Information
-
Patent Grant
-
6759652
-
Patent Number
6,759,652
-
Date Filed
Tuesday, September 24, 200222 years ago
-
Date Issued
Tuesday, July 6, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Lee; John R.
- Hughes; James P.
Agents
- Dickstein Shapiro Morin & Oshinsky LLP
-
CPC
-
US Classifications
Field of Search
US
- 250 292
- 250 281
- 250 282
- 250 290
- 250 291
- 250 293
-
International Classifications
-
Abstract
An ion-trap mass analyzing apparatus having means for generating ion-capture electric fields asymmetrical with respect to a reference plane containing a central point of a ring electrode and perpendicular to a central axis of the ring electrode in the inside of an ion trap to resonantly amplify ions rapidly to emit the ions from the ion trap in a short time to thereby permit high-sensitive high-accurate mass analysis stably regardless of the structural stability of ions as a subject of analysis.
Description
BACKGROUND OF THE INVENTION
The present invention relates to an ion-trap mass analyzing apparatus in which an RF electric field is generated in an inter-electrode space to once stably capture all ion species contained in a sample, resonate target ions as a subject of mass separation and emit the target ions from the inter-electrode space to thereby perform mass separation.
In a conventional ion-trap mass analyzing apparatus, an electric field is generated symmetrically on ion inlet and outlet sides in order to keep z-direction oscillation of ions uniform.
For example, in U.S. Pat. No. 5,693,941, two end cap electrodes are disposed so as to be asymmetrical with respect to the central point of a ring electrode but a voltage applied between the two end cap electrodes is adjusted to generate an electric field in an inter-electrode space symmetrically on the ion inlet and outlet sides. Because the voltages themselves applied to the two end cap electrodes are made asymmetrical in accordance with the positional asymmetry of the two end cap electrodes, the internal electric field becomes symmetrical. As a result, the number of ions passing through an aperture in the end cap electrode on the side where a detector is disposed is increased without change in the behavior of ions compared with a conventional symmetrical ion trap to thereby attain improvement of sensitivity.
The conventional ion-trap mass analyzing apparatus has a problem as follows. That is, a mass shift phenomenon that the position of a mass peak is displaced from a position indicating a correct ion mass number may occur.
SUMMARY OF THE INVENTION
An object of the invention is to provide an ion-trap mass analyzing apparatus which can perform high-sensitive high-accurate mass analysis stably.
An advantage of the invention is that the ion-trap mass analyzing apparatus has means by which a RF electric field asymmetrical with respect to the center of a ring electrode is generated in the inside of an ion trap to resonate and amplify ions rapidly to thereby emit the ions from the ion trap in a short time.
Above and other advantages of the invention will become clear from the following description.
Other objects, features and advantages of the invention will become apparent from the following description of the embodiments of the invention taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a schematic diagram showing the overall configuration of an ion-trap mass analyzing apparatus according to a first embodiment of the invention;
FIG. 2
is a sectional view of respective electrodes in an ion trap;
FIG. 3
is a graph of a stable region of values a and q which decide stability of ion trajectories in the ion trap;
FIG. 4
is a view for explaining an example of a real ion trap;
FIG. 5
is a view of an example of an equipotential map in an r-z coordinate system in the case where the potential of each of the end cap electrodes is φ
0
=0 in the ion trap on the assumption that the potential of the ring electrode is φ
0
=1 as unit potential;
FIG. 6
is a graph for explaining an example of z-direction electric field at r=0 in the case where the potential of each of the end cap electrodes is φ
0
=0 in the ion trap on the assumption that the potential of the ring electrode is φ
0
=1 as unit potential;
FIG. 7
is a graph for explaining an example of z-direction electric field at r=0 in the case where the potential of each of the end cap electrodes is φ
0
=0 in the ion trap on the assumption that the potential of the ring electrode is φ
0
=1 as unit potential;
FIG. 8
is a graph for explaining an example of numerical analysis of ion trajectories in the case where ions trapped in a space between the ion-trap electrodes are resonantly emitted from the space for capturing ions;
FIG. 9
is a view for explaining an example of the shapes of the ion-trap electrodes in the embodiment of the invention;
FIG. 10
is a graph for explaining an example of a result of numerical analysis of the internal electric potential distribution generated in the space between the ion-trap electrodes in the case where the electrodes are shaped so that the electric field distribution is asymmetrical with respect to the reference plane;
FIG. 11
is a graph for explaining an example of a result of numerical analysis of the internal electric field distribution generated in the space between the ion-trap electrodes in the case where the electrodes are shaped so that the internal electric field distribution is asymmetrical with respect to the reference plane;
FIG. 12
is a graph for explaining an example of a result of numerical analysis of the internal electric field distribution generated in the space between the ion-trap electrodes in the case where the electrodes are shaped so that the internal electric field distribution is asymmetrical with respect to the reference plane;
FIG. 13
is a graph for explaining an example of a result of numerical analysis of ion trajectories in the case where ions trapped in the space between the ion-trap electrodes are resonantly emitted from the space;
FIG. 14
is a view for explaining a second embodiment of the invention;
FIG. 15
is a view for explaining a third embodiment of the invention;
FIG. 16
is a view for explaining a fourth embodiment of the invention;
FIG. 17
is a view for explaining a fifth embodiment of the invention;
FIG. 18
is a graph for explaining the fifth embodiment of the invention;
FIG. 19
is a graph for explaining the fifth embodiment of the invention;
FIG. 20
is a graph for explaining a sixth embodiment of the invention;
FIG. 21
is a diagram for explaining a seventh embodiment of the invention;
FIG. 22
is a flow chart for explaining the seventh embodiment of the invention;
FIG. 23
is a flow chart for explaining an eighth embodiment of the invention;
FIG. 24
is a graph for explaining the eighth embodiment of the invention;
FIG. 25
is a graph for explaining the eighth embodiment of the invention; and
FIG. 26
is a diagram for explaining a ninth embodiment of the invention.
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the invention will be described below with reference to the drawings.
As shown in
FIG. 2
, an ion trap which is a mass analysis section in an ion-trap mass analyzing apparatus is theoretically constituted by a ring electrode
10
and two end cap electrodes
11
and
12
arranged in opposite directions so as to sandwich the ring electrode
10
. The ring electrode
10
has a hyperbolic surface. The two end cap electrodes
11
and
12
have hyperbolic surfaces different from that of the ring electrode
10
. A DC voltage U and a radio-frequency voltage V
RF
cos Ωt are applied between the electrodes to generate a quadrupole electric field in a space between the electrodes. Hereinafter, the ring electrode
10
and the two end cap electrodes
11
and
12
are generically referred to as ion-trap electrodes. The potential distribution generated in the space between the ion-trap electrodes on this occasion is given by the equation:
Quadrupole Potential Distribution:
Φ
4
=φ
0
(
r
2
−2
z
2
)/
r
0
2
(1)
in which φ
0
is defined as φ
0
=U+V
RF
cos Ωt, r
0
is the inner diameter of the ring electrode, z
0
is the distance from the central point
16
of the ring electrode to each end cap electrode, and (r, z) are coordinates of a point in a coordinate system with the central point
16
of the ring electrode as its origin.
Theoretically, r
0
and z
0
have the relation z
0
=r
0
/{square root over (2)}. The stability of trajectories of ions trapped in the electric field generated by the potential distribution given by the equation (1) is decided on the basis of the apparatus size (the inner diameter r
0
of the ring electrode), the DC voltage U applied between the electrodes, the amplitude V
RF
and angular frequency Ω of the radio-frequency voltage applied between the electrodes and, moreover, values a and q given by the mass-to-charge ratio m/Z of ions (equation (2)).
a
=8 eU/(
mr
0
2
Ω
2
),
q
=4 eV/(
mr
0
2
Ω
2
) (2)
in which Z is the number of charges of ions, m is mass, and e is elementary charge.
FIG. 3
is a graph of a stable region showing the range of (a, q) providing stable trajectories in the space between the ion-trap electrodes. Generally, because only the radio-frequency voltage V
RF
cos Ωt (RF drive voltage) is applied to the ring electrode, all ions corresponding to points on a straight line a=0 in the stable region are stably oscillated in the inter-electrode space and trapped in the inter-electrode space. On this occasion, the ions are arranged in a range of from q=0 to q=0.908 on the a axis in order of decreasing value in the mass-to-charge ratio m/z according to the equation (2) on the basis of difference in the point (0, q) on the stable region (
FIG. 3
) in accordance with the mass-to-charge ratio. Accordingly, in an ion-trap mass spectrometer, all ion species having values of the mass-to-charge ratio (m/z) in a certain range are once stably trapped, but, on this occasion, the ions oscillate at different frequencies in accordance with the values of the mass-to-charge ratio (m/z). This respect is used as follows. That is, an auxiliary AC electric field at a specific frequency is superposed on the space between the ion-trap electrodes to thereby emit ions resonating with the auxiliary AC electric field from the space between the ion-trap electrodes to thereby perform mass separation.
As shown in
FIG. 4
, in the real ion trap, an ion inlet
13
which is an opening for injecting sample ions into the space between the ion-trap electrodes and an ion outlet
14
which is an opening for ejecting ions from the space between the ion-trap electrodes may be provided in the end cap electrodes
11
and
12
respectively or the distance between the end cap electrodes may be selected and arranged to be larger than the theoretical distance (2z
0
={square root over (2)}r
0
). That is, the real ion trap is different from the ideal ion trap in terms of the shape and arrangement thereof. Accordingly, besides the quadrupole electric field, multipole electric fields are slightly generated in the space between the real ion-trap electrodes. Typical 2n-pole potential distributions Φ
2n
(n=3 to 6) are specifically given by the following equations:
n=3 Hexapole Potential Distribution:
Φ
6
=C
3
(
z
3
−3
zr
2
/2) (3)
n=4 Octpole Potential Distribution:
Φ
8
=C
4
(
z
4
−3
z
2
+3
r
4
/8) (4)
n=5 Decapole Potential Distribution:
Φ
10
=C
5
(
z
5
−5
z
3
r
2
+15
zr
4
/8) (5)
n=6 Dodecapole Potential Distribution:
Φ
12
=C
6
(
z
6
−15
z
4
r
2
/2+45
z
2
r
4
/8−5
r
6
/16)
(6)
in which the origin of the r-z coordinate system is the central point
16
of the ring electrode as shown in
FIG. 4
, and C
n
is a coefficient in each term.
When the equations (3) to (6) are differentiated in r and z directions respectively, r-direction and z-direction multipole electric fields are calculated. Generally, as shown in
FIG. 4
, one end cap electrode
11
has an ion inlet
13
and the other end cap electrode
12
has an ion outlet
14
. When the internal electric field distribution is symmetrical on the ion inlet and outlet sides with respect to the reference plane
18
containing the central point
16
of the ring electrode and perpendicular to the rotation symmetry axis of the ring electrode
10
, an octpole electric field, a dodecapole electric field, . . . , a 2m-pole electric field, . . . at n=4, 6, . . . , 2m, . . . (even-numbered terms) are slightly generated but a hexapole electric field, a decapole electric field, . . . , (2m+1)-pole electric field, . . . at n=3, 5, . . . , 2m+1, . . . (odd-numbered terms) are little generated. When the electrodes are shaped symmetrically with respect to the reference plane
18
as shown in
FIG. 4
, the potential distribution and electric fields generated in the inter-electrode space are calculated by numerical analysis methods. Incidentally, the potential distribution and electric fields are calculated on the assumption that the potential of each of the end cap electrodes is φ
0
=0 whereas the potential of the ring electrode
10
is φ
0
=1 as unit potential in the case where the ion inlet
13
and the ion outlet
14
are both Φ=2.8 mm in opening diameter and the distances from the central point
16
of the ring electrode to the end cap electrodes
11
and
12
are both z
0
′=6.75 mm, as shown in FIG.
5
.
FIG. 5
shows a view of the thus obtained equipotential map in the r-z coordinate system.
FIGS. 6 and 7
show the obtained z-direction electric fields at r=0. As shown in
FIG. 6
, a point at which the total electric field is zero substantially coincides with the central point
16
of the ring electrode (z=0), so that the total electric field has a symmetrical distribution with respect to the central point
16
of the ring electrode. It is also obvious that the ratio of the intensity of quadrupole electric field to the intensity of total electric field is high, and that the hexapole electric field and the decapole electric field at n=3 and 5 (odd-numbered terms) are little generated whereas the octpole electric field and the dodecapole electric field are intensive, judging from the difference between the total electric field and the quadrupole electric field, that is, judging from multipole electric fields (
FIG. 7
) other than the quadruple electric field.
On the other hand, when the internal electric field distribution is asymmetrical with respect to the reference plane
18
containing the central point
16
of the ring electrode and perpendicular to the central axis
17
of the ring electrode, the intensity of the hexapole and decapole electric fields at n=3 and 5 (odd-numbered terms) increases compared with the symmetrical electric field distribution shown in FIGS.
5
,
6
and
7
.
FIGS. 10
,
11
and
12
show results of the internally generated potential distribution and electric fields calculated by numerical analysis when the electrodes are shaped so that the internal electric field distribution is asymmetrical with respect to the reference plane
18
. Incidentally, the potential distribution and electric fields are calculated on the assumption that the potential of each of the end cap electrodes is φ
0
=0 whereas the potential of the ring electrode is φ
0
=1 as unit potential in the case where the diameter of the ion inlet
13
and the diameter of the ion outlet
14
are Φ
in
=1.8 mm and Φ
out
=1.3 mm respectively and the distances from the central point
16
of the ring electrode to the end cap electrodes
11
and
12
are z
0
′
in
=6.75 mm and z
0
′
out
=5.75 mm respectively as shown in FIG.
10
.
FIG. 10
shows the obtained equipotential map in the r-z coordinate system.
FIGS. 11 and 12
show the obtained z-direction electric fields at r=0. As shown in
FIG. 11
, the point at which the total electric field is zero does not coincide with the central point
16
of the ring electrode (z=0), so that the total electric field has an asymmetrical distribution with respect to the central point
16
of the ring electrode. It is also obvious from
FIG. 12
that hexapole and decapole electric fields at n=3 and 5 (odd-numbered terms) as well as octpole and dodecapole electric fields are generated as multipole electric fields other than the quadrupole electric field. In an ordinary ion-trap mass analyzing apparatus, an electric field symmetrical on the ion inlet and outlet sides is generated to keep z-direction oscillation of ions uniform.
Generally, because neutral gas such as helium gas is existing in the space between the ion-trap electrodes, ions trapped in the space collide with the neutral gas repeatedly. Structurally unstable ions are dissociated by the collision with the neutral gas. The probability of ions' dissociation due to the collision with the helium gas increases while the ions resonate with the auxiliary AC electric field superposedly applied on the space between the ion-trap electrodes to thereby amplify ion oscillation, that is, just before the ions are resonantly emitted from the space. If the point (a, q) of a fragment ion smaller in mass number than its parent ion is equivalent to a point out of the stable region shown in
FIG. 3
on this occasion, the ion is emitted from the space between the ion-trap electrodes at the moment of dissociation and counted as an ion of mass to be emitted in this timing. Because ions oscillate resonantly likewise, there is the possibility that energy obtained by ions' collision with the neutral gas may exceed ionic bond energy, that is, ions may be dissociated substantially at once if the ions can be easily dissociated. On this occasion, there is the possibility that a mass shift phenomenon may occur so that the position of a mass peak is displaced from a position indicating a correct ion mass number to the low mass number side. The mass shift phenomenon must be avoided because there is a possibility that this phenomenon may cause recognition error of the result of analysis.
A first embodiment of the invention will be described first.
FIG. 1
is a schematic diagram showing the overall configuration of an ion-trap mass analyzing apparatus according to the first embodiment of the invention. A mixture sample as a subject of mass analysis is separated into components by a preparation system
1
such as gas chromatography or liquid chromatography and then ionized by an ionization section
2
. An ion-trap mass analysis section
4
is constituted by a ring electrode
10
and two end cap electrodes
11
and
12
disposed opposite to each other so as to sandwich the ring electrode
10
. An RF electric field for trapping ions is generated in an inter-electrode space by an RF drive voltage V
RF
cos Ωt supplied to the ring electrode
10
by an RF drive voltage power supply
7
. Ions generated by the ionization section
2
pass through an ion inlet
13
of the end cap electrode
11
via an ion transport section
3
and enter the inter-electrode space between the ring electrode
10
and the end cap electrodes
11
and
12
. After the ions are once stably trapped by the RF electric field, ions having different mass-to-charge ratios are mass-separated (mass-scanning-analyzed) successively. On this occasion, an auxiliary AC voltage power supply
8
applies an auxiliary AC voltage at a single frequency between the end cap electrodes
11
and
12
to generate an auxiliary AC electric field to thereby excite resonance of one specific ion species to eject the specific ion species from the space between the ion-trap electrodes for mass separation. Generally, because the auxiliary AC voltage at a constant frequency is applied, the mass-to-charge ratios of ions as a target of mass separation can be emitted successively by scanning of the amplitude V
RF
of the RF drive voltage V
RF
cos Ωt on the basis of the relation according to the equation (2). Among the ions emitted from the inter-electrode space in this manner, ions passing through the ion outlet
14
of the end cap electrode
12
are detected by a detector
5
and processed by a data processing section
6
. This series of mass analyzing steps: [ionization of the sample, transport and entrance of sample ion beams into the ion-trap mass analysis section, adjustment of the amplitude of the RF drive voltage at the time of entrance of sample ions, ejection of unnecessary ions from the space between the ion-trap electrodes, dissociation of parent ions (in case of tandem analysis), scan of the amplitude of the RF drive voltage (scan of the mass-to-charge ratio of ions to be mass-analyzed), and adjustment, detection and data processing of the amplitude of the auxiliary AC voltage and the kind and timing of the auxiliary AC voltage] is controlled as a aperture by a control section
9
.
Generally, as shown in
FIGS. 5
,
6
and
7
, the RF electric field generated in the space between the ion-trap electrodes to capture ions has a symmetrical distribution on the ion inlet and outlet sides with respect to a reference plane
18
containing a central point
16
of the ring electrode
10
and perpendicular to a central axis
17
of the ring electrode.
FIG. 8
shows results of numerical analysis of ion trajectories when the ion-capture electric field has a symmetrical distribution as shown in
FIGS. 5
to
7
and when ions trapped in the inter-electrode space are resonantly emitted from the inter-electrode space at the time of further application of +v
d
cos ωt and −v
d
cos ωt to the end cap electrodes
11
and
12
respectively, as shown in
FIG. 4
, to generate an auxiliary AC electric field superposed on the ion-trap electric field. It is obvious from
FIG. 8
that the oscillation amplitude A of ions increases gradually in accordance with the elapsed time t, and that ions are finally emitted from the space between the ion-trap electrodes when the oscillation amplitude of ions reaches the end cap electrode position. As the oscillation amplitude A of ions increases, the oscillation energy of ions increases and the probability that ions will be dissociated by collision with the neutral gas such as the space between the ion-trap electrodes also increases. When the threshold of the oscillation amplitude A serving as oscillation energy for facilitating dissociation of ions is A
t
on this occasion, there is a high possibility that ions are dissociated in a time period T
d
in which oscillation with the amplitude higher than the threshold A
t
is repeated. Hence, there is a high possibility that mass shift may occur because ions are emitted earlier than the time the ions are supposed to be inherently emitted.
In this embodiment, as shown in
FIG. 9
, the electrodes are shaped asymmetrically with respect to the reference plane
18
containing the ring electrode central point
16
(which is the central point of the ring electrode
10
) and perpendicular to the central axis
17
of the ion-tap electrodes so that the electric field generated in the inter-electrode space has an asymmetrical distribution on the ion inlet and outlet sides with respect to the reference plane
18
. For example, as shown in
FIG. 9
, the shape and arrangement of the end cap electrodes
11
and
12
are selected so that the diameter Φ
in
of the ion inlet
13
in the end cap electrode
11
is larger than the diameter Φ
out
of the ion outlet
14
in the end cap electrode
12
(Φ
in
>Φ
out
), and so that the distance z
0
′
in
from the ring electrode central point
16
to the ion inlet-side end cap electrode
11
is longer than the distance z
0
′
out
from the ring electrode central point
16
to the ion outlet-side end cap electrode
12
(z
0
′
in
>z
0
′
out
). As an example of this embodiment, the potential distribution and electric fields are calculated by numerical analysis when the diameters of the ion inlet and outlet
13
and
14
are Φ
in
=1.8 mm and Φ
out
=1.3 mm respectively and the distances from the ring electrode central point
16
to the end cap electrodes
11
and
12
are z
0
′
in
=6.75 mm and z
0
′
out
=5.75 mm respectively as shown in
FIG. 10
on the assumption that the potential of each of the end cap electrodes is φ
0
=0 whereas the potential of the ring electrode is φ
0
=1 as unit potential.
FIG. 10
shows the obtained equipotential map in the r-z coordinate system.
FIGS. 11 and 12
show the obtained z-direction electric fields at r=0. As shown in
FIG. 11
, the point at which the total electric field is zero does not coincide with the ring electrode central point
16
(z=0), so that the total electric field has an asymmetrical distribution with respect to the ring electrode central point
16
. It is also obvious from
FIG. 12
that hexapole and decapole electric fields at n=3 and 5 (odd-numbered terms) as well as octpole and dodecapole electric fields are generated as multipole electric fields other than the quadrupole electric field.
FIG. 13
shows results of numerical analysis of ion trajectories when the ion-capture electric field generated has an asymmetrical distribution as described above and when ions captured in the inter-electrode space are resonantly emitted from the inter-electrode space at the time of further application of +v
d
cos ωt and −v
d
cos ωt to the end cap electrodes
11
and
12
respectively, as shown in
FIG. 9
, to generate an auxiliary AC electric field superposed on the ion-trap RF electric field. It is obvious from
FIG. 13
that the oscillation amplitude A of ions increases rapidly in accordance with the elapsed time t, and that ions are emitted from the space between the ion-trap electrodes in a short time after the oscillation amplitude of ions begins to be resonantly amplified. When the threshold of the oscillation amplitude A serving as oscillation energy for facilitating dissociation of ions is A
t
on this occasion, the time period T
d
in which oscillation with the amplitude higher than the threshold A
t
is repeated is very short. In this manner, the asymmetrical electric field is effective in destabilizing ions rapidly. Hence, in this case, the probability that ions will be dissociated becomes low, so that the possibility that mass shift may be caused by earlier ions' emission than the inherent time for the ions to be emitted becomes low. That is, according to this embodiment, ions so fragile in structure as to be easily dissociated can be restrained from being dissociated, so that mass shift can be avoided regardless of the structural stability of ions. As a result, it can be expected that high-accurate analysis can be performed stably. Further, in this embodiment, because the size of the ion inlet is selected to be larger than the size of the ion outlet, the amount of ions flowing into the space between the ion-trap electrodes can be increased so that improvement in sensitivity can be expected.
A second embodiment of the invention will be described below with reference to FIG.
14
. In this embodiment, the aperture size Φ
in
of the ion inlet
13
in the end cap electrode
11
is selected to be larger than the aperture size Φ
out
of the ion outlet
14
in the end cap electrode
12
(Φ
in
>Φ
out
) to thereby generate an asymmetrical electric field in the space between the ion-trap electrodes. On this occasion, the asymmetrical electric field can be generated by a simple operation of changing the aperture sizes of the end cap electrodes without various change of the shapes of the electrodes. In addition, in this embodiment, the amount of ions injecting into the space between the ion-trap electrodes can be increased because Φ
in
>Φ
out
. Hence, improvement in sensitivity can be also expected.
A third embodiment of the invention will be described below with reference to FIG.
15
. In this embodiment, the distance z
0
′
in
from the ring electrode central point
16
to the end cap electrode
11
is selected to be different from the distance z
0
′
out
from the ring electrode central point
16
to the end cap electrode
12
(z
0
′
in
≠z
0
′
out
) to thereby generate an asymmetrical electric field in the space between the ion-trap electrodes. On this occasion, the asymmetrical electric field can be generated by a simple operation of changing the distances from the ring electrode central point
16
to the end cap electrodes
11
and
12
without various change of the shapes of the electrodes. In addition, because the setting of the distances from the ring electrode central point
16
to the end cap electrodes
11
and
12
as z
0
′
in
≠z
0
′
out
is very efficient in generating the asymmetrical electric field, there is a high possibility that ions will be destabilized rapidly even in the case where the distances from the ring electrode central point
16
to the end cap electrodes
11
and
12
are slightly different from each other.
A fourth embodiment of the invention will be described below with reference to FIG.
16
. In this embodiment, a plane containing at least three apex points on the convex surface of the ring electrode is used as the reference plane
18
for symmetry/asymmetry of the ion-capture electric field so that the center of a circle constituted by points of intersection between the plane and the convex surface of the ring electrode may be set as the ring electrode central point
16
in the reference plane
18
. That is, as shown in
FIG. 16
, even in the case where the ring electrode
10
does not have a rotationally symmetrical shape because of limitation on arrangement, the ring electrode central point
16
and the reference plane
18
can be set practically according to this embodiment. That is, according to this embodiment, an asymmetrical electric field can be generated in the inter-electrode space on the basis of the appropriate central point
16
and the appropriate reference plane
18
even in the case where the ring electrode
10
does not have a rotationally symmetrical shape.
A fifth embodiment of the invention will be described below with reference to
FIGS. 17
,
18
and
19
. In this embodiment, the ring electrode
10
and the end cap electrodes
11
and
12
may be shaped symmetrically with respect to the reference plane
18
perpendicular to the central axis
17
of the ion-trap electrodes. That is, the bore size Φ
in
of the ion inlet
13
in the end cap electrode
11
and the bore size Φ
out
of the ion outlet
14
in the end cap electrode
12
may have the relation Φ
in
=Φ
out
, and the distances z
0
′
in
and z
0
′
out
from the ring electrode central point
16
to the end cap electrodes
11
and
12
may have the relation z
0
′
in
=z
0
′
out
. Incidentally, in this embodiment, as shown in
FIG. 17
, in addition to the radio-frequency voltage V
RF
cos Ωt applied to the ring electrode, a low DC voltage ΔV from a DC voltage power supply
19
is applied between the two end cap electrodes
11
and
12
to thereby generate a trapping RF electric field asymmetrically with respect to the reference plane
18
.
FIGS. 18 and 19
are conceptual graphs showing the potential distributions on the axis r=0 in the cases of the micro DC voltage ΔV>0 and ΔV<0 according to this embodiment. It is obvious that the point at which the z-direction electric field is zero is displaced from the position of the ring electrode central point
16
when the low DC voltage ΔV is applied between the two end cap electrodes
11
and
12
. That is, also in this embodiment, an asymmetrical electric field with respect to the reference plane
18
can be generated. In addition, according to this embodiment, the asymmetrical electric field can be generated easily by only voltage control without intentionally making the shapes of the electrodes asymmetrical.
A sixth embodiment of the invention will be described below with reference to FIG.
20
. In this embodiment, the frequency ω/2n of the auxiliary AC voltage V
d
cos ωt applied between the two end cap electrodes
11
and
12
to resonantly emit ions trapped in the inter-electrode space is set at a value (ω/2π to Ω/6π) equal or nearly equal to ⅓ as high as the frequency Ω/2π of the radio-frequency voltage V
RF
cos Ωt applied to the ring electrode. In this case, the point of resonance is equivalent to β
z
=⅔ in the stable region in FIG.
3
. That is, ions beginning to resonate approach the point of β
z
=⅔ in the stable region (FIG.
3
). At the point of β
z
=⅔, the oscillation of ions trapped in the space between the ion-trap electrodes are amplified rapidly by a hexapole electric field so as to be destabilized. This is generally called nonlinear resonance phenomenon due to hexapole electric field. In the present invention, the haxapole electric field component is more intensive than ordinary because the trapping RF electric field generated in the space between the ion-trap electrodes is asymmetrical. Hence, it is conceived that the effect of the nonlinear resonance phenomenon due to the hexapole electric field in this invention becomes high compared with the ordinary ion trap.
FIG. 20
shows results of numerical analysis of ion trajectories when the ion-trap electric field (
FIGS. 10
,
11
and
12
) asymmetrical with respect to the reference plane
18
is generated by the same asymmetrical electrode shape (
FIG. 9
) as in the first embodiment of the invention and when +v
d
cos (Ωt/3) and −v
d
cos (Ωt/3) are applied to the end cap electrodes
11
and
12
respectively. Also in this case, it is obvious that ions oscillation are amplified rapidly and such ions are emitted from the space between the ion-trap electrodes. Hence, according to this embodiment, mass shift due to dissociable ions can be avoided because ions can be further resonantly emitted rapidly.
A seventh embodiment of the invention will be described below with reference to
FIGS. 21 and 22
.
FIG. 21
is a schematic view showing the overall configuration of the ion-trap mass analyzing apparatus according to this embodiment. In this embodiment, the ion-trap electrodes are shaped symmetrically in the same manner as in the fifth embodiment as shown in
FIG. 17
, and the DC voltage power supply
19
applies a low DC voltage ΔV between the two end cap electrodes
11
and
12
to generate an asymmetrical ion-trap electric field. In addition, in this embodiment, there is further provided a function for generating a symmetrical capture electric field in the space between the ion-trap electrodes. That is, whether or not the generated trapping RF electric field is to be symmetrical with respect to the reference plane
18
is controlled on the basis of whether the micro DC voltage ΔV is applied (ΔV≠0) or not (ΔV=0).
In the ion trap in which an ion-trap electric field symmetrical with respect to the reference plane
18
is generated as shown in
FIGS. 4
,
5
,
6
and
7
, ions oscillation are resonantly amplified gradually as shown in FIG.
8
. Such a phenomenon is very effective in tandem mass analysis (MS/MS analysis) in which target ions are dissociated by collision with neutral gas so that the dissociated ions are mass-analyzed, because the probability of ions' colliding with the neutral gas becomes high. When tandem mass analysis is not used, it is however necessary to generate an asymmetrical electric field in the inter-electrode space to thereby resonantly emit ions rapidly as shown in
FIG. 13
to thereby avoid occurrence of mass shift caused by dissociation of structurally dissociable ions. In this embodiment, therefore, the value of the low DC voltage ΔV is set on the basis of a mass analysis mode input through the user input section
15
to thereby control the symmetry/asymmetry of the ion-capture electric field generated in the space between the ion-trap electrodes. That is, as shown in
FIG. 22
which is a control flow chart, the value of the low DC voltage is controlled by the control section
9
on the basis of the mass analysis mode input through the user input section so that ΔV≠0 is selected for ordinary MS analysis and ΔV=0 is selected for tandem mass analysis. Hence, according to this embodiment, at the time of tandem mass analysis, high-sensitive analysis can be made by high-efficient dissociation of ions because a capture electric field symmetrical with respect to the reference plane
18
is generated so that ions oscillation are amplified gradually. At the time of ordinary MS analysis, mass shift can be avoided to improve mass analyzing accuracy because a trap electric field asymmetrical with respect to the reference plane
18
is generated so that ions are resonantly amplified rapidly and emitted.
An eighth embodiment of the invention will be described below with reference to
FIGS. 23
,
24
and
25
. Also in this embodiment, a change-over function is provided in the same manner as the seventh embodiment for controlling the value of the low DC voltage ΔV applied between the two end cap electrodes
11
and
12
to thereby decide whether the ion-trap electric field generated in the inter-electrode space is to be symmetrical or asymmetrical with respect to the reference plane
18
. The changing-over is, however, judged on the basis of whether structural isomers are analyzed or not. The structural isomers are ions the same in mass number but different in structure. The structural isomers are often different in structural stability from each other, so that the structural isomers are different in dissociability. When such ions are a target of ordinary MS analysis, it is necessary to resonantly emit the ions in substantially the same timing so that the ions can be observed as the same mass. If ions are resonantly amplified in motion gradually as shown in
FIG. 8
, one dissociable isomer is dissociated by collision with neutral gas so that the dissociable ions are emitted earlier than the other isomer ions. As a result, ions which are supposed to inherently have a peak at the same mass number point have mass peaks at different points (FIG.
24
). On this occasion, there is a fear that ions having the same mass number may be misjudged as ions having different mass numbers. Therefore, when structural isomers are subjected to ordinary MS analysis, the low DC voltage is set at ΔV≠0 to make the capture electric field generated in the inter-electrode space asymmetrical to thereby resonantly emit ions rapidly as shown in
FIG. 13
to avoid mass shift (FIG.
25
).
On the other hand, when structural isomer ions are to be separated/analyzed in such a manner that the structural isomer ions are classified into structurally dissociable ions and structurally indissociable ions after only the structural isomer ions are captured (isolated) in the space between the ion-trap electrodes, the micro DC voltage is set at ΔV=0 to make the trapping RF electric field generated in the inter-electrode space symmetrical to thereby amplify the structural isomer ions gradually as shown in
FIG. 8
to increase the probability of the ions' colliding with the neutral gas. On this occasion, the isomer ions can be separated by dissociability (FIG.
24
). That is, as shown in
FIG. 23
which is a control flow chart, the value of the low DC voltage is controlled by the control section
9
on the basis of the isomer mass analysis mode input through the user input section
15
so that ΔV≠0 is selected for ordinary MS analysis and ΔV=0 is selected for inter-isomer separation analysis. Hence, according to this embodiment, inter-isomer separation analysis which is generally taboo to the mass analyzing apparatus can be avoided and can be conversely used for isomer separation. It will be understood that the potential of structural analysis in the mass analyzing apparatus can be widened.
A ninth embodiment of the invention will be described below with reference to FIG.
26
.
FIG. 26
is a schematic diagram showing the overall configuration of the ion-trap mass analyzing apparatus according to this embodiment. In this embodiment, a time-of-flight mass spectrometric analysis (TOF-MS) section
20
is connected to the downstream side of the ion-trap mass analysis section
4
having a trap electric field distribution asymmetrical with respect to the reference plane
18
. In this embodiment, the ion-trap mass analysis section
4
is mainly used for collecting sample ions from an ion source. The ions collected by the ion-trap mass analysis section
4
pass through an ion transport optical system
21
and enter an ion acceleration region
23
in the TOF-MS section
20
. An ion acceleration voltage power supply
22
applies an acceleration voltage to the ion acceleration region
23
to generate an ion acceleration electric field in the ion acceleration region
23
. After the accelerated ions fly in a field-free flight region at different velocities in accordance with the mass numbers respectively, an electric field in a direction reserve to the direction of movement of the ions is applied to the ions in an ion reflection region
25
in which a reflection electric field is generated by an ion reflection voltage power supply
24
. As a result, the ions fly in the field-free flight region again in the reverse direction. Thus, the ions are detected by the detector
5
. On this occasion, because the time of flight varies in accordance with the mass number of ions, data is processed as a result of mass separation according to the time of flight by the data processing section
6
. Particularly the capture electric field generated in the space between the ion-trap electrodes is made asymmetrical to emit ions rapidly when ions collected by the ion-trap mass analysis section
4
are to be ejected. Hence, error in the time of flight due to difference in ion-emission timing can be reduced. It is also conceived that high-sensitive mass analysis of high-mass-number ions which can be hardly performed by the ion-trap mass analysis section
4
alone can be performed according to this embodiment. The TOF-MS section
20
may be of a reflection type or may be of a linear type.
As described above, because the ion-trap electric field generated in the space between the ion-trap electrodes is made asymmetrical with respect to the reference plane containing the central point of the ring electrode and perpendicular to the central axis of the ring electrode, ions can be resonantly emitted rapidly. Hence, results of high-accurate high-sensitive mass analysis can be obtained stably while mass shift caused by structural stability of ions is avoided.
According to the invention, there is provided an ion-trap mass analyzing apparatus which can perform high-sensitive high-accurate mass analysis stably.
It should be further understood by those skilled in the art that although the foregoing description has been made on embodiments of the invention, the invention is not limited thereto and various changes and modifications may be made without departing from the spirit of the invention and the scope of the appended claims.
Claims
- 1. An ion-trap mass analyzing apparatus comprising:an annular ring electrode; two end cap electrodes disposed opposite to each other so as to sandwich said ring electrode, and wherein said end cap electrodes are formed asymmetrically with respect to a reference plane; a radio-frequency voltage power supply for generating a radio-frequency voltage applied between said ring electrode and said end cap electrodes to generate an RF electric field in an inter-electrode space formed between said ring electrode and said end cap electrodes, wherein absolute values of said voltages applied to the end cap electrodes are substantially equal to each other; an ion source for generating ions; means for capturing the generated ions in said inter-electrode space in which said RF electric field is generated; and means for detecting ions having a specific mass-to-charge ratio among all the ions captured in said inter-electrode space by emitting said ions having said specific mass-to-charge ratio from said inter-electrode space while separating mass successively in accordance with the mass-to-charge ratio in order to resonantly excite said ions having said specific mass-to-charge ratio in said inter-electrode space, wherein said ion-trap mass analyzing apparatus further comprises means for making the RF electric field distribution asymmetrical with respect to a reference plane when a plane containing a center point of said ring electrode and perpendicular to a rotational symmetry axis of said ring electrode is used as said reference plane the RF electric field distribution being generated in said inter-electrode space to capture ions; and wherein said means for making the ion-capture electric field distribution generated in said inter-electrode space asymmetrical includes means for shaping said two end cap electrodes asymmetrically with respect to said reference plane.
- 2. An ion-trap mass analyzing apparatus according to claim 1, wherein said means for shaping said two end cap electrodes asymmetrically with respect to said reference plane has means for making sizes of central apertures opened in said two end cap electrodes different from each other when said two end cap electrodes have said central apertures respectively in the vicinity of peaks of convex surfaces of said end cap electrodes opposite to each other.
- 3. An ion-trap mass analyzing apparatus according to claim 2, wherein said means for making the sizes of said central apertures of said two end cap electrodes different from each other has means for setting the ion inlet-side central aperture to be larger than the ion outlet-side central aperture.
- 4. An ion-trap mass analyzing apparatus according to claim 1, wherein said means for shaping said two end cap electrodes asymmetrically with respect to said reference plane has means for making distances from said reference plane to said two end cap electrodes different from each other.
- 5. An ion-trap mass analyzing apparatus according to claim 4, wherein said means for making the distances from said reference plane to said two end cap electrodes different from each other has means for setting a distance from said reference plane to the ion inlet-side end cap electrode to be longer than a distance from said reference plane to the ion outlet-side end cap electrode.
- 6. An ion-trap mass analyzing apparatus comprising:an annular ring electrode; two end cap electrodes disposed opposite to each other so as to sandwich said ring electrode, and wherein said end cap electrodes are formed asymmetrically with respect to a reference plane; a radio-frequency voltage power supply for generating a radio-frequency voltage applied between said ring electrode and said end cap electrodes to generate an RF electric field in an inter-electrode space formed between said ring electrode and said end cap electrodes, wherein absolute values of said voltages applied to the end cap electrodes arc substantially equal to each other; an ion source for generating ions; means for capturing the generated ions in said inter-electrode space in which said RF electric field is generated; and means for detecting ions having a specific mass-to-charge ratio among all the ions captured in said inter-electrode space by emitting said ions having said specific mass-to-charge ratio from said inter-electrode space while separating mass successively in accordance with the mass-to-charge ratio in order to resonantly excite said ions having said specific mass-to-charge ratio in said inter-electrode space, wherein said ion-trap mass analyzing apparatus further comprises means for making the RF electric field distribution asymmetrical with respect to a reference plane when a plane containing a center point of said ring electrode and perpendicular to a rotational symmetry axis of said ring electrode is used as said reference plane, the RF electric field distribution being generated in said inter-electrode space to capture ions; a function for switching from an asymmetrical voltage distribution mode to a symmetrical voltage distribution mode in which voltages symmetrical with respect to said reference plane are applied between said two end cap electrodes and said ring electrode to generate ion-capture electric fields symmetrical with respect to said reference plane in said inter-electrode space.
- 7. An ion-trap mass analyzing apparatus comprising:an annular ring electrode; two end cap electrodes disposed opposite to each other so as to sandwich said ring electrode, and wherein said end cap electrodes are formed asymmetrically with respect to a reference plane; a radio-frequency voltage power supply for generating a radio-frequency voltage applied between said ring electrode and said end cap electrodes to generate an RF electric field in an inter-electrode space formed between said ring electrode and said end cap electrodes, wherein absolute values of said voltages applied to the end cap electrodes are substantially equal to each other; an ion source for generating ions; means for trapping the generated ions in said inter-electrode space in which said RF electric field is generated; means for detecting ions having a specific mass-to-charge ratio among all the ions trapping in said inter-electrode space by emitting said ions having said specific mass-to-charge ratio from said inter-electrode space while separating mass successively in accordance with the mass-to-charge ratio in order to resonantly excite said ions having said specific mass-to-charge ratio in said inter-electrode space, wherein said ion-trap mass analyzing apparatus further comprises means for making the RF electric field distribution asymmetrical with respect to a reference plane when a plane containing peaks of an inner convex surface of said ring electrode is used as said reference plane, the RF electric field distribution being generated in said inter-electrode space to capture ions; wherein said means for making the ion-capture electric field distribution generated in said inter-electrode space asymmetrical includes means for shaping said two end cap electrodes asymmetrically with respect to said reference plane; and wherein said means for shaping said two end cap electrodes asymmetrically with respect to said reference plane has means for making sizes of central apertures opened in said two end cap electrodes different from each other when said two end cap electrodes have said central apertures respectively in the vicinity of peaks of convex surfaces of said end cap electrodes opposite to each other.
- 8. An ion-trap mass analyzing apparatus comprising:an annular ring electrode; two end cap electrodes disposed opposite to each other so as to sandwich said ring electrode; a radio-frequency voltage power supply for generating a radio-frequency voltage applied between said ring electrode and said end cap electrodes to generate an RF electric field in an inter-electrode space formed between said ring electrode and said end cap electrodes, wherein absolute values of said voltages applied to the end cap electrodes are substantially equal to each other an ion source for generating ions; means for trapping the generated ions in said inter-electrode space in which said RF electric field is generated; means for detecting ions having a specific mass-to-charge ratio among all the ions trapping in said inter-electrode space by emitting said ions having said specific mass-to-charge ratio from said inter-electrode space while separating mass successively in accordance with the mass-to-charge ratio in order to resonantly excite said ions having said specific mass-to-charge ratio in said inter-electrode space, wherein said ion-trap mass analyzing apparatus further comprises means for making the RF electric field distribution asymmetrical with respect to a reference plane when a plane containing peaks of an inner convex surface of said ring electrode is used as said reference plane, the RF electric field distribution being generated in said inter-electrode space to capture ions; wherein said means for making the ion-capture electric field distribution generated in said inter-electrode space asymmetrical includes means for shaping said two end cap electrodes asymmetrically with respect to said reference plane; and wherein said means for shaping said two end cap electrodes asymmetrically with respect to said reference plane has means for making distances from said reference plane to said two end cap electrodes different from each other.
- 9. An ion-trap mass analyzing apparatus according to claim 8, wherein said means for making the distances from said reference plane to said two end cap electrodes different from each other has means for setting a distance from said reference plane to the ion inlet-side end cap electrode to be longer than a distance from said reference plane to the ion outlet-side end cap electrode.
- 10. An ion-trap mass analyzing apparatus comprising:an annular ring electrode; two end cap electrodes disposed opposite to each other so as to sandwich said ring electrode and wherein said end cap electrodes are formed asymmetrically with respect to a reference plane; a radio-frequency voltage power supply for generating a radio-frequency voltage applied between said ring electrode and said end cap electrodes to generate an RF electric field in an inter-electrode space formed between said ring electrode and said end cap electrodes, wherein absolute values of said voltages applied to the end cap electrodes are substantially equal to each other; an ion source for generating ions; means for trapping the generated ions in said inter-electrode space in which said RF electric field is generated; means for detecting ions having a specific mass-to-charge ratio among all the ions trapping in said inter-electrode space by emitting said ions having said specific mass-to-charge ratio from said inter-electrode space while separating mass successively in accordance with the mass-to-charge ratio in order to resonantly excite said ions having said specific mass-to-charge ratio in said inter-electrode space, wherein said ion-trap mass analyzing apparatus further comprises means for making the RF electric field distribution asymmetrical with respect to a reference plane when a plane containing peaks of an inner convex surface of said ring electrode is used as said reference plane, the RF electric field distribution being generated in said inter-electrode space to capture ions; a function for switching from an asymmetrical voltage distribution mode to a symmetrical voltage distribution mode in which voltages symmetrical with respect to said reference plane are applied between said two end cap electrodes and said ring electrode to generate ion-capture electric fields symmetrical with respect to said reference plane in said inter-electrode space.
- 11. An ion-trap mass analyzing, apparatus comprising:an annular ring electrode; two end cap electrodes disposed opposite to each other so as to sandwich said ring electrode, and wherein said end cap electrodes are formed asymmetrically with respect to a reference plane; a radio-frequency voltage power supply for generating a radio-frequency voltage applied between said ring electrode and said end cap electrodes to generate an RF electric field in an inter-electrode space formed between said ring electrode and said end cap electrodes, wherein absolute values of said voltages applied to the end cap electrodes are equal to each other; an ion source for generating ions; wherein the generated ions are captured in said inter-electrode space in which said RF electric field is generated; and a detector for detecting ions having a specific mass-to-charge ratio among all the ions captured in said inter-electrode space by emitting said ions having said specific mass-to-charge ratio from said inter-electrode space while separating mass successively in accordance with the mass-to-charge ratio in order to resonantly excite said ions having said specific mass-to-charge ratio in said inter-electrode space, and wherein the RF electric field distribution is asymmetrical with respect to a plane containing a center point of said ring electrode and perpendicular to a rotational symmetry axis of said ring electrode.
- 12. An ion-trap mass analyzing apparatus comprising:an annular ring electrode; two end cap electrodes disposed opposite to each other so as to sandwich said ring electrode, and wherein said end cap electrodes are formed asymmetrically with respect to a reference plane; a radio-frequency voltage power supply for generating a radio-frequency voltage applied between said ring electrode and said end cap electrodes to generate an RF electric field in an inter-electrode space formed between said ring electrode and said end cap electrodes, wherein absolute values of said voltages applied to the end cap electrodes are equal to each other; an ion source for generating ions; means for trapping the generated ions in said inter-electrode space in which said RF electric field is generated; means for detecting ions having a specific mass-to-charge ratio among all the ions trapping in said inter-electrode space by emitting said ions having said specific mass-to-charge ratio from said inter-electrode space while separating mass successively in accordance with the mass-to-charge ratio in order to resonantly excite said ions having said specific mass-to-charge ratio in said inter-electrode space, wherein said ion-trap mass analyzing apparatus further comprises means for making the RF electric field distribution asymmetrical with respect to a reference plane when a plane containing peaks of an inner convex surface of said ring electrode is used as said reference plane, the RF electric field distribution being generated in said inter-electrode space to capture ions.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2002-033307 |
Feb 2002 |
JP |
|
US Referenced Citations (6)