1. Field of the Invention
The present invention relates to the field of laser processing methods and systems, and specifically, to laser processing methods and systems for laser processing multi-material devices.
2. Description of the Related Art
Lasers can be used in the processing of microstructures in memory and integrated circuit devices. For example, laser pulses can be used to ablate conductive links or link portions in a memory device, such as DRAMs in order to substitute working redundant memory cells for defective memory cells during memory manufacture.
Recently, the use of new materials, such as aluminum, gold, and copper, coupled with the small geometry of these devices, have made the problem of link removal more difficult. Economics and device performance goals have driven the size for the DRAMs and logic devices to very small physical dimensions. Thus, it can be increasingly difficult to irradiate a target structure without damaging surrounding components such as the substrate and adjacent circuitry and links. Furthermore, as more links need to be processed for a given area of semiconductor circuitry, the time required to process a given die increases.
The conventional energy picking process is illustrated in
In a conventional processing system links and pulses are synchronized. T1 and the period of the laser pulse repetition rate (e.g. the pulse to pulse period of a q-switched laser controlled by trigger signals from the control computer 14) are made equal. With this method, a pulse is available to process every link. Pulses that are synchronized with links to be processed, such as links 200a, 200d, and 200f of
It will be appreciated that the time required to process a given set of links within a group of a row or a column of links is approximately the number of link pitches in the group times the time period T1, which in these systems equals the laser pulse repetition rate. If the laser used has a maximum pulse rate of 50 kHz, for example, completing the pass of the beam across the 11 links of
In at least one embodiment, a set of laser spots is generated by splitting an input beam with a multi-beam generator. The set of laser spots is scanned across an array of links in a two dimensional pattern. The pattern scans laterally transverse to a mechanical positioning direction, generally along an array column and across column elements. The pattern also scans in the mechanical positioning direction of links in a column during relative motion of the column and the optical beam delivery system. Multiple column elements pass under the axis of at least one of the split beams for process targeting in an improved processing sequence.
According to one aspect, a single-pass multiple row method of selectively laser processing designated elements in a two dimensional array of elements within the field of view of a laser processing lens is disclosed. The array includes N rows and multiple columns. The method includes generating M simultaneous pulsed laser beams, propagating the beams along M non-collinear beam axes, each non-collinear beam axis passing substantially though the center of the entrance pupil of the laser processing lens, and irradiating L selected array elements in a first column with the beams. M is in a range of 2 to N−1 and L is in the range of 2 to N.
According to another aspect, a single-pass multiple row method of selectively laser processing designated elements in a two dimensional array of elements within the field of view of laser processing lens is disclosed. The array includes N rows and multiple columns. The method includes providing a pulsed laser beam input from a laser source, the pulsed laser beam comprising a sequence of input laser pulses or a sequence of laser pulse groups during multiple corresponding processing periods in a sequence of processing periods, selectively splitting the pulsed laser input during first and second processing periods into a processing output comprising first and second respective pluralities of multiple simultaneous pulsed laser beams, propagating the first and second pluralities along non-collinear beam axes, each non-collinear beam axis passing substantially though the center of the entrance pupil of a laser processing lens, irradiating during the first processing period a first plurality of elements with the first plurality of multiple simultaneous beams, and irradiating during the second processing period a second plurality of elements with the second plurality of multiple simultaneous beams. The first and second plurality of multiple simultaneous beams irradiate different sets of elements at different respective positions in the array relative to the axis of the laser processing lens.
According to another aspect, a laser processing system for single-pass multiple row selective laser processing designated array elements in a two dimensional array of elements is disclosed. The array includes n rows and multiple columns. The system includes a laser source configured to generate a pulsed laser beam input, the pulsed laser beam comprising a sequence of processing periods, each processing period including one or more laser pulses, a processing lens disposed with a focal plane proximate to the array of elements, said lens comprising an optical axis and configured to receive multiple non-collinear simultaneous pulsed laser beams at an entrance pupil and focus each beam to a diffraction limited laser spot within a field of view at the focal plane, at least one laser beam propagation path extending from the laser source to the focal plane of the processing lens, at least one multi-beam generator disposed along a laser propagation path between the laser source and the processing lens configured to receive a pulsed laser beam input and generate multiple non-collinear simultaneous pulsed laser beams from the pulsed laser beam input, said multi-beam generator responsive to beam positioning control signals on a pulse by pulse basis, at least one beam deflector disposed along a laser propagation path between the laser source and the processing lens configured to deflect the multiple non-collinear simultaneous pulsed laser beams within the field of the laser processing lens on a pulse by pulse basis to positions of designated elements during relative motion of the elements and the axis of the laser processing lens axis, and at least one beam adjuster disposed between the at least one multi-beam generator and the processing lens configured to align the multiple non-collinear simultaneous pulsed laser beams with the axis of the laser processing lens at the entrance pupil of the processing lens. The system further includes an array positioning system configured to carry a wafer substrate and provide relative motion between the array and the axis of the laser processing lens, and a system controller configured to receive data corresponding to array elements designated for processing, and provide system control signals including laser timing, multiple beam generation commands, beam deflection commands, beam adjusting signals, lens focusing signals, and relative positioning commands.
According to another aspect, a single-pass multiple row method of selectively laser processing designated elements in a two dimensional array of elements within the field of view of a laser processing lens is disclosed. The method includes determining a plurality of sub-arrays within the two dimensional array of elements, each sub-array including multiple elements designated for processing, selecting one sub-array from the plurality of sub-arrays, the selected sub-array including multiple elements having a predetermined spacing between the elements and a relative orientation within the array of element, and forming laser spots corresponding to locations of the multiple designated elements in the selected sub-array within the field of view of the processing lens with a plurality of simultaneously directed laser beams.
Many types of scan patterns are well known such as raster scanning, random access scanning, and push broom scans etc. In laser memory repair of electronic devices carried on silicon substrates, path planning is used to scan narrow array areas having few rows and many columns. The scanning pattern trajectory is generally a sequence of line scans where each line includes one or more trajectory segments and one or more groups of links to be processed in an array area that is part of a trajectory segment. Each group of links to be processed has one or more links that are designated for removal by an impinging laser beam such that a conductive element is severed. The scanning pattern is carefully planned in a sequence to traverse all array areas where processing is required in a minimum total process time to process the substrate. In some systems, especially systems with a long travel mechanical positioning stage, scanned lines may traverse a full wafer. In other systems especially systems with a fast short travel mechanical positioning stage, short lines, generally less than the full wafer are scanned to process the wafer region by region.
Laser processing of the areas containing designated links has generally been performed along single rows of array areas with a single laser beam. More recently, attention has been directed to multiple beam systems to target multiple links to increase throughput and minimize the number of processing passes needed to complete processing of a wafer. Multiple processing beams can be applied through a single processing lens with the beams forming spots in different relative orientations relative to the array to process links in a single row or links in different closely spaced rows in a single pass.
In general, patterns used for scanning the array areas for repair by laser irradiation follow the layout of the links in the array areas. Mechanical scanning in one form or another provides relative positioning between the axis of a laser processing lens and designated links. The relative positioning path follows along these link arrays at a positioning velocity to process selected links. Single beam systems delivering a single laser spot are ultimately limited by the minimum processing period of the laser source. Within the limits of maximum mechanical positioning speeds or other system constraints such as pulse selection speed and laser spot positioning accuracy, processing rates may be further limited. Multi-beam systems are intended to improve throughput by allowing multiple laser spots to target links.
While currently available memory repair systems are capable of extremely high throughput, further improvement in processing throughput and positioning accuracy in multi-beam laser processing systems is desirable.
As discussed above, in general, patterns used for single pass scanning multiple rows, like single row processing patterns, follow the layout of the link geometry. However to access multiple rows, in addition to mechanical positioning, multiple row scan patterns of certain embodiments either rapidly position laser spots among the different rows with high-speed deflection or select from a number of multiple beams to deliver laser spots corresponding to each of multiple rows.
As described in U.S. Patent Application Publication No. 2009/0095722, multiple beam systems can scan the link arrays with predetermined patterns based on the layout of links in the array. For example, in one embodiment with laterally disposed beams the number of multiple beams matches the number of rows in the array and spots generated from selected beams result in a so-called push broom scan to process any link in the local array segment when it is traversed. Multiple beams that may be disposed along a single row corresponding to a repeated layout pattern of links, for example to process repeating link groups, spots are moved together from row to row according the repeating pattern of link groups. Multiple-beam processing embodiments, incorporating techniques such as tracking and non-synchronous processing can provide further throughput improvement.
Mechanical positioning strategies for multiple row processing can include determining advantageous optimal relative positioning velocities to improve processing throughput when using pulse by pulse deflection, such as AOBD deflection superimposed with mechanical positioning. Various methods and systems for combining mechanical motion and high-speed deflection are described in U.S. Patent Application Publication No. 2009/0095722, U.S. Provisional Patent Application No. 61/291,282, and U.S. Pat. No. 7,666,759, each of which is incorporated by reference in its entirety herein. With multiple-beam processing, not only can more links be processed with each pulse; mechanical positioning can be maintained at velocities within acceptable limits and pulse utilization can be improved by reducing unused and under-utilized laser pulses.
Memory repair systems of at least one embodiment include a laser source for generating a pulsed processing beam. The processing beam is input to a beam delivery system that includes a multi-beam generator to direct portions of the processing beam to target material at multiple spot locations in a processing output that includes multiple beams capable of processing multiple links simultaneously. The links are carried on a substrate, and the substrate is mechanically positioned along a processing trajectory relative to the beam delivery system. System operation includes using control software, a system controller, firmware, hardware and data storage devices, with interfaces for control signals to various subsystems and components, as well as data input, data processing and data output devices to receive memory repair data, to process the repair data, to generate a processing trajectory and to generate control signals, timing signals and commands for coordinated laser operation, laser beam delivery and mechanical substrate positioning to selectively irradiate designated links along the processing trajectory with multiple laser beams at multiple corresponding laser spot locations.
As shown in
A second deflector 11 may deflect and/or split the laser beam along another axis as will be described further below. The first and/or second deflector 11 may be configured to split the beams into a first beam 24 and a second beam 25 for laser processing. In the specific implementation shown in
A second stop 12 may prevent unwanted energy from the second deflector 11 from proceeding along the beam path. The beams 24 and 25 may proceed through relay optics as shown in
In at least one embodiment, detectors may be included in the system illustrated in
Many aspects of this invention are largely independent of laser material interactions and processing energy windows for various regimes of lasers and pulse types. These aspects relate primarily to improved beam positioning and throughput, however to the extent that positioning accuracy is improved or new types of lasers or new modes of operation are used, some aspects may be process related. In general, beam positioning aspects of this invention, using high-speed positioning within in a two dimensional field moving along a trajectory, can apply to many different types of laser processing.
The repetition rate of suitable lasers to generate a processing beam of individual pulses, sequential closely spaced pulse groups or sequential rapid bursts of pulses for processing designated links during one or more processing periods may be in the range of 35 kHz to 150 kHz or 100 kHz to 300 kHz. Preferred lasers include fiber lasers with temporal pulse shaping and generation of closely spaced groups of pulses at high processing repetition rates. Laser systems are commercially available with nanosecond pulse shape control and repetition up to 150 kHz and potentially as high as 500 kHz. Other well-known lasers used in the field of micromachining may be used to generate a laser input see for example U.S. Patent Publications 2007/0199927 and 2009/0016388, which are incorporated herein by reference in their entireties.
With returned reference to
Output from the laser source is directed along a beam path to the input aperture of a first acousto-optic beam deflector AOBD 1 (beam splitter/deflector 7). As shown in
Acousto-optic beam deflectors may also be referred to as acousto-optic Bragg deflectors, acousto-optic deflectors (AOD), acousto-optic devices (AOD) or acousto-optic modulators (AOM). Any one of these terms applies to a Bragg regime deflector. AOBD and AOD are considered synonymous and generally refer to devices optimized for variable deflection. AOM usually refers to a Bragg cell that is optimized for high extinction and high efficiency as an amplitude modulator, however over small ranges with varied frequency input an AOM can provide variable beam deflection. The specific construction of the device in various configurations such as, off-axis designs, phased array, alternate materials etc. may be used as beam deflectors in this invention. Other types of acousto optic devices, for example variable filters, may also be considered as deflectors in some cases. It will be understood that any variable deflector operating in the Bragg regime is considered an AOBD for the purposes of this disclosure. Deflectors with similar or superior characteristics may be used in various aspects of this invention, for example deflectors that provide decreased access speed, increased time bandwidth product, improved efficiency, more addressable spots, or reduced beam distortion. Alternate deflectors may be improved AOBDs, electro-optic deflectors or any other type of high speed inertialess deflector.
It will be appreciated that each AOBD is designed for a specific wavelength and that the center frequency will correspond to a different deflection angle for different laser wavelengths. In the case of an optical system designed for different wavelengths, accommodation may be required for differences in deflection angle when the laser source wavelength is changed.
It will be appreciated that AOBDs are driven by specialized RF drives (402, 403 in
According to some embodiments, four amplified DDS channels (A, B, C, and D in
For two axis deflection, the AOBD 1 (7) may itself be a two axis device with multiple transducers on a single acousto-optic crystal or multiple AOBDs each with its own transducer or transducer array, such as AOBD 1 and AOBD 2 may be used to provide beam deflection in two axes, either in a closely stacked configuration or a spaced-apart configuration. According to some embodiments, AOBD 2 (beam splitter/deflector 11) is spaced apart from AOBD 1 with intervening optics along the beam path to relay the image of the AOBD 1 to AOBD 2. The relay optics 8 may modify the beam diameter as needed to optimize performance of AOBD 2. Anomorphic optics may also be used in this relay stage to impinge AOBD 2 with an elliptical beam. Preferably, the layout provides rotation between first and second deflection axes to allow both deflectors to be mounted in the same preferred orientation. For example, the periscope arrangement of 2 folding mirrors can provide a 90 degree optical path fold and a 90 degree beam rotation. The first mirror folds a horizontal beam to vertical and the second mirror folds the vertical beam back to horizontal with a 90 degree fold with respect to the input horizontal beam. In this example, each AOBD can be mounted to deflect in a vertical plane where the beam rotation between deflectors allows for 2 axis deflection. Folding mirrors may also accommodate, among other things, the first order center frequency input and output angles. Inputs and outputs may deviate from the horizontal plane to match the input Bragg condition and provide an output generally centered with respect to the horizontal plane by adjusting the fold angle to direct the beam along a preferred axis. Other arrangements are possible.
As discussed above, and illustrated in
It is to be understood that each AOBD will generate a zero order, non-deflected beam in addition to the desired deflected beam. As a matter of routine design, the zero order beams are fully attenuated for example with a knife edge. The spaced-apart layout provides access for separate knife-edges such as beam stops 9 and 12 or each deflection axis and prevents unwanted energy from the zero order of the first AOBD from propagating into the second AOBD. Other types of beam attenuators are possible, for example in polarization active AOBDs, polarizers maybe used to attenuate zero order energy. In addition to zero order beams, other undesired higher or lower diffraction order beams may be present and may be attenuated in a conventional manner.
Following first and second AOBDs, beam conditioning optics may be employed in the beam path, for example polarization control optics such as a Liquid Crystal Variable Retarder 17 which may be used to adjust polarization according to target type or link orientation as described in U.S. Pat. No. 6,181,728. The beam path may include relay optics 13 to modify the deflected output beam for entrance to the LCVR, for example to fit a well collimated beam into a limited active aperture. These relay optics may further image the pupil of the second AOBD to an intermediate image plane 15 and may provide further anomorphic optics in an anomorphic beam path arrangement.
Following the first and second AOBDs and beam conditioning relay optics, the image of the deflector pupil is expanded. A pre-expander relay 16 may reimage the deflector pupil, for example the intermediate image 15 of the deflector pupil described above to the input pupil of the system beam expander 19. As described in U.S. Patent Publication No. 20090095722, a beam expander, preferably a zoom beam expander is used to image the deflector pupil or an image of the deflector pupil to the entrance pupil of the processing objective 20. Position of the zoom beam expander can be used to adjust the deflector pupil image location at the objective pupil to improve telecentricity, and might be adjusted to different axial positions to improve telecentricity of either deflection axis. Beam expander optical groups, for example 3 groups as described in U.S. Patent Publication No. 20090095722, may be driven in linear motion precisely using Nanomotion HR2 piezo drives and MicroE Mercury 2 encoders. As the beam expansion is changed the beam diameter at the objective lens changes, and hence the spot size in the field changes accordingly.
The processing lens 20 may be a high numerical aperture objective lens of at least NA 0.7 to provide spots as small as 1.4 microns or 0.7 microns for the processing wavelengths 1064 nm and 532 nm respectively. The objective lens may be mounted on an air bearing, for example air bearing sled 21 as illustrated in
Generally, the field of view of the lens is circular and the deflection field shape is addressed within the lens field of view. The deflection field accessed can be selected as the entire lens field of view, or any portion of the lens field of view. This may be a circular truncation of a superscribed square deflection field, an inscribed shape such as an inscribed square or a partially truncated deflection field. The deflection field when using AOBD positioning is limited by the maximum number of spots available from each deflector. In some cases, for example with small spot sizes, the addressable field may be smaller than the lens field of view.
The wafer substrate 22 with links to be processed is mounted on a wafer chuck for processing. The spot formed by the objective impinges the surface of the wafer. The chuck is carried on a stage or mechanical positioning system 23 according to any of the well-known mechanical positioning configurations. One such configuration is the 2 axis fine stage supported by an air bearing that travels over a 2 dimensional portion of a wafer as found in GSI Group model M550. For this type of system, full wafer coverage is accomplished by stepping a beam delivery system in increments over the wafer and sequentially processing small areas of the wafer with fine stage motion. Alternately, full travel single axis stages in stacked or split arrangements or other configurations and various combinations including galvanometer positioning as know in the art can be used as the mechanical positioning system. Regardless of the particular mechanical positioning configuration, the mechanical positioner moves the substrate relative to a nominal laser beam axis to provide mechanical positioning of targets in a processing trajectory.
Mechanical positioning may also include auxiliary mirror based deflection to provide improved dynamic performance. This has been implemented in the form of galvanometer based field scanning and more recently using a two axis fast scan mirror for stabilization. Yet another approach to improve dynamic performance of mechanical positioning is the use of force cancellation technology, for example as described in U.S. Pat. No. 6,144,118. With force cancellation, mechanical system perturbations and resultant mechanical positioning errors are minimized.
The operation of the laser processing system may be controlled by a system controller. For example, a system control architecture as shown in
Coordination of laser pulsing, selective pulse picking for blasting selected links, spot displacements to access positions in the deflection field and mechanical stage motion is generally achieved using a system controller 401. The controller is used to generate laser trigger timing signals, pulse picking commands, spot displacement commands and stage positioning commands.
According to some embodiments, the controller generates trigger timing signals that fire laser pulses at a substantially constant repetition rate either continuously or for a minimum interval prior to blasting to provide uniform pulse energy. Conventionally, the trigger timing signals often correspond to link positions on a regular pitch at a particular stage velocity. However, in the present invention, trigger timing signals merely correspond to a position along the mechanical trajectory that will be defined as a virtual link position. The virtual link position represents a position along the trajectory that would be blasted without a commanded displacement. However, with a displacement command, the blast is deflected to the desired blast location at the real link with an offset from the virtual link location. With a constant PRF and a constant velocity along the trajectory, the virtual link locations can generally be regarded as conventional links aligned in along a row on a regular pitch with typical laser timing requirements.
Laser triggering may be initiated by a comparison of the current position of the laser beam axis relative to a target coordinate so that when the position of the laser beam and a virtual link position coincide, accounting for a known lag in the firing sequence, the laser is triggered and the blast is fired to process the target link at the displaced offset position. Alternately, blast times can be scheduled in advance to coincide with virtual link positions according to a planned trajectory and associated blast displacements.
Processing blasts are fired by gating the triggered laser pulses according to pulse picking commands with an optical device (such as AOM 5 of
The system controller 401 also controls blast displacement relative to the trajectory and provides offset commands and deflection signals to position blasts within the AOBD field. With the use of a deflection field, the controller may generate commands that result from a combination of both time and position processing domains. Displacement can be calculated based on set blast times, blast time can be set based on set displacements, for example if only a limited set of deflections is available, or both blast time and displacement can be set in combination. As a result of the flexibility of this approach, blasts may be fired without either regular target spacing or regular pulse spacing.
Stage positioning commands control the stage motion and position the targets with high precision along the trajectory. Position errors measured or characterized during the trajectory can be accommodated in different ways. For example, errors in either axis can be corrected with corresponding adjustments within the beam deflection field by the AOBDs. When the instant blast position is known to a high accuracy, this method of correction can be used in both constant and non-constant velocity processing. For errors in the direction of mechanical motion, small changes in the timing of scheduled blasts can also be used to correct blast position.
As discussed, a simple arrangement of stacked AOBDs can be used to provide two axis deflections. This configuration has the advantage of a short optical path length and a limited number of optical components. Disadvantages include beam spreading across the acoustic window of the second device due to the deflection range of the first upstream device. The deflection point is different for each axis which can affect telecentricity at the target surface. Compensation can be provided by adjusting the image location of each deflector with relay optics as described in U.S. Patent Publication No. 20090095722.
According to some embodiments, deflectors are spaced apart with relay optics. In this arrangement, the window of the first AOBD is imaged on to the second AOBD. Advantages of this arrangement include the ability to pick-off the zero order beam from the first AOBD before the second AOBD, the elimination of beam spreading across the second deflector window and maintenance of a single deflection origin point and for telecentric spot imaging in the processing field.
In a preferred embodiment, from the laser output aperture to the processing field, a total of five relays are used. The laser output is imaged to the first AOBD with a first relay lens. Next the first AOBD is imaged to the second AOBD with a second relay which may be for example a pair of lenses spaced according to focal lengths (i.e. a 4 f relay) to achieve a 1× magnification. The second AOBD is imaged with a third relay, which also may be a spaced lens pair, to an intermediate image plane. An optional beam rotor may be located in the optical path of this relay. The intermediate AOBD image is imaged to the input of the zoom telescope relay with a fourth pre-expander relay that may be a spaced lens pair arranged with a magnification to fill the entrance pupil of the zoom beam expander relay. The LCVR aperture may be located in a collimated region of the optical path of the fourth relay. Finally, the zoom telescope relays the input pupil with variable magnification to the objective lens. Thus, the laser beam waist is imaged to AOBD 1, and AOBD 1 is imaged successively to AOBD 2, an intermediate image plane, the entrance pupil of the zoom beam expander and the objective lens in a manner that accommodates an optional beam rotator and a polarization controlling LCVR.
Conveniently, one turning mirror may be located at the intermediate image plane following the second AOBD (not shown) to provide field adjustment without translation. In this case the turning mirror is in the image of each deflector to provide alignment by way of a field angle offset without translating the pupil image.
Link arrays will generally have multiple rows in the longest axis, with the long axis corresponding generally to a mechanical scanning axis. Columns are generally orthogonal to rows and transverse to the mechanical scanning axis; however in some cases columns may be diagonally biased. It is to be understood that while an array area may be a full regular grid of elements, other variations, such as link staggering in different rows, a partially filled grid and other layout variations are within the scope of this invention. For example, different local geometries may be used as shown in FIGS. 13-17 of U.S. Patent Publication No. 2009/0095722. Multiple rows and various staggered arrangements of links may be processed. Processing parameters and sequencing algorithms may be predetermined by the general type of layout or may be determined by an initial sequencing of a first device in a group of similar devices for use in subsequent devices or by a first set of link groups within a device for use throughout the device. Processing of a staggered row array will be explained in greater detail with reference to
The closest row and column spacing will typically be limited by array layout and laser material interactions. The furthest row and column spacing will generally be limited by the field of view of the beam delivery system through the processing lens or by the device layout where the array column length is less than the field of view. Row to row spacing will generally be less than 500 microns and may be, by way of example only, in range of about 1 to 40 microns, and in some cases 2.5 to about 10 microns or 2.9 microns to 5.4 microns in some devices. The column to column spacing will be limited by link layout, minimum link pitch and fine-pitch laser processing window considerations. For example, link pitches may be within a range of 0.6 microns up to 6.9 microns. For smaller spot sizes and effectively smaller spot sizes in threshold limited material interactions, even smaller link pitches may be processed. The targets may be so-called island type fuses approximately 0.9 microns wide along the row and approximately 1.5 microns long along the column. Some fuses may be as narrow as 0.3 or even 0.1 microns. The array may be regularly spaced or irregularly spaced with intervening structures or spaces. In at least one embodiment, the target array includes 6 closely spaced rows and extends through a plurality of closely spaced columns. The 6 rows may be in 2 groups of the rows with an intervening structure between the 2 groups.
It will be appreciated that within an addressable field of view, for example a square field of 80 microns or more along each axis positioned to encompass at least a portion of an array, there may be a portion of the array of about 6 rows and 12 to 60 or more columns within the field of view. This portion will include many addressable links, for example 50-300 or more links within the addressable field that can be targeted during any particular laser processing period at any particular blast time. One task to be performed in multiple beam processing is selecting which multiple links are to be simultaneously targeted with which pulses. With a large number of links falling within the field of view, there are many combinations of links that can be addressed simultaneously as described in the following illustrative example.
First, considering only pairs of links in a single column, there are 15 link pair combinations in the column. Now considering these 15 combinations across 12 addressable columns, there would be 180 different link pair combinations. Further, considering link pairs oriented only along rows, there are about 396 different link pairs. If selected orthogonal orientations are allowed for link pair combinations in either rows or columns, then there are about 576 combinations. Lastly, considering any combination of 2 links to form a link pair there would be about 2556 combinations. Therefore, as link targeting flexibility is increased, selection may be required from a large number of addressable link pairs.
When links are spaced on a regular link pitch and each link passes under the axis of a laser beam, the stage velocity can be calculated based on a fixed laser repetition rate. When multiple beams are used to process multiple rows simultaneously, the stage velocity can be reduced inverse to the number of rows being processed. This same speed reduction can be applied even when a single beam is used and scanned along a column of links. For high repetition rate sources, for example, 200 kHz or 300 kHz sources, or multiple combined sources generating a high effective repetition rate, stage velocity may be inadequate for synchronized processing. That is to say that the stage may be unable to provide motion at higher translation speeds with the requisite precision needed for laser spot positioning and successful laser processing. High-speed lateral scanning on a column basis, for example raster scanning with AOBDs or other high-speed scanners, allows lower stage velocities and permits utilization of high repetition rate sources.
Now, when M split beams are used with synchronized pulse triggering to process N multiple rows, the stage velocity relative to conventional (synchronized) single row processing is changed by a factor of approximately M/N. Thus, whenever M<N stage velocity can be reduced while operating the laser at its maximum practical repetition rate or other set repetition rate. Operating a laser at its maximum repetition rate with a maximum number of multiple beams provides a maximum potential link blast rate.
When dynamic beam deflection such as AOBD deflection is used, strict synchronization of mechanical positioning velocity and pulse triggering is not required as the AOBD can be used to track link position during relative motion of the substrate and the beam delivery system. The AOBD further provides the capability to split beams with a controlled divergence angle between beams on a pulse by pulse basis. Various embodiments advantageously combine the link tracking and beam splitting capabilities of AOBD based beam delivery to improve memory repair processing rates.
With split beams used for conductive link processing in multiple row arrays, we have found that improved column scanning strategies can be employed when M<N and especially when M=2. In at least one embodiment, spots are oriented along columns to process links in sequence along the column while tracking the column along the stage positioning axis during mechanical positioning. For even numbers of columns using pairs of split beams, there would be no remainder R at the end of each column. Of course for an odd number of rows, a given row would have a single orphan link remaining when sequential pairs of links are processed.
Split beams may be used to process a column in a variety of sequences. As shown in
In another example, one spot may start at the end of a column while a second spot starts in the middle of the column and spot separation is maintained while scanning from element to element across the column. For example, as shown in
In at least one embodiment, processing occurs with lateral column scanning using spots directed to different columns as shown in
For example, as illustrated in
Considering the complexity and subtlety of multi-axis AOBD calibration, there may be characteristic deflection field regions that can be more accurately and reliably calibrated and regions that are less accurately and less reliably calibrated. Analysis of field calibration fidelity can be used to identify preferred areas within a calibration domain. A laser processing sequence may be generated to use these preferred areas while avoiding other areas in the calibration domain. In effect, a sweet spot of field calibration is identified and exploited for increased processing performance. For example, characterization of AOBDs may identify angle ranges where efficiency has good linearity especially regarding variable RF power ranges used for attenuation. Even when performance is acceptable across the entire field, a selected portion of the field may be used for the convenience of limiting calibration requirements. A combination of trajectory planning and blast sequencing within the deflection field can be used to effectively avoid areas having lower performance or use only calibrated areas. The field portion or portions used should access all laterally offset blast locations and include sufficient length in the direction of motion to accommodate large scale pulse timing adjustments (e.g. link phase adjustment).
The different field shapes may be used to process links having different geometric orientations. For example, a tilted scan angle with controlled orientation can be useful for multiple beam processing of adjacent staggered link rows as shown in
In general, a sub-group of links falling within the addressable field of an AOBD or other high-speed beam positioning device can be considered a sub-array of a local array area, for example links R1C2 . . . R2C2, R1C2 . . . R4C2, and R1C2 . . . R1C3 at laser spots 1a and 1b, 11a and 11b, and 21a and 21b in
Non-synchronous processing is processing with an optimized positioning velocity that does not correspond precisely to the laser repetition rate and link pitch. Advantages of non-synchronous processing have been previously disclosed in U.S. Patent Publication No. 2009/0095722 and U.S. Provisional Application No. 61/291,282 for processing a sequence of links along a single row or multiple rows. In at least one embodiment, non-synchronous processing is applied to a sequence of links that is scanned on a column by column basis. When different numbers of pulses are used to process different columns, depending on the number of links designated in each column, then the processing dwell time can vary from column to column. This variation can be accommodated with column tracking and a non-synchronous processing sequence. Of course when a column does not include any designated links, the entire column can be skipped over with no expended dwell time. The column by column sequence may progress to the next column with designated links or in some cases may jump forward or backward or jump over columns with designated links such that positioning along the array does not proceed monotonically.
In a simple scheme, with beam splitting oriented along a column, only designated links are processed. When two or more links are processed as a sub-array in a given column, two or more split beams may be used depending on a maximum number of simultaneous split beams. And, when the number of links to be processed in a column is odd and an even number of split beams are used, there will be a single orphan link that requires processing in the column. Thus, when L links are to be processed in a column containing N rows, and when L<N, and especially when L<(N−1), then a non-synchronous approach can be employed to process the column and eliminate at least one pulse to process the column. For example, in a column of an array of six rows N=6 using M=2 spots to process L=4 selected links, the number of processing periods can be reduced from 3 when the entire column is scanned, to 2 pulses where only the selected portion of the column is scanned and processed in 2 sub-arrays.
The single remaining orphan link in a column can be processed with a single un-split beam. However, single beams can potentially slow the system down by under utilizing available laser pulse energy. Processing with a minimum number of processing periods can help optimize throughput. Rather than wasting a portion of a processing pulse, preferably the orientation of the beam splitting is set along a row and a second link designated for processing at some other column within the addressable field of view is selected and is processed simultaneously as part of a sub-array with the orphan link in the initial column. This is shown in
As illustrated in
On the other hand, if it is determined that an odd number of designated links exist in the column, the method proceeds to decision block 1404. At decision block 1404, it is determined whether a link candidate exists in one respective row to pair with one of the links in the same column. That is, with reference to
Following the pairing of links at block 1407, link pairs may optionally be either deferred for later processing or previously deferred links may be retrieved as the current link pair for processing by the system as illustrated in block 1408. A beam is split and oriented for processing the link pair at block 1409. The link pair is then blasted with the oriented split beam at block 1410. The method proceeds to decision block 1411, for determining if the link pair is the last link pair for processing. If the link pair is not the last link pair within the column, the method returns to block 1409 for orienting the subsequent split beams to the next link pair. On the other hand, if the link pair is the last link pair for processing, the method proceeds to decision block 1412 for determining if the column is the last column for processing. If the column is the last column, the method ends as illustrated in
On the other hand, if link pair candidates do not exist in all the respective rows, orphan links are paired within the column at block 1504. For example, with reference to
The method proceeds to decision block 1505 for determining whether all orphan links are paired. If all orphan links have not been paired, the remaining orphan links are blasted with an unsplit beam as represented by block 1506. On the other hand, if all links are paired, the method proceeds to block 1507 for forming the link pairs. At block 1508, link pairs may optionally be either deferred for later processing or previously deferred links may be retrieved as the current link pair for processing. At block 1509, the split beam is oriented to process the next link pair, and the link pair is blasted with the split beam as represented by block 1510. The method proceeds to decision block 1511, for determining if the link pair is the last link pair for processing. If the link pair is not the last link pair, the method returns to block 1509 for orienting the subsequent split beams to the next link pair. On the other hand, if the link pair is the last link pair for processing, the method proceeds to decision block 1512 for determining if the column is the last column for processing. If the column is the last column, the method ends as illustrated in
For processing of an orphan link, there may or may not be a corresponding link to be processed at a different column on a given row containing the orphan link. However, by selecting one or more sub-arrays within the column, any one of the links designated for processing in the column can be selected as the orphan link by exclusion from the selected sub-arrays. Therefore, the row containing the orphan link can be selected based at least in part on the availability of feasible sub-arrays having a link in the row to include in a sub-array with the orphan link. If more than one sub-array is identified on the same or different rows to process the orphan link, then the selection can be optimized. The best sub-array might be, for instance, the sub-array with the shortest distance between links in the sub-array. Alternatively, the best sub-array might contain a link in a second column itself containing an odd number of links so as to leave an even number of links to be processed in the second column. Other optimizations can be made, such as selecting a sub-array with a second link from a second column having the most links to be processed or from a region within the addressable field of field having a high density of links to be processed. Skilled practitioners will recognize other possible optimization parameters.
The array may include elements in different orientations, for example the array may include a portion with links oriented with length along the column as well as a portion with links oriented with length along the row. The portions may be in different areas or may overlap with intermixed link orientations. It is well-know that polarization orientation can affect link processing. Therefore, when links with different orientations are to be processed, polarization orientation can be controlled accordingly with well-known techniques, for example with wave plates, polarization sensitive optical elements, linear variable retarders, high speed electro optic polarization switching devices and other polarization control elements while accommodating polarization sensitivities of certain type of beam deflectors. For example, according to some embodiments, the link processing techniques disclosed my incorporate the polarization techniques described in U.S. Pat. No. 6,987,786, the disclosure of which is incorporated herein by reference in its entirety.
In a simple processing regime, circular or 45 degree polarization may be selected to process mixed link orientations with a split beams an a constant polarization orientation with adequate results. For better optimization, multiple selectable optical paths with a desired polarization orientation imparted along each path may be used to process links based on a selected polarization orientation.
In at least one embodiment, designated link processing may be sequenced, and sub-arrays selected to avoid processing different link orientations with a split beam.
Further, beam splitting frequencies especially with an AOBD may be selected using predetermined frequency combinations or may be selected from a set of at least M frequencies that is less than the number of resolvable spots of the deflector and less than the number of N rows or a predetermined number of laterally offset positions required for single-pass processing an array of targets. Such selection may be used for example, to manage intermodulation products. The number of split beams may be limited to two beams or other number less than the number of rows to be processed. As shown in
In some cases, the processing sequence may be based in part by considering undesirable intermodulation effects or other sub-array dependent effects. For example, certain position combinations of multiple beams with respective frequencies may have predetermined undesirable intermodulation effects. Processing of the sub-array may be advanced or delayed in the processing sequence such that different frequencies are used for splitting with more desirable performance. Likewise, lateral positioning of the trajectory may provide a position offset such that frequencies used for processing different rows have reduced intermodulation effects when compare to at least one other lateral position. Some sub-arrays may be processed with single spots to avoid undesirable intermodulation effects. In yet other cases, processing of one or more links may be deferred to subsequent processing passes to eliminate undesirable intermodulation effects for certain predetermined frequencies.
When processing is limited by maximum stage velocity or the maximum laser processing repetition rate is otherwise limited, the laser repetition rate may be under utilized. The processing mode may be switched accordingly from single to multiple beam processing and visa versa. For example, when processing near mechanical positioning stops, lower positioning speed may be used and a beam splitting mode may be used to increase throughput.
In at least one embodiment an array is processed in multiple passes with selected designated links deferred for later processing. A first incomplete processing pass is optimized for high efficiency and may use a constant positioning velocity. A second pass preceding or following the first pass performs additional processing and includes at least one processing segment that is shorter than a corresponding segment in the first processing pass. This technique might be used for example to process dense areas of designated links in an array without the need to slow positioning speed of longer processing segments in a single pass processing regime. For example, a processing segment with a generally uniform distribution of designated links may contain a smaller region with double the link density. If there is no feasible way to break-up this segment so as to slow down the positioning velocity to accommodate the higher density area in a single pass, then either the entire segment must be slowed down or the high density area is carved out as a second segment for planning into the positioning trajectory in a different processing pass. However, in this embodiment, half of the links of the high density area would remain in the first segment and half would be carved out for second pass processing. This allows a longer constant velocity segment to be processed in the first segment while reducing the density of links remaining for the second segment. Thus the second segment can be processed at higher efficiency when compared to a second pass where all of the links are carved out. In some cases, the second segment may become a part of a longer but different processing pass, for example including nearby area areas to be processed in a different pass. Deferred processing may also result from other predetermined conditions to avoid undesired effects such as incomplete processing, substrate damages, and neighbor link damage.
It is to be understood that generally the embodiments herein can include processing of either adjacent links, non-adjacent links or a combination of both adjacent and non-adjacent links. In the case of an array of links, adjacency is to be understood as any two links with no intervening link on any straight line between any point of either link. The array may include structures other than links that may intervene between links, for example structures that intervene between rows and or columns of links in the array. Thus, adjacent links may or may not be adjacent structures depending on the placement of any intervening non-link structure.
For short pulse processing, especially for pulses<10 ns where thermal diffusion length is on the order of the laser spot, any potential damage due to simultaneous processing of adjacent links is reduced compared to longer pulse processing methods. In picosecond processing regimes and shorter, thermal effects on neighboring areas and structure are minimized.
When AOBDs are used for beam deflection, the deflection can be either a direct access mode where the acoustic window is filled with a single frequency or in a chirped mode where the acoustic window is filled with a chirp frequency for continuous high speed deflection. In the chirped mode, correction for the well-know cylindrical lensing may be required. Split scanning may include either fixed or variable frequencies.
In at least one embodiment, AOBD scanning is used in a chirped mode for high speed processing. In chirp mode, a variable frequency deflection signal is used so that access time required to fill the acoustic aperture is minimized. Thus, processing repetition periods shorter than the overhead required to fill the acoustic aperture can be accommodated, for example periods shorter than 10 microseconds, for example 3.5 microseconds. Chirped deflection may be used for example for high-speed scanning along columns of the array in combination with mechanical scanning along the row axis of the array. Scanning may be unidirectional or bidirectional, however single direction scanning is preferred to maintain constant lensing effects.
With lateral scanning, focus will be affected by cylindrical lensing in the scan direction along each element in the column. Generally spot size measured in the direction of the narrow link width dimension is critical; however spot size along the length of an element, especially when the element is a conductive link that is longer along the column than across the link in the row direction may not require the same spot size control and may be tolerant of some cylindrical defocusing.
The sign of the chirp rate, indicating a rising or falling signal frequency will determine the direction of defocusing due to cylindrical lensing. To minimize potential substrate damage, it may be beneficial to generate a positive lensing effect, such that the beam waist in the column axis is formed above the element to be processed.
Likewise, chirped scanning can be used to track column position while positioning along the array in the row axis. Generally, the scan rate for column tracking would be lower than the scanning along the column since the column length is generally longer than the column pitch. If chirp rates are matched in a 2-axis deflection system, then the cylindrical focusing effect can be matched to maintain a common offset focus for both axes. For example, a diagonal is scanned by 2 crossed chirped AOBDs. This arrangement could scan the array on a diagonal bias or beam rotation can be used to align the diagonal scan line with the array.
Skilled practitioners will understand that various optical methods can be used to compensate for cylindrical lensing. Compensation may be full compensation such that round focused spots are formed or compensation may be partial compensation. Partial compensation may be used to the control beam shaping artifacts and to generate a prescribed non-round spot shape with a controlled spot shape aspect. Various aspects of non-round spot processing can be found in U.S. Pat. No. 6,639,177.
Aspects of certain embodiments may be practiced in a single path, optical system where all beams are incident on the same set of optical components. In a single path system multiple beams may be offset from an optical path axis propagating with non-collinear beam axes but generally each beam propagates in the same direction in the same sequence near the optical path axis through common optical elements. Alternately, a multiple path system may be implemented using selective beam splitting, beam switching or other means to direct different beams through different sets of optical components or through a single set of components in different sequences. A multiple path system may terminate in multiple focusing lenses, or the paths may be recombined to propagate non-collinear beams axes along a subsequent single path to a single focusing lens.
The non-collinear beams are generally centered with respect to the entrance pupil of the laser processing lens so that beam positioning at each target position in the field of view is telecentric. As shown in
Various beam switching techniques can be used such as diffraction based devices and polarization based devices. Although inefficient, fixed power splitting and selective blocking can also be used in multiple path systems.
In particular, high speed scanning, beam splitting and split beam orientation may be accomplished in a multiple path system. For example, one path may be dedicated to deflection and splitting in a first orientation and a second path may be dedicated to deflection and splitting in a second orientation. Alternately, each of multiple paths may independently deflect and or split beams. Preferably, a multi-path system would include independent 2-axis deflection on each path, most preferably high speed deflectors such as AOBDs.
With independent 2 axis deflection in a multi-path system, a greater variety of sub-arrays can be considered for selection. For example, diagonally oriented sub-arrays such as two designated links in different rows and different columns can be simultaneously processed. As such, while there are many more combinations of sub-arrays accessible, considerations for sub-array selections can be simplified. For example, the two paths may simultaneously process sequential designated links in a processing sequence designed for single beam processing.
If beam splitting is used in either or both optical paths of a two path system, 3 and 4 beam dynamic patterns are possible while limiting splitting to 2 frequencies generating two beams with any particular AOBD. Additional paths beyond a two path system and beam splitting beyond 2 beams may be used for more complex dynamic pattern generation.
Split paths could be used to accommodate an AOBD access time that is greater than the laser source repetition period. For example with a 10 microsecond access time, an AOBD can selectively deflect laser pulses up to a 100 kHz rate. With a fast path switch, such as a Pockels cell or other device capable of beam switching at 200 kHz, then a 200 kHz source can be divided between 2 paths, each path deflecting at a 100 kHz rate so that the effective deflection rate of the 2 path system is 200 kHz.
Programmable deflection can be used to correct for dynamic errors in link position that occur as the stage moves. Actual position feedback with the stage can determine the true location of the link as it is about to be processed.
In certain embodiments, multiple pulse processing can be used to increase repair yields. Some lasers used generate closely spaced pulses such that multiple pulses can be applied to a link during a single processing period. Depending on the interval or intervals between pulses of a multiple pulse processing period, tracking deflection may be used to compensation for tracking errors between subsequent pulses. When pulses are closely spaced, tracking errors are minimized and correction may not be required. When single pulse lasers or their equivalent are used for multiple pulse processing a single link during different processing periods, then positioning of each pulse must be considered as part of the processing trajectory. In this type of trajectory, each designated link may pass under the axis of multiple split beams or under the axis of a single split beam multiple times in a single processing pass over the array area. For random access multi-pulse processing with independently steered beams, the second and subsequent pulses can be delayed a predetermined amount and the sequence of second blasts or other subsequent blast can follow the same sequence as the first blast sequence. This regime may be modified such that the second beam processing second blasts processes with varying delays and using a different processing sequence. In another regime, the first and second beams can alternate between first and second pulse processing. In this case both beams may be processing targets with first blasts at one time and both beams processing with second blasts at a second time. In a combined regime multiple beams can be used to process with first blasts at a first time, with second blasts at a second time, and with first and second blast at a third time. Various aspects of multi-pulse processing such as pulse energy control, variable pulse energies, shapes, durations etc. can be practiced in conjunction with sub-array processing as described, for example in U.S. Pat. No. 7,666,759, U.S. Provisional Application No. 61/291,282, U.S. Pat. No. 7,394,476, and U.S. Patent Publication No. 2009/0095722.
When positioning is limited to split beam processing with a single oriented axis, planning for multi-pulse processing can be significantly more complex. For a predetermined scanning pattern, processing can be planned such that each beam scans with a spatial offset, for example two raster scans column by column and offset along a row by a single column interval. In this case, the entire array would be scanned twice with a delay for the second blast based on the spatial offset of the second beam. It is possible to offset two raster scans by one row interval, with a pair of spots oriented along the column; however there is an inherent inefficiency at the beginning and end of the column where a leading or trailing spot would be unused at either end of the column.
When multiple pulse processing is used with an unsynchronized scan pattern it may not be possible to simply align second blasts with a preset spatial offset. Combined optimization of the first and second blasts can consider available sub-arrays that include two first blast targets, a first and second blast targets or two second blast targets.
Spatial Techniques
Beam splitting is well-known in the field of laser processing. Various beam-splitting arrangements are known and can be categorized by the resulting beam irradiance profiles of the split beams relative to the original input beam. One group of beam splitting uses sub-aperture selection of the input beam. For example a prism may direct one portion of a beam aperture in one direction and a second portion in a different direction. Generally, the irradiance profile of each split beam using the sub-aperture technique will be different and will correspond to the sampled portion of the aperture used to generate a sub-beam. These types of sub-beams may also be called beamlets and might be generated in an array of beams, for example by an array of steerable micro-mirrors or other techniques.
Another approach to beam splitting, and perhaps the most common form of beam splitting is to direct a portion of the entire beam away from the input beam axis. The split beam portion contains a portion of the input beam energy and generally retains the irradiance profile of the input beam. For example, a partially reflective mirror is used to reflect a first portion of a Gaussian beam away from the input beam axis. A second portion is transmitted through the partially reflective mirror. Both the reflected and transmitted portions retain the Gaussian beam spatial profile of the input beam and the normalized profiles of the two beams will substantially match. These and other techniques such as diffraction by gratings and multiple frequency Bragg cells or polarization sensitive selection can be used as a multi-beam generator to split an input beam into multiple beams where each resulting beam maintains the irradiance profile of the input beam and all beams generated by the beam splitting share substantially identically irradiance profiles.
Another way to divide the energy of an input beam is by temporal energy selection. This includes techniques such as pulse shaping, pulse slicing, pulse picking and the like.
Unless sub-aperture selection, sub-beam generation or a temporal splitting technique is specified, it is to be understood that the terms beam splitting, spatial beam splitting, beam dividing etc. refer to the generation of multiple contemporaneous beams sharing the irradiance profile of the input beam.
New regimes of trajectory planning can be provided in conjunction with an inertialess deflection field. Since lateral offsets are possible and in general substantial latitude for applying position corrections is available. Curvilinear trajectories or trajectory segments as show in
When there are isolated short groups of links, as shown in
This application claims priority under 35 U.S.C. Section 119(e) to Provisional Application No. 61/352,316, filed on Jun. 7, 2010, which application is incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61352316 | Jun 2010 | US |