Semiconductor processing often include many distinct manufacturing steps. With the current state of technology, circuit components are routinely formed on nanometer scales, and sensitive manufacturing techniques are required. For instance, with integration schemes for shallow-trench-isolation (“STI”) gate formation, a sacrificial film must be removed preferentially in the presence of a selective material in a nanometer thin trench. As semiconductor technology continues to evolve, these semiconductor substrate trenches continue to shrink in width, which makes film removal even more difficult.
These small width trenches create a need for delicate etching techniques. Although a variety of etch techniques are available, few provide the selective removal necessary for such intricate detail. For example, wet removal using hydrogen-fluoride solutions can be used for a selective removal. However, such a wet removal cannot be used for STI recessing because the process chemistry and bath life often cannot be sufficiently controlled for such detailed etching.
Dry etching techniques are available and have been shown to provide selective removal. For example, Siconi™ processes that use a combination of dry etchant gases including ammonia and a fluorine-containing gas have been used for better control of the material removal during the removal. However, the dry etchant gas still selectivity etches oxides of different quality at different rates. Although this oxide selectivity is often acceptable during semiconductor processing, in STI recessing, the minute selectivity can cause concave profiles in the STI trenches where a liner oxide is present with a flowable oxide. This slight concavity, or meniscus, can potentially cause integration issues with integrated passive device scaling and control gate polysilicon fill between the trenches. Thus, there is a need for improved intrench profiles in STI recess production. These and other needs are addressed by the present invention.
The present technology provides methods of removing dielectric materials of different qualities from within a trench that has been etched on a semiconductor substrate. The removal may be performed with dry etchant gases that are insensitive to the quality of a deposited oxide. By being insensitive, the dry etchant gases may remove different oxides at substantially similar rates. In this way, trenches that include multiple oxides of different qualities may be etched so that the profile within the trench is uniform across the different oxides.
Methods of etching recesses in semiconductor substrates are described. The methods may include forming a dielectric liner layer in a trench of the substrate where the liner layer has a first density. The method may also include depositing a second dielectric layer at least partially in the trench on the liner layer. The second dielectric layer may initially be flowable following the deposition, and the second dielectric layer may have a second density that is less than the first density of the liner layer. The method may further include exposing the substrate to a dry etchant, where the etchant removes a portion of the first liner layer and the second dielectric layer to form a recess, where the dry etchant includes a fluorine-containing compound and molecular hydrogen. The etch rate ratio for removing the first dielectric liner layer to removing the second dielectric layer is about 1:1.2 to about 1:1.
Embodiments of the invention also include methods of etching a dielectric material located between sections of a selective material over a semiconductor substrate. Selective materials may include materials such as polysilicon or other materials used to form structures such as floating gates. Selective materials such as polysilicon may require removal techniques that can maintain as much of the selective material as possible while removing other materials. In another sense, selective materials may be preferentially removed during certain types of wet or corrosive etching as opposed to sacrificial materials, and thus removal techniques that maintain the selective materials may be used. The methods include depositing a selective material over a semiconductor substrate. The methods may also include etching at least one trench in the selective material and semiconductor substrate that creates at least two sections of the selective material that are isolated from one another on the semiconductor substrate. The dielectric material may be deposited to at least partially fill the trench between the isolated sections of the selective material. The substrate may then be exposed to a dry etchant gas that removes a portion of the dielectric layer between the isolated sections of the selective material to form a recess. The dry etchant gas may include a fluorine-containing compound and molecular hydrogen.
Additional embodiments and features are set forth in part in the description that follows, and will become apparent to those skilled in the art upon examination of the specification and/or may be learned by the practice of the disclosed embodiments. The features and advantages of the disclosed embodiments may be realized and attained by means of the instrumentalities, combinations, and methods described in the specification.
A further understanding of the nature and advantages of the disclosed embodiments may be realized by reference to the remaining portions of the specification and the drawings.
In the appended figures, similar components and/or features may have the same numerical reference label. Further, various components of the same type may be distinguished by following the reference label by a letter that distinguishes among the similar components and/or features. If only the first numerical reference label is used in the specification, the description is applicable to any one of the similar components and/or features having the same first numerical reference label irrespective of the letter suffix.
In the following description, for the purposes of explanation, numerous details are set forth in order to provide an understanding of various embodiments of the present invention. It will be apparent to one skilled in the art, however, that certain embodiments can be practiced without some of these details, or with additional details.
The present technology provides methods of etching recesses in semiconductor substrates in which a dry etchant that is substantially free of ammonia is used. By including a minimal concentration of ammonia, the amount of fluorine radicals within the etchant gas may be enhanced, which may allow for removal that is less sensitive to oxide quality. The dry etchant may include a fluorine-containing gas and molecular hydrogen.
Methods of etching a recess in a semiconductor substrate are described. The methods may include forming a dielectric liner layer in a trench of the substrate where the liner layer has a first density. The methods may also include depositing a second dielectric layer at least partially in the trench on the liner layer. The second dielectric layer may be initially flowable following the deposition, and the second dielectric layer may have a second density that is less than the first density of the liner layer. The methods may further include exposing the substrate to a dry etchant, where the etchant removes a portion of the first liner layer and the second dielectric layer to form a recess, where the dry etchant includes a fluorine-containing compound and molecular hydrogen, and where the etch rate ratio for removing the first dielectric liner layer to removing the second dielectric layer is about 1:1.2 to about 1:1.
Referring to
An HDP deposition produces a liner layer with an HDP quality oxide, such as silicon oxide, which as the first dielectric layer has a first density as well as an overall quality that is higher than an oxide that is deposited by a flowable process. The HDP film is produced by exciting the reactant gases at low pressure or even vacuum, often with radio frequency energy, which creates a plasma near the substrate surface. The plasma energy causes the elements to be highly reactive and produces high density and high quality films. In other embodiments a thermal process may be performed on the substrate to produce the liner oxide layer in which chemical reactions of the reactant gases are caused by heating the substrate up to a high temperature to induce the reaction and formation of the film.
A second dielectric layer may be deposited 115 that is produced by a flowable deposition method, which can include spin-on-glass or flowable CVD for example. In some embodiments, flowable CVD is used to cover the dielectric liner layer and fill the trench in the substrate. The flowable oxide may be formed by exciting precursor gases separately, and then allowing them to combine in a region of the process chamber directly over the substrate to produce the flowable oxide that starts at the top of the trench, and then flows down to fill it in without creating voids or seams. The second dielectric layer has a second density that is less than the first density of the liner layer. In addition to filling the trench, in some embodiments the flowable oxide can additionally fill between pad oxide layers such as silicon nitride, or additionally can fill between polysilicon floating gates for situations including producing Nand flash, for example.
A variety of methods can be used to deposit dielectric layers that are initially flowable after deposition. For example, a flowable CVD process may be used in which a silicon precursor is introduced to the substrate processing region housing the substrate. Another precursor is introduced only after passing through a remote plasma region to create a radical precursor, such as a nitrogen precursor, which is then flowed into the substrate processing region and combined with the silicon precursor. In this technique, the silicon-containing precursor is not directly excited by an application of plasma power in the substrate processing region. Instead, plasma power just excites the precursor outside the substrate processing region. This arrangement results in the flowable deposition of a silicon-and-nitrogen-containing layer into the lined trench. The flowability of the film attenuates as the deposition proceeds and the flowability is essentially removed during a curing operation described below.
The silicon-containing precursor may contain carbon and/or nitrogen in order to ensure flowability during gapfill dielectric layer formation. In some embodiments, the silicon-containing precursor may be a carbon-free silicon-containing precursor which enables the gapfill layer to undergo less shrinkage during the curing process. The carbon-free silicon precursor may be, for example, a silicon-and-nitrogen precursor, a silicon-and-hydrogen precursor, or a silicon-nitrogen-and-hydrogen containing precursor, among other classes of silicon precursors. Specific examples of these precursors may include silyl-amines such as H2N(SiH3), HN(SiH3)2, and N(SiH3)3, among other silyl-amines. These silyl-amines may be mixed with additional gases that may act as carrier gases, reactive gases, or both. Examples of the these additional gases may include H2, N2, NH3, He, and Ar, among other gases. Examples of carbon-free silicon precursors may also include silane (SiH4) either alone or mixed with other silicon (e.g., N(SiH3)3), hydrogen (e.g., H2), and/or nitrogen (e.g., N2, NH3) containing gases. The silicon-containing precursors may also include silicon compounds that have no carbon or nitrogen, such as silane, disilane, etc. If the deposited oxide film is a doped oxide film, dopant precursors may also be used such as TEB, TMB, B2H6, TEPO, PH3, P2H6, and TMP, among other boron and phosphorous dopants.
Nitrogen may be included in either or both of the radical precursor and the silicon-containing precursor. When nitrogen is present in the radical precursor, it may be referred to as a radical-nitrogen precursor. The radical-nitrogen precursor includes plasma effluents created by exciting a more stable nitrogen-containing precursor in a plasma. For example, a relatively stable nitrogen-containing precursor containing NH3 and/or hydrazine (N2H4) may be activated in a chamber plasma region or a remote plasma system (RPS) outside the processing chamber to form the radical-nitrogen precursor, which is then transported into a plasma-free substrate processing region. The stable nitrogen precursor may also be a mixture comprising NH3 & N2, NH3 & H2, NH3 & N2 & H2 and N2 & H2, in different embodiments. Hydrazine may also be used in place of or in combination with NH3 in the mixtures with N2 and H2. The flow rate of the stable nitrogen precursor may be greater than or about 200 sccm, greater than or about 300 sccm, greater than or about 500 sccm or greater than or about 700 sccm in different embodiments. Nitrogen-containing precursors may also include N2O, NO, NO2 and NH4OH.
The radical-nitrogen precursor produced may include one or more of •N, •NH, •NH2, etc., and may also be accompanied by ionized species formed in the plasma. In other embodiments, the radical-nitrogen precursor is generated in a section of the processing chamber partitioned from the substrate processing region where the precursors mix and react to deposit the silicon-and-nitrogen layer on a deposition substrate (e.g., a semiconductor wafer). The partition may be incorporated into a showerhead that supplies the reactants to the substrate processing region. The radical-nitrogen precursor may also be accompanied by a carrier gas such as argon, helium, etc. Oxygen may be simultaneously delivered into the remote plasma region (in the form of O2 and/or O3) to adjust the amount of oxygen content in the radical-nitrogen precursor and liner or gapfill layer deposited with this technique.
The flowability may be due, at least in part, to a significant hydrogen component in the deposited film. For example the deposited film may have a silazane-type, Si—NH—Si backbone (i.e., a Si—N—H film). Flowability may also result from short chained polymers of the silazane type. The nitrogen which allows the formation of short chained polymers and flowability may originate from either the radical precursor or the silicon-containing precursor. When both the silicon precursor and the radical-nitrogen precursor are carbon-free, the deposited silicon-and-nitrogen-containing film is also substantially carbon-free. Of course, “carbon-free” does not necessarily mean the film lacks even trace amounts of carbon. Carbon contaminants may be present in the precursor materials that find their way into the deposited silicon-and-nitrogen-containing film. The amount of these carbon impurities however are much less than would be found in a silicon precursor having a carbon moiety (e.g., TEOS, TMDSO, etc.).
In other embodiments, the first and second dielectric layers are both flowable or may both not be flowable. In some embodiments the dielectrics are deposited by different mechanisms (e.g., the first is not flowable, and the second is flowable), but have similar dielectric qualities depending on the reactants used. In still other embodiments, the first and second dielectrics are deposited by the same mechanism, but have different qualities due to the use of different reactant species for the two dielectrics.
Flowable film growth may proceed while the substrate temperature is maintained at a relatively low temperature during deposition of the silicon-containing films. The flowable oxide film may be deposited on the substrate surface at a low temperature that is maintained by cooling the substrate during the deposition. The pedestal may include heating and/or cooling conduits that set the temperature of the pedestal and substrate between about −40° C. and about 1000° C., between about 100° C. and about 600° C., less than about 500° C. or at about 400° C. or less in different embodiments.
After the flowable dielectric has been deposited on the substrate, an etching process can be performed in order to remove excess dielectric in preparation for subsequent integrated passive device manufacturing steps. In some embodiments, a dry etchant gas is used to etch 120 the dielectric layers. The etchant removes a portion of both the first liner layer and the second dielectric layer. The gases included in the etchant may include gases that pass through a remote plasma region to be excited prior to entering the semiconductor processing region. The etchant may include a fluorine-containing compound and molecular hydrogen, and reacts with the dielectric layers to produce solid byproducts that sublimate when the temperature of the substrate is raised above the sublimation temperature, thereby removing the excess dielectric. The etch rate ratio for removing the first dielectric liner layer to removing the second dielectric layer may be about 1:2, or in other embodiments may be about 1:1.5, 1:1.3, 1:1.2, 1:1.1, or about 1:1. When the etch rate ratio is equal to 1:1 the separate dielectrics are removed at the same rate.
In some embodiments the dry etchant gas contains nitrogen trifluoride along with molecular hydrogen. In other embodiments the dry etchant gas is substantially free of ammonia. The dry etchant gas combination of nitrogen trifluoride and hydrogen may produce a slower reaction that is less selective of oxide quality than a dry etchant gas that includes ammonia. The addition of ammonia may reduce the concentration of fluorine in the reactive species producing ammonium fluoride and ammonium hydrogen fluoride. These products may remove a lower density and lower quality flowable dielectric at a faster rate than the higher density, higher quality liner oxide layer deposited by, for example, HDP. By having a selectivity with respect to HDP oxide that is closer to 1:1, the dry etchant gas that is substantially free of ammonia is able to produce recesses that have a less concave corner profile than a dry etchant gas that includes ammonia. In some embodiments, the dry etchant gas that is substantially free of ammonia produces a corner profile that is substantially flat against the sidewall of the recess.
The flowable dielectric may be cured following deposition in order to improve the dielectric film quality. Curing may be carried out in oxidative environments like steam, inert environments such as nitrogen, or other environments in various embodiments. The flowability of the film attenuates as the deposition proceeds and the flowability is essentially removed during a curing operation. The curing operation may involve converting the silicon-and-nitrogen-containing layer to silicon oxide. Curing involves raising the patterned substrate temperature and exposing the gapfill dielectric layer to an oxygen-containing environment. In some embodiments, the elevated temperature induces the oxide to diffuse from the liner layer into the gapfill layer which provides an additional source of oxygen from underneath the gapfill dielectric layer. The curing may be an anneal, and may be performed at temperatures below about 1000° C. In other embodiments, the curing may occur below about 800° C., 600° C., 500° C., 400° C., 300° C., or below about 200° C. Utilizing a flowable dielectric may reduce the thermal budget of the manufacturing processes, and in some cases the processes may be performed below about 600° C., 500° C., 400° C., 300° C., 200° C., or below about 100° C. in order to maintain the flowable dielectric.
Referring now to
After the selective material has been deposited, trenches may be etched 215 through the selective material and in some instances the semiconductor substrate. The etching creates isolated sections of the selective material located over the semiconductor substrate that are separated by the etched trenches. The trenches may display high aspect ratios in which the depth of the trench may be significantly greater than its width. Exemplary trenches may have an aspect ratio of about 2:1 or more, about 3:1 or more, about 5:1, about 7:1 or about 10:1 or more, etc.
The methods may further include depositing 220 a dielectric material within the trench. The deposition may include filling the trench completely and depositing sufficient dielectric to cover the selective material, or in other embodiments the deposition may fill the trench partially. The dielectric may be deposited past the level of the substrate so that it at least partially fills between the isolated sections of the selective material. Depending on the characteristics of the trenches, the dielectric material may be deposited by a flowable, or non-flowable method. In some embodiments with narrow and deep trenches, the dielectric may be deposited in a flowable manner in order to limit the likelihood of developing voids. In other embodiments, a higher quality dielectric may be used for improved insulation between the field components. In some embodiments spin-on-glass is used to deposit the dielectric material. In alternative embodiments the dielectric is deposited by a flowable CVD.
In some embodiments multiple dielectric depositions may be performed in order to fill the trench. For example, a liner layer may be deposited within the trenches prior to the trenches being filled with a flowable dielectric. Such a combination may provide the benefits of improved insulation from the liner layer, as well as the improved fill characteristics of a flowable dielectric. Additional examples include depositing the dielectric in a series of steps that include both deposition and etch-back of the dielectric in order to minimize bread-loafing and void formation. An initial layer of dielectric may be deposited in the trench followed by an intermediate etch process to remove dielectric buildup along the top of the trench. After the etching, the remainder of the trench may be filled with a subsequent deposition of dielectric material.
An etching process 225 may be performed after the deposition of the dielectric layer. The etching may include exposing the substrate to a dry etchant gas that removes a portion of the dielectric layer between the isolated sections of the selective material to form a recess. The dry etchant gas may be a mixture of gases that includes a fluorine-containing compound as well as molecular hydrogen. The gases may be flowed separately into the processing chamber in which the substrate resides, and in some embodiments the dry etchant gas is excited by a remote plasma source prior to its being flowed into the process chamber. In some embodiments the dry etchant gas is substantially free of ammonia, which may provide a slower reaction with a higher quantity of fluorine radicals available for reaction. The use of a dry etchant gas that is substantially free of ammonia may produce a recess with a substantially flat corner profile due to the prevented reduction of fluorine radicals into products including ammonium fluoride and ammonium hydrogen fluoride. The dry etchant gas may be completely free of ammonia in order to further prevent the removal of fluorine radicals by the formation of intermediate chemicals including ammonium fluoride and ammonium hydrogen fluoride.
In some depositions the dielectric layers are deposited well above the level of the selective material and an intermediate dielectric removal can be performed. Processes such as chemical mechanical polishing may be utilized to remove excess dielectric. The selective material may be used as the etch stop layer, which may be, for example, a field gate polysilicon or silicon nitride. Once the dielectric has been removed down to the layer of the selective material, the dry etchant may be used to remove the dielectric located between the sections of selective material.
The dielectric located between the sections of selective material may be removed based on the effective field height of the selective material. For example, the dielectric may be etched between about 200 and about 1200 angstrom. Additional examples may have the dielectric etched between about 400 and about 1000 angstrom, between about 600 and about 800 angstrom, etc. Where there are multiple sections of selective material, and multiple regions in between these sections in which dielectric must be removed, the dry etchant gas may provide recesses with cell to cell variation of less than about 10 nm. Exemplary effective field height variation between recess depths intercell is less than about 8 nm, or less than about 6 nm. The dry etchant gas may provide an etch uniformity between cells where deviations between cell recess depth and shape are less than 5%. Differences between cell depth and shape may be less than about 3%, about 2%, about 1.5%, about 1%, about 0.5%, about 0.1%, etc.
The resulting profile of the recess after the dielectric has been removed from between the sections of selective material may have a floor that is defined by the remaining dielectric material in the shallow trench isolation of the substrate. The floor profile may be substantially flat across the dielectric up to the location of where the dielectric material intersects the selective material. This point of intersection may define a corner of the recess, and the corner profile of the dielectric material may be at about a right angle with the selective material. When a right angle is formed between the dielectric material floor and the selective material wall defining the recess, a flat corner profile has been formed. An angle greater than or less than 90° may be formed, in which case the corner profile may be substantially flat. The dielectric may not be completely removed in the corners producing a slight concavity of the dielectric at the recess corner. Although the concavity may not define a perfectly circular cross section, the radius of curvature with the recess sides and floor may be less than about 5 nm. The radius of curvature may be less than about 3 nm, 2 nm, 1 nm, 5 angstrom, 3 angstrom, 2 angstrom, or about 1 angstrom in some embodiments providing a substantially flat corner profile.
The dielectric may be cured following deposition and prior to etching in order to improve the dielectric film quality. Curing may be carried out by any of the previously discussed methods. The curing may be an anneal, and may be performed at temperatures below about 1000° C. For example, the curing may occur below about 800° C., 600° C., 500° C., 400° C., 300° C., or below about 200° C. Utilizing a flowable dielectric may reduce the thermal budget of the manufacturing processes, and in some cases the processes may be performed below about 600° C., 500° C., 400° C., 300° C., 200° C., or below about 100° C. in order to maintain the flowable dielectric.
In some embodiments an oxide layer known as a tunnel oxide is deposited between the semiconductor substrate and the selective material to ensure isolation of floating gates. The tunnel oxide is deposited prior to the initial deposition of the selective material and trench formation. The dielectric deposited in the trenches and between the sections of the selective material may be etched down to the level of the tunnel oxide. Alternatively, the dielectric material may be etched between the sections of selective material, but is not etched down to the level of the tunnel oxide.
After the dielectric material has been etched from between the sections of the selective material, subsequent manufacturing may occur. An isolation layer may be deposited over the selective layer and in the etched recesses. This isolation layer may provide a liner between, for example, the floating gates and the control gate that can be subsequently deposited. A deposit of another material, such as a metal, dielectric, or some other material may be deposited after the isolation layer has been laid down. The subsequent material may be polysilicon that acts as a control gate in a flash memory cell such as a Nand flash device. A substantially flat corner profile of the etched dielectric recess may enable subsequent integrated passive device layers to be filled inside the trenches that can be a few nanometers in width, for example. When an isolation layer and a subsequent control gate layer are deposited within a recess that has a substantially flat corner profile and/or better cell uniformity, further integration issues may be prevented by providing improved interfaces for IPD scaling.
Turning now to
In
The dielectric 319 may extend above the pad oxide 340 and may be initially removed down to the layer of the pad oxide with a process such as chemical mechanical polishing. An etching process can be performed in which a dry etchant gas mixture is used to remove the dielectric material 319 and dielectric liner layer 317. The dry etchant gas mixture may include a fluorine-containing gas and molecular hydrogen, and may be substantially free of ammonia, or completely free of ammonia. The dry etchant gas removes the dielectric material 319 and liner layer 317 to produce a recess 330 that includes a corner 335. The corner 335 profile may be substantially flat indicating that the dielectric material 319 and dielectric liner 317 are removed to substantially the same depth. Removal to equivalent depth indicates that the dry etchant gas are substantially insensitive to oxide quality.
Comparative examples were made between etch selectivity using an etchant gas mixture with and without ammonia. The etches were conducted on a trench that was first lined with an HDP liner layer and then filled with a flowable oxide. The dielectrics were exposed to dry etchant gas mixtures containing nitrogen trifluoride and molecular hydrogen. In one example, the dry etchant gas also contained ammonia, while in a comparative example the dry etchant gas was substantially free of ammonia. As can be seen in Table I below, the dry etchant gas containing ammonia removes more of the flowable oxide in comparison to an HDP oxide than does the dry etchant gas that is substantially free of ammonia:
Having disclosed several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the disclosed embodiments. Additionally, a number of well known processes and elements have not been described in order to avoid unnecessarily obscuring the present invention. Accordingly, the above description should not be taken as limiting the scope of the invention.
It is noted that individual embodiments may be described as a process which is depicted as a flowchart, a flow diagram, or a block diagram. Although a flowchart may describe the method as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be rearranged. A process may be terminated when its operations are completed, but could have additional steps not discussed or included in a figure. Furthermore, not all operations in any particularly described process may occur in all embodiments. A process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its termination corresponds to a return of the function to the calling function or the main function.
Where a range of values is provided, it is understood that each intervening value, to the smallest fraction of the unit of the lower limit, unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed. The upper and lower limits of those smaller ranges may independently be included or excluded in the range, and each range where either, neither, or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included.
As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. Thus, for example, reference to “a dielectric material” includes a plurality of such materials, and reference to “the application” includes reference to one or more applications and equivalents thereof known to those skilled in the art, and so forth.
Also, the words “comprise”, “comprising”, “include”, “including”, and “includes”, when used in this specification and in the following claims, are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, acts, or groups.
This application is a Divisional of U.S. patent application Ser. No. 13/624,724, filed Sep. 21, 2012, which claims the benefit of U.S. Provisional Application No. 61/539,279, filed Sep. 26, 2011, entitled “Improved Intrench Profile,” the entire disclosures of both of which are hereby incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2369620 | Sullivan et al. | Feb 1945 | A |
3451840 | Hough | Jun 1969 | A |
3937857 | Brummett et al. | Feb 1976 | A |
4006047 | Brummett et al. | Feb 1977 | A |
4209357 | Gorin et al. | Jun 1980 | A |
4214946 | Forget et al. | Jul 1980 | A |
4232060 | Mallory, Jr. | Nov 1980 | A |
4234628 | DuRose | Nov 1980 | A |
4265943 | Goldstein et al. | May 1981 | A |
4364803 | Nidola et al. | Dec 1982 | A |
4368223 | Kobayashi et al. | Jan 1983 | A |
4397812 | Mallory, Jr. | Aug 1983 | A |
4468413 | Bachmann | Aug 1984 | A |
4565601 | Kakehi et al. | Jan 1986 | A |
4571819 | Rogers et al. | Feb 1986 | A |
4579618 | Celestino et al. | Apr 1986 | A |
4585920 | Hoog et al. | Apr 1986 | A |
4625678 | Shioya et al. | Dec 1986 | A |
4632857 | Mallory, Jr. | Dec 1986 | A |
4656052 | Satou et al. | Apr 1987 | A |
4690746 | McInerney et al. | Sep 1987 | A |
4714520 | Gwozdz | Dec 1987 | A |
4749440 | Blackwood et al. | Jun 1988 | A |
4753898 | Parrillo et al. | Jun 1988 | A |
4793897 | Dunfield et al. | Dec 1988 | A |
4807016 | Douglas | Feb 1989 | A |
4810520 | Wu | Mar 1989 | A |
4816638 | Ukai et al. | Mar 1989 | A |
4851370 | Doklan et al. | Jul 1989 | A |
4865685 | Palmour | Sep 1989 | A |
4872947 | Wang et al. | Oct 1989 | A |
4878994 | Jucha et al. | Nov 1989 | A |
4886570 | Davis et al. | Dec 1989 | A |
4892753 | Wang et al. | Jan 1990 | A |
4894352 | Lane et al. | Jan 1990 | A |
4904341 | Blaugher et al. | Feb 1990 | A |
4951601 | Maydan et al. | Aug 1990 | A |
4960488 | Law et al. | Oct 1990 | A |
4980018 | Mu et al. | Dec 1990 | A |
4981551 | Palmour | Jan 1991 | A |
4985372 | Narita et al. | Jan 1991 | A |
4994404 | Sheng et al. | Feb 1991 | A |
5000113 | Wang et al. | Mar 1991 | A |
5013691 | Lory et al. | May 1991 | A |
5030319 | Nishino et al. | Jul 1991 | A |
5061838 | Lane et al. | Oct 1991 | A |
5089441 | Moslehi | Feb 1992 | A |
5089442 | Olmer | Feb 1992 | A |
5147692 | Bengston | Sep 1992 | A |
5156881 | Okano et al. | Oct 1992 | A |
5186718 | Tepman et al. | Feb 1993 | A |
5198034 | deBoer et al. | Mar 1993 | A |
5203911 | Sricharoenchalkit et al. | Apr 1993 | A |
5215787 | Homma | Jun 1993 | A |
5228501 | Tepman et al. | Jul 1993 | A |
5231690 | Soma et al. | Jul 1993 | A |
5235139 | Bengston et al. | Aug 1993 | A |
5238499 | van de Ven et al. | Aug 1993 | A |
5240497 | Shacham et al. | Aug 1993 | A |
5248527 | Uchida et al. | Sep 1993 | A |
5252178 | Moslehi | Oct 1993 | A |
5266157 | Kadomura | Nov 1993 | A |
5270125 | America et al. | Dec 1993 | A |
5271972 | Kwok et al. | Dec 1993 | A |
5275977 | Otsubo et al. | Jan 1994 | A |
5279865 | Chebi et al. | Jan 1994 | A |
5288518 | Homma | Feb 1994 | A |
5290382 | Zarowin et al. | Mar 1994 | A |
5300463 | Cathey et al. | Apr 1994 | A |
5302233 | Kim et al. | Apr 1994 | A |
5306530 | Strongin et al. | Apr 1994 | A |
5314724 | Tsukune et al. | May 1994 | A |
5316804 | Tomikawa et al. | May 1994 | A |
5319247 | Matsuura | Jun 1994 | A |
5326427 | Jerbic | Jul 1994 | A |
5328558 | Kawamura et al. | Jul 1994 | A |
5328810 | Lowrey et al. | Jul 1994 | A |
5334552 | Homma | Aug 1994 | A |
5345999 | Hosokawa | Sep 1994 | A |
5352636 | Beinglass | Oct 1994 | A |
5362526 | Wang et al. | Nov 1994 | A |
5368897 | Kurihara et al. | Nov 1994 | A |
5380560 | Kaja et al. | Jan 1995 | A |
5382311 | Ishikawa et al. | Jan 1995 | A |
5384284 | Doan et al. | Jan 1995 | A |
5385763 | Okano et al. | Jan 1995 | A |
5399237 | Keswick et al. | Mar 1995 | A |
5399529 | Homma | Mar 1995 | A |
5403434 | Moslehi | Apr 1995 | A |
5413967 | Matsuda et al. | May 1995 | A |
5415890 | Kloiber et al. | May 1995 | A |
5416048 | Blalock et al. | May 1995 | A |
5420075 | Homma et al. | May 1995 | A |
5429995 | Nishiyama et al. | Jul 1995 | A |
5439553 | Grant et al. | Aug 1995 | A |
5451259 | Krogh | Sep 1995 | A |
5468342 | Nulty et al. | Nov 1995 | A |
5474589 | Ohga et al. | Dec 1995 | A |
5478403 | Shinagawa et al. | Dec 1995 | A |
5478462 | Walsh | Dec 1995 | A |
5483920 | Pryor | Jan 1996 | A |
5500249 | Telford et al. | Mar 1996 | A |
5505816 | Barnes et al. | Apr 1996 | A |
5510216 | Calabrese et al. | Apr 1996 | A |
5516367 | Lei et al. | May 1996 | A |
5531835 | Fodor et al. | Jul 1996 | A |
5534070 | Okamura et al. | Jul 1996 | A |
5536360 | Nguyen et al. | Jul 1996 | A |
5549780 | Koinuma et al. | Aug 1996 | A |
5558717 | Zhao et al. | Sep 1996 | A |
5560779 | Knowles et al. | Oct 1996 | A |
5563105 | Dobuzinsky et al. | Oct 1996 | A |
5571576 | Qian et al. | Nov 1996 | A |
5578130 | Hayashi et al. | Nov 1996 | A |
5591269 | Arami et al. | Jan 1997 | A |
5599740 | Jang et al. | Feb 1997 | A |
5624582 | Cain | Apr 1997 | A |
5626922 | Miyanaga et al. | May 1997 | A |
5635086 | Warren, Jr. | Jun 1997 | A |
5645645 | Zhang et al. | Jul 1997 | A |
5648125 | Cane | Jul 1997 | A |
5648175 | Russell et al. | Jul 1997 | A |
5656093 | Burkhart et al. | Aug 1997 | A |
5661093 | Ravi et al. | Aug 1997 | A |
5674787 | Zhao et al. | Oct 1997 | A |
5679606 | Wang et al. | Oct 1997 | A |
5688331 | Aruga et al. | Nov 1997 | A |
5695810 | Dubin et al. | Dec 1997 | A |
5712185 | Tsai et al. | Jan 1998 | A |
5716500 | Bardos et al. | Feb 1998 | A |
5716506 | Maclay et al. | Feb 1998 | A |
5719085 | Moon et al. | Feb 1998 | A |
5733816 | Iyer et al. | Mar 1998 | A |
5747373 | Yu | May 1998 | A |
5755859 | Brusic et al. | May 1998 | A |
5756402 | Jimbo et al. | May 1998 | A |
5781693 | Ballance et al. | Jul 1998 | A |
5786276 | Brooks et al. | Jul 1998 | A |
5789300 | Fulford | Aug 1998 | A |
5800686 | Littau et al. | Sep 1998 | A |
5804259 | Robles | Sep 1998 | A |
5812403 | Fong et al. | Sep 1998 | A |
5820723 | Benjamin et al. | Oct 1998 | A |
5824599 | Schacham-Diamand et al. | Oct 1998 | A |
5830805 | Schacham-Diamand et al. | Nov 1998 | A |
5838055 | Kleinhenz et al. | Nov 1998 | A |
5843538 | Ehrsam et al. | Dec 1998 | A |
5844195 | Fairbairn et al. | Dec 1998 | A |
5846332 | Zhao et al. | Dec 1998 | A |
5846375 | Gilchrist et al. | Dec 1998 | A |
5846598 | Semkow et al. | Dec 1998 | A |
5849639 | Molloy et al. | Dec 1998 | A |
5850105 | Dawson et al. | Dec 1998 | A |
5855681 | Maydan et al. | Jan 1999 | A |
5856240 | Sinha et al. | Jan 1999 | A |
5858876 | Chew | Jan 1999 | A |
5872052 | Iyer | Feb 1999 | A |
5872058 | Van Cleemput et al. | Feb 1999 | A |
5882786 | Nassau et al. | Mar 1999 | A |
5885404 | Kim et al. | Mar 1999 | A |
5885749 | Huggins et al. | Mar 1999 | A |
5888906 | Sandhu et al. | Mar 1999 | A |
5891349 | Tobe et al. | Apr 1999 | A |
5891513 | Dubin et al. | Apr 1999 | A |
5897751 | Makowiecki | Apr 1999 | A |
5899752 | Hey et al. | May 1999 | A |
5904827 | Reynolds | May 1999 | A |
5907790 | Kellam | May 1999 | A |
5910340 | Uchida et al. | Jun 1999 | A |
5913140 | Roche et al. | Jun 1999 | A |
5913147 | Dubin et al. | Jun 1999 | A |
5915190 | Pirkle | Jun 1999 | A |
5920792 | Lin | Jul 1999 | A |
5932077 | Reynolds | Aug 1999 | A |
5933757 | Yoshikawa et al. | Aug 1999 | A |
5935334 | Fong et al. | Aug 1999 | A |
5937323 | Orczyk et al. | Aug 1999 | A |
5939831 | Fong et al. | Aug 1999 | A |
5942075 | Nagahata et al. | Aug 1999 | A |
5944902 | Redeker et al. | Aug 1999 | A |
5951601 | Lesinski et al. | Sep 1999 | A |
5951776 | Selyutin et al. | Sep 1999 | A |
5953635 | Andideh | Sep 1999 | A |
5968610 | Liu et al. | Oct 1999 | A |
5969422 | Ting et al. | Oct 1999 | A |
5976327 | Tanaka | Nov 1999 | A |
5990000 | Hong et al. | Nov 1999 | A |
5990013 | Berenguer et al. | Nov 1999 | A |
5993916 | Zhao et al. | Nov 1999 | A |
6004884 | Abraham | Dec 1999 | A |
6010962 | Liu et al. | Jan 2000 | A |
6013191 | Nasser-Faili et al. | Jan 2000 | A |
6013584 | M'Saad | Jan 2000 | A |
6015724 | Yamazaki et al. | Jan 2000 | A |
6015747 | Lopatin et al. | Jan 2000 | A |
6020271 | Yanagida | Feb 2000 | A |
6030666 | Lam et al. | Feb 2000 | A |
6030881 | Papasouliotis et al. | Feb 2000 | A |
6035101 | Sajoto et al. | Mar 2000 | A |
6037018 | Jang et al. | Mar 2000 | A |
6037266 | Tao et al. | Mar 2000 | A |
6039851 | Iyer | Mar 2000 | A |
6053982 | Halpin et al. | Apr 2000 | A |
6059643 | Hu et al. | May 2000 | A |
6063683 | Wu et al. | May 2000 | A |
6063712 | Gilton et al. | May 2000 | A |
6065424 | Shacham-Diamand et al. | May 2000 | A |
6072227 | Yau et al. | Jun 2000 | A |
6077780 | Dubin | Jun 2000 | A |
6080529 | Ye et al. | Jun 2000 | A |
6083344 | Hanawa et al. | Jul 2000 | A |
6083844 | Bui-Le et al. | Jul 2000 | A |
6086677 | Umotoy et al. | Jul 2000 | A |
6087278 | Kim et al. | Jul 2000 | A |
6093594 | Yeap et al. | Jul 2000 | A |
6099697 | Hausmann | Aug 2000 | A |
6107199 | Allen et al. | Aug 2000 | A |
6110530 | Chen et al. | Aug 2000 | A |
6110836 | Cohen et al. | Aug 2000 | A |
6110838 | Loewenstein | Aug 2000 | A |
6113771 | Landau et al. | Sep 2000 | A |
6117245 | Mandrekar et al. | Sep 2000 | A |
6136163 | Cheung et al. | Oct 2000 | A |
6136685 | Narwankar et al. | Oct 2000 | A |
6136693 | Chan et al. | Oct 2000 | A |
6140234 | Uzoh et al. | Oct 2000 | A |
6144099 | Lopatin et al. | Nov 2000 | A |
6147009 | Grill et al. | Nov 2000 | A |
6149828 | Vaartstra | Nov 2000 | A |
6150628 | Smith et al. | Nov 2000 | A |
6153935 | Edelstein et al. | Nov 2000 | A |
6165912 | McConnell et al. | Dec 2000 | A |
6167834 | Wang et al. | Jan 2001 | B1 |
6169021 | Akram et al. | Jan 2001 | B1 |
6170428 | Redeker et al. | Jan 2001 | B1 |
6171661 | Zheng et al. | Jan 2001 | B1 |
6174812 | Hsiung et al. | Jan 2001 | B1 |
6176198 | Kao et al. | Jan 2001 | B1 |
6177245 | Ward et al. | Jan 2001 | B1 |
6179924 | Zhao et al. | Jan 2001 | B1 |
6180523 | Lee et al. | Jan 2001 | B1 |
6182602 | Redeker et al. | Feb 2001 | B1 |
6189483 | Ishikawa et al. | Feb 2001 | B1 |
6190233 | Hong et al. | Feb 2001 | B1 |
6191026 | Rana et al. | Feb 2001 | B1 |
6194038 | Rossman | Feb 2001 | B1 |
6197181 | Chen | Mar 2001 | B1 |
6197364 | Paunovic et al. | Mar 2001 | B1 |
6197680 | Lin et al. | Mar 2001 | B1 |
6197688 | Simpson | Mar 2001 | B1 |
6197705 | Vassiliev | Mar 2001 | B1 |
6203863 | Liu et al. | Mar 2001 | B1 |
6204200 | Shieh et al. | Mar 2001 | B1 |
6217658 | Orczyk et al. | Apr 2001 | B1 |
6228233 | Lakshmikanthan et al. | May 2001 | B1 |
6228751 | Yamazaki et al. | May 2001 | B1 |
6228758 | Pellerin et al. | May 2001 | B1 |
6235643 | Mui et al. | May 2001 | B1 |
6238513 | Arnold et al. | May 2001 | B1 |
6238582 | Williams et al. | May 2001 | B1 |
6241845 | Gadgil et al. | Jun 2001 | B1 |
6242349 | Nogami et al. | Jun 2001 | B1 |
6245670 | Cheung et al. | Jun 2001 | B1 |
6251236 | Stevens | Jun 2001 | B1 |
6251802 | Moore et al. | Jun 2001 | B1 |
6258220 | Dordi et al. | Jul 2001 | B1 |
6258223 | Cheung et al. | Jul 2001 | B1 |
6258270 | Hilgendorff et al. | Jul 2001 | B1 |
6261637 | Oberle | Jul 2001 | B1 |
6277752 | Chen | Aug 2001 | B1 |
6277763 | Kugimiya et al. | Aug 2001 | B1 |
6281135 | Han et al. | Aug 2001 | B1 |
6291282 | Wilk et al. | Sep 2001 | B1 |
6291348 | Lopatin et al. | Sep 2001 | B1 |
6303418 | Cha et al. | Oct 2001 | B1 |
6312995 | Yu | Nov 2001 | B1 |
6313035 | Sandhu et al. | Nov 2001 | B1 |
6319387 | Krishnamoorthy et al. | Nov 2001 | B1 |
6323128 | Sambucetti et al. | Nov 2001 | B1 |
6335261 | Natzle et al. | Jan 2002 | B1 |
6335288 | Kwan et al. | Jan 2002 | B1 |
6340435 | Bjorkman et al. | Jan 2002 | B1 |
6342733 | Hu et al. | Jan 2002 | B1 |
6344410 | Lopatin et al. | Feb 2002 | B1 |
6350320 | Sherstinsky et al. | Feb 2002 | B1 |
6351013 | Luning et al. | Feb 2002 | B1 |
6364949 | Or et al. | Apr 2002 | B1 |
6364954 | Umotoy et al. | Apr 2002 | B2 |
6364957 | Schneider et al. | Apr 2002 | B1 |
6372657 | Hineman et al. | Apr 2002 | B1 |
6375748 | Yudovsky et al. | Apr 2002 | B1 |
6379575 | Yin et al. | Apr 2002 | B1 |
6383951 | Li | May 2002 | B1 |
6387207 | Janakiraman et al. | May 2002 | B1 |
6395150 | Van Cleemput et al. | May 2002 | B1 |
6403491 | Liu et al. | Jun 2002 | B1 |
6416647 | Dordi et al. | Jul 2002 | B1 |
6432819 | Pavate et al. | Aug 2002 | B1 |
6436816 | Lee et al. | Aug 2002 | B1 |
6440863 | Tsai et al. | Aug 2002 | B1 |
6441492 | Cunningham | Aug 2002 | B1 |
6446572 | Brcka | Sep 2002 | B1 |
6448537 | Nering | Sep 2002 | B1 |
6458718 | Todd | Oct 2002 | B1 |
6462371 | Weimer et al. | Oct 2002 | B1 |
6465366 | Nemani et al. | Oct 2002 | B1 |
6477980 | White et al. | Nov 2002 | B1 |
6479373 | Dreybrodt et al. | Nov 2002 | B2 |
6488984 | Wada et al. | Dec 2002 | B1 |
6494959 | Samoilov et al. | Dec 2002 | B1 |
6500728 | Wang | Dec 2002 | B1 |
6503843 | Xia et al. | Jan 2003 | B1 |
6506291 | Tsai et al. | Jan 2003 | B2 |
6516815 | Stevens et al. | Feb 2003 | B1 |
6518548 | Sugaya et al. | Feb 2003 | B2 |
6527968 | Wang et al. | Mar 2003 | B1 |
6528409 | Lopatin et al. | Mar 2003 | B1 |
6531377 | Knorr et al. | Mar 2003 | B2 |
6537733 | Campana et al. | Mar 2003 | B2 |
6541397 | Bencher | Apr 2003 | B1 |
6541671 | Martinez et al. | Apr 2003 | B1 |
6544340 | Yudovsky | Apr 2003 | B2 |
6547977 | Yan et al. | Apr 2003 | B1 |
6551924 | Dalton et al. | Apr 2003 | B1 |
6565729 | Chen et al. | May 2003 | B2 |
6569773 | Gellrich et al. | May 2003 | B1 |
6573030 | Fairbairn et al. | Jun 2003 | B1 |
6573606 | Sambucetti et al. | Jun 2003 | B2 |
6596602 | Iizuka et al. | Jul 2003 | B2 |
6596654 | Bayman et al. | Jul 2003 | B1 |
6602434 | Hung et al. | Aug 2003 | B1 |
6603269 | Vo et al. | Aug 2003 | B1 |
6605874 | Leu et al. | Aug 2003 | B2 |
6616967 | Test | Sep 2003 | B1 |
6627532 | Gaillard et al. | Sep 2003 | B1 |
6635578 | Xu et al. | Oct 2003 | B1 |
6638810 | Bakli et al. | Oct 2003 | B2 |
6645301 | Sainty et al. | Nov 2003 | B2 |
6645550 | Cheung et al. | Nov 2003 | B1 |
6656831 | Lee et al. | Dec 2003 | B1 |
6656837 | Xu et al. | Dec 2003 | B2 |
6677242 | Liu et al. | Jan 2004 | B1 |
6677247 | Yuan et al. | Jan 2004 | B2 |
6679981 | Pan et al. | Jan 2004 | B1 |
6717189 | Inoue et al. | Apr 2004 | B2 |
6720213 | Gambino et al. | Apr 2004 | B1 |
6740585 | Yoon et al. | May 2004 | B2 |
6743473 | Parkhe et al. | Jun 2004 | B1 |
6743732 | Lin et al. | Jun 2004 | B1 |
6759261 | Shimokohbe et al. | Jul 2004 | B2 |
6762127 | Boiteux et al. | Jul 2004 | B2 |
6762435 | Towle | Jul 2004 | B2 |
6764958 | Nemani et al. | Jul 2004 | B1 |
6765273 | Chau et al. | Jul 2004 | B1 |
6772827 | Keller et al. | Aug 2004 | B2 |
6794290 | Papasouliotis et al. | Sep 2004 | B1 |
6794311 | Huang et al. | Sep 2004 | B2 |
6796314 | Graff et al. | Sep 2004 | B1 |
6797189 | Hung et al. | Sep 2004 | B2 |
6800830 | Mahawili | Oct 2004 | B2 |
6802944 | Ahmad et al. | Oct 2004 | B2 |
6808564 | Dietze | Oct 2004 | B2 |
6808748 | Kapoor et al. | Oct 2004 | B2 |
6821571 | Huang | Nov 2004 | B2 |
6823589 | White et al. | Nov 2004 | B2 |
6830624 | Janakiraman et al. | Dec 2004 | B2 |
6835995 | Li | Dec 2004 | B2 |
6846745 | Papasouliotis et al. | Jan 2005 | B1 |
6858153 | Bjorkman et al. | Feb 2005 | B2 |
6867141 | Jung et al. | Mar 2005 | B2 |
6869880 | Krishnaraj et al. | Mar 2005 | B2 |
6878206 | Tzu et al. | Apr 2005 | B2 |
6879981 | Rothschild et al. | Apr 2005 | B2 |
6893967 | Wright et al. | May 2005 | B1 |
6903031 | Karim et al. | Jun 2005 | B2 |
6903511 | Chistyakov | Jun 2005 | B2 |
6908862 | Li et al. | Jun 2005 | B2 |
6911112 | An | Jun 2005 | B2 |
6911401 | Khandan et al. | Jun 2005 | B2 |
6921556 | Shimizu et al. | Jul 2005 | B2 |
6924191 | Liu et al. | Aug 2005 | B2 |
6942753 | Choi et al. | Sep 2005 | B2 |
6951821 | Hamelin et al. | Oct 2005 | B2 |
6958175 | Sakamoto et al. | Oct 2005 | B2 |
6958286 | Chen et al. | Oct 2005 | B2 |
6974780 | Schuegraf | Dec 2005 | B2 |
7017269 | White et al. | Mar 2006 | B2 |
7030034 | Fucsko et al. | Apr 2006 | B2 |
7049200 | Arghavani et al. | May 2006 | B2 |
7078312 | Sutanto et al. | Jul 2006 | B1 |
7081414 | Zhang et al. | Jul 2006 | B2 |
7084070 | Lee et al. | Aug 2006 | B1 |
7115525 | Abatchev et al. | Oct 2006 | B2 |
7122949 | Strikovski | Oct 2006 | B2 |
7148155 | Tarafdar et al. | Dec 2006 | B1 |
7166233 | Johnson et al. | Jan 2007 | B2 |
7183214 | Nam et al. | Feb 2007 | B2 |
7196342 | Ershov et al. | Mar 2007 | B2 |
7205240 | Karim et al. | Apr 2007 | B2 |
7223701 | Min et al. | May 2007 | B2 |
7226805 | Hallin et al. | Jun 2007 | B2 |
7253123 | Arghavani et al. | Aug 2007 | B2 |
7256370 | Guiver | Aug 2007 | B2 |
7288482 | Panda et al. | Oct 2007 | B2 |
7341633 | Lubomirsky et al. | Mar 2008 | B2 |
7390710 | Derderian et al. | Jun 2008 | B2 |
7396480 | Kao et al. | Jul 2008 | B2 |
7465358 | Weidman et al. | Dec 2008 | B2 |
7484473 | Keller et al. | Feb 2009 | B2 |
7488688 | Chung et al. | Feb 2009 | B2 |
7494545 | Lam et al. | Feb 2009 | B2 |
7581511 | Mardian et al. | Sep 2009 | B2 |
7628897 | Mungekar et al. | Dec 2009 | B2 |
7709396 | Bencher et al. | May 2010 | B2 |
7722925 | White et al. | May 2010 | B2 |
7785672 | Choi et al. | Aug 2010 | B2 |
7807578 | Bencher et al. | Oct 2010 | B2 |
7871926 | Xia et al. | Jan 2011 | B2 |
7910491 | Soo Kwon et al. | Mar 2011 | B2 |
7915139 | Lang et al. | Mar 2011 | B1 |
7939422 | Ingle et al. | May 2011 | B2 |
7968441 | Xu | Jun 2011 | B2 |
7981806 | Jung | Jul 2011 | B2 |
8008166 | Sanchez et al. | Aug 2011 | B2 |
8058179 | Draeger et al. | Nov 2011 | B1 |
8071482 | Kawada | Dec 2011 | B2 |
8074599 | Choi et al. | Dec 2011 | B2 |
8083853 | Choi et al. | Dec 2011 | B2 |
8187486 | Liu et al. | May 2012 | B1 |
8211808 | Sapre et al. | Jul 2012 | B2 |
8309440 | Sanchez et al. | Nov 2012 | B2 |
8328939 | Choi et al. | Dec 2012 | B2 |
8435902 | Tang et al. | May 2013 | B2 |
8491805 | Kushibiki et al. | Jul 2013 | B2 |
8642481 | Wang et al. | Feb 2014 | B2 |
20010008803 | Takamatsu et al. | Jul 2001 | A1 |
20010015261 | Kobayashi et al. | Aug 2001 | A1 |
20010028922 | Sandhu | Oct 2001 | A1 |
20010030366 | Nakano et al. | Oct 2001 | A1 |
20010034121 | Fu et al. | Oct 2001 | A1 |
20010041444 | Shields et al. | Nov 2001 | A1 |
20010055842 | Uh et al. | Dec 2001 | A1 |
20020011210 | Satoh et al. | Jan 2002 | A1 |
20020016080 | Khan et al. | Feb 2002 | A1 |
20020016085 | Huang et al. | Feb 2002 | A1 |
20020028585 | Chung et al. | Mar 2002 | A1 |
20020029747 | Powell et al. | Mar 2002 | A1 |
20020033233 | Savas | Mar 2002 | A1 |
20020036143 | Segawa et al. | Mar 2002 | A1 |
20020045966 | Lee et al. | Apr 2002 | A1 |
20020054962 | Huang | May 2002 | A1 |
20020069820 | Yudovsky | Jun 2002 | A1 |
20020098681 | Hu et al. | Jul 2002 | A1 |
20020124867 | Kim et al. | Sep 2002 | A1 |
20020177322 | Li et al. | Nov 2002 | A1 |
20020187280 | Johnson et al. | Dec 2002 | A1 |
20020187655 | Tan et al. | Dec 2002 | A1 |
20020197823 | Yoo et al. | Dec 2002 | A1 |
20030010645 | Ting et al. | Jan 2003 | A1 |
20030019428 | Ku et al. | Jan 2003 | A1 |
20030029566 | Roth | Feb 2003 | A1 |
20030029715 | Yu et al. | Feb 2003 | A1 |
20030032284 | Enomoto et al. | Feb 2003 | A1 |
20030038127 | Liu et al. | Feb 2003 | A1 |
20030038305 | Wasshuber | Feb 2003 | A1 |
20030054608 | Tseng et al. | Mar 2003 | A1 |
20030072639 | White et al. | Apr 2003 | A1 |
20030075808 | Inoue et al. | Apr 2003 | A1 |
20030077909 | Jiwari | Apr 2003 | A1 |
20030079686 | Chen et al. | May 2003 | A1 |
20030087531 | Kang et al. | May 2003 | A1 |
20030091938 | Fairbairn et al. | May 2003 | A1 |
20030098125 | An | May 2003 | A1 |
20030109143 | Hsieh et al. | Jun 2003 | A1 |
20030116087 | Nguyen et al. | Jun 2003 | A1 |
20030116439 | Seo et al. | Jun 2003 | A1 |
20030121608 | Chen et al. | Jul 2003 | A1 |
20030124465 | Lee et al. | Jul 2003 | A1 |
20030124842 | Hytros et al. | Jul 2003 | A1 |
20030129106 | Sorensen et al. | Jul 2003 | A1 |
20030129827 | Lee et al. | Jul 2003 | A1 |
20030132319 | Hytros et al. | Jul 2003 | A1 |
20030148035 | Lingampalli | Aug 2003 | A1 |
20030173333 | Wang et al. | Sep 2003 | A1 |
20030173347 | Guiver | Sep 2003 | A1 |
20030181040 | Ivanov et al. | Sep 2003 | A1 |
20030183244 | Rossman | Oct 2003 | A1 |
20030190426 | Padhi et al. | Oct 2003 | A1 |
20030199170 | Li | Oct 2003 | A1 |
20030221780 | Lei et al. | Dec 2003 | A1 |
20030224217 | Byun et al. | Dec 2003 | A1 |
20030224617 | Baek et al. | Dec 2003 | A1 |
20040005726 | Huang | Jan 2004 | A1 |
20040033678 | Arghavani et al. | Feb 2004 | A1 |
20040069225 | Fairbairn et al. | Apr 2004 | A1 |
20040070346 | Choi | Apr 2004 | A1 |
20040072446 | Liu et al. | Apr 2004 | A1 |
20040101667 | O'Loughlin et al. | May 2004 | A1 |
20040110354 | Natzle et al. | Jun 2004 | A1 |
20040115876 | Goundar et al. | Jun 2004 | A1 |
20040129224 | Yamazaki | Jul 2004 | A1 |
20040137161 | Segawa et al. | Jul 2004 | A1 |
20040154535 | Chen et al. | Aug 2004 | A1 |
20040175929 | Schmitt et al. | Sep 2004 | A1 |
20040182315 | Laflamme et al. | Sep 2004 | A1 |
20040192032 | Ohmori et al. | Sep 2004 | A1 |
20040194799 | Kim et al. | Oct 2004 | A1 |
20040211357 | Gadgil et al. | Oct 2004 | A1 |
20040219789 | Wood et al. | Nov 2004 | A1 |
20040245091 | Karim et al. | Dec 2004 | A1 |
20050001276 | Gao et al. | Jan 2005 | A1 |
20050003676 | Ho et al. | Jan 2005 | A1 |
20050009358 | Choi et al. | Jan 2005 | A1 |
20050026430 | Kim et al. | Feb 2005 | A1 |
20050026431 | Kazumi et al. | Feb 2005 | A1 |
20050035455 | Hu et al. | Feb 2005 | A1 |
20050048801 | Karim et al. | Mar 2005 | A1 |
20050090120 | Hasegawa et al. | Apr 2005 | A1 |
20050098111 | Shimizu et al. | May 2005 | A1 |
20050112901 | Ji et al. | May 2005 | A1 |
20050121750 | Chan et al. | Jun 2005 | A1 |
20050181588 | Kim | Aug 2005 | A1 |
20050199489 | Stevens et al. | Sep 2005 | A1 |
20050205110 | Kao et al. | Sep 2005 | A1 |
20050218507 | Kao et al. | Oct 2005 | A1 |
20050221552 | Kao et al. | Oct 2005 | A1 |
20050230350 | Kao et al. | Oct 2005 | A1 |
20050236694 | Wu et al. | Oct 2005 | A1 |
20050266622 | Arghavani et al. | Dec 2005 | A1 |
20050266691 | Gu et al. | Dec 2005 | A1 |
20050287771 | Seamons et al. | Dec 2005 | A1 |
20060000802 | Kumar et al. | Jan 2006 | A1 |
20060000805 | Todorow et al. | Jan 2006 | A1 |
20060019456 | Bu et al. | Jan 2006 | A1 |
20060019486 | Yu et al. | Jan 2006 | A1 |
20060024954 | Wu et al. | Feb 2006 | A1 |
20060024956 | Zhijian et al. | Feb 2006 | A1 |
20060033678 | Lubomirsky et al. | Feb 2006 | A1 |
20060046419 | Sandhu et al. | Mar 2006 | A1 |
20060046484 | Abatchev et al. | Mar 2006 | A1 |
20060051966 | Or et al. | Mar 2006 | A1 |
20060051968 | Joshi et al. | Mar 2006 | A1 |
20060093756 | Rajagopalan et al. | May 2006 | A1 |
20060102076 | Smith et al. | May 2006 | A1 |
20060130971 | Chang et al. | Jun 2006 | A1 |
20060166107 | Chen et al. | Jul 2006 | A1 |
20060166515 | Karim et al. | Jul 2006 | A1 |
20060185592 | Matsuura | Aug 2006 | A1 |
20060207504 | Hasebe et al. | Sep 2006 | A1 |
20060211260 | Tran et al. | Sep 2006 | A1 |
20060216923 | Tran et al. | Sep 2006 | A1 |
20060226121 | Aoi | Oct 2006 | A1 |
20060240661 | Annapragada et al. | Oct 2006 | A1 |
20060246217 | Weidman et al. | Nov 2006 | A1 |
20060251800 | Weidman et al. | Nov 2006 | A1 |
20060251801 | Weidman et al. | Nov 2006 | A1 |
20060252252 | Zhu et al. | Nov 2006 | A1 |
20060261490 | Su et al. | Nov 2006 | A1 |
20060264003 | Eun | Nov 2006 | A1 |
20060264043 | Stewart et al. | Nov 2006 | A1 |
20070071888 | Shanmugasundram et al. | Mar 2007 | A1 |
20070072408 | Enomoto et al. | Mar 2007 | A1 |
20070090325 | Hwang et al. | Apr 2007 | A1 |
20070099428 | Shamiryan et al. | May 2007 | A1 |
20070099431 | Li | May 2007 | A1 |
20070099438 | Ye et al. | May 2007 | A1 |
20070107750 | Sawin et al. | May 2007 | A1 |
20070108404 | Stewart et al. | May 2007 | A1 |
20070111519 | Lubomirsky et al. | May 2007 | A1 |
20070117396 | Wu et al. | May 2007 | A1 |
20070123051 | Arghavani et al. | May 2007 | A1 |
20070181057 | Lam et al. | Aug 2007 | A1 |
20070197028 | Byun et al. | Aug 2007 | A1 |
20070232071 | Balseanu et al. | Oct 2007 | A1 |
20070238321 | Futase et al. | Oct 2007 | A1 |
20070269976 | Futase et al. | Nov 2007 | A1 |
20070281106 | Lubomirsky et al. | Dec 2007 | A1 |
20080044990 | Lee | Feb 2008 | A1 |
20080081483 | Wu | Apr 2008 | A1 |
20080085604 | Hoshino et al. | Apr 2008 | A1 |
20080099431 | Kumar et al. | May 2008 | A1 |
20080115726 | Ingle et al. | May 2008 | A1 |
20080124919 | Huang et al. | May 2008 | A1 |
20080124937 | Xu et al. | May 2008 | A1 |
20080142483 | Hua et al. | Jun 2008 | A1 |
20080142831 | Su | Jun 2008 | A1 |
20080160210 | Yang et al. | Jul 2008 | A1 |
20080162781 | Haller et al. | Jul 2008 | A1 |
20080182381 | Kiyotoshi | Jul 2008 | A1 |
20080182382 | Ingle et al. | Jul 2008 | A1 |
20080230519 | Takahashi | Sep 2008 | A1 |
20080233709 | Conti et al. | Sep 2008 | A1 |
20080261404 | Kozuka et al. | Oct 2008 | A1 |
20080268645 | Kao et al. | Oct 2008 | A1 |
20080292798 | Huh et al. | Nov 2008 | A1 |
20090004849 | Eun | Jan 2009 | A1 |
20090017227 | Fu et al. | Jan 2009 | A1 |
20090045167 | Maruyama | Feb 2009 | A1 |
20090104738 | Ring et al. | Apr 2009 | A1 |
20090104764 | Xia et al. | Apr 2009 | A1 |
20090104782 | Lu et al. | Apr 2009 | A1 |
20090189246 | Wu et al. | Jul 2009 | A1 |
20090255902 | Satoh et al. | Oct 2009 | A1 |
20090275205 | Kiehlbauch et al. | Nov 2009 | A1 |
20090275206 | Katz et al. | Nov 2009 | A1 |
20090280650 | Lubomirsky et al. | Nov 2009 | A1 |
20100059889 | Gosset et al. | Mar 2010 | A1 |
20100075503 | Bencher et al. | Mar 2010 | A1 |
20100093151 | Arghavani et al. | Apr 2010 | A1 |
20100098884 | Balseanu et al. | Apr 2010 | A1 |
20100099236 | Kwon et al. | Apr 2010 | A1 |
20100099263 | Kao et al. | Apr 2010 | A1 |
20100105209 | Winniczek et al. | Apr 2010 | A1 |
20100144140 | Chandrashekar et al. | Jun 2010 | A1 |
20100173499 | Tao et al. | Jul 2010 | A1 |
20100187534 | Nishi et al. | Jul 2010 | A1 |
20100187588 | Kim et al. | Jul 2010 | A1 |
20100330814 | Yokota et al. | Dec 2010 | A1 |
20110008950 | Xu | Jan 2011 | A1 |
20110034035 | Liang et al. | Feb 2011 | A1 |
20110053380 | Sapre et al. | Mar 2011 | A1 |
20110081782 | Liang et al. | Apr 2011 | A1 |
20110143542 | Feurprier et al. | Jun 2011 | A1 |
20110151674 | Tang et al. | Jun 2011 | A1 |
20110151676 | Ingle et al. | Jun 2011 | A1 |
20110151677 | Wang et al. | Jun 2011 | A1 |
20110151678 | Ashtiani et al. | Jun 2011 | A1 |
20110159690 | Chandrashekar et al. | Jun 2011 | A1 |
20110165771 | Ring et al. | Jul 2011 | A1 |
20110195575 | Wang | Aug 2011 | A1 |
20110226734 | Sumiya et al. | Sep 2011 | A1 |
20110230052 | Tang et al. | Sep 2011 | A1 |
20110266252 | Thadani et al. | Nov 2011 | A1 |
20110294300 | Zhang et al. | Dec 2011 | A1 |
20120003782 | Byun et al. | Jan 2012 | A1 |
20120009796 | Cui et al. | Jan 2012 | A1 |
20120068242 | Shin et al. | Mar 2012 | A1 |
20120135576 | Lee et al. | May 2012 | A1 |
20120196447 | Yang et al. | Aug 2012 | A1 |
20120211462 | Zhang et al. | Aug 2012 | A1 |
20120238102 | Zhang et al. | Sep 2012 | A1 |
20120238103 | Zhang et al. | Sep 2012 | A1 |
20120285621 | Tan | Nov 2012 | A1 |
20120292664 | Kanike | Nov 2012 | A1 |
20120309204 | Kang et al. | Dec 2012 | A1 |
20130034968 | Zhang et al. | Feb 2013 | A1 |
20130045605 | Wang et al. | Feb 2013 | A1 |
20130052827 | Wang et al. | Feb 2013 | A1 |
20130052833 | Ranjan et al. | Feb 2013 | A1 |
20130059440 | Wang et al. | Mar 2013 | A1 |
20130089988 | Wang et al. | Apr 2013 | A1 |
20130119483 | Alptekin et al. | May 2013 | A1 |
20130260533 | Sapre et al. | Oct 2013 | A1 |
20130284369 | Kobayashi et al. | Oct 2013 | A1 |
20130284370 | Kobayashi et al. | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
1375575 | Oct 2002 | CN |
1412861 | Apr 2003 | CN |
101465386 | Jun 2009 | CN |
0329406 | Aug 1989 | EP |
0376252 | Jul 1990 | EP |
0475567 | Mar 1992 | EP |
0 496 543 | Jul 1992 | EP |
0 658 928 | Jun 1995 | EP |
0697467 | Feb 1996 | EP |
0913498 | May 1999 | EP |
1099776 | May 2001 | EP |
1107288 | Jun 2001 | EP |
1496542 | Jan 2005 | EP |
1568797 | Aug 2005 | EP |
2285174 | Jun 1995 | GB |
61-276977 | Dec 1986 | JP |
2058836 | Feb 1990 | JP |
02-121330 | May 1990 | JP |
02256235 | Oct 1990 | JP |
4-239750 | Jul 1992 | JP |
4-341568 | Nov 1992 | JP |
07-130713 | May 1995 | JP |
7-161703 | Jun 1995 | JP |
7297543 | Nov 1995 | JP |
08-306671 | Nov 1996 | JP |
09153481 | Jun 1997 | JP |
09-205140 | Aug 1997 | JP |
10-178004 | Jun 1998 | JP |
2010-154699 | Jun 1998 | JP |
11124682 | May 1999 | JP |
H11-204442 | Jul 1999 | JP |
2000-012514 | Jan 2000 | JP |
2001-308023 | Nov 2001 | JP |
2002-100578 | Apr 2002 | JP |
2002-141349 | May 2002 | JP |
2002-222861 | Aug 2002 | JP |
2003-019433 | Jan 2003 | JP |
2003-059914 | Feb 2003 | JP |
2003-179038 | Jun 2003 | JP |
2003-217898 | Jul 2003 | JP |
2003-318158 | Nov 2003 | JP |
2003-347278 | Dec 2003 | JP |
2004-047956 | Feb 2004 | JP |
2004-156143 | Jun 2004 | JP |
04-239723 | Aug 2004 | JP |
2005-033023 | Feb 2005 | JP |
2007-173383 | Jul 2007 | JP |
08-148470 | Jun 2008 | JP |
10-0155601 | Dec 1998 | KR |
10-0236219 | Dec 1999 | KR |
1020000008278 | Feb 2000 | KR |
2000-0044928 | Jul 2000 | KR |
2001-0014064 | Feb 2001 | KR |
10-2001-0049274 | Jun 2001 | KR |
10-2001-0058774 | Jul 2001 | KR |
10-2001-0082109 | Aug 2001 | KR |
1020030096140 | Dec 2003 | KR |
10-2004-0049739 | Jun 2004 | KR |
10-2004-0096365 | Nov 2004 | KR |
1020050042701 | May 2005 | KR |
10-0681390 | Sep 2006 | KR |
1020080063988 | Jul 2008 | KR |
10-2010-0013980 | Feb 2010 | KR |
10-2010-0074508 | Jul 2010 | KR |
10-1050454 | Jul 2011 | KR |
1020110126675 | Nov 2011 | KR |
1020120082640 | Jul 2012 | KR |
9220833 | Nov 1992 | WO |
9926277 | May 1999 | WO |
9954920 | Oct 1999 | WO |
9962108 | Dec 1999 | WO |
0013225 | Mar 2000 | WO |
0022671 | Apr 2000 | WO |
0194719 | Dec 2001 | WO |
02083981 | Oct 2002 | WO |
03014416 | Feb 2003 | WO |
2004006303 | Jan 2004 | WO |
2004074932 | Sep 2004 | WO |
2004114366 | Dec 2004 | WO |
2005036615 | Apr 2005 | WO |
2006069085 | Jun 2006 | WO |
2009071627 | Jun 2009 | WO |
2011087580 | Jul 2011 | WO |
2011115761 | Sep 2011 | WO |
2011139435 | Nov 2011 | WO |
2012018449 | Feb 2012 | WO |
2012125654 | Sep 2012 | WO |
Entry |
---|
Abe et al., “Developments of plasma etching technology for fabricating semiconductor devices,” Jpn. J. Appl. Phys., vol. 47, No. 3R, Mar. 2008, 21 pgs. |
Cho et al., “Dielectric-barrier microdischarge structure for effic ient positive-column plasma using a thick-film ceramic sheet,” IEEE Trans. Plasma Sci., vol. 37, No. 8, Aug. 2009, 4 pgs. |
Cho, T.S., “Dual Discharge Modes Operation of an Argon Plasma Generated by Commercial Electronic Ballast for Remote Plasma Removal Process,” IEEE Transactions on Plasma Science, vol. 42, No. 6, Jun. 2014, 4 pages. |
Cho et al., “Three-dimensional spatiotemporal behaviors of light emission from discharge plasma of alternating current plasma display panels,” Appl. Phys. Lett. , vol. 92, No. 22, Jun. 2008, 3pgs. |
Cho et al., “Analysis of address discharge modes by using a three-dimensional plasma display panel,” IEEE Trans. Plasma Sci. , vol. 36, Oct. 2008, 4 pgs. |
C.K. Hu, et al. “Reduced Electromigration of Cu Wires by Surface Coating” Applied Physics Letters, vol. 81, No. 10, Sep. 2, 2002—pp. 1782-1784. |
European Search Report dated May 23, 2006 for EP Application No. 05251143.3. |
European Examination Report dated Nov. 13, 2007 for EP Application No. 05251143.3. |
EP Partial Search Report, Application No. 08150111.601235/1944796, dated Aug. 22, 2008. |
Eze, F. C., “Electroless deposition of CoO thin films,” J. Phys. D: Appl. Phys. 32 (1999), pp. 533-540. |
Galiano et al. “Stress-Temperature Behavior of Oxide Films Used for Intermetal Dielectric Applications”, VMIC Conference, Jun. 9-10, 1992, pp. 100-106. |
Goebels, F.J. et al. “Arbitrary Polarization from Annular Slot Planar Antennas.” Ire Transactions on Antennas and Propagation, Jul. 1961, 8 pgs. |
Iijima, et al., “Highly Selective SiO2 Etch Employing Inductively Coupled Hydro-Fluorocarbon Plasma Chemistry for Self Aligned Contact Etch”, Jpn. J. Appl. Phys., Sep. 1997, pp. 5498-5501, vol. 36, Part 1, No. 9A. |
International Search Report of PCT/US2009/059743 mailed on Apr. 26, 2010, 4 pages. |
International Search Report of PCT/US2012/061726 mailed on May 16, 2013, 3 pages. |
International Search Report of PCT/2013/052039 mailed on Nov. 8, 2013, 9 pages. |
International Search Report of PCT/2013/037202 mailed on Aug. 23, 2013, 11 pages. |
Kim et al., “Pendulum electrons in micro hollow cathode di scharges,” IEEE Trans. Plasma Sci. , vol. 36, No. 4, pp. Aug. 2008, 2 pgs. |
Lin, et al., “Manufacturing of Cu Electroless Nickel/Sn-Pb Flip Chip Solder Bumps”, IEEE Transactions on Advanced Packaging, vol. 22, No. 4 (Nov. 1999), pp. 575-579. |
Lopatin, et al., “Thin Electroless barrier for copper films”, Part of the SPIE Conference of Multilevel Interconnect technology II, SPIE vol. 3508 (1998), pp. 65-77. |
Musaka, “Single Step Gap Filling Technology fo Subhalf Micron Metal Spacings on Plasma Enhanced TEOS/O2 Chemical Vapor Deposition System,” Extended Abstracts of the 1993 International Conference on Solid State Devices and Materials pages, 1993, 510-512. |
Pearlstein, Fred. “Electroless Plating,” J. Res. Natl. Bur. Stan., Ch. 31 (1974), pp. 710-747. |
Redolfi et al., “Bulk FinFET fabrication with new approaches for oxide topography control using dry removal techniques,” Solid-State Electron., vol. 71, May 2012, 7 pgs. |
Saito, et al., “Electroless deposition of Ni—B, Co—B and Ni—Co—B alloys using dimethylamineborane as a reducing agent,” Journal of Applied Electrochemistry 28 (1998), pp. 559-563. |
Schacham-Diamond, et al., “Electrochemically deposited thin film alloys for ULSI and MEMS applications,” Microelectronic Engineering 50 (2000), pp. 525-531. |
Schoenbach et al.,“High-pressure hollow cathode di scharges,” Plasma Sources Sci. Te chnol., vol. 6, No. 4, Nov. 1997, 10 pgs. |
Smayling, et al., “APF® Pitch-Halving for 2nm Logic Cells using Gridded Design Rules”, proceedings of the SPIE, 2008, 8 pages. |
Vassiliev, et al., “Trends in void-free pre-metal CVD dielectrics,” Solid State Technology, Mar. 2001, pp. 129-136. |
Weston, et al., “Ammonium Compounds,” Kirk-Othmer Encyclopedia of Chemical Technology, 2003, 30 pages see pp. 717-718, John Wiley & Sons, Inc. |
Yasaka, Y. et al. “Planar microwave discharges with active control of plasma uniformity”. Physics of Plasmas, vol. 9 No. 3, Mar. 2002, 7 pgs. |
Yosi Shacham-Diamond, et al. “High Aspect Ratio Quarter-Micron Electroless Copper Integrated Technology”, Microelectronic Engineering 37/38 (1997) pp. 77-88. |
Abraham, “Reactive Facet Tapering of Plasma Oxide for Multilevel Interconnect Applications”, IEEE, V-MIC Conference, Jun. 15-16, 1987, pp. 115-121. |
Applied Materials, Inc., “Applied Siconi™ Preclean,” printed on Aug. 7, 2009, 8 pages. |
Carlson, et al., “A Negative Spacer Lithography Process for Sub-100nm Contact Holes and Vias”, University of California at Berkeley, Jun. 19, 2007, 4 pp. |
Chang et al. “Frequency Effects and Properties of Plasma Deposited Fluorinated Silicon Nitride”, J. Vac Sci Technol B 6(2), Mar./Apr. 1988, pp. 524-532. |
Cheng, et al., “New Test Structure to Identify Step Coverage Mechanisms in Chemical Vapor Deposition of Silicon Dioxide,” Appl. Phys. Lett., 58 (19), May 13, 1991, p. 2147-2149. |
Examination Report dated Jun. 28, 2010 for European Patent Application No. 05251143.3. I. |
Fukada et al., “Preparation of SiOF Films with Low Dielectric Constant by ECR Plasma CVD,” ISMIC, DUMIC Conference, Feb. 21-22, 1995, pp. 43-49. |
Hashim et al., “Characterization of thin oxide removal by RTA Treatment,” ICSE 1998 Proc. Nov. 1998, Rangi, Malaysia, pp. 213-216. |
Hausmann, et al., “Rapid Vapor Deposition of Highly Conformal Silica Nanolaminates,” Science, Oct. 11, 2002, p. 402-406, vol. 298. |
Hayasaka, N. et al. “High Quality Low Dielectric Constant SiO2 CVD Using High Density Plasma,” Proceedings of the Dry Process Symposium, 1993, pp. 163-168. |
Hwang et al., “Smallest Bit-Line Contact of 76nm pitch on NAND Flash Cell by using Reversal PR (Photo Resist) and SADP (Self-Align Double Patterning) Process,” IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 2007, 3 pages. |
International Search Report and Written Opinion of the International Searching Authority mailed Jul. 3, 2008 (PCT/US05/46226). |
International Search Report and Written Opinion for PCT Application No. PCT/US2011/027221, mailed on Nov. 1, 2011, 8 pages. |
International Search Report and Written Opinion of PCT/US2010/057676 mailed on Jun. 27, 2011, 9 pages. |
International Search Report and Written Opinion of PCT/US2011/030582 mailed Dec. 7, 2011, 9 pages. |
International Search Report and Written Opinion of PCT/US2011/064724 mailed on Oct. 12, 2012, 8 pages. |
International Search Report and Written Opinion of PCT/US2012/028952 mailed on Oct. 29, 2012, 9 pages. |
International Search Report and Written Opinion of PCT/US2012/048842 mailed on Nov. 28, 2012, 10 pages. |
International Search Report and Written Opinion of PCT/US2012/053329 mailed on Feb. 15, 2013, 8 pages. |
International Search Report and Written Opinion of PCT/US2012/057294 mailed on Mar. 18, 2013, 12 pages. |
International Search Report and Written Opinion of PCT/US2012/057358 mailed on Mar. 25, 2013, 10 pages. |
International Search Report and Written Opinion of PCT/US2012/058818 mailed on Apr. 1, 2013, 9 pages. |
International Search Report and Written Opinion of the International Searching Authority for PCT Application No. PCT/US2012/028957, mailed on Oct. 18, 2012, 9 pages. |
International Search report and Written Opinion of PCT/CN2010/000932 dated Mar. 31, 2011, 8 pages. |
Japanese Patent Office, Official Action for Application No. 2007-317207 mailed on Dec. 21, 2011, 2 pages. |
International Search Report and Written Opinion of PCT/US2013/076217 mailed on Apr. 28, 2014, 11 pages. |
Jung, et al., “Patterning with amorphous carbon spacer for expanding the resolution limit of current lithography tool”, Proc. SPIE, 2007, 9 pages, vol. 6520, 65201C. |
Laxman, “Low ∈ Dielectrics: CVD Fluorinated Silicon Dioxides”, Semiconductor International, May 1995, pp. 71-74. |
Lee, et al., “Dielectric Planarization Techniques For Narrow Pitch Multilevel Interconnects,” IEEE, V-MIC Conference Jun. 15-16, 1987, pp. 85-92 (1987). |
Matsuda, et al. “Dual Frequency Plasma CVD Fluorosilicate Glass Deposition for 0.25 um Interlevel Dielectrics”, ISMIC, DUMIC Conference Feb. 21-22, 1995, pp. 22-28. |
Meeks, Ellen et al., “Modeling of SiO2 deposition in high density plasma reactors and comparisons of model predictions with experimental measurements,” J. Vac. Sci. Technol. A, Mar./Apr. 1998, pp. 544-563, vol. 16(2). |
Mukai, et al., “A Study of CD Budget in Spacer Patterning Process”, Toshiba, SPIE 2008, Feb. 26, 2008, 12 pages. |
Nishino, et al.; Damage-Free Selective Etching of SI Native Oxides Using NH3/NF3 and SF6/H20 Down-Flow Etching, The Japanese Society of Applied Physics, vol. 74, No. 2, pp. 1345-1348, XP-002491959, Jul. 15, 1993. |
Ogawa, et al., “Dry Cleaning Technology for Removal of Silicon Native Oxide Employing Hot NH3/NF3 Exposure”, Japanese Journal of Applied Physics, pp. 5349-5358, Aug. 2002, vol. 41 Part 1, No. 8. |
Ota, et al., “Stress Controlled Shallow Trench Isolation Technology to Suppress the Novel Anti-Isotropic Impurity Diffusion for 45nm-Node High Performance CMOSFETs,” Symposium on VLSI Technology Digest of Technical Papers, 2005, pp. 138-139. |
Qian, et al., “High Density Plasma Deposition and Deep Submicron Gap Fill with Low Dielectric Constant SiOF Films,” ISMIC, DUMIC Conference Feb. 21-22, 1995, 1995, pp. 50-56. |
Robles, et al. “Effects of RF Frequency and Deposition Rates on the Moisture Resistance of PECVD TEOS-Based Oxide Films”, ECS Extended Abstracts, Abstract No. 129, May 1992, pp. 215-216, vol. 92-1. |
Shapiro, et al. “Dual Frequency Plasma CVD Fluorosilicate Glass: Water Absorption And Stability”, ISMIC, DUMIC Conference Feb. 21-22, 1995, 1995. pp. 118-123. |
C.C. Tang and D. W. Hess, Tungsten Etching in CF4 and SF6 Discharges, J. Electrochem. Soc., 1984, 131 (1984) p. 115-120. |
Usami, et al., “Low Dielectric Constant Interlayer Using Fluorine-Doped Silicon Oxide”, Jpn. J. Appl. Phys., Jan. 19, 1994. pp. 408-412, vol. 33 Part 1, No. 1B. |
Wang et al.; Ultra High-selectivity silicon nitride etch process using an inductively coupled plasma source; J. Vac. Sci. Techno!. A 16(3), May/Jun. 1998, pp. 1582-1587. |
Wolf et al.; Silicon Processing for the VLSI Era; vol. 1; 1986; Lattice Press, pp. 546, 547, 618, 619. |
Yang, R., “Advanced in situ pre-Ni sillicide (Siconi) cleaning at 65 nm to resolve defects in NiSix modules,”J. Vac. Sci., Technol. B, Microelectron. Nanometer Struct., vol. 28, No. 1, Jan. 2010, 6 pgs. |
Yasuda et al., “Dual-function remote plasma etching/cleaning system applied to selective etching of Si02 and removal of polymeric residues,” J. Vac. Sci. Technol., A, vol. 11, No. 5, 1993, 12 pgs. |
Yu, et al., “Step Coverage Study of Peteos Deposition for Intermetal Dielectric Applications,” abstract, VMIC conference, Jun. 12-13, 1990, 7 pages, No. 82. |
Yutaka, et al., “Selective Etching of Silicon Native Oxide with Remote-Plasma-Excited Anhydrous Hydrogen Fluoride,” Japanese Journal of Applied Physics, 1998, vol. 37, pp. L536-L538. |
Number | Date | Country | |
---|---|---|---|
20150031211 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
61539279 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13624724 | Sep 2012 | US |
Child | 14484152 | US |