1. Technical Field
The present application relates to semiconductor technology, and more particularly to Junction Field Effect Transistor (JFET) devices and methods of making JFET devices.
2. Related Art
JFET devices are known to have a configuration as shown in
In operation, a positive drain-source voltage, VDS, induces electric charge to flow within the N-well 104 from the sources to the drain. The conductance of the N-well 104 may be controlled by a negative gate-source voltage, VGS, which induces a depletion region around each pn junction. The VGS may be varied to a point where the depletion regions pinch off the channel for electric charge flow, thereby turning off the JFET device 100. The voltage to achieve a pinch off may be designated as Vp. When a JFET device 100 is integrated into an integrated circuit, the effect of noise from the semiconductor substrate can cause Vp to vary, which results in irregularities and defects in the JFET devices. As such, isolated JFET devices are desired to allow for more precise Vp.
A first exemplary embodiment disclosed herein is directed to a semiconductor device comprising a substrate, an insulation structure formed over the substrate and a semiconductor deposition layer formed over the insulation structure and above the substrate, the semiconductor deposition layer having a first conductivity type. The disclosed semiconductor device further includes a first implant region formed in the semiconductor deposition layer, the first implant region having the first conductivity type and having a heavier doping concentration than the semiconductor deposition layer, and a second implant region formed in the semiconductor deposition layer, the second implant region having the first conductivity type and having a heavier doping concentration than the semiconductor deposition layer. The disclosed semiconductor device also includes a metal contact layer formed on a contact region of the semiconductor deposition layer between the first and second implant regions, whereby a junction forms between the metal layer and the contact region of the semiconductor deposition layer, wherein the junction is a Schottky barrier.
A second exemplary embodiment disclosed herein is directed to a semiconductor device comprising a substrate, a first insulation structure formed over the substrate, and a first semiconductor deposition layer formed over the first insulation structure. The disclosed semiconductor device further includes a second insulation structure formed over the first semiconductor deposition layer and a second semiconductor deposition layer formed over the second insulation structure, the second semiconductor deposition layer having a conductivity type. The disclosed semiconductor device may include a first implant region formed in the second semiconductor deposition layer, the first implant region having the conductivity type and having a heavier doping concentration than the second semiconductor deposition layer, and a second implant region formed in the second semiconductor deposition layer, the second implant region having the conductivity type and having a heavier doping concentration than the second semiconductor deposition layer. A metal contact layer may be formed on a contact region of the second semiconductor deposition layer between the first and second implant regions, whereby a junction forms between the metal contact layer and the contact region of the second semiconductor deposition layer, wherein the junction is a Schottky barrier.
Related methods of manufacturing the semiconductor devices of the present disclosure are also disclosed.
Features, aspects, and embodiments of the inventions are described in conjunction with the attached drawings, in which:
Below the insulation structure 204, a first well region 210 may be formed in the substrate 202 beneath the insulation structure 204. In the embodiment illustrated in
Above the insulation structure 204, a semiconductor deposition layer 212 may be formed over the insulation structure 204 by a deposition process. The semiconductor deposition layer 212 may have a first conductivity type to allow electric charge to flow from a source 214 to a drain 216. The conductance in the semiconductor deposition layer 212 may be controlled by a gate 218. The structure of the JFET device 200 will now be described in greater detail in view of
A first implant region 214 may be formed in the semiconductor deposition layer 212 such that the first implant region 214 has the first conductivity type and a heavier doping concentration than the semiconductor deposition layer 212. The first implant region 214 may be designated as the source 214. A second implant region 216 may be formed in the semiconductor deposition layer 212 such that the second implant region 216 has the first conductivity type and a heavier doping concentration than the semiconductor deposition layer 212. The second implant region 216 may be designated as the drain 216.
In the exemplary embodiment illustrated in
In addition to the semiconductor deposition layer 212, the JFET device 200 may further include a metal contact layer 218 formed on a contact region 220 of the semiconductor deposition layer 212 between the first and second implant regions 214, 216. The metal contact layer 218 may include a suitable metal to allow a junction between the metal contact layer 218 and the contact region 220 of the semiconductor deposition layer 212 to be considered a Schottky barrier. Depending on whether the semiconductor deposition layer 212 includes N-type or P-type impurities, the Schottky barrier may act as a P-type gate or an N-type gate, respectively. As such the metal contact layer 218 may be designated as gate 218. To form a P-type gate, the metal contact layer 218 may include suitable metals such as Ti, W, Ni, Pt, Al, Au, and Co. To form an N-type gate, the metal contact layer 218 may in clued suitable metals such as platinum (Pt).
The gate 218 is operable to control the conductance of a channel in the semiconductor deposition layer 212. In operation, the positive drain-source voltage, VDS, induces electric charge to flow within the semiconductor deposition layer 212 from the source 214 to the drain 216. The conductance of the semiconductor deposition layer 212 may be controlled by the negative gate-source voltage, VGS, which induces a depletion region within or proximate to the contact region 220. The VGS may be varied to a point where the depletion regions pinch off the channel for electric charge flow, thereby turning off the JFET device 200. The pinch off voltage may vary depending on the thickness of the semiconductor deposition layer 212. In an exemplary embodiment, the thickness of the layer 212 may be in a range that allows for a pinch off voltage between 0.7 to 30 volts. In an embodiment, the semiconductor deposition layer 212 can have a thickness that is in a range of 500 to 6,000 angstroms.
It is to be appreciated that by forming metal contact layer 218 and the semiconductor deposition layer 212 above the insulation structure 204 and the substrate 202, the noise and interference from the substrate 202 are substantially reduced, which, in turn, allows for improved control over the conductance of the semiconductor deposition layer 212 by the gate 218 and more precise pinch off voltage. Another advantage of the disclosed structure is that the first well region 210 below the insulation structure 204 may be utilized to accommodate additional devices that would otherwise not been possible had the space is used to create the pn junction in a JFET.
The JFET device 300 further includes a first semiconductor deposition layer 310 formed over the first insulation structure 306, a second insulation structure 312 formed over the first semiconductor deposition layer 310, and a second semiconductor deposition layer 314 formed over the second insulation structure 312.
Furthermore, the second semiconductor deposition layer 314 may be substantially similar to the semiconductor deposition layer 212 in the embodiments shown in
Referring to
The JFET device 300 includes a metal contact layer 324 formed on a contact region 326 of the second semiconductor deposition layer 314 between the first and second implant regions 316, 318. Like the metal contact layer 218, the metal contact layer 324 may include a suitable metal to allow a junction between the metal contact layer 324 and the contact region 326 of the second semiconductor deposition layer 314 to be considered a Schottky barrier. And the metal contact layer 324 may surround second semiconductor deposition layer 314 without contacting the first semiconductor deposition layer 310. Depending on whether the second semiconductor deposition layer 314 includes N-type or P-type impurities, the Schottky barrier may act as a P-type gate or an N-type gate, respectively. As such the metal contact layer 324 may be designated as gate 324.
Implanted with either N-type or P-type impurities, the conductivity of second semiconductor deposition layer 314 allows electric charge to flow from the source 316 to the drain 318. The conductance in the second semiconductor deposition layer 314 may be in controlled by both the gate 314 and the first semiconductor deposition layer 310. Acting alone, the gate 324 may control the conductance of the second semiconductor deposition layer 314 with a first negative gate-source voltage, VGS1, which induces a depletion region within or proximate to the contact region 326. The VGS1 may be varied to a point where the depletion regions pinch off the channel for electric charge flow, thereby turning off the JFET device 300. However, the first semiconductor deposition layer 310 and the second insulating structure 312 may act as a second gate that is operable to form a second depletion region in the second semiconductor deposition layer 314. The second depletion region may be formed by another applying a second negative gate-source voltage VGS2 at the electrode (not shown) in contact with the first semiconductor deposition layer 310. The first and second depletion regions may interact with each other to allow for not only greater degrees of control of the pinch off voltage but also further improvement in pinch off precision in addition to the improvement provided by the first insulation structure 306.
It is to be appreciated that due to the improvement in the control and precision of the pinch-off voltage in the JFET devices of the present disclosure, a variety of improvement in integrated circuit (IC) may be realized. For example, in recent years, the JFET devices of the present disclosure are particularly suitable to allow for higher conversion efficiency and lower standby power consumption in the development of green technology. A switch-mode power IC includes a integrate start-up circuit and a Pulse Width Modulation (PWM) circuit.
While various embodiments in accordance with the disclosed principles have been described above, it should be understood that they have been presented by way of example only, and are not limiting. Thus, the breadth and scope of the invention(s) should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the claims and their equivalents issuing from this disclosure. Furthermore, the above advantages and features are provided in described embodiments, but shall not limit the application of such issued claims to processes and structures accomplishing any or all of the above advantages.
Additionally, the section headings herein are provided for consistency with the suggestions under 37 C.F.R. 1.77 or otherwise to provide organizational cues. These headings shall not limit or characterize the invention(s) set out in any claims that may issue from this disclosure. Specifically and by way of example, although the headings refer to a “Technical Field,” such claims should not be limited by the language chosen under this heading to describe the so-called technical field. Further, a description of a technology in the “Background” is not to be construed as an admission that technology is prior art to any invention(s) in this disclosure. Neither is the “Summary” to be considered as a characterization of the invention(s) set forth in issued claims. Furthermore, any reference in this disclosure to “invention” in the singular should not be used to argue that there is only a single point of novelty in this disclosure. Multiple inventions may be set forth according to the limitations of the multiple claims issuing from this disclosure, and such claims accordingly define the invention(s), and their equivalents, that are protected thereby. In all instances, the scope of such claims shall be considered on their own merits in light of this disclosure, but should not be constrained by the headings set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
4304042 | Yeh | Dec 1981 | A |
5508539 | Gilbert et al. | Apr 1996 | A |
20050184343 | Thornton et al. | Aug 2005 | A1 |
20100032731 | Babcock et al. | Feb 2010 | A1 |
20130082322 | Weber et al. | Apr 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20130277718 A1 | Oct 2013 | US |