1. Field of the Invention
The present invention relates to the field of semiconductor devices. More specifically, the field of the present invention is directed to junction field effect transistors (JFETS) and MESFETS for use in low voltage, high frequency and high current applications.
2. Related Art
The semiconductor industry faces difficult challenges in satisfying the expanding needs to provide transistors that are suitable for power management with low voltage applications, e.g., below 3 volts. As the feature size of the integrated circuits (ICs) become ever smaller and electronic devices are continuously being miniaturized, the voltages from AC or DC power sources that provide power to these devices are further dropped. Dropping the voltage from five volts to three volts results in a 25 percent reduction in power if the current density is maintained unchanged. At 1.8 volts, the power drops another 60%. However, the transient current loads can be very high. Under such operating conditions, 0.9 volts is the normal forward voltage drop for a p-n junction typically employed in a rectifier. Unfortunately, most of the power is consumed in the rectifying process. Therefore, power supply systems built with such types of p-n junctions are not really suitable for low voltage applications. Even the Schottky barrier diodes with a forward voltage drop below 0.5 volts are not a suitable solution to provide rectifiers or power switching devices for operation under the low voltage conditions.
Junction field effect transistors (JFETs) were developed after the invention of the bipolar transistors. A JFET transistor can be operated at very high frequencies with high switching speeds because the JFET transistor is operated with majority carriers. The depletion mode JFET transistor is well known and employed commonly in a naturally on state when the gate bias is zero. Because of the naturally on state, the JFET transistors are not as widely used in the semiconductor industry as the MOSFET, e.g., the metal oxide semiconductor field effect transistors. In order to make the JFET transistor operate in a naturally off state, the distance between the gates has to be reduced for the depletion regions from the gate to shut off the current conducting paths. However, such naturally off JFET transistors are not very useful in conventional configurations due to the longer current channel thus limiting the current capacity with a high on-resistance. S. M. Sze in “Physics of Semiconductor Devices” disclosed one example of such a configuration (Wiley & Son, 1981 Second Edition, page 322). The normally off JFET transistors discussed by Sze are for high speed low power applications. The long current channel and high-on resistance limit the usefulness of JFET transistors particularly the high on-resistance prevents such transistors for use in applications in modern electronic devices operated with extremely low voltages.
Moreover, in U.S. Pat. No. 4,523,111 entitled “Normally-Off Gate-Controlled Electric Circuit with Low On-Resistance”, Baliga disclosed a JFET serially connected to an IGFET. The gate of the IGFET is operated as the gate for the serially connected circuit. The gate of the IGFET is applied to block the current to flow through a normally on JFET until the IGFET is turned on with a positively biased voltage above an IGFET threshold voltage. The on-resistance is the sum of the JFET resistance and the IGFET resistance. The on-resistance would not be adequate for extremely-low voltage applications required by modern electronic devices as discussed above. A similar invention is disclosed in U.S. Pat. No. 4,645,957 that is entitled “Normally Off Semiconductor Device with Low On-Resistance and Circuit Analogue” by Baliga. The JFET transistor is serially connected to a bipolar transistor to achieve the normally off state. Again, the on-resistance is the sum of the bipolar resistance and the JFET resistance and becomes too high for extremely low voltage applications.
In U.S. Pat. No. 5,321,283 entitled “High Frequency JFET” Cogan et al. disclose a JFET for radio frequency (RF) operation at high frequency. The normally-on JFET transistors disclosed in this patent are operated with high voltage and therefore they are not suitable to satisfy the requirements of modern portable electronic devices that require extremely low voltage and relatively high current capacity. Similarly, in U.S. Pat. No. 5,618,688 entitled “Method of Forming a Monolithic Semiconductor Integrated Circuit having an N-Channel JFET,” Ruess et al. disclose a normally on JFET transistor manufactured with BiCMOS processes. The JFET transistors disclosed in this patent are not suitable for low voltage and high current applications.
Therefore, a need exits in the art of design and manufacture of a transistor suitable for low voltage, high current and high frequency applications and a fabrication process that would address the above difficulties.
Accordingly, embodiments of the present invention are directed to JFETS and MESFETS suitable for low voltage, high current and high frequency applications. Embodiments of the present invention include transistor structures that comprise an oxide layer disposed under the gate region to reduce junction capacitance. Gate length can be very tightly controlled by according to the present invention by partially removing the bottom oxide layer and exposing windows into the substrate. Therefore, Vt can be very accurately controlled according the present invention. For normally off transistor structures, the gate current is reduced at Vg in forward bias. Moreover, silicide is used in the gate structure to further reduce gate resistance. According to the present invention, a very thin gate can be realized, under 1000 angstroms, by dipping of the spacer oxide to allow high frequency applications. Embodiments of the present invention provide the above advantages and others not specifically mentioned above but described in the sections to follow.
Embodiments of the present invention are directed to JFET and MESFET structures (transistor structures), and processes of making same, for low voltage, high channel current and high frequency applications. The structures may be used in normally-on (e.g., depletion mode) or normally-off modes. The structures include an oxide layer positioned under the gate region which effectively reduces the junction capacitance (gate to drain) of the structures. For normally off modes, the transistor structures reduce gate current at Vg in forward bias. In one embodiment, a silicide is positioned in part of the gate to reduce gate resistance. The structures are also characterized in that they have a thin gate due to the dipping of the spacer oxide, which can be below 1000 angstroms. This feature results in fast switching speeds for high frequency applications.
In formation, a trench is etched in a substrate, e.g., n-type. Next, an oxide layer is filled and etched back in the trench leaving a bottom oxide layer in the well of the trench. A spacer oxide and silicon nitride layer is applied to the trench walls, followed by an etch of the bottom oxide in the trench thereby opening windows to the n substrate. A deposition of polysilicon is done, followed by a second spacer oxide deposition and titanium is then deposited. The second oxide layer protects the polysilicon along the trench walls from reacting with the titanium. Thermal processes then form titanium silicide (between the exposed polysilicon and the titanium) in the gate, with the trench oxide disposed below the silicide. During the thermal processes, p regions are formed out of the window regions thereby creating the gate junction. After removal of unwanted material (e.g., the titanium, spacer oxide and polysilicon located along the trench walls), an oxide fill and etch back is performed leaving the silicide and bottom oxide layers. Contact etching is then performed.
For MESFET fabrication, titanium is replaced with platinum and the second spacer oxide is made thinner. The resulting silicide is then platinum silicide. Metal contacts are then used.
More specifically, an embodiment of the present invention includes a junction field effect transistor (JFET) structure comprising: a n+ type substrate forming a drain; an n type substrate disposed on said n+ type substrate and comprising a trench etched therein; an n+ type layer disposed on said n type substrate and forming a source thereon; an oxide bottom layer disposed in a well of said trench; a silicide layer disposed on said oxide bottom layer and forming a gate; a p type region disposed within said n-type substrate and adjacent to said silicide layer; and an oxide fill layer disposed within said trench and on said silicide layer. Embodiments include the above and wherein said silicide layer is titanium silicide and wherein said oxide bottom layer is for reducing gate to drain capacitance and wherein said silicide layer is for reducing gate resistance.
An embodiment of the present invention also includes a MESFET structure comprising: an n+ type substrate forming a drain; an n type substrate disposed on said n+ type substrate and comprising a trench etched therein; an n+ type layer disposed on said n type substrate and forming a source thereon; an oxide bottom layer disposed in a well of said trench; a silicide layer disposed on said oxide bottom layer and forming a gate and extending laterally into said n-type substrate; an oxide fill layer disposed within said trench and on said silicide layer; and metal contacts. Embodiments include the above wherein said silicide layer is platinum silicide and wherein said oxide bottom layer is for reducing gate to drain capacitance and wherein said silicide layer is for reducing gate resistance.
An embodiment of the present invention also includes a process of making a JFET structure comprising the steps of: a) etching a trench in a substrate comprising: an n+ type layer forming a source; an n type substrate; and an n+substrate forming a drain; b) forming an oxide layer within a well of said trench; c) disposing a first spacer layer on walls of said trench; d) partially etching back said oxide layer to expose windows to said n type substrate between said oxide layer said first spacer layer, said windows for use in controlling the formation of a gate; e) forming a silicide layer on said oxide layer as said gate, said step e) causing lateral diffusion of polysilicon through said windows to form a p region within said n type substrate creating a p-n junction; and f) filling said trench with another oxide layer disposed on said silicide layer.
Embodiments include the above JFET process and wherein said silicide layer is titanium silicide and wherein said step e) comprises the steps of: e1) depositing a layer of polysilicon in said trench; e2) depositing a second spacer layer on portions of said polysilicon layer that reside along said walls of said trench, said second spacer layer for protecting said portions of said polysilicon layer; e3) depositing a titanium layer in said trench; and e4) performing a rapid thermal process to form said titanium silicide layer.
Embodiments of the present invention also include a process of making a MESFET structure comprising the steps of: a) etching a trench in a substrate comprising: an n+ type layer forming a source; an n type substrate; and an n+substrate forming a drain; b) forming an oxide layer within a well of said trench; c) disposing a first spacer layer on walls of said trench; d) partially etching back said oxide layer to expose windows to said n type substrate between said oxide layer said first spacer layer, said windows for use in controlling the formation of a gate; e) forming a silicide layer on said oxide layer as said gate, said silicide layer diffusing laterally through said windows to form a p region within said n type substrate creating a p-n junction; and f) filling said trench with another oxide layer disposed on said silicide layer.
Embodiments include the above MESFET process and wherein said silicide layer is platinum silicide and wherein said step e) comprises the steps of: e1) depositing a layer of polysilicon in said trench; e2) depositing a second spacer layer on portions of said polysilicon layer that reside along walls of said trench, said second spacer layer for protecting said portions of said polysilicon layer; e3) depositing a platinum layer in said trench; and e4) performing a rapid thermal process to form said platinum silicide layer.
FIG. 2 and
In the following detailed description of the present invention, transistor structures (JFET and MESFET) for low voltage, high current and high frequency applications, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be recognized by one skilled in the art that the present invention may be practiced without these specific details or with equivalents thereof. In other instances, well known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present invention.
U.S. Pat. No. 6,251,716, entitled “JFET Structure and Manufacture Method for Low On-Resistance and Low Voltage Application,” issued Jun. 26, 2001, and assigned to the assignee of the present invention, is hereby incorporated herein by reference.
With reference to FIG. 2 and
At steps 54-56 of
It is appreciated that in an alternative embodiment of the present invention, the oxide fill and etch back steps 56 and 58 can be replaced with a LOCOS process whereby the bottom oxide 108b is grown rather than deposited and etched back. In this alternative embodiment, the bottom oxide 108b would be somewhat “lens” shaped.
At step 60 of
At step 62 of
At step 64 of
At step 66 of
At step 68 of
Importantly, at step 70 of
After the RTP process, p regions 140 and polysilicon p regions 148 result from the energetic interaction of the polysilicon layer 124 performing a lateral diffusion. These p regions 140 form the junction of the gate for the JFET structure. The titanium silicide layer 146 resides within the gate and the oxide layer 108b is therefore located under the gate.
At step 72, the extra titanium layer 130 located along the side walls of the trench is removed using a selective etch, e.g., using a hydrogen peroxide or “SC1” process. Importantly, this selective etch step does not remove the titanium silicide layer 146. Next, the extra second spacer material 128 located along the side walls of the trench is removed using a diluted HF solution. Lastly, the extra polysilicon layer 124 along the sides of the trench walls is removed using a diluted solution of NH4 and HF (NH4HF), or any other well known chemical process could be used. The net result of the above steps 50 is shown in FIG. 13. The only remaining chemicals in the sides of the trench walls are the first spacer 112/114 which may optionally be removed.
At step 74, the trenches are filled with oxide 108c and then etched back using well known processes. Contact etching is then performed. The result of the fabrication process 50 is shown in
The formation of the windows 120 (
As a result of the above features, and specially due to the oxide layer 108b disposed below the gate, the novel JFET structure 150, which can be used in normally-on or normally-off modes, has: (1) reduced gate current; (2) reduced gain-drain capacitance; and (3) low gate resistance.
Because the JFET 150 can be used in a mode of operation that is forward bias through the gate, the smaller p-n junction at the gate is effective to reduce otherwise wasted current flow there through. Another advantage of the JFET structure 150 is that it is fabricated in a vertical orientation with respect to the substrate. Therefore, the structure 150 can be made more compact and therefore may be densely packed for dense IC designs.
At step 202, instead of depositing titanium, as done in the JFET structure 150 of the present invention, the MESFET fabrication process 200 utilizes a platinum deposition at step 202. This is shown in FIG. 16. At step 202 of
Importantly, at step 204 of
After the thermal process of step 204, platinum silicide 170 layer results from the interaction of the platinum 160 and the polysilicon layer 124. These edges of the platinum silicide 170 form the junction of the gate for the MESFET transistor structure. The platinum silicide 170 resides within the gate and the oxide layer 108b is therefore located under the gate.
At step 206, the extra platinum layers 160 located along the side walls of the trench are removed using a selective etch, e.g., using a hydrogen peroxide or “SC1” process. It is appreciated that the selective etching-step does not remove the silicide layer 170. Next, the extra second spacer material 128′ located along the side walls of the trenches is removed using a diluted HF solution. Lastly, the extra polysilicon 124 along the sides of the trench walls is removed using a diluted solution of NH4 and HF (NH4HF), or any other well known chemical process may also be used. The net result of the above steps 200 is shown in FIG. 18. The only remaining chemicals in the sides of the trench walls are the first spacer 112/114 which may optionally be removed:
At step 208, the trenches are filled with oxide 108c and then etched back (trench etch) using well known processes. Contact etching is then performed. A metal is used as the contacts, e.g., aluminum may be used.
The result of the fabrication process 200 is shown in
The formation of the windows 120 (
As a result of the above features, and specially due to the oxide layer 108b below the gate, the novel MESFET structure 250, which can be used in a normally-on or normally-off mode, has: (1) reduced gate current; (2) reduced gain-drain capacitance; and (3) low gate resistance.
Because the MESFET 250 can be used in a mode of operation that is forward bias through the gate, the smaller p-n junction at the gate is effective to reduce otherwise wasted current flow there through. Another advantage of the MESFET structure 250 is that it is fabricated in a vertical orientation with respect to the substrate. Therefore, the structure 250 can be made more compact and therefore may be densely packed for dense IC designs.
The preferred embodiment of the present invention, transistor structures (JFET and MESFET) for low voltage, high current and high frequency applications, are thus described. While the present invention has been described in particular embodiments, it should be appreciated that the present invention should not be construed as limited by such embodiments, but rather construed according to the below claims.
Number | Name | Date | Kind |
---|---|---|---|
3381188 | Zuleeg et al. | Apr 1968 | A |
4404575 | Nishizawa | Sep 1983 | A |
4419586 | Phipps | Dec 1983 | A |
4506282 | Baliga | Mar 1985 | A |
4519024 | Federico et al. | May 1985 | A |
4523111 | Baliga | Jun 1985 | A |
4566172 | Bencuya et al. | Jan 1986 | A |
4645957 | Baliga | Feb 1987 | A |
4700461 | Choi et al. | Oct 1987 | A |
4750023 | Shannon | Jun 1988 | A |
4769685 | MacIver et al. | Sep 1988 | A |
4845051 | Cogan et al. | Jul 1989 | A |
4853561 | Gravrok | Aug 1989 | A |
5038266 | Callen et al. | Aug 1991 | A |
5227647 | Nishizawa et al. | Jul 1993 | A |
5396085 | Baliga | Mar 1995 | A |
5945699 | Young | Aug 1999 | A |
6011703 | Boylan et al. | Jan 2000 | A |
6028778 | Amano | Feb 2000 | A |
6064580 | Watanabe et al. | May 2000 | A |
6069809 | Inoshita | May 2000 | A |
6084792 | Chen et al. | Jul 2000 | A |
6090650 | Dabrai et al. | Jul 2000 | A |
6104172 | Josephs et al. | Aug 2000 | A |
6171916 | Sugawara et al. | Jan 2001 | B1 |
6180519 | Kuroi et al. | Jan 2001 | B1 |
6236257 | Si et al. | May 2001 | B1 |
6251716 | Yu | Jun 2001 | B1 |
6307223 | Yu | Oct 2001 | B1 |
6404157 | Simon | Jun 2002 | B1 |
6439678 | Norton | Aug 2002 | B1 |
Number | Date | Country |
---|---|---|
2026237 | Jan 1980 | GB |
04033377 | Feb 1992 | JP |