This application is related to co-pending U.S. patent application Ser. No. 16/133,955 filed on Sep. 18, 2018, assigned to the same assignee as the present application and herein incorporated by reference in its entirety.
This application relates to the general field of magnetic tunneling junctions (MTJ) and, more particularly, to etching methods for forming MTJ structures.
Fabrication of magnetoresistive random-access memory (MRAM) devices normally involves a sequence of processing steps during which many layers of metals and dielectrics are deposited and then patterned to form a magnetoresistive stack as well as electrodes for electrical connections. To define the magnetic tunnel junctions (MTJ) in each MRAM device, precise patterning steps including photolithography and reactive ion etching (RIE), ion beam etching (IBE) or their combination are usually involved. During RIE, high energy ions remove materials vertically in those areas not masked by photoresist, separating one MTJ cell from another. However, the high energy ions can also react with the non-removed materials, oxygen, moisture and other chemicals laterally, causing sidewall damage and lowering device performance. To solve this issue, pure physical etching techniques such as pure Ar RIE or ion beam etching (IBE) have been applied to etch the MTJ stack.
However, due to the non-volatile nature, pure physically etched conductive materials in the MTJ and bottom electrode can form a continuous path across the tunnel barrier, resulting in shorted devices. One solution to this is to form dielectric surrounded vias smaller than the MTJ connecting the MTJ and bottom electrode. This allows for a great over etch of the MTJ so that the metal re-deposition from the MTJ itself can be limited below the tunnel barrier; meanwhile, re-deposition from the bottom electrode is completely avoided. However, the via height, which represents the spacing between the MTJ and bottom electrode, is usually <50 nm, limited by the poor etch selectivity between the photoresist and via material. A new approach to further increase the via height is required if a greater MTJ over etch is needed to further reduce the metal re-deposition.
Several references teach over etching to form MTJ's, including U.S. Patent Applications 2018/0040668 (Park et al) and 2017/0125668 (Paranipe et al). Other references teach thin vias on wider metal layers, such as U.S. Pat. No. 8,324,698 (Zhong et al). All of these references are different from the present disclosure.
It is an object of the present disclosure to provide an improved method of forming MTJ structures.
Yet another object of the present disclosure is to provide a method of forming MTJ devices using a physical over etch to avoid both chemical damage and physical shorts.
A further object of the present disclosure is to provide a method of forming MTJ devices using a physical over etch into a dielectric layer encapsulating stacked metal vias on a bottom electrode to avoid both chemical damage and physical shorts.
In accordance with the objectives of the present disclosure, a method for etching a magnetic tunneling junction (MTJ) structure is achieved. A stack of connecting metal vias is formed on a bottom electrode by repeating steps of depositing a conductive via layer, patterning and trimming the conductive via layer to form a sub 30 nm conductive via, encapsulating the conductive via with a dielectric layer, and exposing a top surface of the conductive via to form a stack of connecting metal vias. A MTJ stack is deposited on the encapsulated via stack wherein the MTJ stack comprises at least a pinned layer, a barrier layer on the pinned layer, and a free layer on the barrier layer. A top electrode layer is deposited on the MTJ stack and patterned and trimmed to form a sub 60 nm hard mask. The MTJ stack is etched using the hard mask to form an MTJ device and over etched into the encapsulation layers but not into the bottom electrode wherein metal re-deposition material is formed on sidewalls of the encapsulation layers underlying the MTJ device and not on sidewalls of a barrier layer of the MTJ device.
In the accompanying drawings forming a material part of this description, there is shown:
In the process of the present disclosure, we introduce large height tree-like sub 30 nm vias by repeatedly stacking one layer of high angle IBE trimmed vias onto another. Later an MTJ stack is deposited and over etched into the dielectric underneath to simultaneously reduce the conductive metal re-deposition from the MTJ itself and to avoid the conductive metal re-deposition from the bottom electrode. Here a middle angle (30-60°) IBE is used, forming tapered MTJ/dielectric patterns without chemical damage. These tapered patterns with larger bottom critical dimension (CD) than top ensures that the vias underneath are not touched during this step, even if there is an overlay shift while patterning these vias.
In a prior process flow, the MTJ stack is patterned on top of one single layer of IBE trimmed metal via with height <50 nm. The allowed amount of MTJ over etch is not enough to completely remove the metal re-deposition on the tunnel barrier. However, in the process of the present disclosure, by repeatedly stacking one layer of vias onto another and later etching the MTJ by a middle angle IBE, we can greatly over etch the MTJ into the dielectric without touching the vias underneath. In other words, the original via height limit no longer exists. It thus becomes possible to completely eliminate the electrically shorted devices from metal re-deposition.
Referring now to
The dielectric hard mask 14 and metal 12 are etched by RIE using fluorine carbon or chlorine based plasma such as CF4, CHF3, or CI2 alone, or mixed with Ar and N2. O2 can be added to reduce the pillar size further. They can also be patterned by a physical etch such as IBE. Depending on the thickness of the metal layer 12, the dielectric hard mask 14 can be partially consumed, with a thickness now h4 of ≥15 nm. As shown in
Next, as illustrated in
Next, referring to
Next, by repeating these steps, one can build multiple layers of these small size vias onto each other. For example,
Now, layers are deposited on the encapsulated via stack to form magnetic tunnel junctions, as illustrated in
The dielectric hard mask 40 and top electrode 38 are etched by fluorine carbon or chlorine based plasma such as CF4 or CI2 alone, or mixed with Ar and N2. O2 can be added to further reduce the pillar size. The dielectric hard mask and top electrode can also be etched by pure physical RIE or IBE Now, as shown in
In the process of the present disclosure, it is demonstrated that by repeatedly stacking one high angle ion beam etching (IBE) trimmed metal via onto another, we can create large height tree-like sub 30 nm vias which are surrounded by dielectric and connect to the bottom electrode below and sub 60 nm MTJ above. The MTJ stack is later etched using IBE, a physical type of etch to avoid chemical damage. During this step, a middle angle is used, resulting in a tapered MTJ profile, i.e., larger bottom CD than top. This ensures that the vias underneath are not touched during the MTJ over etch even though these vias' overlay is shifted during photolithography. This great over etch of the MTJ into the dielectric greatly reduces the conductive materials re-deposition onto the tunnel barrier from the MTJ itself and completely eliminates re-deposition from the bottom electrode, thus reducing the electrically shorted devices.
In summary, the process of the present disclosure allows for a much greater MTJ over etch, offering the potential to completely eliminate the metal re-deposition induced electrically shorted devices. Moreover, it creates these large height sub 30 nm vias using angled IBE, a much lower cost technique, which would otherwise have to involve the complex and expensive immersion 193 nm or EUV photolithograpy. The process of the present disclosure will be used for MRAM chips of the size smaller than 60 nm as problems associated with chemically damaged sidewall and re-deposition from bottom electrode become very severe for the smaller sized MRAM chips.
Although the preferred embodiment of the present disclosure has been illustrated, and that form has been described in detail, it will be readily understood by those skilled in the art that various modifications may be made therein without departing from the spirit of the disclosure or from the scope of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 16/113,088, filed Aug. 27, 2018, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
8324698 | Zhong et al. | Dec 2012 | B2 |
1041854 | Yang et al. | Sep 2019 | A1 |
10714680 | Yang | Jul 2020 | B2 |
20090261313 | Lung et al. | Oct 2009 | A1 |
20140284737 | Kumura | Sep 2014 | A1 |
20170104152 | Bae et al. | Apr 2017 | A1 |
20170125668 | Paranjpe | May 2017 | A1 |
20180040668 | Park | Feb 2018 | A1 |
20190312197 | Yang | Oct 2019 | A1 |
20200066973 | Yang et al. | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
2016513868 | May 2016 | JP |
20160138387 | Dec 2016 | KR |
201503438 | Jan 2015 | TW |
201543727 | Nov 2015 | TW |
201735411 | Oct 2017 | TW |
2014148587 | Sep 2014 | WO |
2015147855 | Oct 2015 | WO |
Number | Date | Country | |
---|---|---|---|
20200343443 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16113088 | Aug 2018 | US |
Child | 16927461 | US |