCCCTG GACCCG 36






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



198
GAGGTTGTTC GGGTCCAGGG AAGGGCGAGG TGGTAC 36






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



199
CACTTAAAGA GACCACCTGC ACCTTCCCTG GACCCG 36






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



200
GAGGTTGTTC GGGTCCAGGG AAGGTGCAGG TGGTCT 36






27 base pairs


nucleic acid


single


linear




DNA (synthetic)



201
AACAACCTCA ATGACGAAGA CATGGAT 27






18 base pairs


nucleic acid


single


linear




DNA (synthetic)



202
ATCCATGTCT TCGTCATT 18






27 base pairs


nucleic acid


single


linear




DNA (synthetic)



203
AACAACCTCA ATGACGAAGA CGTCGAT 27






18 base pairs


nucleic acid


single


linear




DNA (synthetic)



204
ATCGACGTCT TCGTCATT 18






27 base pairs


nucleic acid


single


linear




DNA (synthetic)



205
AACAACCTCA ATGACGAAGA CATGTCT 27






18 base pairs


nucleic acid


single


linear




DNA (synthetic)



206
AGACATGTCT TCGTCATT 18






27 base pairs


nucleic acid


single


linear




DNA (synthetic)



207
AACAACCTCA ATGACGAAGA CGTCTCT 27






18 base pairs


nucleic acid


single


linear




DNA (synthetic)



208
AGAGACGTCT TCGTCATT 18






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



209
ATCCTGATGG ACCGAAACCT TCGACTTCCA AACCTG 36






27 base pairs


nucleic acid


single


linear




DNA (synthetic)



210
AAGTCGAAGG TTTCGGTCCA TCAGGAT 27






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



211
ATCCTGATGG ACCGAAACCT TCGACTTAGC AACCTG 36






24 base pairs


nucleic acid


single


linear




DNA (synthetic)



212
CCTTACGAAG CTCTCCAGGT TGCT 24






18 base pairs


nucleic acid


single


linear




DNA (synthetic)



213
CGTAATCTCT GGCCATGT 18






18 base pairs


nucleic acid


single


linear




DNA (synthetic)



214
CCAGAGATTA CGAAGAAT 18






32 base pairs


nucleic acid


single


linear




DNA (synthetic)



215
AATTCCGGGA AAAACTGCAA TTCTATCTGT GG 32






37 base pairs


nucleic acid


single


linear




DNA (synthetic)



216
CTCAAGGGTC CACAGATAGA ATTGCAGTTT TTCCCGG 37






32 base pairs


nucleic acid


single


linear




DNA (synthetic)



217
AATTCCGGGA AAAACTGCAA TTCTATCTGG TT 32






37 base pairs


nucleic acid


single


linear




DNA (synthetic)



218
CTCAAGGGTA ACCAGATAGA ATTGCAGTTT TTCCCGG 37






23 base pairs


nucleic acid


single


linear




DNA (synthetic)



219
AATTCCGGGA AAAACTGACG TTC 23






28 base pairs


nucleic acid


single


linear




DNA (synthetic)



220
AACCAGATAG AACGTCAGTT TTTCCCGG 28






23 base pairs


nucleic acid


single


linear




DNA (synthetic)



221
TATCTGGTTA CCCTTGAGTA ATA 23






19 base pairs


nucleic acid


single


linear




DNA (synthetic)



222
AGCTTATTAC TTCAAGGGT 19






23 base pairs


nucleic acid


single


linear




DNA (synthetic)



223
AATTCCGGGA AAAACTGCAA TTC 23






28 base pairs


nucleic acid


single


linear




DNA (synthetic)



224
AACCAGATAG AATTGCAGTT TTTCCCGG 28






61 base pairs


nucleic acid


single


linear




DNA (synthetic)



225
CGATCATTAT AGAGCAGTTA GCCTTGTCAT CGTCGTCCTT GTAATCAGTT TCTGGATATG 60
C 61






63 base pairs


nucleic acid


single


linear




DNA (synthetic)



226
CATGGCATAT CCAGAAACTG ATTACAAGGA CGACGATGAC AAGGCTAACT GCTCTATAAT 60
GAT 63






32 base pairs


nucleic acid


single


linear




DNA (synthetic)



227
AATTCCGGCT TAAACTGCAA TTCTATCTGT CT 32






37 base pairs


nucleic acid


single


linear




DNA (synthetic)



228
CTCAAGGGTA GACAGATAGA ATTGCAGTTT AAGCCGG 37






32 base pairs


nucleic acid


single


linear




DNA (synthetic)



229
TCTCTTGAGC AAGCGCAGGA ACAACAGTAA TA 32






40 base pairs


nucleic acid


single


linear




DNA (synthetic)



230
CATGGCAAAC TGCTCTATAA TACTCGATGA AGCAATACAT 40






45 base pairs


nucleic acid


single


linear




DNA (synthetic)



231
CTTTAAGTGA TGTATTGCTT CATCGAGTAT TATAGAGCAG TTTGC 45






40 base pairs


nucleic acid


single


linear




DNA (synthetic)



232
CATGGCAAAC TGCTCTATAA TGCCAGATGA AGCAATACAT 40






45 base pairs


nucleic acid


single


linear




DNA (synthetic)



233
CTTTAAGTGA TGTATTGCTT CATCTGGCAT TATAGAGCAG TTTGC 45






41 base pairs


nucleic acid


single


linear




DNA (synthetic)



234
CATGGCAAAC TGCTCTATAA TGATCGATGA AACTGATACA T 41






45 base pairs


nucleic acid


single


linear




DNA (synthetic)



235
CTTTAAGTGA TGTATCAGTT CATCGATCAT TATAGAGCAG TTTGC 45






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



236
CACTTAAAGA TACCACCTAA CCCTAGCCTG GACAGT 36






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



237
GAGGTTAGCA CTGTCCAGGC TAGGGTTAGG TGGTAT 36






27 base pairs


nucleic acid


single


linear




DNA (synthetic)



238
GCTAACCTCA ATTCCGAAGA CGTCTCT 27






18 base pairs


nucleic acid


single


linear




DNA (synthetic)



239
AGAGACGTCT TCGGAATT 18






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



240
ATCCTGATGG ACTCCAACCT TCGAACTCCA AACCTG 36






27 base pairs


nucleic acid


single


linear




DNA (synthetic)



241
AGTTCGAAGG TTGGAGTCCA TCAGGAT 27






48 base pairs


nucleic acid


single


linear




DNA (synthetic)



242
GTTCCCTATT GGACGGCCCC TCCCTCTCGA ACACCAATCA CGATCAAG 48






48 base pairs


nucleic acid


single


linear




DNA (synthetic)



243
CGTGATTGGT GTTCGAGAGG GAGGGGCCGT CCAATAGGGA ACACATGG 48






24 base pairs


nucleic acid


single


linear




DNA (synthetic)



244
CTCGCATTCC CACATGCTTC TAAG 24






24 base pairs


nucleic acid


single


linear




DNA (synthetic)



245
CTCGCATTCC CACATGCTGT CAAG 24






24 base pairs


nucleic acid


single


linear




DNA (synthetic)



246
ATGTGGGAAT GCGAGCAGGT TTGG 24






20 base pairs


nucleic acid


single


linear




DNA (synthetic)



247
TTTTCTAATT GCTTAGAAGC 20






15 base pairs


nucleic acid


single


linear




DNA (synthetic)



248
CAATTAGAAA ATGCA 15






20 base pairs


nucleic acid


single


linear




DNA (synthetic)



249
TTTTCTAATT GCTTGACAGC 20






21 base pairs


nucleic acid


single


linear




DNA (synthetic)



250
TCAGGTATTG AGCCAATTCT T 21






19 base pairs


nucleic acid


single


linear




DNA (synthetic)



251
TGGCTCAATA CCTGATGCA 19






18 base pairs


nucleic acid


single


linear




DNA (synthetic)



252
TCTAATCTCC AACCATGT 18






18 base pairs


nucleic acid


single


linear




DNA (synthetic)



253
TTGGAGATTA GAAAGAAT 18






37 base pairs


nucleic acid


single


linear




DNA (synthetic)



254
CTCAAGAGAA GACAGATAGA ATTGCAGTTT AAGCCGG 37






40 base pairs


nucleic acid


single


linear




DNA (synthetic)



255
CATGGCTAAC TGCTCTATAA TGATCGATGA AATTATACAT 40






43 base pairs


nucleic acid


single


linear




DNA (synthetic)



256
AATTCCGGCT TAAACTGCAA TTCTATCTGT CTACCCTTTA ATA 43






43 base pairs


nucleic acid


single


linear




DNA (synthetic)



257
AGCTTATTAA AGGGTAGACA GATAGAATTG CAGTTTAAGC CGG 43






43 base pairs


nucleic acid


single


linear




DNA (synthetic)



258
AATTCCGGCT TAAACTGCAA TTCTATCTGT CTACCCTTTA ATA 43






113 amino acids


amino acid


linear




peptide



259
Met Ala Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys
1 5 10 15
Gln Pro Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Asp Glu Asp
20 25 30
Met Ser Ile Leu Met Asp Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala
35 40 45
Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser
50 55 60
Ile Leu Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro
65 70 75 80
Thr Arg His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg
85 90 95
Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



260
Met Ala Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys
1 5 10 15
Gln Pro Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Asp Glu Asp
20 25 30
Met Ser Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala
35 40 45
Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser
50 55 60
Ile Leu Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro
65 70 75 80
Thr Arg His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg
85 90 95
Arg Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



261
Met Ala Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys
1 5 10 15
Gln Pro Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Asp Glu Asp
20 25 30
Met Ser Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala
35 40 45
Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser
50 55 60
Ile Leu Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro
65 70 75 80
Thr Arg His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg
85 90 95
Arg Lys Leu Thr Phe Tyr Leu Trp Thr Leu Glu Asn Ala Gln Ala Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



262
Met Ala Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys
1 5 10 15
Gln Pro Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Asp Glu Asp
20 25 30
Met Ser Ile Leu Met Asp Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala
35 40 45
Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser
50 55 60
Ile Leu Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro
65 70 75 80
Thr Arg His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg
85 90 95
Arg Lys Leu Thr Phe Tyr Leu Trp Thr Leu Glu Asn Ala Gln Ala Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



263
Met Ala Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys
1 5 10 15
Gln Pro Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Asp Glu Asp
20 25 30
Met Ser Ile Leu Met Asp Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala
35 40 45
Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser
50 55 60
Ile Leu Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro
65 70 75 80
Thr Arg Arg Pro Ile Ile Ile Arg Asp Gly Asp Trp Asn Glu Phe Arg
85 90 95
Arg Lys Leu Thr Phe Tyr Leu Trp Thr Leu Glu Asn Ala Gln Ala Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



264
Met Ala Asn Cys Ser Ile Ala Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



265
Met Ala Asn Cys Ser Ile Ile Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



266
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Val Asp Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



267
Met Ala Asn Cys Ser Ile Ala Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Val Asp Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



268
Met Ala Asn Cys Ser Ile Ile Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Val Asp Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



269
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Ile Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



270
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Leu Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



271
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Asp Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



272
Met Ala Asn Cys Ser Ile Ala Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Val Asp Ile Leu Ile Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



273
Met Ala Asn Cys Ser Ile Ile Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Val Asp Ile Leu Ile Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



274
Met Ala Asn Cys Ser Ile Ala Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Val Asp Ile Leu Leu Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



275
Met Ala Asn Cys Ser Ile Ile Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Val Asp Ile Leu Leu Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



276
Met Ala Asn Cys Ser Ile Ala Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Val Asp Ile Leu Asp Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



277
Met Ala Asn Cys Ser Ile Ile Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Val Asp Ile Leu Asp Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



278
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ala Ile His His Leu Lys
1 5 10 15
Val Pro Pro Ala Pro Leu Leu Asp Ser Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



279
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ala Ile His His Leu Lys
1 5 10 15
Val Pro Pro Ala Pro Leu Leu Asp Ser Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Gln Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



280
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ala Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
20 25 30
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



281
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asn Glu Asp
20 25 30
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



282
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp
20 25 30
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



283
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
20 25 30
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



284
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp
20 25 30
Met Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



285
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
20 25 30
Met Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



286
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






107 amino acids


amino acid


linear




peptide



287
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp
20 25 30
Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
100 105






107 amino acids


amino acid


linear




peptide



288
Met Asp Asn Cys Ser Ile Met Ile Asp Glu Ala Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp
20 25 30
Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Gln Phe Tyr Leu Val Thr Leu Glu
100 105






113 amino acids


amino acid


linear




peptide



289
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ala Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
20 25 30
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Gln Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






107 amino acids


amino acid


linear




peptide



290
Met Asp Asn Cys Ser Ile Met Ile Asp Glu Ala Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp
20 25 30
Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu
100 105






113 amino acids


amino acid


linear




peptide



291
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp
20 25 30
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Gln Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



292
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Val Pro Pro Arg Pro Ser Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp
20 25 30
Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



293
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp
20 25 30
Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Trp Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



294
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ala Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
20 25 30
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Gln Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



295
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp
20 25 30
Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Gln Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



296
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp
20 25 30
Val Asp Ile Leu Met Asp Arg Asn Leu Arg Leu Ser Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



297
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
20 25 30
Met Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



298
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Ser Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp
20 25 30
Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



299
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
20 25 30
Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



300
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ala Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Ser Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
20 25 30
Met Ser Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



301
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
20 25 30
Met Ser Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



302
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ala Ile His His Leu Lys
1 5 10 15
Val Pro Pro Arg Pro Ser Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
20 25 30
Val Ser Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



303
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp
20 25 30
Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Arg Met Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



304
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp
20 25 30
Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Trp Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Arg Met Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



305
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
20 25 30
Val Ser Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



306
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ala Ile His His Leu Lys
1 5 10 15
Val Pro Pro Arg Pro Ser Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
20 25 30
Val Ser Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






107 amino acids


amino acid


linear




peptide



307
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp
20 25 30
Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Gln Phe Tyr Leu Val Thr Leu Glu
100 105






113 amino acids


amino acid


linear




peptide



308
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp
20 25 30
Val Asp Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



309
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
20 25 30
Val Ser Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



310
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
20 25 30
Met Ser Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



311
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ala Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Ser Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
20 25 30
Val Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Ser Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



312
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ala Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Ser Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
20 25 30
Met Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



313
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp
20 25 30
Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Gln Phe Tyr Leu Trp Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



314
Met Asp Asn Cys Ser Ile Met Ile Asp Glu Ala Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp
20 25 30
Val Asp Ile Leu Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






125 amino acids


amino acid


linear




peptide



315
Met Ala Tyr Pro Glu Thr Asp Tyr Lys Asp Asp Asp Asp Lys Asn Cys
1 5 10 15
Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Ala
20 25 30
Pro Leu Leu Asp Pro Asn Asn Leu Asn Ala Glu Asp Val Asp Ile Leu
35 40 45
Met Glu Arg Asn Leu Arg Leu Pro Asn Leu Glu Ser Phe Val Arg Ala
50 55 60
Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn
65 70 75 80
Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro
85 90 95
Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr
100 105 110
Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln
115 120 125






125 amino acids


amino acid


linear




peptide



316
Met Ala Tyr Pro Glu Thr Asp Tyr Lys Asp Asp Asp Asp Lys Asn Cys
1 5 10 15
Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys Arg Pro Pro Asn
20 25 30
Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp Met Asp Ile Leu
35 40 45
Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala Phe Val Arg Ala
50 55 60
Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala Ile Leu Arg Asn
65 70 75 80
Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro Ser Arg His Pro
85 90 95
Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg Glu Lys Leu Thr
100 105 110
Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln Gln
115 120 125






113 amino acids


amino acid


linear




peptide



317
Met Ala Asn Cys Ser Ile Met Pro Asp Glu Ala Ile His His Leu Lys
1 5 10 15
Ile Pro Pro Asn Pro Ser Leu Asp Ser Ala Asn Leu Asn Ser Glu Asp
20 25 30
Val Ser Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



318
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Leu Ile His His Leu Lys
1 5 10 15
Ile Pro Pro Asn Pro Ser Leu Asp Ser Ala Asn Leu Asn Ser Glu Asp
20 25 30
Val Ser Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



319
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ala Ile His His Leu Lys
1 5 10 15
Ile Pro Pro Asn Pro Ser Leu Asp Ser Ala Asn Leu Asn Ser Glu Asp
20 25 30
Val Ser Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Pro
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg Thr Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



320
Met Ala Asn Cys Ser Ile Ile Leu Asp Glu Ala Ile His His Leu Lys
1 5 10 15
Ile Pro Pro Asn Pro Ser Leu Asp Ser Ala Asn Leu Asn Ser Glu Asp
20 25 30
Val Ser Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Pro
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg Thr Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



321
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Met Asp Ser Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Pro His Ala Ser Lys Gln Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



322
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Leu Lys Leu Gln Phe Tyr Leu Ser Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






106 amino acids


amino acid


linear




peptide



323
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Leu Lys Leu Gln Phe Tyr Leu Ser Thr Leu
100 105






113 amino acids


amino acid


linear




peptide



324
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Leu Lys Leu Gln Phe Tyr Leu Ser Ser Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



325
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Met Asp Ser Asn Leu Leu Thr Pro Asn Leu Leu Ala
35 40 45
Phe Pro His Ala Ser Lys Gln Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Leu Lys Leu Gln Phe Tyr Leu Ser Ser Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



326
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Pro
50 55 60
Ile Leu Ser Asn Leu Gln Pro Cys Val Pro Tyr Trp Thr Ala Pro Pro
65 70 75 80
Ser Arg Thr Pro Ile Thr Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



327
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ile Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Asn Pro Leu Leu Asp Pro Asn Asn Leu Asn Ser Glu Asp
20 25 30
Met Asp Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Pro
50 55 60
Ile Leu Ser Asn Leu Gln Pro Cys Val Pro Tyr Trp Thr Ala Pro Pro
65 70 75 80
Ser Arg Thr Pro Ile Thr Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Leu Lys Leu Gln Phe Tyr Leu Ser Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



328
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Leu Ile His His Leu Lys
1 5 10 15
Ile Pro Pro Asn Pro Ser Leu Asp Ser Ala Asn Leu Asn Ser Glu Asp
20 25 30
Val Ser Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Pro
50 55 60
Ile Leu Ser Asn Leu Gln Pro Cys Val Pro Tyr Trp Thr Ala Pro Pro
65 70 75 80
Ser Arg Thr Pro Ile Thr Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Leu Lys Leu Gln Phe Tyr Leu Ser Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



329
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Leu Ile His His Leu Lys
1 5 10 15
Ile Pro Pro Asn Pro Ser Leu Asp Ser Ala Asn Leu Asn Ser Glu Asp
20 25 30
Val Ser Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Leu Lys Leu Gln Phe Tyr Leu Ser Ser Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



330
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Leu Ile His His Leu Lys
1 5 10 15
Ile Pro Pro Asn Pro Ser Leu Asp Ser Ala Asn Leu Asn Ser Glu Asp
20 25 30
Val Ser Ile Leu Met Glu Arg Asn Leu Arg Thr Pro Asn Leu Leu Ala
35 40 45
Phe Val Arg Ala Val Lys His Leu Glu Asn Ala Ser Gly Ile Glu Pro
50 55 60
Ile Leu Ser Asn Leu Gln Pro Cys Val Pro Tyr Trp Thr Ala Pro Pro
65 70 75 80
Ser Arg Thr Pro Ile Thr Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






113 amino acids


amino acid


linear




peptide



331
Met Ala Asn Cys Ser Ile Met Ile Asp Glu Ala Ile His His Leu Lys
1 5 10 15
Arg Pro Pro Ala Pro Ser Leu Asp Pro Asn Asn Leu Asn Asp Glu Asp
20 25 30
Met Ser Ile Leu Met Asp Arg Asn Leu Arg Leu Ser Asn Leu Glu Ser
35 40 45
Phe Val Arg Ala Val Lys Asn Leu Glu Asn Ala Ser Gly Ile Glu Ala
50 55 60
Ile Leu Arg Asn Leu Gln Pro Cys Leu Pro Ser Ala Thr Ala Ala Pro
65 70 75 80
Ser Arg His Pro Ile Ile Ile Lys Ala Gly Asp Trp Gln Glu Phe Arg
85 90 95
Glu Lys Leu Thr Phe Tyr Leu Val Thr Leu Glu Gln Ala Gln Glu Gln
100 105 110
Gln






339 base pairs


nucleic acid


double


linear




DNA (genomic)



332
ATGGCAAACT GCTCTATAGC TATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCC GAAGACATGG ATATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



333
ATGGCAAACT GCTCTATAAT CATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCC GAAGACATGG ATATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



334
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCT GAAGACGTTG ATATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



335
ATGGCAAACT GCTCTATAGC TATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCT GAAGACGTTG ATATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



336
ATGGCAAACT GCTCTATAAT GATCCATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCT GAAGACGTTG ATATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



337
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCC GAAGACATGG ATATCCTGAT CGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



338
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCC GAAGACATGG ATATCCTGCT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



339
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCC GAAGACATGG ATATCCTGGA CGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



340
ATGGCAAACT GCTCTATAGC TATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCT GAAGACGTTG ATATCCTGAT CGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



341
ATGGCAAACT GCTCTATAAT CATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCT GAAGACGTTG ATATCCTGAT CGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



342
ATGGCAAACT GCTCTATAGC TATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCT GAAGACGTTG ATATCCTGCT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



343
ATGGCAAACT GCTCTATAAT CATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCT GAAGACGTTG ATATCCTGCT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



344
ATGGCAAACT GCTCTATAGC TATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCT GAAGACGTTG ATATCCTGGA CGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



345
ATGGCAAACT GCTCTATAAT CATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCT GAAGACGTTG ATATCCTGGA CGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



346
ATGGCTAACT GCTCTATTAT GATCGATGAA GCAATACATC ACTTAAAGGT TCCACCTGCA 60
CCTTTGCTGG ACAGTAACAA CCTCAATTCC GAAGACATGG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



347
ATGGCTAACT GCTCTATAAT GATCGATGAA GCAATACATC ACTTAAAGGT TCCACCTGCA 60
CCTTTGCTGG ACAGTAACAA CCTCAATTCC GAAGACATGG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGCAA 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



348
ATGGCTAACT GCTCTATAAT GATCGATGAA GCAATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTTT CTATTCTGAT GGACCGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



349
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATAAC GAAGACGTTT CTATTCTGAT GGACCGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



350
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGCT GAAGACGTTT CTATTCTGAT GGACCGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



351
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTTT CTATTCTGAT GGACCGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



352
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGCT GAAGACATGT CTATTCTGAT GGACCGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



353
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACATGT CTATTCTGAT GGACCGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



354
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGCT GAAGACGTCG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






321 base pairs


nucleic acid


double


linear




DNA (genomic)



355
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGCT GAAGACGTCG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA G 321






321 base pairs


nucleic acid


double


linear




DNA (genomic)



356
ATGGATAACT GCTCTATAAT GATCGATGAA GCAATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGCT GAAGACGTCG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGCAA 300
TTCTATCTGG TTACCCTTGA G 321






321 base pairs


nucleic acid


double


linear




DNA (genomic)



357
ATGGCTAACT GCTCTATAAT GATCGATGAA GCAATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT CTATTCTGAT GGACCGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGCAA 300
TTCTATCTGG TTACCCTTGA G 321






321 base pairs


nucleic acid


double


linear




DNA (genomic)



358
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGCT GAAGACGTCG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA G 321






339 base pairs


nucleic acid


double


linear




DNA (genomic)



359
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGCT GAAGACGTTT CTATCCTGAT GGACCGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGCAA 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



360
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGGT ACCACCTCGC 60
CCTTCCCTGG ACCCGAACAA CCTCAATGCT GAAGACGTCG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



361
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGCT GAAGACGTCG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCTGG CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



362
ATGGCTAACT GCTCTATAAT GATCGATGAA GCAATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTTT CTATTCTGAT GGACCGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGCAA 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



363
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGCT GAAGACGTCG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGCAA 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



364
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGCT GAAGACGTCG ATATCCTGAT GGACCGAAAC 120
CTTCGACTTA GCAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



365
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACATGG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



366
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTCCCTGG ACCCGAACAA CCTCAATGCT GAAGACGTCG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



367
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



368
ATGGCTAACT GCTCTATAAT GATCGATGAA GCAATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTCCCTGG ACCCGAACAA CCTCAATGAC GAAGACATGT CTATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



369
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACATGT CTATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



370
ATGGCTAACT GCTCTATAAT GATCGATGAA GCAATACATC ACTTAAAGGT ACCACCTCGC 60
CCTTCCCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT CTATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



371
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGCT GAAGACGTCG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CCGTATGGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



372
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGCT GAAGACGTCG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCTGG CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CCGTATGGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



373
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT CTATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



374
ATGGCTAACT GCTCTATAAT GATCGATGAA GCAATACATC ACTTAAAGGT ACCACCTCGC 60
CCTTCCCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT CTATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






321 base pairs


nucleic acid


double


linear




DNA (genomic)



375
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGCT GAAGACGTCG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGCAA 300
TTCTATCTGG TTACCCTTGA G 321






339 base pairs


nucleic acid


double


linear




DNA (genomic)



376
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGCT GAAGACGTCG ATATCCTGAT GGACCGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



377
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCG ATTCTCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



378
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCA TGTCTCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



379
ATGGCTAACT GCTCTATAAT GATCGATGAA GCAATACATC ACTTAAAGAG ACCACCTGAC 60
CTTTCCCTGG ACCCGAACAA CCTCAATGAC GAAGACGTCT CTATCCTGAT GGACCGAAAC 120
CTTCGACTTA GCAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



380
ATGGCTAACT GCTCTATAAT GATCGATGAA GCAATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTCCCTGG ACCCGAACAA CCTCAATGAC GAAGACATGT CTATCCTGAT GGACCGAAAC 120
CTTCGACTTA GCAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



381
ATGGCTAACT GCTCTATAAT GATCGATGAA GCAATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTCCCTGG ACCCGAACAA CCTCAATGAC GAAGACATGT CTATCCTGAT GGACCGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



382
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGCT GAAGACGTCG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGCAA 300
TTCTATCTGT GGACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



383
ATGGATAACT GCTCTATTAT GATCGATGAA GCAATACATC ACTTAAAGAG ACCACCTGCA 60
CCTTTGCTGG ACCCGAACAA CCTCAATGCT GAAGACGTCG ATATCCTGAT GGAACGAAAC 120
CTTCGACTTC CAAACCTGGA GAGCTTCGTA AGGGCTGTCA AGAACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



384
ATGGCTAACT GCTCTATAAT GCCAGATGAA GCAATACATC ACTTAAAGAT ACCACCTAAC 60
CCTAGCCTGG ACAGTGCTAA CCTCAATTCC GAAGACGTCT CTATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



385
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAT ACCACCTAAC 60
CCTAGCCTGG ACAGTGCTAA CCTCAATTCC GAAGACGTCT CTATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



386
ATGGCTAACT GCTCTATTAT GATCGATGAA GCAATACATC ACTTAAAGAT ACCACCTAAC 60
CCTAGCCTGG ACAGTGCTAA CCTCAATTCC GAAGACGTCT CTATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



387
ATGGCTAACT GCTCTATAAT ACTCGATGAA GCAATACATC ACTTAAAGAT ACCACCTAAC 60
CCTAGCCTGG ACAGTGCTAA CCTCAATTCC GAAGACGTCT CTATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



388
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCC GAAGACATGG ATATCCTGAT GGACTCCAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCCCA CATGCTGTCA AGCAATTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



389
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCC GAAGACATGG ATATCCTGAT GGACTCCAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCCCA CATGCTTCTA AGCAATTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



390
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCC GAAGACATGG ATATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGCT TAAACTGCAA 300
TTCTATCTGT CTACCCTTGA GCAAGCGCAG GAACAACAG 339






318 base pairs


nucleic acid


double


linear




DNA (genomic)



391
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCC GAAGACATGG ATATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGCT TAAACTGCAA 300
TTCTATCTGT CTACCCTT 318






339 base pairs


nucleic acid


double


linear




DNA (genomic)



392
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCC GAAGACATGG ATATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGCT TAAACTGCAA 300
TTCTATCTGT CTTCTCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



393
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCC GAAGACATGG ATATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGC CAATTCTTTC TAATCTCCAA CCATGTGTTC CCTATTGGAC GGCCCCTCCC 240
TCTCGAACAC CAATCACGAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



394
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAG ACCACCTAAC 60
CCTTTGCTGG ACCCGAACAA CCTCAATTCC GAAGACATGG ATATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGC CAATTCTTTC TAATCTCCAA CCATGTGTTC CCTATTGGAC GGCCCCTCCC 240
TCTCGAACAC CAATCACGAT CAAGGCAGGT GACTGGCAAG AATTCCGGCT TAAACTGCAA 300
TTCTATCTGT CTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



395
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAT ACCACCTAAC 60
CCTAGCCTGG ACAGTGCTAA CCTCAATTCC GAAGACGTCT CTATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGC CAATTCTTTC TAATCTCCAA CCATGTGTTC CCTATTGGAC GGCCCCTCCC 240
TCTCGAACAC CAATCACGAT CAAGGCAGGT GACTGGCAAG AATTCCGGCT TAAACTGCAA 300
TTCTATCTGT CTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



396
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAT ACCACCTAAC 60
CCTAGCCTGG ACAGTGCTAA CCTCAATTCC GAAGACGTCT CTATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGG CAATTCTTCG TAATCTCCAA CCATGTCTGC CCTCTGCCAC GGCCGCACCC 240
TCTCGACATC CAATCATCAT CAAGGCAGGT GACTGGCAAG AATTCCGGCT TAAACTGCAA 300
TTCTATCTGT CTTCTCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



397
ATGGCTAACT GCTCTATAAT GATCGATGAA ATTATACATC ACTTAAAGAT ACCACCTAAC 60
CCTAGCCTGG ACAGTGCTAA CCTCAATTCC GAAGACGTCT CTATCCTGAT GGAACGAAAC 120
CTTCGAACTC CAAACCTGCT CGCATTCGTA AGGGCTGTCA AGCACTTAGA AAATGCATCA 180
GGTATTGAGC CAATTCTTTC TAATCTCCAA CCATGTGTTC CCTATTGGAC GGCCCCTCCC 240
TCTCGAACAC CAATCACGAT CAAGGCAGGT GACTGGCAAG AATTCCGGGA AAAACTGACG 300
TTCTATCTGG TTACCCTTGA GCAAGCGCAG GAACAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



398
ATGGCTAACT GCTCTAACAT GATCGATGAA ATCATCACCC ACCTGAAGCA GCCACCGCTG 60
CCGCTGCTGG ACTTCAACAA CCTCAATGAC GAAGACATGT CTATCCTGAT GGACAATAAC 120
CTTCGTCGTC CAAACCTCGA GGCATTCAAC CGTGCTGTCA AGTCTCTGCA GAATGCATCA 180
GCAATTGAGA GCATTCTTAA AAATCTCCTG CCATGTCTGC CCCTGGCCAC GGCCGCACCC 240
ACGCGACATC CAATCCATAT CAAGGACGGT GACTGGAATG AATTCCGTCG TAAACTGACC 300
TTCTATCTGA AAACCTTGGA GAACGCGCAG GCTCAACAG 339






339 base pairs


nucleic acid


double


linear




DNA (genomic)



399
ATGGCTAACT GCTCTAACAT GATCGATGAA ATCATCACCC ACCTGAAGCA GCCACCGCTG 60
CCGCTGCTGG ACTTCAACAA CCTCAATGAC GAAGACATGT CTATCCTGAT GGAAAATAAC 120
CTTCGTCGTC CAAACCTCGA GGCATTCAAC CGTGCTGTCA AGTCTCTGCA GAATGCATCA 180
GCAATTGAGA GCATTCTTAA AAATCTCCTG CCATGTCTGC CCCTGGCCAC GGCCGCACCC 240
ACGCGACATC CAATCCATAT CAAGGACGGT GACTGGAATG AATTCCGTCG TAAACTGACC 300
TTCTATCTGA AAACCTTGGA GAACGCGCAG GCTCAACAG 339






29 base pairs


nucleic acid


double


linear




DNA (genomic)



400
AAGGAGATAT ATCCATGAAC TGCTCTAAC 29






5 amino acids


amino acid


linear




peptide



401
Met Asn Cys Ser Asn
1 5






120 amino acids


amino acid


linear




peptide



402
Met Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys Gln
1 5 10 15
Pro Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln
20 25 30
Asp Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe
35 40 45
Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser Ile
50 55 60
Leu Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro Thr
65 70 75 80
Arg His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg Arg
85 90 95
Lys Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln Gln
100 105 110
Thr Thr Leu Arg Leu Ala Ile Phe
115 120






14 amino acids


amino acid


linear




peptide



403
Met Ala Tyr Pro Glu Thr Asp Tyr Lys Asp Asp Asp Asp Lys
1 5 10






378 base pairs


nucleic acid


double


linear




DNA (genomic)



404
ATGGCATATC CAGAAACTGA TTACAAGGAC GACGATGACA AGGCTAACTG CTCTATAATG 60
ATCGATGAAA TTATACATCA CTTAAAGAGA CCACCTGCAC CTTTGCTGGA CCCGAACAAC 120
CTCAATGCTG AAGACGTCGA TATCCTGATG GAACGAAACC TTCGACTTCC AAACCTGGAG 180
AGCTTCGTAA GGGCTGTCAA GAACTTAGAA AATGCATCAG GTATTGAGGC AATTCTTCGT 240
AATCTCCAAC CATGTCTGCC CTCTGCCACG GCCGCACCCT CTCGACATCC AATCATCATC 300
AAGGCAGGTG ACTGGCAAGA ATTCCGGGAA AAACTGACGT TCTATCTGGT TACCCTTGAG 360
CAAGCGCAGG AACAACAG 378






378 base pairs


nucleic acid


double


linear




DNA (genomic)



405
ATGGCATATC CAGAAACTGA TTACAAGGAC GACGATGACA AGGCTAACTG CTCTATAATG 60
ATCGATGAAA TTATACATCA CTTAAAGAGA CCACCTAACC CTTTGCTGGA CCCGAACAAC 120
CTCAATTCCG AAGACATGGA TATCCTGATG GAACGAAACC TTCGAACTCC AAACCTGCTC 180
GCATTCGTAA GGGCTGTCAA GCACTTAGAA AATGCATCAG GTATTGAGGC AATTCTTCGT 240
AATCTCCAAC CATGTCTGCC CTCTGCCACG GCCGCACCCT CTCGACATCC AATCATCATC 300
AAGGCAGGTG ACTGGCAAGA ATTCCGGGAA AAACTGACGT TCTATCTGGT TACCCTTGAG 360
CAAGCGCAGG AACAACAG 378






113 amino acids


amino acid


linear




peptide



406
Met Ala Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys
1 5 10 15
Gln Pro Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Asp Glu Asp
20 25 30
Met Ser Ile Leu Met Glu Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala
35 40 45
Phe Asn Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser
50 55 60
Ile Leu Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro
65 70 75 80
Thr Arg His Pro Ile Ile Ile Arg Asp Gly Asp Trp Asn Glu Phe Arg
85 90 95
Arg Lys Leu Thr Phe Tyr Leu Trp Thr Leu Glu Asn Ala Gln Ala Gln
100 105 110
Gln






111 amino acids


amino acid


linear




peptide



407
Asn Cys Ser Asn Met Ile Asp Glu Ile Ile Thr His Leu Lys Gln Pro
1 5 10 15
Pro Leu Pro Leu Leu Asp Phe Asn Asn Leu Asn Gly Glu Asp Gln Asp
20 25 30
Ile Leu Met Asp Asn Asn Leu Arg Arg Pro Asn Leu Glu Ala Phe Asn
35 40 45
Arg Ala Val Lys Ser Leu Gln Asn Ala Ser Ala Ile Glu Ser Ile Leu
50 55 60
Lys Asn Leu Leu Pro Cys Leu Pro Leu Ala Thr Ala Ala Pro Thr Arg
65 70 75 80
His Pro Ile His Ile Lys Asp Gly Asp Trp Asn Glu Phe Arg Arg Lys
85 90 95
Leu Thr Phe Tyr Leu Lys Thr Leu Glu Asn Ala Gln Ala Gln Gln
100 105 110






340 base pairs


nucleic acid


double


linear




DNA (genomic)



408
ATGGCTAACT GCTCTAACAT GATCGATGAA ATCATCACCC ACCTGAAGCA GCCACCGCTG 60
CCGCTGCTGG ACTTCAACAA CCTCAATGGT GAAGACCAAG ATATCCTGAT GGAACAATAA 120
CCTTCGTCGT CCAAACCTCG AGGCATTCAA CCGTGCTGTC AACTCTCTGC AGAATGCATC 180
AGCAATTGAG AGCATTCTTA AAAATCTCCT GCCATGTCTG CCCCTGGCCA CGGCCGCACC 240
CACGCGACAT CCAATCCATA TCAAGGACGG TGACTGGAAT GAATTCCGTC GTAAACTGAC 300
CTTCTATCTG AAAACCTTGG AGAACGCGCA GGCTCAACAG 340






45 base pairs


nucleic acid


single


linear




DNA (synthetic)



409
CTTTAAGTGA TGTATAATTT CATCGATCAT TATAGAGCAG TTAGC 45






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



410
CACTTAAAGA GACCACCTGC ACCTTTGCTG GACCCG 36






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



411
GAGGTTGTTC GGGTCCAGCA AAGGTGCAGG TGGTCT 36






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



412
CACTTAAAGA GACCACCTAA CCCTTTGCTG GACCCG 36






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



413
GAGGTTGTTC GGGTCCAGCA AAGGGTTAGG TGGTCT 36






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



414
CACTTAAAGG TTCCACCTGC ACCTTTGCTG GACAGT 36






36 base pairs


nucleic acid


single


linear




DNA (synthetic)



415
GAGGTTGTTA CTGTCCAGCA AAGGTGCAGG TGGAAC 36







Claims
  • 1. A polypeptide comprising a modified human interleukin-3 amino acid sequence selected from the group consisting of:(a) a sequence of SEQ ID NO:15; whereinXaa at position 17 is Ser;Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg,or Gln;Xaa at position 19 is Met, Phe, Ile, Arg, Gly, Ala,or Cys;Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro,or Ala;Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly,Glu, Gln, Asn, Thr, Ser or Val;Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His,Asp, Asn, Gln, Leu, Val or Gly;Xaa at position 23 is Ile, Val, Ala, Leu, Gly, Trp,Lys, Phe, Ser, or Arg;Xaa at position 24 is Ile, Gly, Val, Arg, Ser, Phe,or Leu;Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro,or Ala;Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala,or Trp;Xaa at position 27 is Leu, Gly, Arg, Thr, Ser,or Ala;Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro,Val or Trp;Xaa at position 29 is Gln, Asn, Leu, Pro, Arg,or Val;Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln,Ser, Leu, or Lys;Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu,or Gln;Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gly,Ala, or Glu;Xaa at position 33 is Pro, Leu, Gln, Ala, Thr,or Glu;Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu,Gln, Thr, Arg, Ala, Phe, Ile or Met;Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln,or Val;Xaa at position 36 is Asp, Leu, or Val;Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;Xaa at position 38 is Asn, or Ala;Xaa at position 40 is Leu, Trp, or Arg;Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met,or Pro;Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys,Thr, Leu, Val, Glu, Phe, Tyr, Ile, Met or Ala;Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp,Ala, Cys, Gln, Thr, Gly or Ser;Xaa at position 44 is Asp, Ser, Leu, Thr, Met, Trp,Glu, Asn, Gln, Ala or Pro;Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu,Thr, Lys, Trp, Asp, Asn, Arg, Ser, Ala, Ile, Gluor His;Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu,Asn, Gln, His, Ala, Tyr, Ile, Val or Gly;Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro,or His;Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, His,Phe, Glu, Lys, Thr, Ala, Met, Val or Asn;Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn,His, or Asp;Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Asn,Ser, Ala, Ile, Val, His, Phe, Met or Gln;Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr,or His;Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser,or Thr;Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro,Lys, Ser, or Met;Xaa at position 54 is Arg, Ile, Ser, Val, Thr, Gln,Asn, Lys, His, Ala or Leu;Xaa at position 55 is Arg, Thr, Val, Ser, Leu,or Gly;Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Glu,Arg, His, Thr, Ala, Tyr, Phe, Leu, Val or Lys;Xaa at position 57 is Asn or Gly;Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val,or Cys;Xaa at position 59 is Glu, Tyr, His, Leu, Pro,or Arg;Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn,or Thr;Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg,or Ser;Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr,Asp, or Ile;Xaa at position 63 is Arg, Tyr, Trp, Ser, His,or Val;Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe,or Ser;Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu,or Ser;Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn,Ile, Pro, or His;Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe,Thr, or His;Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg,Trp, Gly, or Leu;Xaa at position 70 is Asn,;Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu,Thr, Gln, Trp, or Asn;Xaa at position 72 is Ser;Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly,Thr, or Arg;Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly,Ala;Xaa at position 75 is Glu, Lys, Asp, Pro, Trp, Ser,Gln, or Leu;Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu,Pro, Gly, or Asp;Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly,or Arg;Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile,or Gly;Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu,Glu, or Arg;Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg,Val, or Lys;Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp,Glu, Asn, His, Thr, Ser, Ala, Tyr, Phe, Ile, Metor Val;Xaa at position 83 is Pro, Ala, Thr, Trp, Arg,or Met;Xaa at position 84 is Cys, Glu, Gly, Arg, Met,or Val;Xaa at position 85 is Leu, Asn, Val, or Gln;Xaa at position 86 is Pro, Cys, Arg, Ala,or Lys;Xaa at position 87 is Leu, Ser, Trp, or Gly;Xaa at position 88 is Ala, Lys, Arg, Val,or Trp;Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu,His, Asn, or Ser;Xaa at position 90 is Ala, Pro, Ser, Thr, Gly Asp,Ile, or Met;Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu,Asp, or His;Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His,Ala, Gly, Ile or Leu;Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala,Leu, or Arg;Xaa at position 94 is Arg, Ile, Ser, Glu, Leu, Val,Gln, Lys, His, or Ala;Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu,Gly, Thr, Asn, Lys, Ser, Ala, Trp, Phe, Ile,or Tyr;Xaa at position 96 is Pro, Lys, Tyr, Gly, Ile,or Thr;Xaa at position 97 is Ile, Val, Lys, Ala,or Asn;Xaa at position 98 is His, Ile, Asn, Leu, Ala, Thr,Gln, Ser, Phe, Met, Val, Lys, Tyr or Pro;Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro,Gln, Gly, Ser, Phe, or His;Xaa at position 100 is Lys, Tyr, Leu, His, Arg, Ile,Ser, Gln, or Pro;Xaa at position 101 is Asp, Pro, Met, Lys, His,Thr, Val, Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu,or Gln;Xaa at position 102 is Gly, Leu, Glu, Lys, Ser,Tyr, or Pro;Xaa at position 103 is Asp, or Ser;Xaa at position 104 is Trp, Val, Cys, Tyr, Thr,Met, Pro, Leu, Gln, Lys, Ala, Phe, or Gly;Xaa at position 105 is Asn, Pro, Ala, Phe, Ser,Trp, Gln, Tyr, Leu, Lys, Ile, Asp, or His;Xaa at position 106 is Glu, Ser, Ala, Thr, Ile,Gly, or Pro;Xaa at position 108 is Arg, Lys, Leu, Thr, Ile,Gln, His, Ser, Ala or Pro;Xaa at position 109 is Arg, Thr, Pro, Tyr, Leu,Ser, or Gly;Xaa at position 110 is Lys, Ala, Asn, Thr, Leu,Arg, Gln, His, Ser, or Trp;Xaa at position 111 is Leu, Ile, Arg, Asp,or Met;Xaa at position 112 is Thr, Val, Gln, Tyr, Glu,His, Ser, or Phe;Xaa at position 113 is Phe, Ser, Cys, His, Gly,Trp, Tyr, Asp, Lys, Leu, Ile, Val or Asn;Xaa at position 114 is Tyr, Cys, His, Ser, Trp,Arg, or Leu;Xaa at position 115 is Leu, Asn, Val, Pro, Arg,Ala, His, Thr, Trp, or Met;Xaa at position 116 is Lys, Leu, Pro, Thr, Met,Asp, Val, Glu, Arg, Trp, Ser, Asn, His, Ala, Tyr,Phe, Gln, or Ile;Xaa at position 117 is Thr, Ser, Asn, Ile, Trp,Lys, or Pro;Xaa at position 118 is Leu, Ser, Pro, Ala, Glu,Cys, Asp, or Tyr;Xaa at position 119 is Glu, Ser, Lys, Pro, Leu,Thr, Tyr, or Arg;Xaa at position 120 is Asn, Ala, Pro, Leu, His,Val, Gln;Xaa at position 121 is Ala, Ser, Ile, Asn, Pro,Lys, Asp, or Gly;Xaa at position 122 is Gln, Ser, Met, Trp, Arg,Phe, Pro, His, Ile, Tyr, or Cys;Xaa at position 123 is Ala, Met, Glu, His, Ser,Pro, Tyr, or Leu;wherein from 4 to about 44 of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-133) human interleukin-3; with the proviso that no more than one of the amino acids at positions 63, 82, 87, 98, 112 and 121 are different from the corresponding amino acids in native human interleukin-3; wherein from 1 to 14 amino acids are optionally deleted from the N-terminus and/or from 1 to 15 amino acids are optionally deleted from the C-terminus of said polypeptide; and wherein said variant human interleukin-3 polypeptide has increased activity relative to native human interleukin-3, in at least one assay selected from the group consisting of: AML cell proliferation, TF-1 cell proliferation and Methylcellulose assay; and(b) a polypeptide comprising an N-terminal methionine residue, alanine residue or methionine-alanine di-peptide immediately preceding said sequence according to (a).
  • 2. A polypeptide comprising a modified human interleukin-3 amino acid sequence selected from the group consisting of:(a) a sequence of SEQ ID NO:18; whereinXaa at position 17 is Ser;Xaa at position 18 is Asn, His, or Ile;Xaa at position 23 is Ile, Ala, Leu, or Gly,Xaa at position 25 is Thr, His, or Gln;Xaa at position 26 is His or Ala;Xaa at position 29 is Gln or Asn;Xaa at position 30 is Pro or Gly;Xaa at position 32 is Leu, Arg, Asn, or Ala;Xaa at position 34 is Leu, Val, Ser, Ala, Arg, Gln, Glu, Ile,      Phe, Thr, or Met;Xaa at position 35 is Leu, Ala, Asn, or Pro;Xaa at position 38 is Asn or Ala;Xaa at position 42 is Gly, Asp, Ser, Ala, Asn, Ile, Leu, Met,      Tyr or Arg;Xaa at position 45 is Gln, Val, Met, Leu, Ala, Asn, Glu, or Lys;Xaa at position 46 is Asp, Phe, Ser, Gln, Glu, His, Val or Thr;Xaa at position 50 is Glu, Asn, Ser or Asp;Xaa at position 51 is Asn, Arg, Pro, Thr, or His;Xaa at position 55 is Arg, Leu, or Gly;Xaa at position 56 is Pro, Giy, Ser, Ala, Asn, Val, Leu or Gln;Xaa at position 62 is Asn, Pro, or Thr;Xaa at position 64 is Ala or Asn;Xaa at position 65 is Val or Thr;Xaa at position 67 is Ser or Phe;Xaa at position 68 is Leu or Phe;Xaa at position 69 is Gln, Ala, Glu, or Arg;Xaa at position 76 is Ser, Val, Asn, Pro, or Gly;Xaa at position 77 is Ile or Leu;Xaa at position 79 is Lys, Gly, Asn, Met, Arg, Ile, or Gly;Xaa at position 80 is Asn, Gly, Glu, or Arg;Xaa at position 82 is Leu, Gln, Trp, Arg, Asp, Asn, Glu, His, Met,      Phe, Ser, Thr, Tyr or Val;Xaa at position 87 is Leu or Ser;Xaa at position 88 is Ala or Trp;Xaa at position 9i is Aia or Pro;Xaa at position 93 is Thr, Asp, or Ala;Xaa at position 95 is His, Pro, Arg, Val, Gly, Asn, Ser or Thr;Xaa at position 98 is His, Ile, Asn, Ala, Thr, Gln, Lys, Met, Ser,      Tyr, Val or Leu;Xaa at position 99 is Ile or Leu;Xaa at position 100 is Lys or Arg;Xaa at position 101 is Asp, Pro, Met, Lys, Thr, His, Asn, Ile, Leu       or TyrXaa at position 105 is Asn, Pro, Ser, Ile or Asp;Xaa at position 108 is Arg, Ala, or Ser;Xaa at position 109 is Arg, Thr, Glu, Leu, or Ser;Xaa at position 112 is Thr or Gln;Xaa at position 116 is Lys, Val, Trp, Ala, His, Phe, Tyr or IleXaa at position 117 is Thr or Ser;Xaa at position 120 is Asn, Pro, Leu, His, Val, or Gln;Xaa at position 121 is Ala, Ser, Ile, Pro, or Asp;Xaa at position 122 is Gln, Met, Trp, Phe, Pro, His, Ile, or Tyr;Xaa at position 123 is Ala, Met, Glu, Ser, or Leu;wherein from 4 to about 44 of the amino acids designated by Xaa are different from the amino acid sequence of native (1-133) human interleukin-3; with the proviso that no more than one of the amino acids at positions 63, 82, 87, 98, 112 and 121 are different from the corresponding amino acids in native human interleukin-3; wherein from 1 to 14 amino acids are optionally deleted from the N-terminus and/or from 1 to 15 amino acids are optionally deleted from the C-terminus of said polypeptide; and wherein said variant human interleukin-3 polypeptide has increased activity relative to native human interleukin-3, in at least one assay selected from the group consisting of: AML cell proliferation, TF-1 cell proliferation and Methylcellulose assay; and(b) a polypeptide comprising an N-terminal methionine residue, alanine residue or methionine-alanine di-peptide immediately preceding said sequence according to (a).
  • 3. The polypeptide of claim 1 wherein 1-15 amino acids are deleted from the C-terminus of said polypeptide and 1-14 amino acids are deleted from the N-terminus of said interleukin-3 polypeptide.
  • 4. The polypeptide of claim 1 wherein;Xaa at position 42 is Gly, Asp, Ser, Ile, Leu, Met, Tyr, or Ala; Xaa at position 45 is Gln, Val, Met or Asn; Xaa at position 46 is Asp, Ser, Gln, His or Val; Xaa at position 50 is Glu or Asp; Xaa at position 51 is Asn, Pro or Thr; Xaa at position 62 is Asn or Pro; Xaa at position 76 is Ser or Pro; Xaa at position 82 is Leu, Trp, Asp, Asn, Glu, His, Phe, Ser or Tyr; Xaa at position 95 is His, Arg, Thr, Asn or Ser; Xaa at position 98 is His, Ile, Leu, Ala, Gln, Lys, Met, Ser, Tyr or Val; Xaa at position 100 is Lys or Arg; Xaa at position 101 is Asp, Pro, His, Asn, Ile or Leu; Xaa at position 105 is Asn, or Pro; Xaa at position 108 is Arg, Ala, or Ser; Xaa at position 116 is Lys, Val, Trp, Ala, His, Phe or Tyr; Xaa at position 121 is Ala, or Ile; Xaa at position 122 is Gln, or Ile; and Xaa at position 123 is Ala, Met or Glu.
  • 5. A polypeptide comprising a modified human interleukin-3 amino acid sequence selected from the group consisting of:(a) a sequence of SEQ ID NO:19; whereinXaa at position 3 is Ser;Xaa at position 4 is Asn, His, Leu, Ile, Phe, Arg, or Gln;Xaa at position 5 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;Xaa at position 6 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;Xaa at position 7 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn,      Thr, Ser or Val;Xaa at position 8 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln,       Leu, Val, or Gly;Xaa at position 9 is Ile, Val, Ala, Leu, Gly, Trp, Lys, Phe,       Ser, or Arg;Xaa at position 10 is Ile, Gly, Val, Arg, Ser, Phe, or Leu;Xaa at position 11 is Thr, His, Gly, Gln, Arg, Pro, or Ala;Xaa at position 12 is His, Thr, Phe, Gly, Arg, Ala, or Trp;Xaa at position 13 is Leu, Gly, Arg, Thr, Ser, or Ala;Xaa at position 14 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;Xaa at position 15 is Gln, Asn, Leu, Pro, Arg, or Val;Xaa at position 16 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or      Lys;Xaa at position 17 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;Xaa at position 18 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;Xaa at position 19 is Pro, Leu, Gln, Ala, Thr, or Glu;Xaa at position 20 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr,       Arg, Ala, Phe, Ile or Met;Xaa at position 21 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;Xaa at position 22 is Asp, Leu, or Val;Xaa at position 23 is Phe, Ser, Pro, Trp, or Ile;Xaa at position 24 is Asn, or Ala;Xaa at position 26 is Leu, Trp, or Arg;Xaa at position 27 is Asn, Cys, Arg, Leu, His, Met, Pro;Xaa at position 28 is Gly, Asp, Ser, Cys, Ala, Lys, Asn, Thr, Leu,      Val, Glu, Phe, Tyr, Ile or Met;Xaa at position 29 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln,      Thr, Gly or Ser;Xaa at position 30 is Asp, Ser, Leu, Thr, Met, Trp, Glu,      Asn, Gln, Ala or Pro;Xaa at position 31 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Asp,      Asn, Arg, Ser, Ala, Ile, Glu, His or Trp;Xaa at position 32 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln,      His, Ala, Tyr, Ile, Val or Gly;Xaa at position 33 is Ile, Gly, Val, Ser, Arg, Pro, or His;Xaa at position 34 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu,      Lys, Thr, Ala, Met, Val or Asn;Xaa at position 35 is Met, Arg, Ala, Gly, Pro, Asn, His, or AspXaa at position 36 is Glu, Leu, Thr, Asp, Tyr, Asn, Ser, Ala,      Ile, Val, His, Phe, Met or Gln;Xaa at position 37 is Asn, Arg, Met, Pro, Ser, Thr, or His;Xaa at position 38 is Asn, His, Arg, Leu, Gly, Ser, or Thr;Xaa at position 39 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser,      or Met;Xaa at position 40 is Arg, Ile, Ser, Val, Thr, Gln, Asn,      Lys, His, Ala or Leu;Xaa at position 41 is Arg, Thr, Val, Ser, Leu, or Gly;Xaa at position 42 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His,      Thr, Ala, Tyr, Phe, Leu, Val or Lys;Xaa at position 43 is Asn or Gly;Xaa at position 44 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;Xaa at position 45 is Glu, Tyr, His, Leu, or Pro;Xaa at position 46 is Ala, Ser, Pro, Tyr, Asn, or Thr;Xaa at position 47 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;Xaa at position 48 is Asn, His, Val, Arg, Pro, Thr, Asp, or IleXaa at position 49 is Arg, Tyr, Trp, Ser, His, or Val;Xaa at position 50 is Ala, Asn, Pro, Ser, or Lys;Xaa at position 51 is Val, Thr, Pro, His, Leu, Phe, or Ser;Xaa at position 52 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;Xaa at position 53 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or      His;Xaa at position 54 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;Xaa at position 55 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or      Leu;Xaa at position 56 is Asn;Xaa at position 57 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln,      Trp, or Asn;Xaa at position 58 is Ser;Xaa at position 59 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;Xaa at position 60 is Ile, Met, Thr, Pro, Arg, Gly, Ala;Xaa at position 61 is Glu, Lys, Asp, Pro, Trp, Ser, Gln, or Leu;Xaa at position 62 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp;Xaa at position 63 is Ile, Ser, Arg, Thr, or Leu;Xaa at position 64 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;Xaa at position 65 is Lys, Thr, Gly, Asn, Met, Arg, or Ile;Xaa at position 66 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;Xaa at position 67 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;Xaa at position 68 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn,      His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;Xaa at position 69 is Pro, Ala, Thr, Trp, Arg, or Met;Xaa at position 70 is Cys, Glu, Gly, Arg, Met, or Val;Xaa at position 71 is Leu, Asn, Val, or Gln;Xaa at position 72 is Pro, Cys, Arg, Ala, or Lys;Xaa at position 73 is Leu, Ser, Trp, or Gly;Xaa at position 74 is Ala, Lys, Arg, Val, or Trp;Xaa at position 75 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn, or      Ser;Xaa at position 76 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;Xaa at position 77 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;Xaa at position 78 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile      or Leu;Xaa at position 79 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;Xaa at position 80 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His,      or Ala;Xaa at position 81 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn,      Lys, Ser, Ala, Trp, Phe, Ile or Tyr;Xaa at position 82 is Pro, Lys, Tyr, Gly, Ile, or Thr;Xaa at position 83 is Ile, Val, Lys, Ala, or Asn;Xaa at position 84 is His, Ile, Asn, Leu, Ala, Thr,      Gln, Ser, Phe, Met, Val, Lys, Tyr or Pro;Xaa at position 85 is Ile, Leu, Arg, Asp, Val, Pro, Gln,      Gly, Ser, Phe, or His;Xaa at position 86 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or      Pro;Xaa at position 87 is Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu,      Ser, Ala, Gly, Ile, or Leu;Xaa at position 88 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;Xaa at position 89 is Asp, or Ser;Xaa at position 90 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu,      Gln, Lys, Ala, Phe, or Gly;Xaa at position 91 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr,      Leu, Lys, Ile, Asp, or His;Xaa at position 92 is Glu, Ser, Ala, Thr, Ile, Gly, or Pro;Xaa at position 94 is Arg, Lys, Leu, Thr, Ile, Gln,      His, Ser, Ala, or Pro;Xaa at position 95 is Arg, Thr, Pro, Tyr, Leu, Ser, or Gly;Xaa at position 96 is Lys, Asn, Thr, Leu, Gln, Arg,      His, Ser, Ala or Trp;Xaa at position 97 is Leu, Ile, Arg, Asp, or Met;Xaa at position 98 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;Xaa at position 99 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp,      Lys, Leu, Ile, Val or Asn;Xaa at position 100 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;Xaa at position 101 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr,      Trp, or Met;Xaa at position 102 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu,      Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;Xaa at position 103 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;Xaa at position 104 is Leu, Ser, Pro, Ala, Glu, Cys, Asp, or Tyr,Xaa at position 105 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;Xaa at position 106 is Asn, Ala, Pro, Leu, His, Val, or Gln;Xaa at position 107 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or Gly;Xaa at position 108 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His,      Ile, Tyr, or Cys;Xaa at position 109 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;wherein from four to about forty-four of the amino acids designated by Xaa are different from the amino acid sequence of native (1-133) human interleukin-3; with the proviso that no more than one of the amino acids at positions 49, 68, 73, 84, 98, and 107 are different from the corresponding amino acids in native human interleukin-3; and wherein said variant human interleukin-3 polypeptide has increased activity relative to native human interleukin-3, in at least one assay selected from the group consisting of: AML cell proliferation, TF-1 cell proliferation and Methylcellulose assay; and(b) a polypeptide comprising an N-terminal methionine residue, alanine residue or methionine-alanine di-peptide immediately preceding said sequence according to (a).
  • 6. A polypeptide comprising a modified human interleukin-3 amino acid sequence selected from the group consisting of:(a) a sequence of SEQ ID NO:22; whereinXaa at position 3 is Ser;Xaa at position 4 is Asn, His, or Ile;Xaa at position 9 is Ile, Ala, Leu, or Gly;Xaa at position 11 is Thr, His, or Gln;Xaa at position 12 is His or Ala;Xaa at position 15 is Gln or Asn;Xaa at position 16 is Pro or Gly;Xaa at position 18 is Leu, Arg, Asn, or Ala;Xaa at position 20 is Leu, Val, Ser, Ala, Arg, Gln, Glu, Ile,      Phe, Thr or Met;Xaa at position 21 is Leu, Ala, Asn, or Pro;Xaa at position 24 is Asn or Ala;Xaa at position 28 is Gly, Asp, Ser, Ala, Asn, Ile, Leu, Met,      Tyr or Arg;Xaa at position 31 is Gln, Val, Met, Leu, Ala, Asn, Glu or Lys;Xaa at position 32 is Asp, Phe, Ser, Ala, Gln, Glu, His, Val or Thr;Xaa at position 36 is Glu, Asn, Ser or Asp;Xaa at position 37 is Asn, Arg, Pro, Thr, or His;Xaa at position 41 is Arg, Leu, or Gly;Xaa at position 42 is Pro, Gly, Ser, Ala, Asn, Val, Leu or Gln;Xaa at position 48 is Asn, Pro, or Thr;Xaa at position 50 is Ala or Asn;Xaa at position 51 is Val or Thr;Xaa at position 53 is Ser or Phe;Xaa at position 54 is Leu or Phe;Xaa at position 55 is Gln, Ala, Glu, or Arg;Xaa at position 62 is Ser, Val, Asn, Pro, or Gly;Xaa at position 63 is Ile or Leu;Xaa at position 65 is Lys, Asn, Met, Arg, Ile, or Gly;Xaa at position 66 is Asn, Gly, Glu, or Arg;Xaa at position 68 is Leu, Gln, Trp, Arg, Asp, Asn, Glu, His,      Met, Phe, Ser, Thr, Tyr or Val;Xaa at position 73 is Leu or Ser;Xaa at position 74 is Ala or Trp;Xaa at position 77 is Ala or Pro;Xaa at position 79 is Thr, Asp, or Ala;Xaa at position 81 is His, Pro, Arg, Val, Gly, Asn, Ser or Thr;Xaa at position 84 is His, Ile, Asn, Ala, Thr, Gln,      Lys, Met, Ser, Tyr, Val or Leu;Xaa at position 85 is Ile or Leu;Xaa at position 86 is Lys or Arg;Xaa at position 87 is Asp, Pro, Met, Lys, Thr, His, Asn, Ile, Leu      or Tyr;Xaa at position 91 is Asn, Pro, Ser, Ile or Asp;Xaa at position 94 is Arg, Ala, or Ser;Xaa at position 95 is Arg, Thr, Glu, Leu, or Ser;Xaa at position 98 is Thr or Gln;Xaa at position 102 is Lys, Val, Trp, Ala, His, Phe, Tyr or Ile;Xaa at position 103 is Thr, Ala, His, Phe, Tyr or Ser;Xaa at position 106 is Asn, Pro, Leu, His, Val, or Gln;Xaa at position 107 is Ala, Ser, Ile, Pro, or Asp;Xaa at position 108 is Gln, Met, Trp, Phe, Pro, His, Ile, or Tyr;Xaa at position 109 is Ala, Met, Glu, Ser, or Leu;wherein from four to about forty-four of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-133)human interleukin-3; with the proviso that no more than one of the amino acids at positions 49, 68, 73, 84, 98, and 107 are different from the corresponding amino acids in native human interleukin-3; and wherein said variant human interleukin-3 polypeptide has increased activity relative to native human interleukin-3, in at least one assay selected from the group consisting of: AML cell proliferation, TF-1 cell proliferation and Methylcellulose assay; and(b) a polypeptide comprising an N-terminal methionine residue, alanine residue or methionine-alanine di-peptide immediately preceding said sequence according to (a).
  • 7. The polypeptide of claim 5 wherein;Xaa at position 28 is Gly, Asp, Ser, Ile, Leu, Met, Tyr, or Ala; Xaa at position 31 is Gln, Val, Met or Asn; Xaa at position 32 is Asp, Ser, Ala, Gln, His or Val; Xaa at position 36 is Glu or Asp; Xaa at position 37 is Asn, Pro or Thr; Xaa at position 48 is Asn or Pro; Xaa at position 62 is Ser, or Pro; Xaa at position 68 is Leu, Trp, Asp, Asn, Glu, His, Phe, Ser or Tyr; Xaa at position 81 is His, Arg, Thr, Asn or Ser; Xaa at position 84 is His, Ile, Leu, Ala, Arg, Gln, Lys, Met, Ser, Tyr or Val; Xaa at position 86 is Lys or Arg; Xaa at position 87 is Asp, Pro, His, Asn, Ile or Leu; Xaa at position 91 is Asn or Pro; Xaa at position 94 is Arg, Ala, or Ser; Xaa at position 102 is Lys, Val, Trp, Ala, His, Phe or Tyr; Xaa at position 107 is Ala, or Ile; Xaa at position 108 is Gln, or Ile; and Xaa at position 109 is Ala, Met or Glu.
  • 8. A polypeptide according to claim 5 selected from the group consisting of:(a) a sequence selected from the group consisting of: (109E, 116V, 120Q and 123E)-(15-125)human interleukin-3 (SEQ ID NO:74); (109E, 116V, 117S, 120H and 123E)-(15-125)human interleukin-3 (SEQ ID NO:75); (42D, 45M, 46S, 50D)-(15-125)human interleukin-3 (residues 3-113 of SEQ ID NO:259); (42D, 45M, 46S, 116W)-(15-125)human interleukin-3 (residues 3-113 of SEQ ID NO:261); (42D, 45M, 46S, 50D, 116W)-(15-125)human interleukin-3 (residues 3-113 of SEQ ID NO:262); (b) an N-terminal methionine residue, alanine residue or methionine-alanine di-peptide immediately preceding said sequence according to (a).
  • 9. A polypeptide consisting of a modified human interleukin-3 amino acid sequence selected from the group consisting of:(a) a sequence of SEQ ID NO:15; wherein Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gln, or      Arg;Xaa at position 18 is Asn, His, Leu, Ile, Phe, Arg, or Gln;Xaa at position 19 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;Xaa at position 20 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn,      Thr, Ser or Val;Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln,      Leu, Val or Gly;Xaa at position 23 is Ile, Val, Ala, Leu, Gly, Trp, Lys, Phe,      Ser, or Arg;Xaa at position 24 is Ile, Gly, Val, Arg, Ser, Phe, or Leu;Xaa at position 25 is Thr, His, Gly, Gln, Arg, Pro, or Ala;Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;Xaa at position 28 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;Xaa at position 29 is Gln, Asn, Leu, Pro, Arg, or Val;Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or      Lys;Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;Xaa at position 32 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;Xaa at position 33 is Pro, Leu, Gln, Ala, Thr, or Glu;Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr, Arg,      Ala, Phe, Ile or Met;Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;Xaa at position 36 is Asp, Leu, or Val;Xaa at position 37 is Phe, Ser, Pro, Trp, or Ile;Xaa at position 38 is Asn, or Ala;Xaa at position 40 is Leu, Trp, or Arg;Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu, Val,      Glu, Phe, Tyr, Ile, Met or Ala;Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln,      Thr, Gly or Ser;Xaa at position 44 is Asp, Ser, Leu, Thr, Met, Trp, Glu,      Asn, Gln, Ala or Pro;Xaa at position 45 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Trp,      Asp, Asn, Arg, Ser, Ala, Ile, Glu or His;Xaa at position 46 is Asp, Phe, Ser, Thr, Oys, Glu, Asn, Gln,      His, Ala, Tyr, Ile, Val or Gly;Xaa at position 47 is Ile, Gly, Val, Ser, Arg, Pro, or His;Xaa at position 48 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu, Lys,      Thr, Ala, Met, Val or Asn;Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Asn, Ser, Ala,      Ile, Val, His, Phe, Met or Gln;Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or      Met;Xaa at position 54 is Arg, Ile, Ser, Val, Thr, Gln, Asn, Lys,      His, Ala or Leu;Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;Xaa at position 56 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His,      Thr, Ala, Tyr, Phe, Leu, Val or Lys;Xaa at position 57 is Asn or Gly;Xaa at position 58 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;Xaa at position 59 is Glu, Tyr, His, Leu, Pro, or Arg;Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or Ile;Xaa at position 63 is Arg, Tyr, Trp, Ser, His, or Val;Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;Xaa at position 66 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or      His;Xaa at position 68 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;Xaa at position 69 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or      Leu;Xaa at position 70 is Asn,;Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln, IL      Trp, or Asn;Xaa at position 72 is Ser;Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;Xaa at position 74 is Ile, Met, Thr, Pro, Arg, Gly, Ala;Xaa at position 75 is Glu, Lys, Asp, Pro, Trp, Ser, Gln, or Leu;Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or      Asp;Xaa at position 77 is Ile, Ser, Arg, Thr, or Leu;Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;Xaa at position 79 is Lys, Thr, Asn, Met, Arg, Ile, or Gly;Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;Xaa at position 81 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;Xaa at position 82 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn, His,      Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;Xaa at position 85 is Leu, Asn, Val, or Gln;Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;Xaa at position 87 is Leu, Ser, Trp, or Gly;Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn, or      Ser;Xaa at position 90 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His, Ala,Gly, Ile      or Leu;Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;Xaa at position 94 is Arg, Ile, Ser, Glu, Leu, Val, Gln,Lys, His,      or Ala;Xaa at position 95 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn,       Lys, Ser, Ala, Trp, Phe, Ile, or Tyr;Xaa at position 96 is Pro, Lys, Tyr, Gly, Ile, or Thr;Xaa at position 97 is Ile, Val, Lys, Ala, or Asn;Xaa at position 98 is His, Ile, Asn, Leu, Ala, Thr,      Gln, Ser, Phe, Met, Val, Lys, Tyr or Pro;Xaa at position 99 is Ile, Leu, Arg, Asp, Val, Pro, Gln,      Gly, Ser, Phe, or His;Xaa at position 100 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln,      or Pro;Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val,      Tyr, Glu, Asn, Ser, Ala, Gly, Ile, Leu, or Gin;Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;Xaa at position 103 is Asp, or SerXaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu,      Gln, Lys, Ala, Phe, or Gly;Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr,      Leu, Lys, Ile, Asp, or His;Xaa at position 106 is Glu, Ser, Ala, Thr, Ile, Gly, or Pro;Xaa at position 108 is Arg, Lys, Leu, Thr, Ile, Gln, His, Ser, Ala      or Pro;Xaa at position 109 is Arg, Thr, Pro, Tyr, Leu, Ser, or Gly;Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gln, His,      Ser, or Trp;Xaa at position 111 is Leu, Ile, Arg, Asp, or Met;Xaa at position 112 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp,      Lys, Leu, Ile, Val or Asn;Xaa at position 114 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr,      Trp, or Met;Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu,      Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;Xaa at position 117 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;Xaa at position 118 is Leu, Ser, Pro, Ala, Glu, Cys, Asp, or Tyr;Xaa at position 119 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;Xaa at position 120 is Asn, Ala, Pro, Leu, His, Val, or Gln;Xaa at position 121 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or Gly;Xaa at position 122 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His,      Ile, Tyr, or Cys;Xaa at position 123 is Ala, Met, Giu, His, Ser, Pro, Tyr, or Leu;wherein from 4 to about 44 of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-133) human interleukin-3; with the proviso that no more than one of the amino acids at positions 63, 82, 87, 98, 112 and 121 are different from the corresponding amino acids in native human interleukin-3; wherein from 1 to 14 amino acids are optionally deleted from the N-terminus and/or from 1 to 15 amino acids are optionally deleted from the C-terminus of said polypeptide; and wherein said variant human interleukin-3 polypeptide has increased activity relative to native human interleukin-3, in at least one assay selected from the group consisting of: AML cell proliferation, TF-1 cell proliferation and Methylcellulose assay; and(b) a polypeptide consisting of an N-terminal methionine residue, alanine residue or methionine-alanine di-peptide immediately preceding said sequence according to (a).
  • 10. A polypeptide consisting of a modified human interleukin-3 amino acid sequence selected from the group consisting of:(a) a sequence of SEQ ID NO:18; whereinXaa at position 17 is Ser;Xaa at position 18 is Asn, His, or Ile;Xaa at position 23 is Ile, Ala, Leu, or Gly;Xaa at position 25 is Thr, His, or Gln;Xaa at position 26 is His or Ala;Xaa at position 29 is Gln or Asn;Xaa at position 30 is Pro or Gly;Xaa at position 32 is Leu, Arg, Asn, or Ala;Xaa at position 34 is Leu, Val, Ser, Ala, Arg, Gln, Glu, Ile,      Phe, Thr, or Met;Xaa at position 35 is Leu, Ala, Asn, or Pro;Xaa at position 38 is Asn or Ala;Xaa at position 42 is Gly, Asp, Ser, Ala, Asn, Ile, Leu, Met,      Tyr or Arg;Xaa at position 45 is Gln, Val, Met, Leu, Ala, Asn, Glu, or Lys;Xaa at position 46 is Asp, Phe, Ser, Gln, Glu, His, Val or Thr;Xaa at position 50 is Glu, Asn, Ser or Asp;Xaa at position 51 is Asn, Arg, Pro, Thr, or His;Xaa at position 55 is Arg, Leu, or Gly; Xaa at position 56 is Pro, Gly, Ser, Ala, Asn, Val, Leu or Gln;Xaa at position 62 is Asn, Pro, or Thr;Xaa at position 64 is Ala or Asn;Xaa at position 65 is Val or Thr;Xaa at position 67 is Ser or Phe;Xaa at position 68 is Leu or Phe;Xaa at position 69 is Gln, Ala, Glu, or Arg;Xaa at position 76 is Ser, Val, Asn, Pro, or Gly;Xaa at position 77 is Ile or Leu;Xaa at position 79 is Lys, Gly, Asn, Met, Arg, Ile, or Gly;Xaa at position 80 is Asn, Gly, Glu, or Arg;Xaa at position 82 is Leu, Gln, Trp, Arg, Asp, Asn, Glu, His, Met,      Phe, Ser, Thr, Tyr or Val;Xaa at position 87 is Leu or Ser;Xaa at position 88 is Ala or Trp;Xaa at position 91 is Ala or Pro;Xaa at position 93 is Thr, Asp, or Ala;Xaa at position 95 is His, Pro, Arg, Val, Gly, Asn, Ser or Thr;Xaa at position 98 is His, Ile, Asn, Ala, Thr, Gln, Lys, Met, Ser,      Tyr, Val or Leu;Xaa at position 99 is Ile or Leu;Xaa at position 100 is Lys or Arg;Xaa at position 101 is Asp, Pro, Met, Lys, Thr, His, Asn, Ile, Leu      or TyrXaa at position 105 is Asn, Pro, Ser, Ile or Asp;Xaa at position 108 is Arg, Ala, or Ser;Xaa at position 109 is Arg, Thr, Glu, Leu, or Ser;Xaa at position 112 is Thr or Gln;Xaa at position 116 is Lys, Val, Trp, Ala, His, Phe, Tyr or IleXaa at position 117 is Thr or Ser;Xaa at position 120 is Asn, Pro, Leu, His, Val, or Gln;Xaa at position 121 is Ala, Ser, Ile, Pro, or Asp;Xaa at position 122 is Gln, Met, Trp, Phe, Pro, His, Ile, or Tyr;Xaa at position 123 is Ala, Met, Glu, Ser, or Leu;wherein from 4 to about 44 of the amino acids designated by Xaa are different from the amino acid sequence of native (1-133) human interleukin-3; with the proviso that no more than one of the amino acids at positions 63, 82, 87, 98, 112 and 121 are different from the corresponding amino acids in native human interleukin-3; wherein from 1 to 14 amino acids are optionally deleted from the N-terminus and/or from 1 to 15 amino acids are optionally deleted from the C-terminus of said polypeptide; and wherein said variant human interleukin-3 polypeptide has increased activity relative to native human interleukin-3, in at least one assay selected from the group consisting of: AML cell proliferation, TF-1 cell proliferation and Methylcellulose assay; and(b) a polypeptide consisting of an N-terminal methionine residue, alanine residue or methionine-alanine di-peptide immediately preceding said sequence according to (a).
  • 11. The polypeptide of claim 9 wherein 1-15 amino acids are deleted from the C-terminus of said polypeptide and 1-14 amino acids are deleted from the N-terminus of said interleukin-3 polypeptide.
  • 12. The polypeptide of claim 9 wherein;Xaa at position 42 is Gly, Asp, Ser, Ile, Leu, Met, Tyr, or Ala; Xaa at position 45 is Gln, Val, Met or Asn; Xaa at position 46 is Asp, Ser, Gln, His or Val; Xaa at position 50 is Glu or Asp; Xaa at position 51 is Asn, Pro or Thr; Xaa at position 62 is Asn or Pro; Xaa at position 76 is Ser or Pro; Xaa at position 82 is Leu, Trp, Asp, Asn, Glu, His, Phe, Ser or Tyr; Xaa at position 95 is His, Arg, Thr, Asn or Ser; Xaa at position 98 is His, Ile, Leu, Ala, Gln, Lys, Met, Ser, Tyr or Val; Xaa at position 100 is Lys or Arg; Xaa at position 101 is Asp, Pro, His, Asn, Ile or Leu; Xaa at position 105 is Asn, or Pro; Xaa at position 108 is Arg, Ala, or Ser; Xaa at position 116 is Lys, Val, Trp, Ala, His, Phe or Tyr; Xaa at position 121 is Ala, or Ile; Xaa at position 122 is Gln, or Ile; and Xaa at position 123 is Ala, Met or Glu.
  • 13. A polypeptide consisting of a modified human interleukin-3 amino acid sequence selected from the group consisting of:(a) a sequence of SEQ ID NO:19; whereinXaa at position 3 is Ser;Xaa at position 4 is Asn, His, Leu, Ile, Phe, Arg, or Gln;Xaa at position 5 is Met, Phe, Ile, Arg, Gly, Ala, or Cys;Xaa at position 6 is Ile, Cys, Gln, Glu, Arg, Pro, or Ala;Xaa at position 7 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gln, Asn,      Thr, Ser or Val;Xaa at position 8 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gln,      Leu, Val, or Gly;Xaa at position 9 is Ile, Val, Ala, Leu, Gly, Trp, Lys, Phe,      Ser, or Arg;Xaa at position 10 is Ile, Gly, Val, Arg, Ser, Phe, or Leu;Xaa at position 11 is Thr, His, Gly, Gln, Arg, Pro, or Ala;Xaa at position 12 is His, Thr, Phe, Gly, Arg, Ala, or Trp;Xaa at position 13 is Leu, Gly, Arg, Thr, Ser, or Ala;Xaa at position 14 is Lys, Arg, Leu, Gln, Gly, Pro, Val or Trp;Xaa at position 15 is Gln, Asn, Leu, Pro, Arg, or Val;Xaa at position 16 is Pro, His, Thr, Gly, Asp, Gln, Ser, Leu, or      Lys;Xaa at position 17 is Pro, Asp, Gly, Ala, Arg, Leu, or Gln;Xaa at position 18 is Leu, Val, Arg, Gln, Asn, Gly, Ala, or Glu;Xaa at position 19 is Pro, Leu, Gln, Ala, Thr, or Glu;Xaa at position 20 is Leu, Val, Gly, Ser, Lys, Glu, Gln, Thr,      Arg, Ala, Phe, Ile or Met;Xaa at position 21 is Leu, Ala, Gly, Asn, Pro, Gln, or Val;Xaa at position 22 is Asp, Leu, or Val;Xaa at position 23 is Phe, Ser, Pro, Trp, or Ile;Xaa at position 24 is Asn, or Ala;Xaa at position 26 is Leu, Trp, or Arg;Xaa at position 27 is Asn, Cys, Arg, Leu, His, Met, Pro;Xaa at position 28 is Gly, Asp, Ser, Cys, Ala, Lys, Asn, Thr, Leu,      Val, Glu, Phe, Tyr; Ile or Met;Xaa at position 29 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, Gln,      Thr, Gly or Ser;Xaa at position 30 is Asp, Ser, Leu, Thr, Met, Trp, Glu,      Asn, Gln, Ala or Pro;Xaa at position 31 is Gln, Pro, Phe, Val, Met, Leu, Thr, Lys, Asp,      Asn, Arg, Ser, Ala, Ile, Glu, His or Trp;Xaa at position 32 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gln,      His, Ala, Tyr, Ile, Val or Gly;Xaa at position 33 is Ile, Gly, Val, Ser, Arg, Pro, or His;Xaa at position 34 is Leu, Ser, Cys, Arg, Ile, His, Phe, Glu,      Lys, Thr, Ala, Met, Val or Asn;Xaa at position 35 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;Xaa at position 36 is Glu, Leu, Thr, Asp, Tyr, Asn, Ser, Ala,      Ile, Val, His, Phe, Met or Gln;Xaa at position 37 is Asn, Arg, Met, Pro, Ser, Thr, or His;Xaa at position 38 is Asn, His, Arg, Leu, Gly, Ser, or Thr;Xaa at position 39 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser,      or Met;Xaa at position 40 is Arg, Ile, Ser, Val, Thr, Gln, Asn,      Lys, His, Ala or Leu;Xaa at position 41 is Arg, Thr, Val, Ser, Leu, or Gly;Xaa at position 42 is Pro, Gly, Cys, Ser, Gln, Glu, Arg, His,      Thr, Ala, Tyr, Phe, Leu, Val or Lys;Xaa at position 43 is Asn or Gly;Xaa at position 44 is Leu, Ser, Asp, Arg, Gln, Val, or Cys;Xaa at position 45 is Glu, Tyr, His, Leu, or Pro;Xaa at position 46 is Ala, Ser, Pro, Tyr, Asn, or Thr;Xaa at position 47 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;Xaa at position 48 is Asn, His, Val, Arg, Pro, Thr, Asp, or Ile;Xaa at position 49 is Arg, Tyr, Trp, Ser, His, or Val;Xaa at position 50 is Ala, Asn, Pro, Ser, or Lys;Xaa at position 51 is Val, Thr, Pro, His, Leu, Phe, or Ser;Xaa at position 52 is Lys, Ile, Arg, Val, Asn, Glu, or Ser;Xaa at position 53 is Ser, Ala, Phe, Val, Gly, Asn, Ile, Pro, or      His;Xaa at position 54 is Leu, Val, Trp, Ser, Ile, Phe, Thr, or His;Xaa at position 55 is Gln, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or      Leu;Xaa at position 56 is Asn;Xaa at position 57 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gln,      Trp, or Asn;Xaa at position 58 is Ser;Xaa at position 59 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;Xaa at position 60 is Ile, Met, Thr, Pro, Arg, Gly, Ala;Xaa at position 61 is Glu, Lys, Asp, Pro, Trp, Ser, Gln, or Leu;Xaa at position 62 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or Asp;Xaa at position 63 is Ile, Ser, Arg, Thr, or Leu;Xaa at position 64 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;Xaa at position 65 is Lys, Thr, Gly, Asn, Met, Arg, or Ile;Xaa at position 66 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;Xaa at position 67 is Leu, Gln, Gly, Ala, Trp, Arg, Val, or Lys;Xaa at position 68 is Leu, Gln, Lys, Trp, Arg, Asp, Glu, Asn,      His, Thr, Ser, Ala, Tyr, Phe, Ile, Met or Val;Xaa at position 69 is Pro, Ala, Thr, Trp, Arg, or Met;Xaa at position 70 is Cys, Glu, Gly, Arg, Met, or Val;Xaa at position 71 is Leu, Asn, Val, or Gln;Xaa at position 72 is Pro, Cys, Arg, Ala, or Lys;Xaa at position 73 is Leu, Ser, Trp, or Gly;Xaa at position 74 is Ala, Lys, Arg, Val, or Trp;Xaa at position 75 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn, or      Ser;Xaa at position 76 is Ala, Pro, Ser, Thr, Gly, Asp, Ile, or Met;Xaa at position 77 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His;Xaa at position 78 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, Ile      or Leu;Xaa at position 79 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;Xaa at position 80 is Arg, Ile, Ser, Glu, Leu, Val, Gln, Lys, His,      or Ala;Xaa at position 81 is His, Gln, Pro, Arg, Val, Leu, Gly, Thr, Asn,      Lys, Ser, Ala, Trp, Phe, Ile or Tyr;Xaa at position 82 is Pro, Lys, Tyr, Gly, Ile, or Thr;Xaa at position 83 is Ile, Val, Lys, Ala, or Asn;Xaa at position 84 is His, Ile, Asn, Leu, Ala, Thr,      Gln, Ser, Phe, Met, Val, Lys, Tyr or Pro;Xaa at position 85 is Ile, Leu, Arg, Asp, Val, Pro, Gln,Xaa at position 86 is Lys, Tyr, Leu, His, Arg, Ile, Ser, Gln, or      Pro;Xaa at position 87 is Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu,      Ser, Ala, Gly, Ile, or Leu;Xaa at position 88 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;Xaa at position 89 is Asp, or Ser;Xaa at position 90 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu,      Gln, Lys, Ala, Phe, or Gly;Xaa at position 91 is Asn, Pro, Ala, Phe, Ser, Trp, Gln, Tyr,      Leu, Lys, Ile, Asp, or His;Xaa at position 92 is Glu, Ser, Ala, Thr, Ile, Gly, or Pro;Xaa at position 94 is Arg, Lys, Leu, Thr, Ile, Gln,      His, Ser, Ala, or Pro;Xaa at position 95 is Arg, Thr, Pro, Tyr, Leu, Ser, or Gly;Xaa at position 96 is Lys, Asn, Thr, Leu, Gln, Arg,      His, Ser, Ala or Trp;Xaa at position 97 is Leu, Ile, Arg, Asp, or Met;Xaa at position 98 is Thr, Val, Gln, Tyr, Glu, His, Ser, or Phe;Xaa at position 99 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp,      Lys, Leu, Ile, Val or Asn;Xaa at position 100 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;Xaa at position 101 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr,      Trp, or Met;Xaa at position 102 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu,      Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gln, or Ile;Xaa at position 103 is Thr, Ser, Asn, Ile, Trp, Lys, or Pro;Xaa at position 104 is Leu, Ser, Pro, Ala, Glu, Cys, Asp, or Tyr;Xaa at position 105 is Glu, Ser, Lys, Pro, Leu, Thr, Tyr, or Arg;Xaa at position 106 is Asn, Ala, Pro, Leu, His, Val, or Gln;Xaa at position 107 is Ala, Ser, Ile, Asn, Pro, Lys, Asp, or Gly;Xaa at position 108 is Gln, Ser, Met, Trp, Arg, Phe, Pro, His,      Ile, Tyr, or Cys;Xaa at position 109 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;wherein from 4 to about 44 of the amino acids designated by Xaa are different from the amino acid sequence of native (1-133) human interleukin-3; with the proviso that no more than one of the amino acids at positions 49, 68, 73, 84, 98, and 107 are different from the corresponding amino acids in native human interleukin-3; and wherein said variant human interleukin-3 polypeptide has increased activity relative to native human interleukin-3, in at least one assay selected from the group consisting of: AML cell proliferation, TF-1 cell proliferation and Methylcellulose assay; and(b) a polypeptide consisting of an N-terminal methionine residue, alanine residue or methionine-alanine di-peptide immediately preceding said sequence according to (a).
  • 14. A polypeptide consisting of a modified human interleukin-3 amino acid sequence selected from the group consisting of:(a) a sequence of SEQ ID NO: 22; whereinXaa at position 3 is Ser;Xaa at position 4 is Asn, His, or Ile;Xaa at position 9 is Ile, Ala, Leu, or Gly;Xaa at position 11 is Thr, His, or Gln;Xaa at position 12 is His or Ala;Xaa at position 15 is Gln or Asn;Xaa at position 16 is Pro or Gly;Xaa at position 18 is Leu, Arg, Asn, or Ala;Xaa at position 20 is Leu, Val, Ser, Ala, Arg, Gln, Glu, Ile,      Phe, Thr or Met;Xaa at position 21 is Leu, Ala, Asn, or Pro;Xaa at position 24 is Asn or Ala;Xaa at position 28 is Gly, Asp, Ser, Ala, Asn, Ile, Leu, Met,      Tyr or Arg;Xaa at position 31 is Gln, Val, Met, Leu, Ala, Asn, Glu or Lys;Xaa at position 32 is Asp, Phe, Ser, Ala, Gln, Glu, His, Val or Thr;Xaa at position 36 is Glu, Asn, Ser or Asp;Xaa at position 37 is Asn, Arg, Pro, Thr, or His;Xaa at position 41 is Arg, Leu, or Gly;Xaa at position 42 is Pro, Gly, Ser, Ala, Asn, Val, Leu or Gln;Xaa at position 48 is Asn, Pro, or Thr;Xaa at position 50 is Ala or Asn;Xaa at position 51 is Val or Thr;Xaa at position 53 is Ser or Phe;Xaa at position 54 is Leu or Phe;Xaa at position 55 is Gln, Ala, Glu, or Arg;Xaa at position 62 is Ser, Val, Asn, Pro, or Gly;Xaa at position 63 is Ile or Leu;Xaa at position 65 is Lys, Asn, Met, Arg, Ile, or Gly;Xaa at position 66 is Asn, Gly, Glu, or Arg;Xaa at position 68 is Leu, Gln, Trp, Arg, Asp, Asn, Glu, His,      Met, Phe, Ser, Thr, Tyr or Val;Xaa at position 73 is Leu or Ser;Xaa at position 74 is Ala or Trp;Xaa at position 77 is Ala or Pro;Xaa at position 79 is Thr, Asp, or Ala;Xaa at position 81 is His, Pro, Arg, Val, Gly, Asn, Ser or Thr;Xaa at position 84 is His, Ile, Asn, Ala, Thr, Gln,      Lys, Met, Ser, Tyr, Val or Leu;Xaa at position 85 is Ile or Leu;Xaa at position 86 is Lys or Arg;Xaa at position 87 is Asp, Pro, Met, Lys, Thr, His, Asn, Ile, Leu      or Tyr;Xaa at position 91 is Asn, Pro, Ser, Ile or Asp;Xaa at position 94 is Arg, Ala, or Ser;Xaa at position 95 is Arg, Thr, Glu, Leu, or Ser;Xaa at position 98 is Thr or Gln;Xaa at position 102 is Lys, Val, Trp, Ala, His, Phe, Tyr or Ile,Xaa at position 103 is Thr, Ala, His, Phe, Tyr or Ser;Xaa at position 106 is Asn, Pro, Leu, His, Val, or Gln;Xaa at position 107 is Ala, Ser, Ile, Pro, or Asp;Xaa at position 108 is Gln, Met, Trp, Phe, Pro, His, Ile, or Tyr;Xaa at position 109 is Ala, Met, Glu, Ser, or Leu;wherein from four to about forty-four of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-133)human interleukin-3; with the proviso that no more than one of the amino acids at positions 49, 68, 73, 84, 98, and 107 are different from the corresponding amino acids in native human interleukin-3; and wherein said variant human interleukin-3 polypeptide has increased activity relative to native human interleukin-3, in at least one assay selected from the group consisting of: AML cell proliferation, TF-1 cell proliferation and Methylcellulose assay; and(b) a polypeptide consisting of an N-terminal methionine-alanine di-peptide immediately preceding said sequence according to (a).
  • 15. The polypeptide of claim 13 wherein;Xaa at position 28 is Gly, Asp, Ser, Ile, Leu, Met, Tyr, or Ala; Xaa at position 31 is Gln, Val, Met or Asn; Xaa at position 32 is Asp, Ser, Ala, Gln, His or Val; Xaa at position 36 is Glu or Asp; Xaa at position 37 is Asn, Pro or Thr; Xaa at position 48 is Asn or Pro; Xaa at position 62 is Ser, or Pro; Xaa at position 68 is Leu, Trp, Asp, Asn, Glu, His, Phe, Ser or Tyr; Xaa at position 81 is His, Arg, Thr, Asn or Ser; Xaa at position 84 is His, Ile, Leu, Ala, Arg, Gln, Lys, Met, Ser, Tyr or Val; Xaa at position 86 is Lys or Arg; Xaa at position 87 is Asp, Pro, His, Asn, Ile or Leu; Xaa at position 91 is Asn or Pro; Xaa at position 94 is Arg, Ala, or Ser; Xaa at position 102 is Lys, Val, Trp, Ala, His, Phe or Tyr; Xaa at position 107 is Ala, or Ile; Xaa at position 108 is Gln, or Ile; and Xaa at position 109 is Ala, Met or Glu.
  • 16. A polypeptide according to claim 13 selected from the group consisting of:(a) a sequence selected from the group consisting of: (109E, 116V, 120Q and 123E)-(15-125)human interleukin-3 (SEQ ID NO:74); (109E, 116V, 117S, 120H and 123E)-(15-125)human interleukin-3 (SEQ ID NO:75); (42D, 45M, 46S, 50D)-(15-125)human interleukin-3 (residues 3-113 of SEQ ID NO:259); (42D, 45M, 46S, 116W)-(15-125)human interleukin-3 (residues 3-113 of SEQ ID NO:261); (42D, 45M, 46S, 50D, 116W)-(15-125)human interleukin-3 (residues 3-113 of SEQ ID NO:262); (b) an N-terminal methionine residue, alanine residue or methionine-alanine di-peptide immediately preceding said sequence according to (a).
  • 17. A pharmaceutical composition comprising a polypeptide of claim 1, 2, 3, 4, 5, 6, 7, or 8 and a pharmaceutically acceptable carrier.
  • 18. A pharmaceutical composition comprising a polypeptide of claim 9, 10, 11, 12, 13, 14, 15 or 16 and a pharmaceutically acceptable carrier.
  • 19. A nucleic acid molecule encoding a polypeptide of claim 1.
  • 20. A nucleic acid molecule encoding a polypeptide of claim 2.
  • 21. A nucleic acid molecule encoding a polypeptide of claim 3.
  • 22. A nucleic acid molecule encoding a polypeptide of claim 4.
  • 23. A nucleic acid molecule encoding a polypeptide of claim 5.
  • 24. A nucleic acid molecule encoding a polypeptide of claim 6.
  • 25. A nucleic acid molecule encoding a polypeptide of claim 7.
  • 26. A nucleic acid molecule encoding a polypeptide of claim 8.
  • 27. A nucleic acid molecule encoding a polypeptide of claim 9.
  • 28. A nucleic acid molecule encoding a polypeptide of claim 10.
  • 29. A nucleic acid molecule encoding a polypeptide of claim 11.
  • 30. A nucleic acid molecule encoding a polypeptide of claim 12.
  • 31. A nucleic acid molecule encoding a polypeptide of claim 13.
  • 32. A nucleic acid molecule encoding a polypeptide of claim 14.
  • 33. A nucleic acid molecule encoding a polypeptide of claim 15.
  • 34. A nucleic acid molecule encoding a polypeptide of claim 16.
  • 35. A method of producing a polypeptide comprising:growing under suitable nutrient conditions, a host cell transformed or transfected with a replicable vector comprising said nucleic acid molecule of claim 19, 20, 21, 22, 23, 24, 25 or 26 in a manner allowing expression of said polypeptide and recovering said polypeptide.
  • 36. A method of producing a polypeptide comprising:growing under suitable nutrient conditions, a host cell transformed or transfected with a replicable vector comprising said nucleic acid molecule of claim 27, 28, 29, 30, 31, 32, 33 or 34 in a manner allowing expression of said polypeptide and recovering said polypeptide.
Parent Case Info

This is a divisional of U.S. Ser. No. 08/411,795, filed Apr. 6, 1995, now U.S. Pat. No. 5,604,116; which is a 371 of PCT/US93/11197, filed Nov. 22, 1993; which is a continuation-in-part of U.S. Ser. No. 07/981,044, filed Nov. 24, 1992, now abandoned.

US Referenced Citations (5)
Number Name Date Kind
4877729 Clark et al. Oct 1989 A
4959455 Clark et al. Sep 1990 A
5032395 Clark et al. Jul 1991 A
5166322 Shaw et al. Nov 1992 A
5591427 Vadas et al. Jan 1997 A
Foreign Referenced Citations (15)
Number Date Country
275598 Jul 1988 EP
413383 Feb 1991 EP
2210883 Jun 1989 GB
3236400 Oct 1991 JP
463595 Feb 1992 JP
8800598 Jan 1988 WO
8804691 Jun 1988 WO
8805469 Jul 1988 WO
8806161 Aug 1988 WO
9001039 Feb 1990 WO
9010705 Sep 1990 WO
9012874 Nov 1990 WO
9100350 Jan 1991 WO
9102754 Mar 1991 WO
9307171 Apr 1993 WO
Non-Patent Literature Citations (14)
Entry
Yang et al, in Cell 47:3 (1986).
Dorsers et al, Gene 55:115 (1987).
Phillips et al, Gene, 84, 501 (1989).
Clark-Lewis et al, Science 231:134 (1986).
Clark-Lewis et al, Proc.Nat.Acad.Sci.USA 85: 7897 (1988).
Lokker et al, J.Biol.Chem., 266(16) :10624 (1991).
Clark-Lewis et al, Immune Regulation by Characterized Polypeptides, Alan R. Liss, Inc. (1987) pp. 323-334.
Ihle et al, J. Immunol. 126:2184 (1981).
Fung et al, Nature, 307, 233 (1984).
Yokota et al, Proc.Nat.Acad.Sci.USA 81:1070 (1984).
Dorssers et al, J.Biol.Chem 266(31) :21310 (1991).
Koshansky et al, J.Clin.Invest, 90:1879 (1992).
Lopez et al., Proc.Natl.Acad.Sci.USA 89:11842-11846 (1992).
Lokker et al, The EMBO Jour. 10:2125-2131 (1991).
Continuation in Parts (1)
Number Date Country
Parent 07/981044 Nov 1992 US
Child 08/411795 US