Large dynamic range light detection

Information

  • Patent Grant
  • 6518556
  • Patent Number
    6,518,556
  • Date Filed
    Monday, February 4, 2002
    22 years ago
  • Date Issued
    Tuesday, February 11, 2003
    21 years ago
Abstract
System for large dynamic range light detection. In one aspect, the system includes a hybrid counting/integrating system for processing a signal from a photomultiplier tube. In another aspect, large dynamic range is achieved in a cascaded detector system utilizing at least one asymmetric beam splitter for delivering a larger fraction of incident light to one photomultiplier tube and for delivering a smaller fraction of the incident light to another photomultiplier tube.
Description




BACKGROUND OF THE INVENTION




This invention relates to large dynamic range light detection and more particularly to a system for use in fluorescence readers to accommodate large dynamic ranges while maintaining optimal signal-to-noise performance.




Fluorescence readers are often used for re-sequencing or gene expression studies. In these systems, light such as that from a laser is directed onto a target which may include molecules capable of fluorescing. The emitted fluorescent light is then detected and analyzed. Detection is often accomplished using a photomultiplier tube in which incident light falls upon a photocathode thereby liberating primary electrons via the photoelectric effect. These primary electrons encounter structures known as dynodes to release secondary electrons. The electrons migrate to an anode and produce a current pulse. The dynamic range of the photomultiplier tube (PMT) is the ratio of the strongest expected signal to the weakest expected signal. At the low end of the signal range it is advantageous to count photons while at the high end such counting may no longer be possible due to pulse overlap and for other reasons.




A brute-force approach to the large dynamic range problem is to increase measurement (averaging) time to extend the detection range toward lower signal levels. While other solutions are available (compare, for example, a quantum photometer in “The Art of Electronics” by Horowitz and Hill, P. 998, ISBN 0-521-37095-7, Second Edition 1989), they do not permit the fast (pixel times on the order of microseconds) simultaneous measurement of current and fast photon counting. The present invention will increase dynamic range without increasing measurement or averaging time.




SUMMARY OFT THE INVENTION




In one aspect, the system according to the invention for large dynamic range light detection includes a photomultiplier tube for receiving incident light photons and for generating an output electrical signal in response to the incident light, A discriminator/counter responds to the output signal from the photomultiplier tube to count photons for output signals below a first selected level. A charge integrator responds to the output signal from the photomultiplier tube to integrate the output signal for output signals above a second selected level. Control circuitry is provided responsive to the discriminator/counter and to the charge integrator so that dynamic range is increased. In one embodiment, control circuitry is provided to record outputs from the discriminator/counter and from the charge integrator. In another embodiment, the control circuitry selects an output either from the discriminator/counter or from the charge integrator or a linear combination of the two based on strength of the output signal and stores the selected output. The control circuitry may be a digital signal processor.




In another aspect, the system of the invention for increasing dynamic range includes a photomultiplier tube for receiving incident light photons and generating output electrical signal in response to the incident light. An analog-to-digital converter responds to the output signal to generate a digital signal, and a digital signal processor operates on the digital signal. The digital signal processor is programmed to analyze the signal to determine whether the signal is within a photon counting range or within an integrating range. The digital signal processor is further programmed to mimic photon counting when the signal is in the photon counting range or to integrate the signal when the signal is in the integrating range and to generate an output. A photomultiplier tube preamplifier circuit may be provided to broaden pulses from the photomultiplier tube to cover several sampling intervals.




In yet another aspect, the system according to the invention for large dynamic range light detection includes at least one asymmetric beam splitter for receiving incident light and to direct a larger fraction of the incident light to one photomultiplier tube and to direct a smaller fraction of the incident light to at least one other photomultiplier tube. In a preferred embodiment, the photomultiplier tube receiving the larger fraction of incident light is operated in a photon counting mode and the photomultiplier tube receiving the smaller fraction of the incident light is operated in an integrating mode. A suitable larger fraction is 90% of the incident light and a suitable smaller fraction is 10% of the incident light. A suitable beam splitter is uncoated glass. A digital signal processor may be provided for operating on the signals from the photomultiplier tubes. It is also preferred that a fast modulator be provided to attenuate the incident light based on an actual signal thus resulting in dynamic compression.




The different aspects of the present invention extend signal dynamic range to allow photon counting at the low end of the dynamic range and extend the range up to a maximum light load that the light detector can accommodate. The systems of the invention allow covering dynamic ranges that are limited by the photon counting detection limit at the lower end and by the destruction threshold of the PMT at the high end. The present invention makes it possible to achieve dynamic ranges of 10


4


and more.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a block diagram illustrating one embodiment of the invention.





FIG. 2

is a block diagram illustrating an embodiment of the invention utilizing a digital signal processor.





FIG. 3

is a schematic diagram illustrating yet another aspect of the present invention.





FIG. 4

is a schematic diagram illustrating an embodiment of the invention using uncoated beam splitters.











DESCRIPTION OF THE PREFERRED EMBODIMENT




With reference first to

FIG. 1

, a hybrid approach to increasing dynamic range will be described. Incident light illustrated by an arrow


10


such as light from fluorescing molecules is detected by a photomultiplier tube (PMT)


12


. An output of the PMT


12


forms an input both to a discriminator/counter


14


and a charge integrator


16


. The discriminator/counter


14


covers a range of low signals and eliminates most of the excess noise of the PMT


12


. In a preferred embodiment, the output current of the PMT


12


is first converted into a voltage using an electrometer which may be considered part of the PMT


12


block in FIG.


1


. The integrator


16


covers stronger signal ranges where excess noise is no longer a problem, up to the PMT's saturation/destruction limit. For a typical system, the low and high signal regimes will overlap by a factor of two or more and thus can be gauged to give a continuous transition from counting to integration. The outputs of the discriminator/counter


14


and integrator


16


are read out and reset by a control circuit


18


. The control circuit


18


either records both results in storage


20


or chooses one of them based on signal strength and stores only that one in the storage


20


. The control circuit


18


may be a digital signal processor (DSP).





FIG. 2

is an embodiment of the invention utilizing fast digital signal processors which can perform both the counting and integrating functions. In this embodiment, the output from the PMT


12


is digitized in an analog-to-digital converter


22


and is processed by a digital signal processor


24


. The fast DSP


24


analyzes the output of the analog to digital converter


22


in a manner such that not a single photon event is missed if possible. This functionality can be achieved by having a PMT preamplifier circuit (not shown) that broadens the PMT pulses just enough to cover a few sampling intervals while not yet reducing pulse height excessively. The DSP


24


analyzes the signal (e.g., by looking at its integrated value first) to find out whether it is in the counting range or the integrating range and then either applies an algorithm that mimics photon counting (i.e., a pulse height discrimination and counting) or integrates the signal if not previously performed. In a crossover region between the high and low signal regimes either a transition point or a gradual transition using the two signals is possible. The DSP


24


can also compensate non-linearities of the signal-versus-light level response. This approach, too, gets rid of the PMT excess noise at the low end of the signal range.




A second cascaded approach to increasing dynamic range is shown in FIG.


3


. Incident light


10


encounters an asymmetric beam splitter


30


which directs most (e.g. 90%) of the incident light to a photomultiplier tube


32


(PMT). The remaining light (e.g. 10%) passes through the beamsplitter and may be directed to a last PMT


34


or be split up further by additional beamsplitters that direct the larger fraction of the light passed on by the previous beam splitter to intermediate PMTs


38


. The PMT


32


which receives the largest fraction of the signal is preferably run in photon counting mode while the PMTs


34


and


38


are operated in charge integration mode. As in the embodiment of

FIGS. 1 and 2

, additional circuitry (e.g. a DSP) can be provided in the embodiment of

FIG. 3

to choose the appropriate combination of output signals to be either combined into one output signal or to be recorded/stored in parallel.




The asymmetric beam splitters


30


would in this case normally have to be coated plates. Also, their reflectivities may be different from one another for some designs. The angle of incidence shown serves for illustration purposes only. In the case shown, typical transmissions might be 10% and typical reflectivities might be 90%. If each of the PMTs has a dynamic range of 10


3


, then the total dynamic range would be 10


4


for two PMTs and even more for additional PMTs.




Another embodiment is shown in FIG.


4


. In this arrangement, the beam splitters


40


can be uncoated substrates which are less expensive than coated substrates. The uncoated substrate will reflect about 10% and transmit about 90% of the incident light. Again, the PMT


32


gets the strongest signal and the PMT


34


gets the weakest signal with the PMTs


38


getting increasingly weaker signals as one moves from the PMT


32


to the PMT


34


.




The designs illustrated in

FIGS. 3 and 4

may be limited by the damage threshold of the PMT


32


which sees the larger share of the signal. There are several ways to deal with the potential damage problem. First of all, one could modulate the illumination power by modulating the source of light directly or using an external modulator (e.g. for diode laser or LED source). Alternatively, the emitted fluorescent light can be modulated to reduce the amount of light going to PMT


32


while leaving the full signal on the PMT


34


. This approach would protect both the cathode and dynodes of the PMT


32


. Alternatively, the PMT bias voltage can be modulated for one or more electrodes, which will protect dynodes but not the photocathode.




Both the hybrid counting/integrating system and the cascaded detector system described above extend signal dynamic range by allowing photon counting at the low end of the dynamic range and extended up to the maximum light load the detector can handle. Both approaches allow covering dynamic ranges that are limited by the photon counting detection limit at the lower end and by the destruction threshold of the PMT at the high end. Dynamic ranges well in excess of 10


4


and more are achievable with the designs of this invention.




It is intended that all modifications and variations of the above-described invention be included within the scope of the appended claims.



Claims
  • 1. System for large dynamic range light detection comprising:at least one asymmetric beam splitter for receiving incident light and to direct a larger fraction of the incident light to one photomultiplier tube and to direct a smaller fraction of the incident light to at least one other photomultiplier tube, wherein the photomultiplier tube receiving the larger fraction of incident light is operated in a photon counting mode and wherein the photomultiplier tube receiving the smaller fraction of the incident light is operated in an integrating mode.
  • 2. The system of claim 1 wherein the larger fraction is approximately 90% and the smaller fraction is approximately 10%.
  • 3. The system of claim 1 wherein the beam splitter is uncoated glass.
  • 4. The system of claim 1 further including a digital signal processor to choose an appropriate combination of output signals to be combined either into one output signal or to be recorded/stored in parallel.
  • 5. The system of claim 1 further including a fast modulator to attenuate light incident on a target sample.
  • 6. The system of claim 1 further including a fast modulator to attenuate incident light on at least one of the photomultipliers.
Parent Case Info

This is a divisional of application Ser. No. 09/313,102 filed on May 17, 1999 now U.S. Pat. No. 6,355,921.

US Referenced Citations (14)
Number Name Date Kind
3571493 Baker et al. Mar 1971 A
3843257 Wooten Oct 1974 A
3941478 Dougherty et al. Mar 1976 A
4590368 Govaert May 1986 A
4857722 Kumazawa et al. Aug 1989 A
5257202 Feddersen et al. Oct 1993 A
5260029 Hosoi et al. Nov 1993 A
5264693 Shimabukuro et al. Nov 1993 A
5475227 LaRue Dec 1995 A
5493111 Wheeler et al. Feb 1996 A
5504337 Lakowicz et al. Apr 1996 A
5528046 Ishikawa Jun 1996 A
5582705 Yeung et al. Dec 1996 A
5631734 Stern et al. May 1997 A
Foreign Referenced Citations (4)
Number Date Country
3915692 Nov 1990 DE
19618601 Nov 1997 DE
1350508 Jul 1986 SU
WO8801751 Oct 1988 WO
Non-Patent Literature Citations (1)
Entry
Examiner Gareth Lewis, British Patent Office, Search Report under Section 17 Dated Sep. 5, 2000, British application No. GB0011109.6, 1 page.