This invention relates to desorbing analytes from solid or liquid sample surface with laser and ionizing the desorbed or vaporized analytes with UV lamp under ambient conditions in order to perform mass analysis of the analytes. At the same time this invention also involves combining the method described above and another direct analysis method with the aim of further increasing the ionization efficiency of analytes in different chemical classes.
With the widespread use of mass spectrometry in the fields of food safety, pharmaceutical research and biochemical applications, it has become increasingly important to be able to mass analyze samples directly under atmospheric conditions for rapid identification of unknown samples.
The emergence of electrospray ionization (ESI) and atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) have partially solved the issue for ionizing analytes in the liquid and solid form, respectively, under atmospheric pressure. However, to analyze samples from solid surface by AP-MALDI a certain matrix has to be pre-mixed with the analytes on the surface, which makes it difficult for rapid screening of large quantity of solid samples. In order to overcome this limitation many direct analysis methods for solid samples based upon various principles have been proposed and verified. Science, 2004, 306, 471-273. introduced the first direct analysis method which involves using electrosprayed droplets to desorb/ionize solid samples directly from surface and send the ions formed into a mass spectrometer. The speed and simplicity of this method greatly enhanced the applicability of mass spectrometry to direct analysis in field.
Soon after the DESI technique was announced, several other direct analysis methods also achieved success. For example, Anal. Chem. 2005, 77, 2297-2302. introduced a method called direct analysis in real time (DART) which replaced the electrosprayed droplets with metastable He atoms as the means to desorb analytes from solid surface. In some other related examples as described in the U.S. Pat. Appl. 20070187589 and Anal. Chem. 2007, 79, 7867-7872, methods such as desorption atmospheric pressure chemical ionization (DAPCI) and desorption atmospheric pressure photoionization (DAPPI) have been described, respectively. The latter two methods complement the DESI method to some extend due to their capability for ionization relatively less polar species.
However, the methods mentioned above all use either molecular or ion beam to desorb analytes from surface, and therefore it is very difficult to control the area of desorption and to perform chemical imaging of the sample surface. To overcome this limitation Rapid Commun. Mass Spectrom. 2005, 19, 3701-3704. introduced an electrospray assisted laser desorption (ELDI) method which greatly enhanced the spatial resolution of the sampling process by using laser as the desorption means. In this method the sampling area limited by the size of the laser spot can be accurately defined. At the same time, the electrospray process involved in this technique is advantageous for analyzing polar species. A similar technique described in Rapid Commun. Mass Spectrom. 2002, 16, 681-685. also used laser as desorption means but used chemical ionization to ionize the desorbed analytes in the gas phase, which is complementary to the ELDI technique since it is suitable for analyzing less polar and relatively small molecules. Nevertheless, the non-polar analytes in the atmosphere still remained to be ionized more efficiently by photoionization, since high energy photons can directly ionize the analytes in the gas phase without charge transfer process. While the DAPPI technique uses UV photons for ionization, again the heated gas stream as desorption means lacks high spatial resolution for chemical imaging application.
Although a Chinese Pat. publication CN101216459A has described a technique involving laser desorbing and post UV ionizing analytes from surface, the entire process in this method occurred in the vacuum. This largely limits the use of the ion source for the goal of direct analysis due to the slow and inconvenient process of vacuum loading.
One of the goals of this invention is to combine the merits of the laser desorption and the photoionization techniques so that the laser based ionization methods can cover a broader range of chemical classes. At the same time, this invention will circumvent the limitation of the slow vacuum loading process by performing all the ionization process under ambient conditions. Another goal of this invention is to combine the laser desorption photoionization method described in this invention with ELDI with the aim of analyzing chemicals in different classes simultaneously, by which frequent switching among different types of ion sources can be avoided.
A goal of this invention is to provide a desorption/ionization source for direct analysis of samples on surface under ambient conditions for mass spectrometers. The source includes a laser and related laser focusing optics for sample desorption with high spatial resolution, a UV lamp nearby for ionizing the desorbed analytes, especially non-polar analytes, and an inlet to a mass spectrometer for transferring the analyte ions.
Another goal of this invention is to provide a combined ionization source for direct analysis of samples on surface under ambient conditions for mass spectrometers. The source includes a laser and some related laser focusing optics for sample desorption, a UV lamp nearby for ionizing the desorbed species, an electrospray source for generating solvent droplets and transferring solvent vapor in the region above the desorption area in order to improve the ionization efficiency of some analytes, and an inlet to a mass spectrometer for transferring the analyte ions.
In one of the operating modes of this invention, the solvent vapor transferred by the electrospray source was excited or ionized by the UV radiation from the UV lamp, and the excited or ionized solvent species will then ionize the desorbed or vaporized analytes by charge transfer or Penning processes. With the addition of the solvent species from the small hollow tube the efficiency of the photoionization process can be enhanced significantly, especially for those analytes with ionization energy higher than the energy of the UV photons.
Whereas in another operating mode of this invention, the charged droplets generated at the tip of the electrospray source can be combined with the desorbed or vaporized analyte molecules in order to enhance the ionization efficiency for polar analyte molecules.
Another goal of this invention is to provide a method of desorbing/vaporizing samples gradually from surface by controlling the laser output power in order to provide one more dimension of separation for complex sample mixtures.
Furthermore, another goal of this invention is to provide a specific design for desorption/ionization of sample from surface under ambient conditions for mass spectrometers. The source includes a chamber composed of an optical system, a UV lamp, an electrospray source, a corona discharge needle and an inlet to a mass spectrometer. The optical system is for focusing the laser onto the surface of the sample in order to desorb or vaporize the analytes. The UV radiation from the UV lamp will cause ionization of at least a portion of the desorbed or vaporized analytes. The electrospray source will enhance the ionization efficiency of at least a portion of the analytes by supplying either solvent droplets or solvent vapor in the region above the desorption area. The ionized analytes will then be transferred to a mass spectrometer through the inlet.
The laser used for desorption/vaporization in this invention can be small and low cost diode IR laser.
The desorption/ionization source described in this invention can further include a mobile sample holder for scanning the sample surface with the laser.
The current invention is ideal for desorbing/ionizing analytes either in the solid or liquid form on the surface under ambient conditions. This process can be achieved by using laser as the desorption means and using either UV lamp or UV combined with electrospray as the ionization means, and the latter can more efficiently ionize different components in a mixture of different analytes.
As shown in
The UV lamp used for ionization is a vacuum UV (VUV) lamp 6 with shorter than 200 nm wavelength. The energy of the emitted photons from the VUV lamp ranges from 10 to 12 eV. Photons at this energy range will be strongly absorbed by oxygen in the atmosphere; therefore the photons can only travel a very short distance in the atmosphere before they are depleted. Consequently the front of the VUV lamp has to be mounted inside the ion source chamber (but not blocking the laser for desorption) to facilitate ionization of the desorbed species in the chamber.
The electrospray system used for assisting ionization process includes an electrospray needle 12, nebulizing capillary 8, and a high voltage power supply 13. The solvent 10 used for electrospray can be the same as normal electrospray solvent such as a mixture of methanol and water. The nebulizing gas used can be nitrogen or other common gas. The voltage is ideal to be controlled between 3 and 5 kV for normal operation of electrospray.
One important issue when using chamber type design is the memory effect. Since the space in the chamber is small and enclosed and therefore the excessive species will still stay in the region for a period of time after the analysis. Hence a purging system is implemented in the chamber as shown in
Samples can be placed on the mobile sample holder 14 during the process of analysis. Alternatively, the sample can also be held by forceps and positioned near the sampling orifice at the bottom of the ion source chamber. No matter which way of sample holding is adopted, the sample surface need to be as close as possible to the sampling orifice so as to facilitate the entrance of ions into the ion source chamber 17.
For the first operating mode of the ion source, namely the mode of laser desorption/photoionization, the process is described as follows. When the laser desorbed species entered the ion source chamber 17, some of them will be ionized by the UV photons emitted by the VUV lamp. However, the VUV photon energy is not always high enough for directly ionize any analytes, and the transmission of the VUV photons is very limited in the atmosphere. Hence, dopant gas such as toluene is frequently needed for indirectly ionizing the analytes through charge transfer processes (refer to Anal. Chem. 2000, 72, 3653-3659. Therefore, another goal of the electrospray source is to introduce the dopant gas or vapor (also referred as solvent gas in this invention). The procedure can be realized by introducing liquid dopant such as toluene through solvent channel 9, or introducing gas dopants such as methane through nebulizing capillary. As a result, the ion source working under this mode can directly or indirectly (through charge transfer) ionize desorbed analytes, and therefore it is very suitable for ionizing less polar or even non-polar molecules.
Note that compared with the DAPPI and many other direct analysis methods operated in the open space under ambient conditions, this embodiment adopts a compact chamber design and therefore the local concentration of the analytes can be higher.
Nevertheless, the real samples are normally complex mixtures of multiple components. The molecular weight and polarity of each component can be significantly different. In order to enhance the ionization efficiency of larger and highly polar analyte molecules such as proteins and peptides in the mixture, the electrospray generated droplets can fuse with these polar molecules in the gas phase (desorbed by the laser) and transfer charges to them thereafter. Thus the capability of the source for ionizing mixture can be very high when both VUV lamp and ESI are turned on at the same time.
Therefore, the second operating mode of the ion source is to use laser to desorb or vaporize samples from surface first and then to use VUV and electrospray to ionize the analytes simultaneously. In this mode the electrospray source has dual functions—providing electrosprayed droplets for fusing with the gaseous analytes and for providing dopant gas for assisting photoionization.
Since the source can ionize a broad range of chemicals in the second operating mode, it becomes viable to analyze a complex sample mixture with the source. In order to more efficiently separating analytes in a complex mixture, the laser power can be gradually increased so that species with low threshold desorption/vaporization temperature will come out first whereas those with high threshold temperature will come out later. Therefore, a separation process is implemented before mass analysis, which is important for decreasing signal suppression and peak congestion. The power output of the laser can be controlled in two ways. For those continuous wave laser such as diode laser, the laser beam can be chopped electrically by modulating the power supply of the laser. By controlling both the duty cycle and the repetition rate of the modulation process, the power output of the laser can be varied. For those pulsed laser such as nitrogen laser, the power output can be varied by changing the attenuation ratio of the neutral density filter used for laser power adjustment. In this case, the rotation speed of the wheel of a neutral density filter can be controlled by a computer through a motor.
As mentioned above, the spatial resolution of the source for desorption is much higher when using laser rather than electrosprayed droplets as the desorption means as in the desorption electrospray ionization (DESI) method. This feature makes it suitable for chemical imaging under atmospheric pressure. To perform an imaging experiment, a mobile sample holder 14 with three degrees of freedom (X, Y, and Z) is mounted at the bottom of the source near the entrance, and the movement of the holder on each axis can be controlled by a computer through a step motor. The mass spectrometer can record the chemical information (mass to charge ratio) of each point scanned when the sample holder is moved relative to the laser spot. After consolidating the chemical information for all the points, an image of the surface with information of mass distribution can be recovered.
Also note that although this invention and the one described in the Chinese Pat. Publication CN101216459A both involve laser desorption and UV ionization of samples on surface, the main difference between the two is that the source in the current invention operates under ambient conditions whereas the other one operates in the vacuum. The capability of operating the source in the atmosphere can greatly enhance the sampling speed since no vacuum loading process is needed. Furthermore, liquid samples are easier to be analyzed under the ambient conditions since they would evaporate rapidly once loaded into a vacuum chamber.
While the present invention has been described above in terms of specific embodiments, it is anticipated that alterations and deviations to this invention will no doubt become apparent to those skilled in the art. For example, the pressure in the ion source may deviate from one atmosphere due to the pumping of the gas at the inlet of the mass spectrometer. Additionally, while the current invention only incorporates photoionization and electrospray as the post ionization methods, it can be readily expected that other post ionization methods such as chemical ionization can be integrated into this source in order to further increase the versatility of the source for various samples.
Number | Name | Date | Kind |
---|---|---|---|
4564355 | Traiger et al. | Jan 1986 | A |
20030052268 | Doroshenko et al. | Mar 2003 | A1 |
20040129876 | Franzen | Jul 2004 | A1 |
20040174425 | Akamatsu | Sep 2004 | A1 |
20050197655 | Telfair et al. | Sep 2005 | A1 |
20060097143 | Franzen | May 2006 | A1 |
20070187589 | Cooks et al. | Aug 2007 | A1 |
20080296485 | Benter et al. | Dec 2008 | A1 |
20090272892 | Vertes et al. | Nov 2009 | A1 |
20100012831 | Vertes et al. | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
101216459 | Jul 2008 | CN |
Number | Date | Country | |
---|---|---|---|
20110049352 A1 | Mar 2011 | US |