Information
-
Patent Application
-
20040021198
-
Publication Number
20040021198
-
Date Filed
August 01, 200222 years ago
-
Date Published
February 05, 200420 years ago
-
CPC
-
US Classifications
-
International Classifications
Abstract
Temperature sensitive devices may be shielded from temperature generating devices on the same integrated circuit by appropriately providing a trench that thermally isolates the heat generating devices from the temperature sensitive devices. In one embodiment, the trench may be formed by a back side etch completely through an integrated circuit wafer. The resulting trench may be filled with a thermally insulating material.
Description
BACKGROUND
[0001] This invention relates generally to heat isolation in integrated circuits.
[0002] In integrated circuits, a variety of components may be included. Some of these components may be high heat generators. Other components may be relatively sensitive to either higher temperatures or variations in temperatures.
[0003] In order to reduce costs, it may be desirable to integrate as many different components in the same integrated circuit. This integration not only reduces costs, but also reduces size. However, integrating more components makes it more likely that temperature sensitive devices may be integrated with high heat generating devices.
[0004] Thus, there is a need for better ways to integrated different types of devices into the same integrated circuit without creating heat related problems.
BRIEF DESCRIPTION OF THE DRAWINGS
[0005]
FIG. 1 is a bottom plan view of an integrated circuit in accordance with one embodiment of the present invention; and
[0006]
FIG. 2 is an enlarged cross-sectional view taken generally along the line 2-2 in FIG. 1 in accordance with one embodiment of the present invention.
DETAILED DESCRIPTION
[0007] Referring to FIG. 1, an integrated circuit 10 may include a variety of integrated components. For example, a circuit or device sensitive to temperature variations may be located at the region 12a. A heat generating device or circuit such as a power amplifier may be located at each of the regions 12b and 12c. Thus, it is desirable to isolate the region 12a from both the regions 12b and 12c.
[0008] To this end, a filled, L-shaped trench 14a may be arranged around the edges of the region 12b. In this case, the two sides of the relatively rectangular region 12b facing towards the region 12a may be shielded by the filled, L-shaped trench 14a. The region 12c may be isolated by a completely encircling filled trench 14b. The trenches 14 are effective to isolate the heat generating circuit regions 12b and 12c from the temperature sensitive circuit region 12a.
[0009] Thus, as shown in FIG. 2, a region 12c of the integrated circuit substrate 10 may have formed therein a heat generating circuit 20. The circuit 20 may be formed in and on the semiconductor substrate 11. Over the substrate 11 may be a top side dielectric layer 16.
[0010] In one embodiment of the present invention, the trenches 14 may be formed by a back side etch from the back side of the substrate 11 while the circuit 10 is in the wafer form. The back side etch may use the top side dielectric layer 16 as an etch stop. Thus, in one embodiment of the present invention the back side etch may extend completely through the wafer substrate 11 to reach the etch stop dielectric layer 16 on the top side of the wafer.
[0011] Thereafter, the trenches 14 may be filled with a suitable fill material 18 that has suitable heat insulating properties. For example, amorphous silicon dioxide may be utilized as a heat insulating fill material 18. In some embodiments, no trench fill may be utilized. In other embodiments, the trenches 14 may be formed from the top side of the wafer instead of the back side, using conventional isolation trench technology.
[0012] As a result, detrimental high temperatures or temperature fluctuations due to high power consuming devices, such as radio frequency power amplifiers, may be reduced as seen by temperature sensitive devices coexisting on the same integrated circuit 10.
[0013] While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.
Claims
- 1. An integrated circuit comprising:
a heat sensitive region; a heat generating region; and a trench arranged to shield the heat generating region from the heat sensitive region.
- 2. The circuit of claim 1 wherein said trench is arranged around at least two sides of the heat generating region.
- 3. The circuit of claim 1 wherein said trench completely encircles the heat generating region.
- 4. The circuit of claim 1 formed on a semiconductor substrate, said trench extending completely through said substrate.
- 5. The circuit of claim 4 including a dielectric layer on the upper surface of said substrate.
- 6. The circuit of claim 1 including a trench fill material in said trench.
- 7. The circuit of claim 6 wherein said trench fill material is amorphous silicon dioxide.
- 8. The circuit of claim 1 wherein said circuit includes a semiconductor substrate and said trench extends into said substrate from the back side of said substrate.
- 9. The circuit of claim 8 wherein said trench extends from the back side of said substrate completely through said substrate.
- 10. The circuit of claim 9 wherein said trench is filled with a heat insulating fill material.
- 11. A method comprising:
forming a first circuit sensitive to heat in a first region of an integrated circuit; forming a second circuit that generates heat in a second region of an integrated circuit; and forming a trench around said second region to shield the first circuit from the heat generated by said second circuit.
- 12. The method of claim 11 including forming said first and second regions on a semiconductor substrate and forming the trench extending completely through said substrate.
- 13. The method of claim 12 including forming a dielectric layer on said substrate and using said dielectric layer as an etch stop.
- 14. The method of claim 13 including filling said trench with a trench fill material.
- 15. The method of claim 14 including filling said trench with amorphous silicon dioxide.
- 16. The method of claim 1 including forming said trench using a back side etch.
- 17. An integrated circuit comprising:
a semiconductor substrate; a first region of said substrate including a first element that is sensitive to heat; a second region of said substrate including a second element that generates heat; a trench arranged between said first and second regions, said trench extending completely through said substrate.
- 18. The circuit of claim 17 wherein said substrate includes a top side and a back side and said trench extends from said back side to said top side.
- 19. The circuit of claim 17 including a dielectric layer over said substrate and over said trench.
- 20. The circuit of claim 17 wherein said trench is filled with a trench fill material.