The invention relates to mass spectrometry, and in particular to methods of optimizing operating parameters of mass spectrometers.
In tandem mass spectrometry (MS/MS), a mass spectrometer is used to isolate an ion species of interest, selectively excite and fragment the isolated ions, and detect daughter ions resulting from the fragmentation. The fragmentation process, commonly achieved by collision-induced dissociation, or CID, may be performed by applying a dipolar sine wave across the endcaps of a quadrupole ion trap. The properties of an applied CID voltage waveform may affect the efficiency of the CID process.
In U.S. Pat. No. 6,124,591, Schwartz et al. describe a method of generating product ions in a quadrupole ion trap. The amplitude of the applied excitation voltage for an ion of a given mass-to-charge ratio (m/z) is linearly related to the mass-to-charge ratio.
According to one aspect, a mass spectrometry method comprises selecting a collision-induced-dissociation (CID) voltage amplitude according to a q parameter value for a parent ion; and inducing a fragmentation of the parent ion by applying a CID voltage having the CID voltage amplitude to an ion trap holding the parent ion.
According to another aspect, a mass spectrometry method comprises determining a q parameter value and a collision-induced dissociation (CID) voltage amplitude value according to a mass-to-charge ratio of a parent ion to optimize an efficiency of a fragmentation of the parent ion; and inducing the fragmentation of the parent ion according to the q parameter value and the CID voltage amplitude value.
According to another aspect, a mass spectrometry method comprises selecting a collision-induced-dissociation (CID) voltage amplitude for a parent ion according to a mass-to-charge ratio of a parent ion and an ion trap drive voltage indicator; and inducing a fragmentation of the parent ion according to the CID voltage amplitude and the ion trap drive voltage indicator.
According to another aspect, a mass spectrometry apparatus comprises a quadrupole ion trap including a central ring electrode and a pair of endcap electrodes disposed on opposite sides of the central ring electrode, and a mass spectrometer controller connected to the ion trap. The mass spectrometer controller is configured to select a collision-induced-dissociation (CID) voltage amplitude according to a q parameter value for a parent ion and a mass-to-charge ratio for the parent ion; trap the parent ion in the ion trap by applying a drive voltage according to the q parameter value to the central ring electrode; and while trapping the parent ion, induce a fragmentation of the parent ion by applying a CID voltage having the CID voltage amplitude across the endcap electrodes.
The foregoing aspects and advantages of the present invention will become better understood upon reading the following detailed description and upon reference to the drawings where:
In the following description, a set of elements includes one or more elements. Any reference to an element is understood to encompass one or more elements. Unless otherwise stated, any recited electrical or mechanical connections can be direct connections or indirect connections through intermediary structures. It is understood that all references to parameters encompass references to indicators for the parameters.
The following description illustrates embodiments of the invention by way of example and not necessarily by way of limitation.
The electrodes of ion trap 24 are electrically connected to a control unit 50. Control unit 50 includes voltage generating circuitry for applying a set of RF/DC voltages as described below, as well as a programmed general-purpose computer controlling the magnitudes, frequencies, and durations of the applied voltages. Control unit 50 is also connected to detector 34, and receives measurement data for display to a user. Control unit 50 applies an RF drive (trap) voltage Vdrive to ring electrode 30, and an RF CID voltage VCID across endcap electrodes 26a-d. The frequencies and amplitudes of the voltages depend on the instrument and ions of interest. In exemplary embodiments, drive voltages Vdrive have frequencies on the order of hundreds of kHz to MHz, e.g. about 1 MHz, and amplitudes on the order of tens to thousands of Volts, e.g. 50-7,000 V, while CID voltages VCID have frequencies on the order of tens to hundreds of kHz, e.g. about 240 kHz, and amplitudes on the order of Volts to tens of Volts, e.g. 0-7 V.
Detected fragment ion signals depend on the efficiency of the ion fragmentation process. The ion fragmentation process depends on collision-induced dissociation driven by the CID voltage applied across endcap electrodes 26a-b. The CID frequency is chosen to be nominally in resonance with the axial motion of the analyte ion within ion trap 24. The CID voltage has the net effect of increasing the instantaneous kinetic energy of the ions of interest. The ions of interest collide with the surrounding damping gas, and fragment into daughter ions as a result. The efficiency of the fragmentation process may be the limiting factor determining the detection limit for a daughter ion analyte.
The efficiency of the fragmentation process depends on a number of factors, including the pressure of the damping gas, the amplitude and duration of the CID voltage, and on properties of the analyte, ion trap and drive voltage. A relationship between the properties of the analyte, the ion trap and the drive voltage can be defined by the q parameter, which is a dimensionless parameter indicating whether a given analyte is stably trapped in the ion trap:
wherein m is the mass of the analyte, z is the charge of the analyte, r0 and z0 are the trap dimensions shown in
In some embodiments, CID amplitude and q parameter values are set to optimize daughter ion signals, as described in detail below. In particular, for a given m/z ratio, q parameter and CID amplitude values are chosen according to a predetermined table or analytical expression, and ion fragmentation is performed according to the selected values. The table or analytical expression are predetermined for a given instrument, and are implemented by control unit 50.
A detailed study was performed to analyze detected daughter ion intensities for a particular mass-to-charge (m/z) ratio and varying values of CID amplitude and q parameter. The data was collected by examining the relationship between daughter ion intensity and CID amplitude for a number of q values.
Predetermined relationships between ion m/z and corresponding optimal q and CID amplitude values are preferably generated in an initialization/calibration process, and are stored by control unit 50. Following user entry of a given m/z ratio, control unit 50 retrieves stored values of q and CID amplitude, and controls the ion fragmentation process accordingly. The optimal values may be stored in one or more look-up tables or as a set of analytical relationships, as described below.
It was experimentally determined that, for an exemplary Varian Inc. 500-MS ion trap spectrometer, an optimal q value can be related to parent ion mass by the relation:
q=2.98M−0.417+(7.69e−5)M [2]
wherein M=m/z is the mass-to-charge ratio with the mass expressed in daltons. Predictive relations similar to eq. [2] may be determined empirically for other instruments, for example for instruments using different ion trap designs.
In some embodiments, a predictive equation such as eq. [2] is used to generate an optimal q value from a user-entered parent mass value m. A correspondence between m and q values may also be established by a look-up table.
A relationship between an optimal CID amplitude and m and q values may be difficult to express analytically, and may be approximated as a power series. Eq. [3] shows an empirically-determined expression for Vcid as a function of M and q:
The constants in eq. [3] were determined empirically for an exemplary Varian Inc. 500-MS ion trap spectrometer. Other constants may be determined empirically for other instruments.
In some embodiments, a predictive equation such as eq. [3] is used to generate a Vcid value for a user-entered m value and a q value determined as described above. A correspondence between Vcid and m and q values may also be established by a look-up table.
In some embodiments, a user may force a different q value than an system-generated q value. Eq. [3] or a corresponding look-up table may then be used to generate a CID voltage amplitude using the provided m and q values. Forcing q to a particular value may be desirable in order to ensure a particular mass range is trapped. For example, a user wishing to look at a relatively low mass range may wish to force q lower than suggested by eq. [2].
A q-dependent CID voltage selection method as described above was compared with a q-independent method in which a CID voltage is selected as a linear function of mass-to-charge values. The comparison was performed for parent ion masses of 74 and 1822. FIGS. 6-A-B show the results of the comparisons.
VCID=0.0019M+0.5134. [4]
Tables 1-A and 1-B show q, CID and fragment intensity improvement data corresponding to FIGS. 6-A and 6-B respectively:
For the data of Table 1-A and
Using both parent ion mass (or mass-to-charge ratio) and q parameter values to optimize CID parameters such as the CID voltage amplitude reflects an observation that the CID process is affected by ion stability (reflected in the parent ion mass), as well as the ion excitation process (reflected by the q parameter). Ion stability depends on the mass and chemical structure of the parent ion. Generally, parent ions having larger masses tend to have higher numbers of chemical bonds; if collision energy is distributed between multiple bonds, higher number of bonds generally means that higher collision energies are required to break a given bond. The energy resulting from collisions between ions and a surrounding charge-neutral gas (e.g. Helium) depends on the trap geometry and voltage. The relationship between collision energy and trap geometry and voltage may be relatively complex and difficult to characterize. Empirically-determined calibration data, stored as a table or a set of analytical expressions, may be particularly suited for setting CID voltages according to trap electrical parameters.
Eq. [1] above shows the relationship between q and the trap voltage for a given parent ion mass-to-charge ratio and trap voltage frequency. In some embodiments, a trap voltage may be used as an indicator of a q parameter value. Similarly, other proxies for q may be used as indicators of q parameter values.
The above embodiments may be altered in many ways without departing from the scope of the invention. Accordingly, the scope of the invention should be determined by the following claims and their legal equivalents.