Lectomedin materials and methods

Information

  • Patent Grant
  • 6479256
  • Patent Number
    6,479,256
  • Date Filed
    Thursday, March 4, 1999
    26 years ago
  • Date Issued
    Tuesday, November 12, 2002
    22 years ago
Abstract
Disclosed are novel seven transmembrane receptor polypeptides having characteristic extracellular structure including lectin-binding, olfactomedin-like and mucin-like domains.
Description




BACKGROUND OF THE INVENTION




G-protein coupled receptors (GPCRs) are proteins that interact with G-proteins to transmit an intracellular signal. Upon ligand binding, GPCRs trigger the hydrolysis of GTP to GDP by G-protein subunits; GTP hydrolysis is accompanied by a switch from activity to inactivity. It is estimated that there are roughly 1,000 GPCRs [Clapham,


Nature


379:297-299 (1996)] and all characterized to date include a seven transmembrane domain that anchors the receptor to the cell. GPCRs include receptors for opiates, adrenaline, histamine, polypeptide hormones, and photons, among other ligands. These receptors are coupled to a wide variety of cellular second messenger pathways including, for example, pathways that alter intracellular calcium concentrations and cAMP levels.




Among the various GPCRs identified, CD97 appears to be representative of a sub-family of proteins which effect cellular adhesion [McKnight, et al.,


Immunol Today


17:283-287(1996)]. CD97 and related receptors are unique in that their structure includes a transmembrane domain that directly links a cytoplasmic domain that participates in GTP hydrolysis with extracellular protein binding domains that specifically participate in cell-cell adhesion. The extracellular, amino terminal region of CD97 includes numerous cell-cell adhesive motifs, including multiple epidermal growth factor-like (EGF-like) repeats and an integrin binding site [Hamann J, et al., Immunol 155:1942—1950 (1996); Gray, et al.,


J. Immunol


157:5438-5447 (1996)]. Proteins that contain EGF-like repeats have been shown to be involved in cell adhesion events [Campbell, et al.,


Curr. Opin. Struct. Biol.


3:385-392 (1993); Rao,etal.,


Cell


82:131-141 (1995)], and consistent with this observation, heterologous expression of CD97 in COS cells elicits homotypic cell aggregation that can be blocked in the presence of anti-CD97 monoclonal antibodies [Hamann, et al.,


J. Exp. Med.


184:1185-1189 (1996)]. CD97 and related proteins have been referred to as the EGF-7TM subfamily of seven transmembrane receptors [McKNight and Gordon,


Immunol. Today


17:283-2887 (1996)]. Ligands identified for CD97 include members of the integrin family of cell surface adhesion receptors. Various integlins recognize and interact with their cognate ligands through a trimeric amino acid sequence of arginine-glycine-aspartic acid (denoted RGD in the single letter amino acid code) [D'Souza, etal.,


Trends Biochem. Sci.,


16:246-250 (1991)] and this sequence has been identified in the extracellular region of CD97, between the EGF-like repeats and the transmembrane domain.




CD97 has been shown to undergo post-translational proteolytic processing which results in an extracellular (and potentially soluble) alpha subunit and a smaller, integral membrane beta subunit [Gray, et al.,


J. Immunol.


157:5438-5447 (1996)]. The two subunits are associated in a non-covalent manner and the alpha subunit is held at the cell surface through its interaction with the beta subunit. The role of proteolysis is unclear, but it may be a mechanism for receptor down-regulation which is common among proteins, such as selectins and intercellular adhesion molecules (ICAMs), that participate in cell adhesion.




Other members of the CD97 sub-family of GPCRs have been identified by amino acid sequence and structural homology and include human EMR1, HE6, BAI1, the calcium-independent receptor of latrotoxin (CIRL), latrophilin, and proteins encoded by the


Caenorhabditis elegans


open reading frames designated B0457.1 and B0286.2 [Baud V, et al.,


Genomics


26:334-344 (1995); McKnight, et al.,


J. Biol. Chem.


271:486-489 (1996); Krasnoperov, et al.,


Neuron


18:925-937 (1997); Lelianova, et al.,


J. Biol. Chem.


272:21504-21508 (1997); Davletov, et al.,


J. Biol. Chem.


271:23239-23245 (1996); Nishimori, et al.,


Oncogene


15:2145-2150 (1997)]. EMR1, and its murine homolog F4/80, are macrophage-specific in expression and structurally related to CD97 in that they contain multiple extracellular EGF-like repeats, a rod-like stalk region, and the characteristic transmembrane domain of GPCRs [Baud V, et al.,


Genomics


26:334-344 (1995); McKnight, et al.,


J. Biol. Chem.


271:486-489 (1996)]. No ligands have been identified for EMR-1 and it is uncertain if the protein undergoes post-translational proteolytic processing.




CIRL [Krasnoperov, et al.,


Neuron


18:925-937 (1997); Lelianova, et al.,


J. Biol. Chem.


272:21504-21508 (1997); Davletov, etal.,


J. Biol. Chem.


271:23239-23245 (1996)] is believed to be expressed specifically in the central nervous system at neuronal presynaptic terminals and, like CD97, undergoes proteolytic cleavage resulting in an extracellular alpha subunit in non-covalent association with an integral membrane seven-transmembrane beta subunit. Cleavage of latrophilin is believed to occur at a Ser-His-Leu/Thr-Asn-Phe site that is conserved in CD97 [Krasnoperov, et al.,


Neuron


18:925-937 (1997)]. CIRL has been shown to bind latrotoxin, a component of black widow spider venom, in the 0.5 to 1.0 nM range, and binding of the ligand to CIRL expressed in bovine chromaffin cells has been shown to result in exocytosis, a hallmark of toxin binding [Krasnoperov, et al.,


Neuron


18:925-937 (1997)]. Alpha latrotoxin binding has also been demonstrated at neuromuscular motor endplates, and this interaction elicits explosive secretory granule release of acetylcholine from presynaptic granules, resulting in muscle paralysis characteristic of the spider's bite [Petrenko, et al.,


F.E.B.S. Letts.


325:81-85 (1993)]. It is unclear, however, if the peripheral toxin effects result from binding to CIRL or some other related protein.




Thus there exists a need in the art to identify and characterize other members of the CD97-like family of GPCRs, in particular human receptors which participate in cellular adhesion and those that participate in cytoplasmic metabolic pathways modulated by extracellular signals. Identification of CD97-like receptors can permit identification and diagnosis of disease states which arise from aberrant signaling by the receptor, as well as disease states that arise from aberrant expression of the receptor itself.




SUMMARY OF THE INVENTION




The present invention provides purified and isolated human seven transmembrane receptor lectomedin polypeptides or fragments thereof, said polypeptides comprising extracellular lectin-binding, olfactomedin-like, and mucin-like domains. Mature lectomedin polypeptides are also provided wherein signal or leader sequences are cleaved. Preferred polypeptides of the invention comprise the amino acid sequence set out in SEQ ID NO: 2 or a fragment thereof, the amino acid sequence set out in SEQ ID NO: 4 or fragment thereof the amino acid sequence set out in SEQ ID NO: 6 or fragment thereof, and the amino acid sequence set out in SEQ ID NO: 58 or fragment thereof.




The invention also provides polynucleotides encoding polypeptides of the invention. Preferred polynucleotides comprising the sequence set forth in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, and SEQ ID NO: 57. The invention also provides polynucleotides a) encoding a human lectomedin polypeptide selected from the group consisting of the polynucleotide set out in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, or SEQ ID NO: 57; b) a DNA which hybridizes under moderately stringent conditions to the non-coding strand of the polynucleotide of (a); and c) a DNA which would hybridize to the non-coding strand of the polynucleotide of (a) but for the redundancy of the genetic code. Preferred polynucleotides of the invention are DNA molecules. Preferred DNA molecules are cDNA molecules and genomic DNA molecules. The invention also provides DNA which is a wholly or partially chemically synthesized. Anti-sense polynucleotide which specifically hybridizes with a polynucleotide of the invention are also comprehended.




The invention also proved expression construct comprising the a polynucleotide of the invention, as well as host cells transformed or transfected with a polynucleotide or expression construct of the invention.




The invention also provides polynucleotide of the invention operably linked to a heterologous promoter, and host cells polynucleotides operably linked to a heterologous promoter.




In another aspect, the invention provides methods for producing a human lectomedin polypeptide comprising the steps of: a) growing the host cell of the invention under conditions appropriate for expression of the lectomedin polypeptide and b) isolating the lectomedin polypeptide from the host cell or the medium of its growth.




The invention also proved antibodies specifically immunoreactive with a polypeptide of the invention. Preferably, antibodies of the invention are monoclonal antibodies. The invention also provides cells, e.g. hybridomas, that produce antibodies of the invention. Anti-idiotype antibodies specifically immunoreactive with an antibody of the invention are also comprehended.




The invention also provides methods to identify a specific binding partner compound of a lectomedin polypeptide comprising the steps of: a) contacting the lectomedin polypeptide with a compound under conditions which permit binding between the compound and the lectomedin polypeptide; b) detecting binding of the compound to the lectomedin polypeptide; and c) identifying the compound as a specific binding partner of the lectomedin polypeptide. Methods of the invention embrace specific binding partner that modulate activity of the lectomedin polypeptide. In one aspect, the compound inhibits activity of the lectomedin polypeptide, and in another aspect, the compound enhances activity of the lectomedin polypeptide.




The invention also provides methods to identify a specific binding partner compound of a lectomedin polynucleotide comprising the steps of: a) contacting the lectomedin polynucleotide with a compound under conditions which permit binding between the compound and the lectomedin polynucleotide; b) detecting binding of the compound to the lectomedin polynucleotide; and c) identifying the compound as a specific binding partner of the lectomedin polynucleotide. Methods of the invention embrace specific binding partner that modulates expression of a lectomedin polypeptide encoded by the lectomedin polynucleotide. In one aspect, the compound inhibits expression of the lectomedin polypeptide, and in another aspect, the compound enhances expression of the lectomedin polypeptide. The invention also provides compounds identified by a method of the invention.




In another aspect, the invention comprehends composition comprising the compound identified by a method of the invention and a pharmaceutically acceptable carrier. The invention also provides use of a compound identified by a method of the invention for the preparation of a medicament to treat lectomedin related pathologies.




The invention also provides for use of a lectomedin polypeptide in the preparation of a medicament for the treatment of a lectomedin related disorder.




DETAILED DESCRIPTION OF THE INVENTION




The present invention provides purified and isolated polypeptides and underlying polynucleotides for a novel family of transmembrane proteins designated lectomedins. The invention includes both naturally occurring and non-naturally occurring lectomedin polynucleotides and polypeptide products thereof. Naturally occurring lectomedin products include distinct gene and polypeptide species within the lectomedin family, including, for example, allelic variants, which are expressed within cells of the same animal, as well as corresponding species homologs expressed in cells of other animals. The invention further provides splice variants encoded by the same polynucleotide but which arise from distinct mRNA transcripts. Non-naturally occurring lectomedin products include variants of the naturally occurring products such as analogs, fragments, fusion (or chimeric) proteins, and lectomedin products having covalent modifications. The lectomedin family of proteins is distinguished from previously known seven transmembrane families of proteins in that the lectomedin proteins include at least one extracellular lectin binding-like domain and at least one extracellular olfactomedin domain. Unlike many other seven transmembrane proteins, the structure of proteins in the lectomedin family of proteins does not include EGF-like binding domains which effect cell/cell interactions. In a preferred embodiment, the invention provides polynucleotides comprising the sequences set forth in SEQ ID NOs: 1, 3, 5 and 57. The invention also embraces polynucleotides encoding the amino acid sequences set out in SEQ ID NOs: 2, 4, 6, and 58. Presently preferred polypeptides of the invention comprises the amino acid sequences set out in SEQ ID NOs: 2, 4, 6, and 58.




The invention also provides expression constructs (or vectors) comprising polynucleotides of the invention, as well as host cells transformed, transfected, or electroporated to include a polynucleotide or expression construct of the invention. Methods to produce a polypeptide of the invention are also comprehended. The invention further provides antibodies, preferably monoclonal antibodies, specifically immunoreactive with a polypeptide of the invention, as well as cell lines, e.g., hybridomas, that secrete the antibodies.




The present invention provides novel purified and isolated human polynucleotides (e.g., DNA sequences and RNA transcripts, both sense and complementary antisense strands, including splice variants thereof) encoding the human lectomedins. DNA sequences of the invention include genomic and cDNA sequences as well as wholly or partially chemically synthesized DNA sequences. Genomic DNA of the invention comprises the protein coding region for a polypeptide of the invention and includes allelic variants of the preferred polynucleotides of the invention. Genomic DNA of the invention is distinguishable from genomic DNAs encoding polypeptides other than lectomedin in that it includes the lectomedin coding region found in lectomedin cDNA of the invention. Genomic DNA of the invention can be transcribed into RNA, and the resulting RNA transcript may undergo one or more splicing events wherein one or more introns (i.e., non-coding regions) of the transcript are removed, or “spliced out.” RNA transcripts that can be spliced by alternative mechanisms, and therefore be subjected to removal of different non-coding RNA sequences but still encode a lectomedin polypeptide, are referred to in the art as splice variants, which are embraced by the invention. Splice variants comprehended by the invention, therefore, are encoded by the same DNA sequences but arise from distinct mRNA transcripts. Allelic variants are known in the art to be modified forms of a wild type (predominant) gene sequence, the modification resulting from recombination during chromosomal segregation or exposure to conditions which give rise to genetic mutation. Allelic variants, like wild type genes, are inherently naturally occurring sequences (as opposed to non-naturally occurring variants which arise from in vitro manipulation).




The invention also comprehends cDNA that is obtained through reverse transcription of an RNA polynucleotide encoding lectomedin, followed by second strand synthesis of a complementary strand to provide a double stranded DNA. “Chemically synthesized” as used herein and understood in the art, refers to polynucleotides produced by purely chemical, as opposed to enzymatic, methods. “Wholly” synthesized DNA sequences are therefore produced entirely by chemical means, and “partially” synthesized DNAs embrace those wherein only portions of the resulting DNA were produced by chemical means.




Preferred DNA sequences encoding human lectomedin polypeptides are set out in SEQ ID NOs: 1, 3, 5, and 57. The worker of skill in the art will readily appreciate that preferred DNAs of the invention comprise double stranded molecules, for example, the molecule having the sequence set forth in either SEQ ID NOs: 1, 3, 5, or 57, along with the complementary molecule (the “non-coding strand” or “complement”) having a sequence deducible from the sequence of SEQ ID NO: 1 according to Watson-Crick base pairing rules for DNA. Also preferred are polynucleotides encoding the lectomedin polypeptides of SEQ ID NOs: 2, 4, 6, and 58.




The invention further embraces species, preferably mammalian, homologs of the human lectomedin DNA. Species homologs, in general, share at least 35%, at least 40%, at least 45%, at least 50%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or at least 99% homology with human DNA of the invention. Percent sequence “homology” with respect to polynucleotides of the invention is defined herein as the percentage of nucleotide bases in the candidate sequence that are identical to nucleotides in the lectomedin coding sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity.




The polynucleotide sequence information provided by the invention makes possible large scale expression of the encoded polypeptide by techniques well known and routinely practiced in the art. Polynucleotides also permit identification and isolation of polynucleotides encoding related lectomedin polypeptides by well known techniques including Southern and/or Northern hybridization, and polymerase chain reaction (PCR), ligase chain reaction, as well as other amplification techniques. Examples of related polynucleotides include human and non-human genomic sequences, including allelic variants, as well as polynucleotides encoding polypeptides homologous to lectomedins and structurally related polypeptides sharing one or more biological, immunological, and/or physical properties of lectomedin.




The disclosure of full length polynucleotides encoding lectomedin polypeptides makes readily available to the worker of ordinary skill in the art every possible fragment of the full length polynucleotides. The invention therefore provides fragments of lectomedin coding polynucleotides. Such fragments comprise at least 10 to 20, and preferably at least 15, consecutive nucleotides of the polynucleotide. The invention comprehends, however, fragments of various lengths. Preferably, fragment polynucleotides of the invention comprise sequences unique to the lectomedin coding polynucleotide sequence, and therefore hybridize under highly stringent or moderately stringent conditions only (i.e., “specifically”) to polynucleotides encoding lectomedin, or lectomedin fragments thereof containing the unique sequence. Polynucleotide fragments of genomic sequences of the invention comprise not only sequences unique to the coding region, but also include fragments of the full length sequence derived from introns, regulatory regions, and/or other non-translated sequences. Sequences unique to polynucleotides of the invention are recognizable through sequence comparison to other known polynucleotides, and can be identified through use of alignment programs routinely utilized in the art, e.g., those made available in public sequence databases.




The invention also provides fragment polynucleotides that are conserved in one or more polynucleotides encoding members of the lectomedin family of polypeptides. Such fragments include sequences characteristic of the family of lectomedin polynucleotides, and are also referred to as “signature sequences.” The conserved signature sequences are readily discernable following simple sequence comparison of polynucleotides encoding members of the lectomedin family. Fragments of the invention can be labeled in a manner that permits their detection, including radioactive and non-radioactive labeling.




Fragment polynucleotides are particularly useful as probes for detection of full length or other fragment lectomedin coding polynucleotides. One or more fragment polynucleotides can be included in kits that are used to detect the presence of a polynucleotide encoding lectomedin, or used to detect variations in a polynucleotide sequence encoding lectomedin.




The invention also embraces DNA sequences encoding lectomedin species which hybridize under moderately or highly stringent conditions to the non-coding strand, or complement, of the polynucleotide in SEQ ID NOs: 1, 3, 5, or 57. DNA sequences encoding lectomedin polypeptides which would hybridize thereto but for the redundancy of the genetic code are further comprehended by the invention. Exemplary highly stringent conditions are include hybridization at 45° C. in 5×SSPE and 45% formamide, and a final wash at 65° C. in 0.1×SSC. Exemplary moderately stringent condition include a final wash at 55° C. in 1×SSC. It is understood in the art that conditions of equivalent stringency can be achieved through variation of temperature and buffer, or salt concentration as described Ausubel, et al. (Eds.),


Protocols in Molecular Biology,


John Wiley & Sons (1994), pp.6.0.3 to 6.4.10. Modifications in hybridization conditions can be empirically determined or precisely calculated based on the length and the percentage of guanosine/cytosine (GC) base pairing of the probe. The hybridization conditions can be calculated as described in Sambrook, et al., (Eds.),


Molecular Cloning: A Laboratory Manual,


Cold Spring Harbor Laboratory Press: Cold Spring Harbor, N.Y. (1989), pp. 9.47 to 9.5 1.




Autonomously replicating recombinant expression constructs such as plasmid and viral DNA vectors incorporating lectomedin coding sequences are also provided. Expression constructs wherein lectomedin-encoding polynucleotides are operably linked to an endogenous or exogenous expression control DNA sequence and a transcription terminator are also provided. Expression control DNA sequences include promoters, enhancers, and operator, and are generally selected based on the expression systems in which the expression construct is to be utilized. Preferred promoter and enhancer sequences are generally selected for the ability to increase gene expression, while operator sequences are generally selected for the ability to regulate gene expression. Expression constructs of the invention may also include sequences encoding one or more selectable markers that permit identification of host cells bearing the construct. Expression constructs may also include sequences that facilitate, and preferably promote, homologous recombination in a host cell. Preferred constructs of the invention also include sequences necessary for replication in a host cell. Expression constructs are preferably utilized for production of an encoded lectomedin protein, but may also be utilized to amplify the construct itself.




According to another aspect of the invention, host cells are provided, including prokaryotic and eukaryotic cells, comprising a polynucleotide of the invention in a manner which permits expression of the encoded lectomedin polypeptide. Polynucleotides of the invention may be introduced into the host cell as part of a circular plasmid, or as linear DNA comprising an isolated protein coding region or a viral vector. Methods for introducing DNA into the host cell well known and routinely practiced in the art include transformation, transfection, electroporation, nuclear injection, or fusion with carriers such as liposomes, micelles, ghost cells, and protoplasts. Expression systems of the invention include bacterial, yeast, fungal, plant, insect, invertebrate, and mammalian cells systems. Host cells of the invention are a valuable source of immunogen for development of antibodies specifically immunoreactive with lectomedin. Host cells of the invention are also useful in methods for large scale production of lectomedin polypeptides wherein the cells are grown in a suitable culture medium and the desired polypeptide products are isolated from the cells or from the medium in which the cells are grown by purification methods known in the art, e.g., conventional chromatographic methods including immunoaffinity chromatography, receptor affinity chromatography, hydrophobic interaction chromatography, lectin affinity chromatography, size exclusion filtration, cation or anion exchange chromatography, high pressure liquid chromatography (HPLC), reverse phase HPLC and the like. Still other methods of purification include those wherein the desired protein is expressed and purified as a fusion protein having a specific tag, label, or chelating moiety that is recognized by a specific binding partner or agent. The purified protein can be cleaved to yield the desired protein, or be left as an intact fusion protein. Cleavage of the fusion component may produce a form of the desired protein having additional amino acid residues as a result of the cleavage process.




Knowledge of lectomedin coding DNA sequences allows for modification of cells to permit, or increase, expression of endogenous lectomedin. Cells can be modified (e.g., by homologous recombination) to provide increased lectomedin expression by replacing, in whole or in part, the naturally occurring lectomedin promoter with all or part of a heterologous promoter so that the cells express lectomedin at higher levels. The heterologous promoter is inserted in such a manner that it is operably linked to lectomedin-encoding sequences. See, for example, PCT International Publication No. WO 94/12650, PCT International Publication No. WO 92/20808, and PCT International Publication No. WO 91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the lectomedin coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the lectomedin coding sequences in the cells.




The DNA sequence information provided by the present invention also makes possible the development through, e.g. homologous recombination or “knock-out” strategies [Capecchi,


Science


244:1288-1292 (1989)], of animals that fail to express functional lectomedin or that express a variant of lectomedin. Such animals are useful as models for studying the in vivo activities of lectomedin and modulators of lectomedin.




The invention also provides purified and isolated mammalian lectomedin polypeptides encoded by a polynucleotide of the invention. Presently preferred are lectomedin polypeptides comprising the amino acid sequence set out in SEQ ID NO: 2, 4, 6, or 58. The invention also embraces lectomedin polypeptides encoded by a DNA selected from the group consisting of: a) the DNA sequence set out in SEQ ID NO: 1, 3, 5 or 57; b) a DNA molecule which hybridizes under high stringent conditions to the noncoding strand of the protein coding portion of (a); and c) a DNA molecule that would hybridize to the DNA of (a) but for the degeneracy of the genetic code.




The invention also embraces variant (or analog) lectomedin polypeptides. In one example, insertion variants are provided wherein one or more amino acid residues supplement a lectomedin amino acid sequence. Insertions may be located at either or both termini of the protein, or may be positioned within internal regions of the lectomedin amino acid sequence. Insertional variants with additional residues at either or both termini can include for example, fusion proteins and proteins including amino acid tags or labels.




In another aspect, the invention provides deletion variants wherein one or more amino acid residues in a lectomedin polypeptide are removed. Deletions can be effected at one or both termini of the lectomedin polypeptide, or with removal of one or more residues within the lectomedin amino acid sequence. Deletion variants, therefore, include all fragments of a lectomedin polypeptide.




In still another aspect, the invention provides substitution variants of lectomedin polypeptides. Substitution variants include those polypeptides wherein one or more amino acid residues of a lectomedin polypeptide are removed and replaced with alternative residues. In one aspect, the substitutions are conservative in nature, however, the invention embraces substitutions that are also non-conservative. Conservative substitutions for this purpose may be defined as set out in Tables A, B, or C below.




The invention also provides derivatives of lectomedin polypeptides. Derivatives include lectomedin polypeptides bearing modifications other than insertion, deletion, or substitution of amino acid residues. Preferably, the modifications are covalent in nature, and include, for example, chemical bonding with polymers, lipids, non-naturally occurring amino acids, other organic, and inorganic moieties. Derivatives of the invention may be prepared to increase circulating half-life of a lectomedin polypeptide, or may be designed to improve targeting capacity for the polypeptide to desired cells, tissues, or organs.




The invention also embraces polypeptides have at least 99%, at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least 55% or at least 50% identity and/or homology to the preferred polypeptide of the invention. Percent amino acid sequence “identity” with respect to the preferred polypeptide of the invention is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the residues in the lectomedin sequence after aligning both sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Percent sequence “homology” with respect to the preferred polypeptide of the invention is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the residues in the lectomedin sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and also considering any conservative substitutions as part of the sequence identity.




In one aspect, percent homology is calculated as the percentage of amino acid residues in the smaller of two sequences which align with identical amino acid residue in the sequence being compared, when four gaps in a length of 100 amino acids may be introduced to maximize alignment [Dayhoff, in


Altas of Protein Sequence and Structure


, Vol. 5, p. 124, National Biochemical Research Foundation, Washington, D.C. (1972), incorporated herein by reference].




Polypeptides of the invention may be isolated from natural cell sources or may be chemically synthesized, but are preferably produced by recombinant procedures involving host cells of the invention. Use of mammalian host cells is expected to provide for such post-translational modifications (e.g., glycosylation, truncation, lipidation, and phosphorylation) as may be needed to confer optimal biological activity on recombinant expression products of the invention. Glycosylated and non-glycosylated form of lectomedin polypeptides are embraced.




Insertion variants include lectomedin polypeptides wherein one or more amino acid residues are added to a lectomedin acid sequence, or fragment thereof. Variant products of the invention also include mature lectomedin products, i.e., lectomedin products wherein leader or signal sequences are removed, with additional amino terminal residues. The additional amino terminal residues may be derived from another protein, or may include one or more residues that are not identifiable as being derived from a specific proteins. Lectomedin products with an additional methionine residue at position −1 (Met


−1


-lectomedin) are contemplated, as are lectomedin products with additional methionine and lysine residues at positions −2 and −1 (Met


−2


-Lys


−1


-lectomedin). Variants of lectomedin with multiple, additional Met, Met-Lys, Lys residues are particularly useful for enhanced recombinant protein production in bacterial host cell.




The invention also embraces lectomedin variants having additional amino acid residues which result from use of specific expression systems. For example, use of commercially available vectors that express a desired polypeptide as part of glutathione-S-transferase (GST) fusion product provides the desired polypeptide having an additional glycine residue at position −1 after cleavage of the GST component from the desired polypeptide. Variants which result from expression in other vector systems are also contemplated.




Insertional variants also include fusion proteins wherein the amino and/or carboxy termini of the lectomedin polypeptide is fused to another polypeptide. Examples of such fusion proteins are immunogenic polypeptides, proteins with long circulating half life, such as immunoglobulin constant regions, marker proteins (e.g., fluorescent) and proteins or polypeptide that facilitate purification of the desired lectomedin polypeptide, e.g. FLAG® tags or polyhistidine sequences.




Deletion variants include lectomedin polypeptides wherein one or more amino acid residues are deleted from the lectomedin amino acid sequence. Deletion variants of the invention embrace polypeptide fragments of the sequence set out in SEQ ID NO: 2, 4, 6, or 58 wherein the fragments maintain biological or immunological properties of a lectomedin polypeptide. Fragments comprising at least 5, 10, 15, 20, 25, 30, 35, or 40 consecutive amino acids of SEQ ID NO: 2, 4, 6, or 58 are comprehended by the invention. Preferred polypeptide fragments display antigenic properties unique to or specific for the lectomedin family of polypeptides. Fragments of the invention having the desired biological and immunological properties can be prepared by any of the methods well known and routinely practiced in the art.




Substitution variants of the invention include lectomedin polypeptides, or fragments thereof wherein one or more amino acid residues in the lectomedin amino acid sequence are deleted and replaced with another amino acid residue. Variant polypeptides include those wherein conservative substitutions have been introduced by modification of polynucleotides encoding polypeptides of the invention. Amino acids can be classified according to physical properties and contribution to secondary and tertiary protein structure. A conservative substitution is recognized in the art as a substitution of one amino acid for another amino acid that has similar properties. Exemplary conservative substitutions are set out in Table A (from WO 97/09433, page 10, published Mar. 13, 1997 (PCT/GB96/02197, filed Sep. 6, 1996), immediately below.












TABLE A











Conservative Substitutions I












SIDE CHAIN CHARACTERISTIC




AMINO ACID
















Aliphatic




Non-polar




G A P








I L V







Polar - uncharged




C S T M








N Q







Polar - charged




D E








K R






Aromatic





H F W Y






Other





N Q D E














Alternatively, conservative amino acids can be grouped as described in Lehninger, [


Biochemistry,


Second Edition; Worth Publishers, Inc. NY:N.Y. (1975), pp.71-77] as set out in Table B, immediately below.












TABLE B











Conservative Substitutions II














SIDE CHAIN








CHARACTERISTIC




AMINO ACID


















Non-polar (hydrophobic)








A. Aliphatic:




A L I V P







B. Aromatic:




F W







C. Sulfur-containing:




M







D. Borderline:




G







Uncharged-polar







A. Hydroxyl:




S T Y







B. Amides:




N Q







C. Sulfhydryl:




C







D. Borderline:




G







Positively Charged (Basic):




K R H







Negatively Charged (Acidic):




D E















As still an another alternative, exemplary conservative substitutions are set out in Table C, below.




The invention further embraces lectomedin products, or fragments thereof, covalently modified or derivatized, e.g., to include one or more water soluble polymer attachments such as polyethylene glycol, polyoxyethylene glycol, or polypropylene glycol. Particularly preferred are lectomedin products covalently modified with polyethylene glycol (PEG) subunits. Water soluble polymers may be bonded at specific positions, for example at the amino terminus of the lectomedin products, or randomly attached to one or more side chains of the polypeptide. Additional derivatives include lectomedin species immobilized on a solid support, pin microparticle, or chromatographic resin, as well as lectomedin polypeptides modified to include one or more non-protein labels, tags, or chelating agents.












TABLE C











Conservative Substitutions III














Original Residue




Exemplary Substitution











Ala (A)




Val, Leu, Ile







Arg (R)




Lys, Gln, Asn







Asn (N)




Gln, His, Lys, Arg







Asp (D)




Glu







Cys (C)




Ser







Gln (Q)




Asn







Glu (E)




Asp







His (H)




Asn, Gln, Lys, Arg







Ile (I)




Leu, Val, Met, Ala, Phe,







Leu (L)




Ile, Val, Met, Ala, Phe







Lys (K)




Arg, Gln, Asn







Met (M)




Leu, Phe, Ile







Phe (F)




Leu, Val, Ile, Ala







Pro (P)




Gly







Ser (S)




Thr







Thr (T)




Ser







Trp (W)




Tyr







Tyr (Y)




Trp, Phe, Thr, Ser







Val (V)




Ile, Leu, Met, Phe, Ala















Also comprehended by the present invention are antibodies (e.g., monoclonal and polyclonal antibodies, single chain antibodies, chimeric antibodies, bifunctional/bispecific antibodies, humanized antibodies, human antibodies, and CDR-grafted antibodies, including compounds which include CDR sequences which specifically recognize a polypeptide of the invention) and other binding proteins specific for lectomedin products or fragments thereof. Preferred antibodies of the invention are human antibodies which are produced and identified according to methods described in WO93/11236, published Jun. 20, 1993, which is incorporated herein by reference in its entirety. Antibody fragments, including Fab, Fab′, F(ab′)


2


, and F


v


, are also provided by the invention. The term “specific for” indicates that the variable regions of the antibodies of the invention recognize and bind lectomedin polypeptides exclusively (i.e., able to distinguish single lectomedin polypeptides from the family of lectomedin polypeptides despite sequence identity, homology, or similarity found in the family of polypeptides), but may also interact with other proteins (for example,


S. aureus


protein A or other antibodies in ELISA techniques) through interactions with sequences outside the variable region of the antibodies, and in particular, in the constant region of the molecule. Screening assays to determine binding specificity of an antibody of the invention are well known and routinely practiced in the art. For a comprehensive discussion of such assays, see Harlow et al. (Eds), Antibodies:


A Laboratory Manual;


Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y. (1988), Chapter 6. Antibodies that recognize and bind fragments of the lectomedin polypeptides of the invention are also contemplated, provided that the antibodies are first and foremost specific for, as defined above, lectomedin polypeptides. As with antibodies that are specific for full length lectomedin polypeptides, antibodies of the invention that recognize lectomedin fragments are those which can distinguish single and distinct lectomedin polypeptides from the family of lectomedin polypeptides despite inherent sequence identity, homology, or similarity found in the family of proteins. Antibodies of the invention can be produced using any method well known and routinely practiced in the art.




Non-human antibodies may be humanized by any methods known in the art. In one method, the non-human complementarity determining regions (CDRs) are inserted into a human antibody or consensus antibody framework sequence. Further changes can then be introduced into the antibody framework to modulate affinity or immunogenicity.




Antibodies of the invention are useful for, for example, therapeutic purposes (by modulating activity of lectomedin), diagnostic purposes to detect or quantitate lectomedin, as well as purification of lectomedin. Antibodies are particularly useful for detecting and/or quantitating lectomedin expression in cells, tissues, organs and lysates and extracts thereof, as well as fluids, including serum, plasma, cerebrospinal fluind, urine, sputum, peritoneal fluid, pleural fluid, or pulmonary lavage. Kits comprising an antibody of the invention for any of the purposes described herein are also comprehended. In general, a kit of the invention also includes a control antigen for which the antibody is immunospecific.




Specific binding proteins can be identified or developed using isolated or recombinant lectomedin products, lectomedin variants, or cells expressing such products. Binding proteins are useful for purifying lectomedin products and detection or quantification of lectomedin products in fluid and tissue samples using known immunological procedures. Binding proteins are also manifestly useful in modulating (i.e., blocking, inhibiting or stimulating) biological activities of lectomedin, especially those activities involved in signal transduction.




The DNA and amino acid sequence information provided by the present invention also makes possible the systematic analysis of the structure and function of lectomedins. DNA and amino acid sequence information for lectomedin also permits identification of binding partner compounds with which a lectomedin polypeptide or polynucleotide will interact. Agents that modulate (i.e., increase, decrease, or block) lectomedin activity or expression may be identified by incubating a putative modulator with a lectomedin polypeptide or polynucleotide and determining the effect of the putative modulator on lectomedin activity or expression. The selectivity of a compound that modulates the activity of the lectomedin can be evaluated by comparing its binding activity to one particular lectomedin to its activity to other lectomedin polypeptides. Cell based methods, such as di-hybrid assays to identify DNAs encoding binding compounds and split hybrid assays to identify inhibitors of lectomedin polypeptide interaction with a known binding polypeptide, as well as in vitro methods, including assays wherein a lectomedin polypeptide, lectomedin polynucleotide, or a binding partner are immobilized, and solution assays are contemplated by the invention.




Selective modulators may include, for example, antibodies and other proteins or peptides which specifically bind to a lectomedin polypeptide or a lectomedin-encoding nucleic acid, oligonucleotides which specifically bind to a lectomedin polypeptide or a lectomedin gene sequence, and other non-peptide compounds (e.g., isolated or synthetic organic and inorganic molecules) which specifically react with a lectomedin polypeptide or its underlying nucleic acid. Mutant lectomedin polypeptides which affect the enzymatic activity or cellular localization of the wild-type lectomedin polypeptides are also contemplated by the invention. Presently preferred targets for the development of selective modulators include, for example: (1) regions of the lectomedin polypeptide which contact other proteins, (2) regions that localize the lectomedin polypeptide within a cell, (3) regions of the lectomedin polypeptide which bind substrate, (4) allosteric regulatory binding site(s) of the lectomedin polypeptide, (5) site(s) of the lectomedin polypeptide wherein covalent modification regulates biological activity and (6) regions of the lectomedin polypeptide which are involved in multimerization of lectomedin subunits. Still other selective modulators include those that recognize specific lectomedin encoding and regulatory polynucleotide sequences. Modulators of lectomedin activity may be therapeutically useful in treatment of a wide range of diseases and physiological conditions in which lectomedin activity is known or suspected to be involved.




Lectomedin polypeptides of the invention are amenable to numerous cell based high throughput screening (HTS) assays known in the art, including melanophore assay to investigate receptor-ligand interaction, yeast based assay systems, and mammalian cell expression systems. For a review, see Jayawickreme and Kost,


Curr. Opin. Biotechnol.


8:629-634 (1997). Automated and miniaturized HTS assays are also comprehended as described, for example, in Houston and Banks,


Curr. Opin. Biotechnol.


8:734-740 (1997).




There are a number of different libraries used for the identification of small molecule modulators, including, (1) chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random or designed peptides, oligonucleotides or organic molecules.




Chemical libraries consist of structural analogs of known compounds or compounds that are identified as “hits” or “leads” via natural product screening. Natural product libraries are collections of microorganisms, animals, plants, or marine organisms which are used to create mixtures for screening by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of plants or marine organisms. Natural product libraries include polyketides, non-ribosomal peptides, and variants (non-naturally occurring) variants thereof. For a review, see Science 282:63-68 (1998). Combinatorial libraries are composed of large numbers of peptides, oligonucleotides or organic compounds as a mixture. They are relatively easy to prepare by traditional automated synthesis methods, PCR, cloning or proprietary synthetic methods. Of particular interest are peptide and oligonucleotide combinatorial libraries. Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, Curr. Opin. Biotechnol. 8:701-707 (1997).




Identification of modulators through use of the various libraries described herein permits modification of the candidate “hit” (or “lead”) to optimize the capacity of the “hit” to modulate activity.




The scientific value of the information contributed through the disclosures of DNA and amino acid sequences of the present invention is manifest. As one series of examples, knowledge of the sequence of a cDNA for lectomedin makes possible through use of Southern hybridization or polymerase chain reaction (PCR) the identification of genomic DNA sequences encoding lectomedin and lectomedin expression control regulatory sequences such as promoters, operators, enhancers, repressors, and the like. DNA/DNA hybridization procedures carried out with DNA sequences of the invention under moderately to highly stringent conditions are likewise expected to allow the isolation of DNAs encoding allelic variants of lectomedin; allelic variants are known in the art to include structurally related proteins sharing one or more of the biochemical and/or immunological properties specific to lectomedin. Similarly, non-human species genes encoding proteins homologous to human lectomedin can also be identified by Southern and/or PCR analysis; species homologs of the invention are particularly useful in animal models for the study of lectomedin-related disorders. As an alternative, complementation studies can be useful for identifying other human lectomedin products as well as non-human proteins, and DNAs encoding the proteins, sharing one or more biological properties of lectomedin.




Polynucleotides of the invention are also useful in hybridization assays to detect the capacity of cells to express lectomedin. Polynucleotides of the invention may also be the basis for diagnostic methods useful for identifying a genetic alteration(s) in a lectomedin locus that underlies a disease state or states.




Also made available by the invention are anti-sense polynucleotides which recognize and hybridize to polynucleotides encoding lectomedin. Full length and fragment anti-sense polynucleotides are provided. The worker of ordinary skill will appreciate that fragment antisense molecules of the invention include (i) those which specifically recognize and hybridize to lectomedin RNA (as determined by sequence comparison of DNA encoding lectomedin to DNA encoding other known molecules) as well as (ii) those which recognize and hybridize to RNA encoding variants of the lectomedin family of proteins. Antisense polynucleotides that hybridize to RNA encoding other members of the lectomedin family of proteins are also identifiable through sequence comparison to identify characteristic, or signature, sequences for the family of molecules. Anti-sense polynucleotides are particularly relevant to regulating expression of lectomedin by those cells expressing lectomedin mRNA.




Antisense nucleic acids (preferably 10 to 20 base pair oligonucleotides) capable of specifically binding to lectomedin expression control sequences or lectomedin RNA are introduced into cells (e.g., by a viral vector or colloidal dispersion system such as a liposome). The antisense nucleic acid binds to the lectomedin target nucleotide sequence in the cell and prevents transcription or translation of the target sequence. Phosphorothioate and methylphosphonate antisense oligonucleotides are specifically contemplated for therapeutic use by the invention. The antisense oligonucleotides may be further modified by poly-L-lysine, transferrin polylysine, or cholesterol moieties at their 5′ end.




The invention further contemplates methods to modulate lectomedin expression through use of ribozymes. For a review, see Gibson and Shillitoe,


Mol. Biotech.


7:125-137 (1997). Ribozyme technology can be utilized to inhibit translation of lectomedin mRNA in a sequence specific manner through (i) the hybridization of a complementary RNA to a target mRNA and (ii) cleavage of the hybridized mRNA through nuclease activity inherent to the complementary strand. Ribozymes can identified by empirical methods but more preferably are specifically designed based on accessible sites on the target mRNA (Bramlage, et al.,


Trends in Biotech


16:434-438 (1998). Delivery of ribozymes to target cells can be accomplished using either exogenous or endogenous delivery techniques well known and routinely practiced in the art. Exogenous delivery methods can include use of targeting liposomes or direct local injection. Endogenous methods include use of viral vectors and non-viral plasmids.




Ribozymes can specifically modulate expression of lectomedin when designed to be complementary to regions unique to a polynucleotide encoding lectomedin. “Specifically modulate” therefore is intended to mean that ribozymes of the invention recognizes only a polynucleotide encoding lectomedin. Similarly, ribozymes can be designed to modulate expression of all or some of the lectomedin family of proteins. Ribozymes of this type are designed to recognize polynucleotide sequences conserved in all or some of the polynucleotides which encode the family of proteins.




The invention further embraces methods to modulate transcription of lectomedin through use of oligonucleotide-directed triplet helix formation. For a review, see Lavrovsky, et al.,


Biochem. Mol. Med.


62:11-22 (1997). Triplet helix formation is accomplished using sequence specific oligonucleotides which hybridize to double stranded DNA in the major groove as defined in the Watson-Crick model. Hybridization of a sequence specific oligonucleotide can thereafter modulate activity of DNA-binding proteins, including, for example, transcription factors and polymerases. Preferred target sequences for hybridization include promoter and enhancer regions to permit transcriptional regulation of lectomedin expression.




Oligonucleotides which are capable of triplet helix formation are also useful for site-specific covalent modification of target DNA sequences. Oligonucleotides useful for covalent modification are coupled to various DNA damaging agents as described in Lavrovsky, et al. [supra].




Mutations in a lectomedin gene that results in loss of normal function of the lectomedin gene product may underlie lectomedin-related human disease states. The invention comprehends gene therapy to restore lectomedin activity would thus be indicated in treating those disease states (for example, various forms of cancer described herein). Delivery of a functional lectomedin gene to appropriate cells is effected ex vivo, in situ, or in vivo by use of vectors, and more particularly viral vectors (e.g., adenovirus, adeno-associated virus, or a retrovirus), or ex vivo by use of physical DNA transfer methods (e.g., liposomes or chemical treatments). See, for example, Anderson,


Nature,


supplement to vol. 392, no. 6679, pp.25 (1998). For additional reviews of gene therapy technology see Friedmann,


Science,


244: 1275-1281 (1989); Verma,


Scientific American:


68-84 (1990); and Miller,


Nature,


357: 455-460 (1992). Alternatively, it is contemplated that in other human disease states, preventing the expression of or inhibiting the activity of lectomedin will be useful in treating the disease states. It is contemplated that antisense therapy or gene therapy could be applied to negatively regulate the expression of lectomedin.




The invention further embraces pharmaceutical compositions comprising a lectomedin polypeptide of the invention, generally in combination with a pharmaceutically acceptable carrier. The pharmaceutical compositions optionally may include pharmaceutically acceptable (i.e., sterile and non-toxic) liquid, semisolid, or solid diluents that serve as pharmaceutical vehicles, excipients, or media. Any diluent known in the art may be used. Exemplary diluents include, but are not limited to, polyoxyethylene sorbitan monolaurate, magnesium stearate, methyl- and propylhydroxybenzoate, talc, alginates, starches, lactose, sucrose, dextrose, sorbitol, mannitol, gum acacia, calcium phosphate, mineral oil, cocoa butter, and oil of theobroma.




The pharmaceutical compositions can be packaged in forms convenient for delivery. The compositions can be enclosed within a capsule, sachet, cachet, gelatin, paper, or other container. These delivery forms are preferred when compatible with entry of the immunogenic composition into the recipient organism and, particularly, when the immunogenic composition is being delivered in unit dose form. The dosage units can be packaged, e.g., in tablets, capsules, suppositories or cachets.




The pharmaceutical compositions may be introduced into the subject to be treated by any conventional method including, e.g., by intravenous, intradermal, intramuscular, intramammary, intraperitoneal, intrathecal, intraocular, retrobulbar, intrapulmonary (e.g., aerosolized drug solutions) or subcutaneous injection (including depot administration for long term release); by oral, sublingual, nasal, anal, vaginal, or transdermal delivery; or by surgical implantation, e.g., embedded under the splenic capsule, brain, or in the cornea. The treatment may consist of a single dose or a plurality of doses over a period of time.




When given parenterally, lectomedin product compositions are generally injected in doses ranging from 1 μg/kg to 100 mg/kg per day, preferably at doses ranging from 0.1 mg/kg to 50 mg/kg per day, and more preferably at doses ranging from 1 to 20 mg/kg/day. The lectomedin product composition may be administered by an initial bolus followed by a continuous infusion to maintain therapeutic circulating levels of drug product. Those of ordinary skill in the art will readily optimize effective dosages and administration regimens as determined by good medical practice and the clinical condition of the individual patient. The frequency of dosing will depend on the pharmacokinetic parameters of the agents and the route of administration. The optimal pharmaceutical formulation will be determined by one skilled in the art depending upon the route of administration and desired dosage. See for example, Remington's Pharmaceutical Sciences, 18th Ed. (1990, Mack Publishing Co., Easton, Pa. 18042) pages 1435-1712, the disclosure of which is hereby incorporated by reference. Such formulations may influence the physical state, stability, rate of in vivo release, and rate of in vivo clearance of the administered agents. Depending on the route of administration, a suitable dose may be calculated according to body weight, body surface area or organ size. Further refinement of the calculations necessary to determine the appropriate dosage for treatment involving each of the above mentioned formulations is routinely made by those of ordinary skill in the art without undue experimentation, especially in light of the dosage information and assays disclosed herein, as well as the pharmacokinetic data observed in the human clinical trials discussed above. Appropriate dosages may be ascertained through use of established assays for determining blood levels dosages in conjunction with appropriate dose-response data. The final dosage regimen will be determined by the attending physician, considering various factors which modify the action of drugs, e.g. the drug's specific activity, the severity of the damage and the responsiveness of the patient, the age, condition, body weight, sex and diet of the patient, the severity of any infection, time of administration and other clinical factors. As studies are conducted, further information will emerge regarding the appropriate dosage levels and duration of treatment for various diseases and conditions.




It will be appreciated that the pharmaceutical compositions and treatment methods of the invention may be useful in the fields of human medicine and veterinary medicine. Thus, the subject to be treated may be a mammal, preferably human, or other animals. For veterinary purposes, subjects include, for example, farm animals including cows, sheep, pigs, horses, and goats, companion animals such as dogs and cats; exotic and/or zoo animals; laboratory animals including mice, rats, rabbits, guinea pigs, and hamsters; and poultry such as chickens, turkeys, ducks and geese.




The present invention is illustrated by the following examples. Example 1 describes identification and characterization of cDNA encoding lectomedin polypeptides. Example 2 relates to expression of recombinant lectomedin. Example 3 described characterization of recombinant lectomedin. Ligand affinity chromatography with immobilized lectomedin is described in Example 4. Example 5 describes Northern analysis of lectomedin expression. Example 5 provides an assessment of tissue distribution of lectomedin in mammalian cell types, while Example 6 describes results from in situ hybridization. The chromosome localization of lectomedin is disclosed in Example 7. Example 8 provides production of polyclonal and monoclonal antibodies specific for lectomedin. Example 9 addresses lectomedin expression.











EXAMPLE 1




Isolation and Characterization of Human Lectomedin




Identification of Lectomedin-1α




In an attempt to identify genes encoding novel seven transmembrane receptor proteins related to CD97, a TBLASTN search of the National Center for Biotechnology Information (NCBI, Bethesda, Md.) Expressed Sequence Tag (EST) database was carried out with an amino acid query sequence for full length CD97 (SEQ ID NO: 12). This database contains DNA sequences representing one or both ends of cDNAs collected from a variety of tissue sources. The TBLASTN program was used to determine homology between the protein sequence of CD97 and the six different amino acid sequences encoded by each EST. In the search, ESTs are translated in six reading frames and the amino acid sequences generated are compared to the query CD97 amino acid sequence. Sequences identified as homologous at the amino acid level were examined and any ESTs positively identified as corresponding to a known protein were discarded.




Among the CD97-related sequences identified as corresponding to known proteins were ESTs representing CD97, human EMR1, and murine F4/80. In addition, several ESTs showed statistically significant values for relatedness in the transmembrane region of CD97, but they were not CD97, EMR1, or F4/80. One of the identified ESTs, designated GenBank® Accession No: T47902 (SEQ ID NO: 13), was chosen to attempt identification of a full length cDNA. The basis for choosing T47902 was disclosure in GenBank® that the EST was derived from a human fetal spleen library.




A library probe was first generated by PCR based on the Genbank sequence of T47902. Primers used to amplify a T47902 sequence are set out in SEQ ID NOs: 14 and 15 below.














5′ TGGAGTTTCAGCTGCTATTG SEQ ID NO: 14















5′ TGCCCATCCACAATAGTCTC SEQ ID NO: 15











Mixed human adult spleen cDNA was prepared by standard methods and ligated into vector pcDNA1.amp (Invitrogen) [Van der Vieren, M. et al.


Immunity


3:683-690 (1995)]. The resulting plasmid mixture was transformed into


E. coli


and the bacteria were plated onto LB bacterial plates containing carbenicillin (100 ug/nl). Surviving colonies were collected by scraping and plasmid DNA was prepared by the alkaline lysis method. The cDNA mixture was used as a template for PCR in a reaction mixture including 350 ng cDNA, 100 ng each primer (SEQ ID NO. 14 and NO. 15), 200 μM each deoxynucleotide triphosphate (adenosine, thymidine, cytidine and guanosine), 10 mM Tris-HCl, pH 8.3 (at 25° C.), 50 mM KCl, 1.5 mM MgCl


2


, and 5 units Taq polymerase (Perkin Elmer Corp., Foster City, Calif.). PCR was carried out with an initial denaturation step of seven minutes at 95° C. followed by 30 cycles of denaturation for one minute at 95° C., hybridization for one minute at 55° C., and extension two minutes at 74° C. After PCR, 10 μl of the reaction was separated on a 1.5% agarose gel and an amplification product of 306 bp was detected following ethidium bromide staining. The 306 bp product was eluted from the gel using GeneClean® (BIO101 Inc., Vista Calif.) according to the manufacturer's suggested protocol and ligated into vector pCR2.1 (TA Cloning kit, Invitrogen, Carlsbad, Calif.). The resulting plasmid preparation was transformed into


E. coli


and the cells plated as described above. Several colonies were selected for DNA minipreps and the cDNA inserts were sequenced.




The 306 bp insert was excised from the pCR2.1® TA Cloning® vector by digestion with EcoRI. Following digestion, DNA fragments were fractionated on an agarose gel. A band of approximately 306 bp was eluted from the gel and labeled by random priming according to standard procedures. The labeled probe was used to screen the human spleen adult cDNA pcDNA1 library (described above) immobilized on nylon membranes following colony lifts from cells spread on LB/carbenicillin plates.




Two cDNA clones, designated 3.3 and 15.3.1, were obtained and purified. Clone 3.3 included an insert of approximately 4200 bp and clone 15.3.1 contained an insert of approximately 2750 bp. Both clones were sequenced by standard automated methods. The nucleotide sequence for clone 3.3 is set out in SEQ ID NO: 9 and the predicted amino acid encoded is set out in SEQ ID NO: 10. The nucleotide sequence for clone 15.3.1 is set out in SEQ ID NO: 16. It was initially presumed that the two clones represented a single cDNA sequence and, relying predominantly on the larger 3.3 insert, a contiguous cDNA was predicted. Neither insert, however, encoded a complete open reading frame, as evidenced by the fact that an in frame ATG translation start site preceded by a Kozak translation initiator sequence and an in-frame stop codon were not found.




In an attempt to isolate the 5′ end of the complete cDNA, RACE PCR was carried out using a human spleen cDNA library (Marathon™ cDNA, Clontech, La Jolla, Calif.). Nested primers (SEQ ID NOs: 17 and 18) utilized in the PCR were designed based on the library vector and clone 3.3 sequences.














5′ GTGATCCAGCTACAGTTGTGCTCAT SEQ ID NO: 17















5′ CTAATGCTTCACAGAATCTCTCTGGC SEQ ID NO: 18











Five microliters of cDNA prepared from human spleen RNA or peripheral blood leukocyte RNA was added to separate reactions with 100 ng downstream nested gene specific primer, adapter primer API (Marathon™ cDNA kit; Clontech Inc., Palo Alto Calif.), 200 μM each deoxynucleotide triphosphate (adenosine, thymidine, cytidine, and guanosine), 10 mM Tris-HCl, pH 8.3 (at 25° C.), 50 mM KCl, 1.5 mM MgCl2, 5 units Taq polymerase. PCR was carried out with an initial denaturation step for two minutes at 94° C., followed by (i) five cycles of 0.05 minutes at 94° C. and seven minutes at 74° C., (ii) five cycles of 0.05 minutes at 94° C. and seven minutes at 72° C., and (iii) 25 cycles of 0.05 minutes at 94° C. and seven minutes at 70° C. Following amplification, the reaction mixture was diluted 1:50, and 5 μl was used in a second amplification reaction including 100 ng upstream internal gene specific primer and adapter primer AP2 (Marathon™ cDNA kit, Clontech) with the same cycling conditions as in the first amplification. Amplification products from the second reaction were separated on a 0.9% agarose gel and a band of approximately 2 kb in the gel was eluted for subcloning into vector pCR2.1® as above. The isolated fragment was designated RACE3.3. The nucleotide and predicted amino acid sequences for the fragment are set out in SEQ ID NOs: 7 and 8, respectively.




When the RACE3.3 sequence was correlated with the sequence for the spleen clone 3.3 to account for overlap, an open reading frame (SEQ ID NO: 33) was deduced encoding a polypeptide of 1114 amino acids (SEQ ID NO: 34) and a predicted molecular weight of approximately 125 kD. Even thought the EST used to screen the spleen library was selected based on sequence similarity to CD97, the polypeptide encoded by the overlapping clones was presumed to represent a unique family of human proteins, related to, but distinct from, any previously identified in GenBank®. The putative extracellular domain in the predicted amino acid sequence did not include EGF domains characteristic of the CD97-like protein family and the amino acid sequence of the transmembrane domain in the predicted protein was only about 45-60% identical to the transmembrane domains of CD97. In addition, the predicted amino acid sequence deduced from the combined RACE3.3 and clone 3.3 open reading frame included potential lectin-binding, olfactomedin-ike, and mucin-like extracellular domains not found in CD97. Based on the presence of the extracellular lectin binding-like and olfactomedin-like domains, the polypeptide encoded by the RACE3.3 and clone 3.3 sequences was designated lectomedin-1α.




A later BLAST search of the GenBank® database using the lectomedin-1α sequence indicated that lectomedin-1α was related to the rat receptor for α-latrotoxin designated latrophilin [Lenianova, et al.,


J. Biol. Chem.


272:21504-21508 (1997)], and the calcium-independent receptor of α-latrotoxin (CIRL) [Krasnoperov, supra]. Both human lectomedin-1α and rat latrophilin have extracellular lectin binding-like and olfactomedin-like domains, in addition to a seven transmembrane region and a cytoplasmic domain also found in CD97. Lectomedin-1α also includes a sequence at amino acid residues 809 to 814 (in SEQ ID NO: 2) which is similar to a proposed cleavage site conserved in both CD97 and latrophilin. It is possible that these three proteins are processed by an endoprotease (or related proteases) with similar primary sequence specificity. In view of these similarities, lectomedin-1α may be related to a human homolog of the rat latrophilin and may participate in stimulation/secretion coupling in presynaptic termini and/or secretory granule release. Expression of lectomedin in cell and tissue types outside the central nervous system (discussed below), however, indicates that lectomedin is functionally distinct from latrophilin.




The overall amino acid sequence of lectomedin-1α was found to be approximately 80% identical to that of latrophilin, but the amino acid sequence of the latrophilin cytoplasmic domain was unrelated to the predicted cytoplasmic domain of lectomedin-1α. In addition, the location of the initiating methionine in latrophilin differed from that in the predicted open reading frame of lectomedin-1α. After further analysis of the lectomedin-1α polynucleotide sequence, however, a methionine codon in a different reading frame was identified upstream from the originally predicted open reading frame. The location of the upstream methionine codon (with respect to the transmembrane region) more closely corresponded to the position of the latrophilin initiating methionine and the first few amino acids in reading frame with the upstream methionine codon also corresponded to the sequence in latrophilin.




In view of the potential similarity to latrophilin, the polynucleotide sequence encoding the 1114 amino acid lectomedin-1α open reading frame was again compared to the raw data obtained during automated sequencing of the RACE3.3 cDNA. Further inspection showed that a guanosine nucleotide at position 454 had been entered in SEQ ID NO: 33, but was not present in the raw sequence data. The corrected nucleotide sequence for RACE3.3 (i.e., having the extraneous guanosine nucleotide deleted) together with the sequence of clone 3.3 (SEQ ID NO: 9) showed an open reading frame encoding 1177 amino acids. The corrected open reading frame began with the newly identified initiating methionine and included the previously identified lectin binding-like, olfactomedin-like, mucin-like, transmembrane and cytoplasmic domains of lectomedin-1α (SEQ ID NO: 1).




Based on sequence homology with known proteins, domains in various regions of the lectomedin-1α protein were identified. An extracellular region of approximately 831 amino acids showed homology to a previously reported D-galactoside binding lectin binding-like domain [Ozeki, et al.,


Biochemistry


30:2391-2394 (1991)] (lectomedin-1α amino acids 36 to 131 of SEQ ID NO: 2) and an olfactomedin-like domain [Yokoe and Anholt,


Proc. Natl. Acad. Sci.


(


USA


) 90:4655-4659 (1993)] (lectomedin-1α amino acids 135 to 327 of SEQ ID NO: 2). Three extracellular and three intracellular domains were separated by seven transmembrane domains (amino acids 832 to 1075 of SEQ ID NO: 2) characteristic of G-protein coupled receptors (GPCR) [Kobilka, etal.,


Science


238:650-656 (1987)]. A cytoplasmic region of 102 amino acids was adjacent the transmembrane region. Based on the observation that lectomedin-1α contained a region from amino acids 354 to 563 (SEQ ID NO: 2) with many serine and threonine residues (which may be O-glycosylated), as well as many proline residues (which break up alpha helices resulting in an extended structure with many beta turns), a mucin-like domain was identified.




Identification of Additional Lectomedin-1 Species




The sequence for lectomedin-1α was based on the sequences determined for clone 3.3 and the fragment RACE3.3. A second lectomedin cDNA could also be deduced based on the sequence of the second spleen clone 15.3.1. In comparing the sequences for clones 3.3 and 15.3.1, it was first noted that the clones were substantially identical throughout both 5′ regions, except that an adenosine required at position 1620 of clone 3.3 (SEQ ID NO: 7) was apparently not present in clone 15.3.1. As a result, the reading frame of clone 15.3.1 was shifted in comparison to the reading frame of clone 3.3, and thus, clone 15.3.1 did not encode a protein having the characteristic seven transmembrane domain found in lectomedin-1α. When the variant adenosine was inserted into the sequence for clone 15.3.1, the predicted protein sequence was consistent with the lectomedin-1α amino acid sequence up to the first amino acid residue in the cytoplasmic domain. This sequence suggested an alternative splice site in the cytoplasmic region of clone 15.3.1 that produced a shorter cDNA comprising a cytoplasmic domain of approximately forty-eight amino acids (as compared to 107 amino acids in the cytoplasmic domain of the lectomedin-1α cDNA derived solely from clone 3.3 sequences). The lectomedin-1α cDNA deduced from clone 3.3 also terminated at an alternative poly(A


+


) site 210 nucleotides upstream from the corresponding poly(A


+


) site identified in clone 15.3.1. The differences suggested that clone 15.3.1 represents a second member of the lectomedin family, which was designated lectomedin-1β. A deduced polynucleotide sequence for lectomedin-1β was therefore generated using the overlapping sequence from clone 3.3 (which extended the 5′ region of clone 15.3.1) and the RACE3.3 sequence (to provide an appropriate 5′ end); the complete predicted cDNA and deduced amino acid sequences for lectomedin-1β are set out in SEQ ID NOs: 3 and 4, respectively.




Characterization of the predicted amino acid sequence for lectomedin-1β provides various domains similar (in both sequence and position) to those identified for lectomedin-1α. An extracellular region of approximately 831 amino acids is predicted, including a D-galactoside-binding lectin-like domain (amino acids 36 to 131 of SEQ ID NO: 4), an olfactomedin-like domain (amino acids 135 to 327 of SEQ ID NO: 4), and a mucin-like domain (amino acids 354 to 563 of SEQ ID NO: 4). A seven transmembrane domain (amino acids 832 to 1075 of SEQ ID NO: 4) was located adjacent the extracellular domain, and a cytoplasmic region of 48 amino acids (residues 1076 to 1123 of SEQ ID NO: 4) was located adjacent the transmembrane region.




The originally identified EST designated T49702 (SEQ ID NO: 13) was described in GenBank® to represent the 5′ end of a cDNA clone designated 71509 (SEQ ID NO: 21), and when GenBank® was further searched for a DNA sequence representing the 3′ end of clone 71509, a second EST designated T47903 (SEQ ID NO: 30) was identified. Clone 71509 (SEQ ID NO: 21) was purchased, sequenced, and compared to the corresponding regions in lectomedin-1α and lectomedin-1β. The sequence of clone 71509 was identical to portions of the lectomedin-1α and 1β sequences, but, like the alternative splicing apparent from comparing lectomedin-1α and lectomedin-1β, yet another alternative splicing event was found based on the sequence of clone 71509. Specifically, the sequence of clone 71509 was found to lack a 106 bp sequence found in clone 3.3. Clone 15.3.1 also lacked the same 106 bp and an additional 97 bp of 5′ upstream DNA. Clone 15.3.1 therefore lacked 203 bp of sequence found in the lectomedin-1α clone. The 106 bp deletion resulted in a frame shift in the region encoding the cytoplasmic domain, providing a third lectomedin protein. This third alternative lectomedin polynucleotide and predicted amino acid sequence (SEQ ID NO: 5 and 6, respectively) was designated lectomedin-1γ.




As with the other lectomedin polypeptides, lectomedin-1γ is predicted to include (i) an extracellular region of approximately 831 amino acids with a D-galactoside binding lectin-like domain (amino acids 36 to 131 of SEQ ID NO: 6), an olfactomedin-like domain (amino acids 135 to 327 of SEQ ID NO: 6) and a mucin-like domain (amino acids 354 to 563 of SEQ ID NO: 6), (ii) a seven transmembrane region (amino acids 832 to 1075 of SEQ ID NO: 6), and (iii) a cytoplasmic region of 328 amino acids (amino acids 1076 to 1403 of SEQ ID NO: 6).




The sequences at which the three clones diverged showed hallmarks of the canonical 3 exon sequence with the presence of an AG dinucleotide. However, these regions differed from the accepted intron junction sequences which have been found to include highly conserved GT dinucleotides [


GENES IV,


B. Lewin, Cell Press, Cambridge Mass. (1992), p. 597]. The identification of these sequences indicated that the clones were derived from alternatively spliced RNAs rather than from incomplete RNA splicing wherein the canonical exon/intron junction sequence (AG/GT) would be expected.




Identification of Lectomedin-2 and Lectomedin-3 Species




Lectomedin 1α and rat latrophilin (SEQ ID NO: 19) were used as query sequences in a subsequent BLAST search in an attempt to identify any additional ESTs with sequence homology. Two human ESTs designated AA683020 (SEQ ID NO: 22) and M79057 (SEQ ID NO: 23) were identified as being closely related to both lectomedin-1α and rat latrophilin. The sequence for EST AA683020 corresponds to the region from nucleotide 3275 to 3643 in the lectomedin-1α sequence (SEQ ID NO: 22) and the sequence for EST M79057 corresponds to nucleotides 2561 to 2842 in lectomedin-1α.




The BLAST search results indicated that both ESTs were more closely related to the sequence encoding rat latrophilin than to the nucleotide sequence encoding lectomedin-1α, further distinguishing lectomedin-1α from the rat protein and suggesting that the human ESTs may be more closely related to a putative human homolog of rat latrophilin. In view of the apparent relatedness between the human EST sequences and human lectomedin-1α, however, the AA683020 and M79057 ESTs were determined to represent unique lectomedin-2 and lectomedin-3 species.




In an effort to isolate cDNAs encoding full length lectomedin-2 and lectomedin-3 proteins, primers were designed based on the EST sequences for both lectomedin-2 and lectomedin-3 to amplify probes for library screening. Primers for amplifying a lectomedin-2 sequence were NHlect2.5 (SEQ ID NO: 35) and NHlect2.3 (SEQ ID NO: 36), and primers for the lectomedin-3 sequence were Nhlct.5 (SEQ ID NO: 37) and NHlct.3 (SEQ ID NO: 38).













NHlect2.5




GGGCCTCACCTGGGCTTTCGGCCTCCTC SEQ ID NO:35













NHlect2.3




GGACTGGTGCCCCCACGCGTGTCAGCAC SEQ ID NO:36













Nhlct.5




  CCAACAAGACCCATACCAGCTGTG SEQ ID NO:37













Nhlct 3




   CTGAGTCTTGTCGATCCCGACC SEQ ID NO:38











PCR was carried out using a Clontech human brain Marathon-Ready™ cDNA library as template. Reaction conditions included an initial incubation at 94° C. for five minutes, followed by 25 cycles at 94° C. for 30 seconds, 55° C. for 30 seconds, and 72° C. for 30 seconds, followed by a final extension step of 72° C. for 7 minutes and cooling to 4° C. in a Perkin-Elmer GeneAmp™ PCR System 9700. The resulting PCR products were gel purified using low melting point agarose (Gibco/BRL) and a QIAGEN® gel extraction kit according to the manufacturer's suggested protocol. The purified amplification products were separately cloned into vector pCRII® with a TA Cloning kit (Invitrogen), and sequencing was carried out to identify errors associated with PCR.




Probes for cDNA library screening were prepared by purifying EcoRI fragments from the pCRII® clones. The lectomedin-2 digestion products provided two fragments, 274 and 158 bp, and the 274 bp fragment was purified. The lectomedin-3 digestion resulted in a 297 bp EcoRI fragment.




A human fetal brain cDNA library in the LAMBDA ZAP® II vector was purchased from Stratagene (La Jolla, Calif.). Approximately 50,000 pfu were plated on twenty 150 mm LBM agar plates with LE392


E. coli.


Plates were inverted and incubated at 37° C. overnight. The next day, the plates were chilled at 4° C. for two hours before preparing filter replicas. Amersham Hybond®N


+


nylon transfer membrane filters, with a diameter of 132 mm and a removal rating of 0.45 μm, were used to prepare two replicas of each plate. Filters were soaked in denaturing solution for two minutes, soaked in neutralizing solution for two minutes, and UV crosslinked in a Stratagene UV Stratalinker 2400. Filters were prehybridized overnight at 65° C. with 20 filters in 80 ml of prehybridization solution.




Hybridization probes were prepared by labeling the EcoRI fragments with


32


P-dCTP and


32


P-dTTP (800 Ci/mmol each, NEN Life Sciences Products) using a random priming kit (Boehringer Mannheim GmbH, Germany). The labeled probes were added to 20 ml hybridization solution per 20 filters and hybridization was carried out at 65° C. overnight. The filters were washed the next day and air dried before autoradiography at −70° C. for one to three days. Once films were developed, positive plaques were picked and removed to 500 μl of phage diluent buffer including one drop of chloroform. Dilutions of the positive plaques were prepared and plated on 100 mm LBM agar plates.




The plates were screened a second time as described above using 82 mm Amersham Hybond® N


+


filters, except that only one set of replica filters was prepared. Positive plaques from the second screening were screened for a third time to ensure that only positive plaques were picked for the phage rescue.




Positive plaques were prepared using an Exassist®/SOLR phage rescue system (Stratagene, La Jolla, Calif.) according to the manufacturer's suggested protocol. The rescue procedure produced


E. coli


colonies containing the DNA of interest cloned into a pBluescript® SK vector with flanking EcoRI restriction sites. Plasmid DNA was purified using the Wizard® Plus Miniprep Kit (Promega, Madison, Wis.) and digested with EcoRI to determine relative size.




The resulting purified clones were analyzed by DNA sequencing at both the 5′ and 3′ ends. Of the positive clones identified by the probe derived from EST M79057, several of the longest isolates were chosen for complete DNA sequence analysis. Two clones (designated 2.1 and 2.4) were found to comprise overlapping DNA sequences totaling 5611 bp including a complete open reading fame encoding 1470 amino acids. Of the clones identified with the AA683020 probe, all comprised sequences identical to clones derived from EST M79057. These results indicated that the AA683020 and M79057 ESTs represented non-overlapping regions from a single mRNA species. The two clones therefore were derived from the same lectomedin-2 gene. The polynucleotide encoding lectomedin-2 is set out in SEQ ID NO: 57, and its amino acid sequence is set out in SEQ ID NO: 58.




The organization of various domains in the predicted polypeptide sequence of lectomedin-2 was related to that in lectomedin-1. The approximately 851 amino acid extracellular domain of lectomedin-2 included a region with homology to the D-galactoside binding lectin-like domain (amino acids 36 to 131 of SEQ ID NO.: 57), an olfactomedin-like domain (amino acids 135 to 325 of SEQ ID NO: 57), three extracellular and three intracellular domains separated by seven transmembrane domains (approximately amino acids 852 to 1095 of SEQ ID NO: 57) and a cytoplasmic region (approximately amino acids 1096 to 1470 of SEQ ID NO: 57). The cytoplasmic region of lectomedin-2 was most similar in length and sequence identity to lectomedin-1γ. Comparison of the overall polypeptide sequences of lectomedin-1γ and lectomedin-2 showed 62.5% amino acid identity. Comparison of the overall polypeptide sequences of lectomedin-2 and CIRL showed 97.6% amino acid identity. These comparisons indicated that lectomedin-2 is more closely related by sequence to CIRL than lectomedin-1γ.




A strategy was designed to assemble the overlapping clones 2-1 and 2-4 in the mammalian expression vector pcDNA3 to produce full length lectomedin-2 open reading frame. Two primers (SEQ ID NOs: 61 and 62) were used to amplify a region of cDNA clone 2-1.













JD#1




ATATAAGCTTGCTGCCACCATGGCCCGC SEQ ID NO:61













Lecto-




    ATGACCCACAGCCCGTTCTC SEQ ID NO:62






3#31











Primer JD#1 (SEQ ID NO: 61) incorporated a HindIII site to facilitate cloning. The resulting 843 bp amplified product was digested with HindIII and BamHI and a 535 bp DNA fragment was isolated. The 535 bp fragment from clone 2-1 was ligated with a 1912 bp BamHI/SalI fragment from clone 2-1, a 2904 bp SalI/EcoRV DNA fragment from clone 2-4, and pcDNA3 (Invitrogen) previously digested with HindlIl and EcoRV.




Identification of Additional Lectomedin Species




A BLAST search of the GenBank EST database with lectomedin-1α or lectomedin-2 as query sequences identified EST sequences identical to lectomedin-1, EST sequences identical to lectomedin-2 and ESTs that were significantly related to but distinct from both known lectomedins. See Table 1. One of these unique lectomedin ESTs (GenBank Acc# R50822) was derived from clone #37438. Clone #37438 was purchased and its DNA sequence completely determined. The polynucleotide sequence for clone #37438 is set out in SEQ ID NO: 59, and the encoded amino acid sequence is set out in SEQ ID NO: 60. The 3′ sequence of clone #37438 is comprised of an untranslated region preceded by a predicted coding sequence for a protein with significant amino acid homology to the cytoplasmic domains of lectomedin-lγ and lectomedin-2. The 5′ end of the sequence of clone #37438 was unrelated to the lectomedins, but was identical to the nucleotide sequence for a tRNA synthetase. This clone may represent a partially spliced mRNA or it might be a cloning artifact.




The cDNA clone #37438 was used to generate a labeled probe to screen approximately one million clones from a human fetal brain cDNA library by techniques standard in the art. Hybridization was carried out at 43° C. in the presence of 45% formamide and filters were washed in 0.1×SSC at 68° C. for 90 minutes. Positive clones identified were isolated to homogeneity and partial sequence analysis was carried out with eleven of the clones. The DNA sequence of one clone (#11) was determined to have 3′ sequences identical to clone #37438 and 5′ sequences within the upstream coding sequences similar to, but distinct from, lectomedin-1 and lectomedin-2.












TABLE 1









Additional Lectomedin Species



























Lectomedin-4




T10363




(SEQ ID NO: 39),








R19057




(SEQ ID NO: 40),







Lectomedin-5




R50822




(SEQ ID NO: 41)







Lectomedin-6




W03697




(SEQ ID NO: 42)







Lectomedin-7




H18951




(SEQ ID NO: 43)







Lectomedin-8




AA769730




(SEQ ID NO: 44)







Lectomedin-9




C17798




(SEQ ID NO: 45)







Lectomedin-10




Z44961




(SEQ ID NO: 46)







Lectomedin-11




AA369669




(SEQ ID NO: 47)







Lectomedin-12




AB011122




(SEQ ID NO: 48)















EXAMPLE 2




Recombinant Expression of Lectomedin




Lectomedin-1α




A. Expression vectors encoding lectomedin isoforms were constructed by combining DNA fragments from clone 3.3 and RACE3.3 described above.




In one approach, both clone 3.3 and RACE3.3 polynucleotides are first modified in the overlapping regions by insertion of a silent mutation to introduce a SacI restriction site. PCR is employed using primers (SEQ ID NOs: 25 and 26) to amplify a 5′ sequence from the RACE3.3 cDNA template that changes G to C at position 1455 to create the desired restriction site. In amplification of the RACE3.3 fragment, the 5′ primer (SEQ ID NO: 26) is designed based on sequences at the ATG start codon; the primer introduces a BamHI restriction site to facilitate cloning and a Kozak consensus start sequence.














5′-TCTTCAGCTGAGCTCTTCAAAACC SEQ ID NO:24















5′-GGTTTTGAAGAGCTCAGCTGAAGA SEQ ID NO:25















5′-CAGCAGGGATCCACCATGGTGTCTT- SEQ ID NO:26







        CTGGTTGCAGAATGCGAAGTCTGTGG















5′-GACGATGACGCGGCCGCCTATTAAAGAC- SEQ ID NO:27







          TTGTAACCAGCTGCATTTGTCCTTCTC











In amplification of the clone 3.3 DNA with primers set out in SEQ ID NOs: 24 and 27, the 3′ primer is based on sequences at the stop site of translation and is designed to introduce a NotI restriction site.




The resulting amplification products, a RACE3.3 fragment with a 5′ BamHI site and a 3′ SacI site, and a clone 3.3 DNA with a 5′ SacI site and a 3′ NotI site, are digested with appropriate enzymes, ligated together, and cloned into the mammalian expression vector pcDNA+3, (Invitrogen, Carlsbad, Calif.) previously digested with BamHI and NotI.




B. As an alternative approach, a lectomedin-1α-encoding DNA is generated using PCR with the 5′ primer used to amplify RACE3.3 described above and the 3′ primer used to amplify the clone 3.3 DNA also described above.




In the PCR, both RACE3.3 and clone 3.3 DNA are combined with the two primers. After an initial denaturing step, the RACE3.3 and clone 3.3 DNA will anneal across the overlapping regions and the double stranded region will serve as primers in the first extension that produces a complete double stranded lectomedin-1α DNA. Subsequent amplifications will result from extension from the 5′ and 3′ primers. The amplification product is then purified, digested with BamHI and NotI, and inserted into the pcDNA vector previously digested with the same enzymes.




C. In another approach, an expression vector encoding lectomedin-1α was constructed in a two step procedure. First, PCR was carried out using a XbaI fragments of clone 3.3 and primers 3.3.24 (SEQ ID NO: 52) and Lecto 3′ express (SEQ ID NO: 27) along with Taq polymerase.












CCTACCACAGCTGTGACAATAACTTCTTCAGCTGAGC SEQ ID NO:52











A second PCR was carried out using an EcoRI fragment of RACE 3.3 as template DNA and primers Lecto 5′ express (SEQ ID NO: 26) and Lecto6 (SEQ ID NO: 25) with Vent® polymerase (New England Biolabs, Beverly, Mass.). The two amplification products were purified, denatured, and annealed. Because the two fragments overlap in a region of approximately 100 nucleotides, annealing results in a partially double stranded molecule spanning the entire lectomedin-1α coding region. Extension with Taq polymerase first produces a double stranded lectomedin-1α coding region. The double stranded molecule was then amplified using primers in SEQ ID NOs: 26 and 27. The SEQ ID NO: 26 primer was designed to introduce a BamHI restriction site, followed by a Kozak consensus start site. The resulting amplification product was digested with NotI and BamHI, and the lectomedin-1α fragment was gel purified. The fragment was ligated into pcDNA3 (Invitrogen, Carlsbad, Calif.) previously digested with BamHI and NotI. Sequence analysis of the resulting plasmid, designated pcDNA3 Lectomedin-1α#2, indicated that several errors were introduced in the amplification process. The correct lectomedin-1α coding sequence was constructed from regions of pcDNA3 Lectomedin-1α#2 without errors ligated to fragments of RACE3.3 and clone 3.3 as follows.




A 166 bp HindIII/BglII fragment from pcDNA3 Lectomedin-1α#2, a 628 bp BglII/BstXI fragment from RACE3.3, and a 775 bp BstXI/ApaI fragment from pcDNA3 Lectomedin-1α#2 were ligated in the presence of pBluescript® KS+ (pBSKS) (Stratagene) previously digested with BstXI and ApaI. The resulting plasmid was designated pBSKSlectoHindIII/ApaI#14.




In a another reaction, a 306 bp ApaI/EcoRI fragment from clone 3.3 and a 2486 bp EcoRI/EcoRI fragment from clone 3.3 were ligated in the presence of pB SKS previously digested with Apal and EcoRI. The resulting plasmid was designated pBSKSlecto I alphaEcoRI/ApaI#6.




Plasmids pNEF6 and pDEF2 encode promoter regions and a 5′ intron from the gene encoding Chinese hamster ovary elongation factor 1, in addition to neomycin (G418) resistance for selection. Construction of pNEF6 and pDEF2 was carried out as follows.




Plasmid pEF1/XN was generated by ligation of an 11 kb NotI/XbaI fragment from pSK/EF1.12 (WO 98/49289, published Nov. 5, 1998, incorporated herein by reference), having the XbaI site blunt ended with Klenow polymerase, with a 2.22 NotI/SmaI fragment from pDC31 (WO 98/49289).




Plasmid pNEF3 was generated by ligation of a 4.19 kb SalI/NsiI fragment (the NsiI site blunt ended with Klenow polymerase) from pSKEF1.7 (WO 98/49289) with a 7.96 kb SalI/PmeI fragment from pNEF1 (WO 98/49289).




Plasmid pNEF5 was constructed with a 9.2 kb AscI/NotI fragment from pNEF3 and an 11 kb AscI/NotI fragment from pEX1/XN.




Plasmid pNEF6 was constructed by ligation of a 19.7 kb XbaI/Asp718 fragment fom pNEF5 with a 0.844 kb XbaI/Asp718 fragment from pRc/CMv (Invitrogen).




A 736 bp NotI/HindIII fragment (including the intron sequence) was isolated from pDEF2 and combined with a 1571 HindIII/ApaI fragment (including the Kozak sequence, translation start site, and coding region for amino acids 1 to 515) from pBSKSlectoHindIII/ApaI#14, a 3714 bp ApaI/XbaI fragment (encoding amino acids 516 to 1177 of lectomedin-1α and including a stop codon and untranslated sequences) from pBSKSlectolalphaEcoRI/Apa#6, and pNEF6 previously digested with XbaI and NotI. The resulting plasmid was designated pNEF6Lectomedin1A#3.1.




Lectomedin-1β and Lectomedin-1γ




Clone 15.3.1 and clone 71509 were separately amplified with primers lecto3.3.10 and 3.3.19.














TCAGACACTCATACTGCTGTG SEQ ID NO:49















CACAGTCCACAACTTGCAC SEQ ID NO:50











The resulting amplification products were digested with StuI and NcoI, and a 113 bp fragment from 15.3.1 (lectomedin-1β) and a 210 bp fragment from 71509 (lectomedin-1γ) were purified. Each fragment was separately ligated into pBSKSlecto1alphaEcoRI/ApaI#6 previously digested with StuI and NcoI. The resulting plasmids were designated pBSKSlecto1betaEcoRI/ApaI#7 and pBSKSlecto1gammaEcoRI/ApaI#6.




To create a lectomedin-1β expression plasmid, the reaction described above for construction of the lectomedin-1α expression plasmid was repeated except that a 2586 bp ApaI/XbaI fragment from pBSKSlecto1betaEcoRI/ApaI#7 was substituted for the 3714 bp ApaI/XbaI from pBSKSlecto1alphaEcoRI/ApaI#6 to provide plasmid pNEF6Lectomedin1B#4.2.




To create a lectomedin-1γ expression plasmid, the same lectomedin-1α reaction above was carried out except that a 2683 bp ApaI/XbaI fragment from pBSKSlecto1gammaEcoRI/ApaI#6 was substituted for the 3714 bp ApaI/XbaI from pBSKSlectol1alphaEcoRI/Apal#6 to provide plasmid pNEF6Lectomedin1G.




Expression of a Soluble Lectomedin-1 Ig Fusion Protein




An expression construct was also prepared in parental vector pDC37 encoding a soluble, truncated form of lectomedin-1 as a fusion protein with human immunoglobulin G1 hinge and constant heavy chain regions 2 and 3 [hinge CH2-CH3] sequence [Sadhu, et al.,


Cell Adhesion and Commun.


2:429-440 (1994)]. Plasmid pDC37, encoding human VCAM-1 with human IgG1 hinge-CH2 coding sequences, is a derivative of pDC31 generated by digestion with SalI, filled in with Klenow polymerase, and blunt end ligated to eliminate the SalI site.




Plasmid pDC37/VCAM1.Ig1.2c was digested with HindIII and SalI and a fragment lacking the VACM-1 coding region was isolated. The isolated HindIII/SalI fragment was ligated with a 1571 bp HindIII/ApaI fragment from pcDNA3Lectomedin-1a#2 and an amplification product from clone 3.3 prepared using primers lecto Sal Ig (SEQ ID NO: 51) and 3.3.24 (SEQ ID NO: 52).














     lecto SaL Ig          SEQ ID NO:51







GACGCTGGTCGACTAGGTGGCTGCATGCACACGTTGTTCG















     3.3.24          SEQ ID NO:52







  CCTACCACAGCTGTGACAATAACTTCTTCAGCTGAGC











Primer lecto Sal Ig generated a unique SalI site in the amplification product (after codon 811 of lectomedin-1) to permit in-frame ligation to IgG1 coding sequences. The resulting plasmid was designated pDC37Lecto.Ig#7.




A 736 bp NotI/HindIII fragment from pDEF2 was ligated with a 1571 bp HindIII/ApaIII fragment (encoding the Kozak sequence, start site, and amino acids 1 to 515 from lectomedin-1α) from pcDNA3 Lectomedin-1a#2, a 1788 bp ApaI/XbaI fragment (encoding amino acids 516 to 811 from lectomedin-1 fused to IgG sequences) from pDC37Lecto.Ig#7, and pDEF14 previously digested with NotI and XbaI. The resulting plasmid was designated pDEF14Lecto.Ig#2.




Plasmid pDEF14Lecto.Ig#2 was transfected into DHFR





DG44 CHO cells and stably transfected cells were selected.




EXAMPLE 3




Characterization of Recombinant Lectomedin




Characterization of the protein expression level in recombinant cells is carried out using polyclonal antisera (produced as described in Example 8), and functional analysis, with respect to latrotoxin binding (discussed below) and/or release of secretory granule contents, is performed as previously described.




In initial characterization, Chinese hamster ovary (CHO) cells were transfected by standard methods (i.e., calcium phosphate or cationic lipids) with lectomedin-1α expression construct. After 48 hours incubation, the cells were lysed in PBS containing 1% Triton® X-100 and protease inhibitors, and proteins in the detergent soluble fraction were separated by SDS-PAGE. After transfer to nitrocellulose membrane, the blot was incubated with rabbit antiserum immunospecific for lectomedin-1α (generated against amino acids 432-852 as immunogen). Immunoreactivity was detected using a goat anti-rabbit IgG (conjugated with horseradish peroxidase) followed by chemiluminescence detection and exposure to X-ray film (using a Renaissance® detection kit, NEN Life Sciences, Boston, Mass.).




For functional characterization, secretory cells of the endocrine system are employed which readily accept DNA constructs by transfection. Cell lines useful in functional characterization include, for example, mouse anterior pituitary corticotroph continuous cells (AtT20; ATCC CCL 89), rat pancreatic islet insulinoma continuous cells (RinM5F), or human pituitary somatotroph continuous cells (GH3; ATCC CCL 82.1). After an appropriate amount of time to allow protein synthesis, incubation of the transfected cells with alpha-latrotoxin, or another ligand, is followed by detection of stimulated secretion of proteins using enzyme-linked immunosorbant assay or radioimmunoassay (RIA). For example, increased secretion from the exemplified cells lines is accomplished through detection of adrenocorticotrophic hormone (ACTH) release from AtT20 cells, insulin release from RinM5F cells, or growth hormone release from GH3 cells.




In addition, since lectomedin-1 is a G-protein coupled receptor, ligand binding would be expected to trigger intracellular second messenger effector pathway activity changes such as, for example, increased production of cyclic AMP (cAMP) or changes in intracellular calcium concentration. Changes of these types are measured by standard techniques, for example, RIA detection of cAMP or fluorescence detection of calcium binding indicators (i.e., Fura 2).




An exemplary alpha-latrotoxin binding assay has been previously described [Meldolesi,


J. Neurochem.


38:1559-1569 (1982), Petrenko, et al.,


EMBO J,


9:2023-2027 (1990)]. Cells are transfected with either vector DNA alone (control cells) or a lectomedin 1-encoding expression plasmid (assay cells). Both assay and control cells are homogenized in buffer (120 mM NaCl, 4.7 mM KCl, 1.2 mM each MgSO


4


, K


2


HPO


4


, and CaCl


2


, 20 mM Na


2


HPO


4


—HCl, pH 7.4, and 10 mM glucose) and protein concentrations are determined by standard methods. Known amounts of protein from control or transfected assay cell membranes are spotted on nitrocellulose paper and placed in separate wells of a 24 well dish. The paper is rinsed once with buffer containing 100 mM KCl, 2 mM CaCl


2


, and 20 mM Tris, pH 7.7, and incubated for one hour in the same buffer supplemented to 1.5% (w/v) with bovine serum albumin (BSA) (blocking buffer). Solutions of blocking buffer containing from 0.1 to 1.2 nM of


125


I-labeled alpha-latrotoxin, labeled to a specific activity of 1500 to 2000 Ci/mmol, without or with a large excess (100 nM) of unlabeled toxin are incubated for thirty minutes with the immobilized protein. The paper is rinsed three times with 1 ml of blocking buffer over a 20 minute time period and counts per minute remaining are determined with a gamma counter. Nonspecific binding is determined to be the value of radioactive counts remaining after incubation of labeled toxin in the presence of a large excess of unlabeled toxin. Specific counts are converted to nanomoles of toxin bound per milligram of protein spotted and the data is plotted as nanomoles bound toxin versus nanomoles free toxin. The data are converted to bound toxin divided by free toxin versus bound toxin to derive a Scatchard plot for number of binding sites (a linear plot being the expected result for a single toxin binding site on the receptor).




In additional characterizations, the lectomedin fusion protein Lecto-1Ig (Example 2) was purified using protein A Sepharose® (Amersham Pharmacia Biotech, Piscataway, N.J.) affinity chromatography and conditioned growth media derived from one of two clones designated G10 and E10. Media was loaded onto the column which was then washed extensively with 50 mM Tris, pH 7.5, 50 mM NaCl. Protein was eluted in buffer containing 50 mM citric acid, pH 4.0, and 50 mM citric acid, pH 3.0. The majority of the protein eluted in the pH 3.0 buffer. Protein fractions were pooled, neutralized with 1 M Tris, pH 8.0, and dialyzed against PBS. Purified protein was filtered, aliquoted, flash frozen and stored at −70° C.




Amino terminal sequencing indicated that the mature amino terminus of the protein was identified as a phenylalanine residue at position 26. This observation indicated that the recombinant protein was recognized and cleaved by a signal peptidase in the CHO cells and that the amino terminus was not blocked.




Size exclusion chromatography suggested a protein with a molecular weight of approximately 650 kDal as compared to the molecular weight determined on SDS PAGE of approximately 170 kDal. The gel filtration result suggested that four monomers combined to produce the 650 kDal protein.




Treatment of the protein with N-glycosidase F, O-glycosidase, and/or neurominidase (Boehringer Mannheim) in 10 mM Na


2


HPO


4


(pH 6.8), 5 mM EDTA, 0.25% Triton® X-100, 0.5% SDS, and 0.5% β-mercaptoethanol (BME), at 37° C., resulted in reduction of protein molecular weight. After treatment with N-glycosidase F alone, monomeric protein molecular weight was approximately 130 kDal. After treatment with N-glycosidase F, O-glycosidase, and neuraminidase, monomeric protein molecular weight was approximately 125 kDal. These observations suggest that the observed SDS PAGE molecular weight may be attributable to approximately 40 kDal N-linked carbohydrate and approximately 5 kDal O-linked carbohydrate.




EXAMPLE 4




Ligand Affinity Chromatography




In an attempt to isolate a ligand for lectomedin-1, an affinity column was generated with immobilized lectomedin-1. In short, 10 mg of purified sLecto-1Ig was coupled to CNBr-activated Sepharose 4B resin (AmershamPharmacia) according to the manufacturer's suggested protocol. Greater than 96% of the lectomedin protein was coupled to the resin.




A detergent extract was prepared from human spleen (3.48 g wet weight). Tissue was homogenized in 15 ml buffer containing 1% Triton® X-100, 25 mM Tris, pH 8, 150 mM NaCl, 5 mM iodoacetamide, 5 mM EDTA, 1 mM phenylnethylsulfonyl fluoride (PMSF), and 1 μg/ml pepstatin and aprotinin using a Waring blender. Homogenization was carried out at low speed. The resulting homogenate was cooled on ice for one hour and centrifuged at 100,000×g for 60 min. The supernatant (approximately 120 mg total protein) was mixed with the sLecto-1Ig-coupled resin with rotation overnight at 4° C. The resin was drained and washed extensively with 10 mM Tris (pH 8), 150 mM NaCl, and 10 mM Tris (pH 8), 1 M NaCl. Protein was eluted with five bed volumes of 100 mM D-lactose, 10 mM Tris, pH 8.0, 150 mM NaCl. Five equal fractions were collected. The resin was further eluted with four bed volumes of 100 mM glycine, pH 2.0, and four equal fractions were collected and neutralized with 1 M Tris, pH 8.0. The resin was then neutralized in 10 mM Tris, pH 8.0/150 mM NaCl. Fractions from the resin were analyzed by SDS-PAGE and bands of approximately 95, 71, 55 and 30 kDal were detected.




Fractions with the highest protein yields were spin concentrated (Ultrafree® 10, Millipore, New Bedford, Mass.) and proteins were separated with 12% SDS-PAGE. Coomassie staining revealed four prominent bands in the lactose eluate of approximately 30-32, 55, 70, and 80-95 kDal. Bands were excised from the gel, rinsed twice in 50:50 acetonitrile:water, and stored at −70° C. until sequence analyses were performed. Sequence results indicated that the 30-32 kDal protein was Mac-2 (also called galectin-3, GenBank® Accession No: g106937), the 55 kDal protein was fibrinogen γ A chain (GenBank® Accession No: g71827) and the 80-95 kDal protein was immunoglobulin mu chain constant region.




Mac-2 (galectin-3) is synthesized by numerous immune cell populations and epithelia, and is a major non-integrin laminin binding protein [Perillo, et al.,


J. Mol. Med.


76:402-412 (1998)]. Recent observations indicated that Mac-2 was expressed in vessels in early atherosclerotic lesions in association with infiltrating monocytes. Expression was not detected in normal vessels. Expression was also detected in aortic smooth muscle cells in culture, as well as in animals following a hypercholesterolemic feeding regimen and post balloon angioplasty [Arar, et al., FEBS Letts.430:307-311 (1998), Nachtigal, et al.,


Am.J.Pathol.


152:1199-1208 (1998)]. Mac-2 stimulates normal fibroblast proliferation, neural cell adhesion, and neurite outgrowth [Inohjara, et la.,


Exp. Cell. Res.


245:294-302 (1998); Pesheva, et al.,


J. Neurosci. Res.


54:639-654 (1998)].




The binding results from lectomedin affinity chromatography, in view of the art, suggest that secretion of Mac-2 by infiltrating macrophages during atherogenesis and binding to lectomedin-1 expressed on smooth muscle cells of vascular tunica media may be required for smooth muscle proliferation in atherosclerosis. [Ross, Nature 362:801-809 (1993)].




Previous work has indicated that circulating components of the thrombolytic pathway, including firinogen, are associated with chronic vascular disease (i.e. , hypertension, atherosclerosis). Studied showed that circulating fibrinogen levels may be elevated in hypertensive patient populations. These observations suggest a role for lectomedin in various vascular disease states.




EXAMPLE 5




Northern Analysis




In an attempt to assess human lectomedin-1α expression, Northern blot analysis was performed using a commercial multi-tissue blot (Clontech, Palo Alto, Calif.) with RNA derived from various human tissue sources. The probe used was a 531 bp BstM fragment derived from the extracellular region of clone 3.3 (bases 1860 to 2350 in SEQ ID NO: 7). Hybridization was carried out in Express-Hyb™ Solution (Clontech) at 68° C. for two hours; the final wash was carried out at 68° C. in 0.1×SSC for one hour.




Results indicated expression of two predominant transcripts of 6.6 and 7 kb. The highest levels of expression were detected in spleen, prostate, and lung. Lower signals were in duodenum, placenta, thymus, testis, colonic mucosa, heart, and liver. Lowest levels were found in skeletal muscle, kidney, pancreas, and brain. No signal was observed in ovary and peripheral blood leukocytes.




EXAMPLE 6




In situ Hybridization




In order to verify results from Northern analysis, in situ hybridization was carried out using various human tissue sections.




Probes for in situ hybridization analysis were prepared as follows. Clone 3.3 was engineered by PCR to include a SacI site near the 5′ end of the cDNA by changing a G nucleotide to C at position 1459 of the composite sequence. A 626 bp SacI/EcoRI fragment was prepared and subcloned into pBSSK (Stratagene, La Jolla, Calif.). The resulting plasmid was linearized with either EcoRI or SacI. The ends of the SacI linearized DNA were made blunt by standard procedures using T4 DNA polymerase. Linear DNAs were used to generate


35


S-labeled sense or antisense strand probes for in situ hybridization with tissue sections from spleen, lung, prostate, heart, thymus, duodenum.




The results obtained from hybridization experiments were inconclusive due to high background with sense strand control probe.




In another approach to localizing the lectomedin-1 mRNA, two other fragments of the lectomedin-1 cDNA were subcloned into the pBluescript vector. A 1238 bp BamHI/SacI fragment of lectomedin-1α (SEQ ID NO: 1) was subcloned. A representative clone including this fragment was designated as probe BS. A 2855 bp BamHI/XbaI fragment of lectomedin-1 α (SEQ ID NO: 1) was subcloned and a representative clone was isolated and designated as probe BX.


35


S-labeled sense and antisense probes from both BS and BX were prepared by methods standard in the art and hybridized with tissue sections from human brain occipital cortex, cerebellum and thalamus; interventricular septum, sino-atrial node and atrium of the heart; small intestine, spleen, lung, prostate, adrenal gland and pancreas.




Specific signals were observed with the antisense BS probe in cardiac myocytes (heart), endocrine secretory cells of the adrenal cortex, occipital cortex neurons and cerebellar purkinje neurons, granule layer neurons and some molecular layer neurons. The antisense BX probe produced similar patterns except for the presence of specific signals in a subset of secretory cells of the prostate.




EXAMPLE 7




Human Lectomedin Chromosomal Localization




The contiguous lectomedin-1α cDNA deduced from combining clone 3.3 and RACE3.3 sequences was used as a query to search the NCBI Sequence-Tagged Sites (STS) database in an attempt to map the chromosomal location of a gene encoding lectomedin-1α.




Two STSs were identified, designate SHGC-36772 and WI-1 1936, which were mapped to chromosome 1 by radiation hybrid mapping techniques. The STS WI-11936 mapping has been further refined to chromosome locus 1p31.




In an effort to identify the chromosomal localization of the gene for lectomedin-2, the full length nucleotide sequence was used to query the GenBank® high throughput genomic sequences nucleotide database using the BLAST algorithm. Results indicated that a portion of chromosome 17 had identity with a portion of the lectomedin-2 DNA sequence. Query of the human Genemap '98 at NCBI for the localization of this region of chromosome 17, showed that the lectomedin-2 gene mapped to chromosome 17p11.1-q12.




To identify the chromosomal localization of the gene for lectomedin-3, an accession number query (using EST R50822) of the Unigene database at the National Center for Biotechnology Information (NCBI) was carried out. The results identified a cluster of ESTs, including R50822 that mapped to human chromosome 4. Refinement of the localization was carried by searching the human GeneMap '98 out at NCBI, which showed that EST the cluster containing R80522 was assigned to 4q12-13.3.




EXAMPLE 8




Preparation of Antibodies to Lectomedin




Generation of Polyclonal Anti-sera with Extracellular Lectomedin-1 Fragments




An


E. coli


expression vector was constructed encoding the extracellular region of lectomedin-1α (residues 432 to 852 of SEQ ID NO: 1) as a fusion protein with a biotinylated tag at the amino terminus. The plasmid, designed “Biolecto 1st ECD” was constructed as follows.




PCR primers “lecto-1” and “lecto-2” (SEQ ID NOs: 31 and 32, respectively) were used to amplify a 1283 bp fragment of clone 3.3 (nucleotides 1508-2772 in SEQ ID NO: 9 which encodes the amino acid sequence from residue 432 to residue 852 of SEQ ID NO: 10). This region of the lectomedin-1 polypeptide is approximately 69% identical with latrophilin.














primer lecto-1                 SEQ ID NO:31







      5′-TACAA


CCATGG


GCACAACTGTAGCTGG















primer lecto-2                 SEQ ID NO:32







5′-TACA


AGATCT


AGCAGATAGCCAGGCAAACAAGGG











Primer lecto-1 introduced an NcoI restriction site (underlined above) in the amplification product and primer lecto-2 introduced a BglII restriction site (underlined above) and a translational termination site. The amplified fragment was subcloned into plasmid arabio1b previously digested with NcoI and BglII to form plasmid Biolecto1stECD. The plasmid arabio1b contains the


Salmonella typhimurium


arabinose promoter and araC gene, as well as the biotin transferase gene [Kashishian, et al.,


J. Bio. Chem.


273:27412-27419 (1998)]. The expression product of the final construct provides a fusion protein of approximately 55 kDa with the biotin tag at the N-terminus, and the lectomedin-1 amino acids 432 to 852 at the C-terminus.




The plasmid Biolecto1stECD was transformed into


E. coli


using standard procedures and single colonies were isolated and grown for plasmid preparation. A culture including the desired plasmid was grown at 30° C. in LB/carbenicillin supplemented with biotin (4 μM) and induced in the presence of arabinose (0.5%) for 16 hours. Bacteria were collected by centrifugation and lysed with hen egg lysozyme (10 μg/ml) in TEN buffer (50 mM Tris-HCl, pH 7.5 at 25° C., 0.5 mM EDTA, 0.3 M NaCl) on ice for 15 minutes. After incubation on ice, NP-40 detergent was added to 0.2% final concentration and the resulting mixture sonicated briefly on ice. Insoluble material was removed by centrifugation at 15,000×g for ten minutes, after which the pellet washed five times with the additional of TEN buffer followed by sonication and centrifugation. The final pellet was solubilized in 2× sample loading buffer for preparative SDS-PAGE separation.




A major band of 55 kDa was detected after treating the gel for 30 minutes in 0.4 M KCl. The 55 kDa band was excised from the gel and the fusion protein eluted in dialysis tubing using 0.5% SDS-PAGE running buffer. The collected protein was concentrated, spin-dialyzed (30,000 MW cutoff Ultrafree® Centrifugal Filter Device; Millipore Corp. Bedford, Mass.), and stored.




The purified protein was used to immunize two rabbits to generate antisera according to well known procedures. Briefly, two New Zealand white rabbits (designated #7234 and #7278) were prebled to obtain preimmune serum and then immunized with 250 μg of purified BiolectolstECD fusion protein emulsified with complete Freund's adjuvant. The rabbits were boosted repeatedly with 250 μg of purified fusion protein in incomplete Fruend's adjuvant. The first three boosts were given at one month intervals, the third and fourth boosts following a three month interval, and the fourth and fifth boost following an additional one month interval. Blood was drawn by ear vein puncture two weeks after the second, third, fourth, and fifth boosts to determine antibody titers.




Immunoprecipitation was carried out with the resulting polyclonal sera using extracts from tissues/cell lines, including brain cortex, lung, spleen, liver, skeletal muscle, hippocampus, and prostate carcinoma cell line PC-3 (ATCC, CRL 1435). Protein species having molecular weights of 200, 180, 170, and 70 kDa were detected which may have represented full length proteins, proteolytic fragments, or isoforms of lectomedin including the α, β, and γ proteins.




Serum obtained from rabbit #7234 after the fifth boost was subjected to antigen-specific affinity chromatography by methods standard in the art. Briefly, 10 ml of 0.45 or 0.8 microfiltered serum (100×g supernatant) adjusted to 10 mM Tris, pH 7.5, was incubated with sLecto-1Ig agarose beads for 16 hours at 4° C. with rotation. The beads were drained and washed with 20 bed volumes of 0.5 M NaCl, 10 mM Tris, pH 7.5, until absorbance OD


280


reached 0.03. Bound antibody was eluted with five bed volumes of 100 mM glycine, pH 2.5. The eluates were collected as 0.5 ml fractions and neutralized with 1 M Tris, pH 8. The sLecto-1Ig agarose beads were neutralized with 50 mM Tris, pH 7.5/150 mM NaCl and stored at 4° C. in the same buffer supplemented with 0.1% timerool. Fractions were analyzed by SDS-PAGE for the presence of immunoglobulin heavy and light chains. The peak fractions were pooled, the buffer was exchanged with PBS, and the volume reduced by 90%. The final product was mixed with an equal volume of sterile glycerol, aliquoted, flash frozen, and stored at −70° C. until use.




Generation of Polyclonal Antisera with Synthetic Lectomedin-1 Cytoplasmic Peptides




Peptides specific to the carboxy terminal cytoplasmic regions of α, β, and γ isoforms of lectomedin- 1 were synthesized as immunogens for producing polyclonal antisera in New Zealand White rabbits. The peptides were designed from the DNA sequence in the cytoplasmic region of lectomedin 1α (SEQ ID NO: 53), lectomedin 1β (SEQ ID NO: 54), and lectomedin 1γ (SEQ ID NO: 55).













Cys-Leu-Gln-Asp-Leu-Tyr-His-Leu-Glu-Leu-Leu-Leu-Gly-Gln-Ile-Ala SEQ ID NO:53














Cys-Thr-Arg-Thr-Ser-Ala-Arg-Tyr-Ser-Ser-Gyl-Thr-Gln-Asp-Ile-His SEQ ID NO:54













Cys-Glu-Gly-Asp-Val-Arg-Glu-Gly-Gln-Met-Gln-Leu-Val-Thr-Ser-Leu SEQ ID NO:55











Peptides comprising the carboxy terminal regions of the related lectomedin-2 (SEQ ID NO: 63) and lectomedin-3 (SEQ ID NO: 64) proteins were also synthesized.













Cys-Pro-Gly-Pro-Asp-Gly-Asp-Gly-Asp-Gly-Gln-Met-Gln-Leu-Val-Thr-Ser-Leu SEQ ID NO:63














Cys-Pro-Glu-Gly-Ser-Ser-Lys-Gly-Pro-Ala-His-Leu-Val-Thr-Ser-Leu SEQ ID NO:64











The synthesized peptides were individually conjugated to Keyhole Limpet Hemocyanin (KLH) (Imject, Pierce) according to the manufacturer's suggested protocol. Rabbits were prebled, and 100 μg of conjugated peptide in complete Freund's adjuvant was injected per rabbit, two rabbits per isoform. At three week intervals, the rabbits were boosted with the same dose of antigen in incomplete Freud's adjuvant. Animals were bled 10 days after the third injection and serum titer determined by ELISA.




Briefly, Immulon® 4 (Dynax Technologies, Chantilly, Va.) plates were coated with unconjugated peptide at 2 μg/ml. Plates were blocked with 0.5% fish skin gelatin and washed. Serial dilutions of the pre-immune serum and test bleeds from each rabbit were incubated on the peptide-coated plates. After washing, goat anti-rabbit-horseradish peroxidase (HRP) conjugated secondary antibody was added. The plates were washed and signal detected by tetramethyl benzidine (TMB) (Sigma) reagent.




Serum from rabbits #6484 and #6453 immunized with the lectomedin-1β peptide showed reactivity three-fold greater than pre-immune serum at a 3000-fold dilution. Serum from rabbits #6868 and #6307 immunized with lectomedin-1γ showed three-fold greater reactivity over pre-immune serum at a 3000-fold dilution. Serum from rabbits #7347 and #6490 immunized with lectomedin-1α, showed three-fold greater reactivity at a 200-fold dilution.




In view of these results, a second lectomedin-1α peptide (SEQ ID NO: 56) was synthesized and the immunization protocol described above was repeated with two additional rabbits. Serum from these rabbits is assayed for specific reactivity as described above.













Cys-Ser-Arg-Ile-Arg-Arg-Met-Trp-Asn-Asp-Thr-Val-Arg-Lys-Gln-Ser SEQ ID NO:56












Monoclonal Antibody Production




In an attempt to produce monoclonal antibodies immunospecific for lectomedin polypeptides, the following procedure was carried out.




Five 6 to 12 week old BALB/c mice were prebled on day 0 and immunized by subcutaneous injection with 20 μg of the lectomedin-1α, lectomedin-1β, or lectomedin-1γ peptides (SEQ ID NOs: 53, 54, and 55) described above (60 μg total) in complete Freund's adjuvant. On Days 21, 41, and 62, each mouse was boosted with 10 μg of each peptide (30 μg total) in incomplete Freund's adjuvant. Test bleeds were drawn on day 72 and reactivity determined by ELISA against individual peptides as described in generation of polyclonal antisera, with the exception that specific mouse antibody was detected with a goat anti-mouse-HRP.




Immune serum from all five mice showed reactivity to lectomedin-1β and lectomedin-1γ peptides greater than pre-immune serum at a 12800-fold dilution. Serum from all of the mice showed modest reactivity to lectomedin-1α peptide.




Additional peptides comprising the carboxyl termini of lectomedin-2 and lectomedin-3 (SEQ ID NOs: 58 and ) were synthesized to screen for cross reactive antibodies recognizing similar epitopes found in termini of lectomedin-1γ, lectomedin-2 and lectomedin-3.




In an another approach to generate an immune response to lectomedin-1α, five additional mice were immunized with the second lectomedin-1α peptide (SEQ ID NO: 56) described above. Immune serum from each of the mice is tested for lectomedin-1α reactivity by ELISA (described above) prior to fusion and hybridoma cloning.




The spleen of the immunized animal is removed aseptically and a single-cell suspension is formed by grinding the spleen between the frosted ends of two glass microscope slides submerged in serum free RPMI 1640 (Gibco, Canada) supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate, 100 units/ml penicillin, and 100 μg/ml streptomycin. The cell suspension is filtered with a sterile 70-mesh Nitex cell strainer (Becton Dickinson, Parsippany, N.J.), and washed twice by centrifuging at 200×g for five minutes and resuspending the pellet in 20 ml serum free RPMI. Thymocytes taken from naive Balb/c mice are prepared in the same manner.




Approximately 2×10


8


spleen cells are combined with 4×10


7


NS-1 cells (kept in log phase in RPMI with 11% fetal bovine serum [FBS] for three days prior to fusion). The cells are collectedy centrifugation and the supernatant is aspirated. The cell pellet is dislodged and 2 ml of 37° C. PEG 1500 (50% in 75 mM HEPES, pH 8.0) (Boehringer Mannheim) is added while stirring over the course of one minute, followed by the addition of 14 ml of serum free RPMI over seven minutes. Additional RPMI can be added and the cells are centrifuged at 200×g for 10 minutes. After discarding the supernatant, the pellet is resuspended in 200 ml RPMI containing 15% FBS, 100 mM sodium hypoxanthine, 0.4 mM aminopterin, 16 mM thymidine (HAT) (Gibco), 25 units/ml IL-6 (Boehringer Mannheim), and 1.5×10


6


thymocytes/mil. The suspension is dispensed into ten 96-well flat bottom tissue culture plates (Corning, United Kingdom) at 200 μl/well. Cells are fed on days 2, 4, and 6 days post-fusion by aspirating 100 μl from each well and adding 100 μl/well plating medium containing 10 U/ml IL-6 and lacking thymocytes.




When cell growth reaches 60-80% confluence (day 8 to 10), culture supernatants are taken from each well and screened for reactivity to lectomedin by ELISA. ELISAs are performed as follows. Immulon 4 plates (Dynatech, Cambridge, Mass.) are coated at 4° C. with 50 μl/well with 100 ng/well of inmmunogen in 50 mM carbonate buffer, pH 9.6. Plates are washed with PBS with 0.05%, Tween® 20 (PBST) and blocked 30 minutes at 37° C. with 0.5% fish skin gelatin. Plates are washed as described above and 50 μl culture supernatant is added. After incubation at 37° C. for 30 minutes, plates were washed as above, then 50 μl of horseradish peroxidase conjugated goat anti-mouse IgG(fc) (Jackson ImmunoResearch, West Grove, Pa.) [diluted 1:10,000 in PBST] is added. Plates are incubated at 37° C. for 30 minutes, washed with PBST and 100 μl of substrate, consisting of 1 mg/ml TMB (Sigma) and 0.15 ml/ml 30% H


2


O


2


in 100 mM citrate, pH 4.5, is added. The color reaction is stopped with the addition of 50 μl of 15% H


2


SO


4


. Absorbance at 450 nm is read on a plate reader (Dynatech).




EXAMPLE 9




Immunocytochemistry for Expression of Lectomedin




Polyclonal antisera generated in rabbit #7234 (and affinity purified) as described above was used to determine lectomedin expression patterns in human and rat tissues. Human tissues were obtained from the National Disease Research Interchange (NDRI, Philadelphia, Pa.), including human brain (cortex and cerebellum), heart (septum and atrium), prostate, lung, liver, spleen, small intestines, adrenal gland, and artery (renal, pulmonary and subclavian). Aorta was obtained from the Pathological Determinants of Atherosclerosis in Youth (PDAY) Study, Louisiana State University Medical Center. Rat tissue was prepared using procedures well known and routinely practiced in the art.




Frozen tissues were embedded in OCT (Tissue-Tek), sectioned at 6 micron thickness, mounted onto Superfrost Plus (VWR Scientific) slides, and stored at −20° C. until the assay was performed. Paraffin-embedded, formalin-fixed tissues were stored at room temperature until the assay was performed. Prior to assay, frozen tissue was fixed in acetone for two minutes at 4° C., except for brain tissue which was fixed in ether for five minutes at room temperature. Formalin-fixed tissue was deparaffinized with two three-minute washes in each of xylene, 100% ethanol, 95% ethanol, and 70% ethanol. Endogenous peroxidase activity was quenched by incubating the fixed cryosections in buffer containing 0.1% sodium azide and 0.33% hydrogen peroxide in phosphate buffered saline (PBS) during a 15 minute incubation. All incubations were carried out at room temperature unless otherwise indicated. Slides were rinsed in TBST (20 mM Trizma® base [Sigma], 150 mM NaCl, 0.05% Tween®, pH 7.2) and blocked in a solution containing 30% normal human serum albumin (Boston Biomedica), 5% normal goat serum (Harlan), and 2% bovine serum albumin (Sigma) in TBST for 30 minutes. Nonspecific binding was blocked using sequential 15 minute incubations with avidin and biotin blocking solution (SP-2001, Vector Labs, Burlingame Calif.). Slides were rinsed in TSBT after each incubation. Primary antibody at concentrations ranging from 1 μg/ml to 5 μg/ml was applied to each section for one hour, after which sides were washed in TSBT three times. Biotinylated goat anti-rabbit antibody conjugated to peroxidase (Vector Labs) was diluted 1:200 in blocking solution and applied to the slides for 30 minutes. Slides were washed for five minutes and incubated for 30 minutes with ABC Elite reagent (avidin-biotin-peroxidase kit PK-6100, Vector Labs). Slides were washed twice for five minutes per wash in TSBT. Substrate solution (DAB substrate kit for peroxidase, Vector Labs) was applied to the slides and the desired color intensity was allowed to develop over approximately five minutes. The reaction was stopped with deionized water, and the slides were counterstained with Gill's hematoxylin (Sigma) solution, rinsed in water, dehydrated in ethanol, and mounted with Cytoseal mounting medium (Stephens Scientific) for light microscopic evaluation.




In human brain cortex, labeling with 7234 sera was detected in a subset of neurons (including large and small pyrimidal neurons), granule cells, and smooth muscle cells of the vasculature. Human cerebellum staining with 7234 sera was localized to purkinje neurons and neurons of the granular cell layer. Human heart (septal and atrial sections) showed cardiomyocyte immunoreactivity, most prominently at cardial myocyte cell junctions transverse to the plane of the contractile apparatus called intercalated dicks.




In double label experiments using a commercially available connexin antibody (Zymed, San Francisco, Calif.), which stains connexin found at the intercalated disks, the previous results were confirmed as results indicated that connexin antibody and 7234 antisera staining co-localized on the intercalated disks.




Sections of human prostate showed weak stromal cell labeling and cytoplasmic skeletal muscle staining. Lung staining was found in cartilage and some bronchial smooth muscle cells, with certain cells staining more strongly than others. The medulla of the adrenal gland showed strong positive staining.




Human liver, spleen, and small intestines exhibited a non-specific pattern of immunoreactivity. Human aorta showed immunoreactivity with 7234 sera in the vessel wall that was primarily located in the tunica intima (lumenal muscle layer) and tunica media (intermediate muscle layer). Thoracic aorta, pulmonary artery, and renal antery each showed similar staining patterns. When compared with staining with an antibody to smooth muscle α-actin (an accepted marker for smooth muscle cells), lectomedin-1 immunoreactivity was found primarily in the same cells (i.e., smooth muscle cells).




Staining in rat tissues with 7234 sera demonstrated similar patterns as observed in human tissues. In brain, some neuronal populations and the smooth muscle of the vasculature were stained. In the heart, disks, cardiomyocytes, and vascular smooth muscle all showed immunoreactivity.




While the present invention has been described in terms of specific embodiments, it is understood that variations and modifications will occur to those skilled in the art. Accordingly, only such limitations as appear in the appended claims should be placed on the invention.







64




1


5597


DNA


Homo sapiens




CDS




(217)..(3747)





1
cggcgaacag acgttctttc tcctccatgc agttacacaa aaggagggct acggaaacta 60
aaagtttcgg ggcctctggc tcggtgtgtg gagaaaagag aaaacctgga gacgggatat 120
gaagatcaat gatgcagact gatggtcttg atgaagctgg gcatttataa ctagattcat 180
taaggaatac aaagaaaata cttaaaggga tcaata atg gtg tct tct ggt tgc 234
Met Val Ser Ser Gly Cys
1 5
aga atg cga agt ctg tgg ttt atc att gta atc agc ttc tta cca aat 282
Arg Met Arg Ser Leu Trp Phe Ile Ile Val Ile Ser Phe Leu Pro Asn
10 15 20
aca gaa ggt ttc agc aga gca gct tta cca ttt ggg ctg gtg agg cga 330
Thr Glu Gly Phe Ser Arg Ala Ala Leu Pro Phe Gly Leu Val Arg Arg
25 30 35
gaa tta tcc tgt gaa ggt tat tct ata gat ctg cga tgc ccg ggc agt 378
Glu Leu Ser Cys Glu Gly Tyr Ser Ile Asp Leu Arg Cys Pro Gly Ser
40 45 50
gat gtc atc atg att gag agc gct aac tat ggt cgg acg gat gac aag 426
Asp Val Ile Met Ile Glu Ser Ala Asn Tyr Gly Arg Thr Asp Asp Lys
55 60 65 70
att tgt gat gct gac cca ttt cag atg gag aat aca gac tgc tac ctc 474
Ile Cys Asp Ala Asp Pro Phe Gln Met Glu Asn Thr Asp Cys Tyr Leu
75 80 85
ccc gat gcc ttc aaa att atg act caa agg tgc aac aat cga aca cag 522
Pro Asp Ala Phe Lys Ile Met Thr Gln Arg Cys Asn Asn Arg Thr Gln
90 95 100
tgt ata gta gtt act ggg tca gat gtg ttt cct gat cca tgt cct gga 570
Cys Ile Val Val Thr Gly Ser Asp Val Phe Pro Asp Pro Cys Pro Gly
105 110 115
aca tac aaa tac ctt gaa gtc caa tat gaa tgt gtc cct tac att ttt 618
Thr Tyr Lys Tyr Leu Glu Val Gln Tyr Glu Cys Val Pro Tyr Ile Phe
120 125 130
gtg tgt cct ggg acc ttg aaa gca att gtg gac tca cca tgt ata tat 666
Val Cys Pro Gly Thr Leu Lys Ala Ile Val Asp Ser Pro Cys Ile Tyr
135 140 145 150
gaa gct gaa caa aag gcg ggt gct tgg tgc aag gac cct ctt cag gct 714
Glu Ala Glu Gln Lys Ala Gly Ala Trp Cys Lys Asp Pro Leu Gln Ala
155 160 165
gca gat aaa att tat ttc atg ccc tgg act ccc tat cgt acc gat act 762
Ala Asp Lys Ile Tyr Phe Met Pro Trp Thr Pro Tyr Arg Thr Asp Thr
170 175 180
tta ata gaa tat gct tct tta gaa gat ttc caa aat agt cgc caa aca 810
Leu Ile Glu Tyr Ala Ser Leu Glu Asp Phe Gln Asn Ser Arg Gln Thr
185 190 195
aca aca tat aaa ctt cca aat cga gta gat ggt act gga ttt gtg gtg 858
Thr Thr Tyr Lys Leu Pro Asn Arg Val Asp Gly Thr Gly Phe Val Val
200 205 210
tat gat ggt gct gtc ttc ttt aac aaa gaa aga acg agg aat att gtg 906
Tyr Asp Gly Ala Val Phe Phe Asn Lys Glu Arg Thr Arg Asn Ile Val
215 220 225 230
aaa ttt gac ttg agg act aga att aag agt ggc gag gcc ata att aac 954
Lys Phe Asp Leu Arg Thr Arg Ile Lys Ser Gly Glu Ala Ile Ile Asn
235 240 245
tat gcc aac tac cat gat acc tca cca tac aga tgg gga gga aag act 1002
Tyr Ala Asn Tyr His Asp Thr Ser Pro Tyr Arg Trp Gly Gly Lys Thr
250 255 260
gat atc gac cta gca gtt gat gaa aat ggt tta tgg gtc att tac gcc 1050
Asp Ile Asp Leu Ala Val Asp Glu Asn Gly Leu Trp Val Ile Tyr Ala
265 270 275
act gaa cag aac aat gga atg ata gtt att agc cag ctg aat cca tac 1098
Thr Glu Gln Asn Asn Gly Met Ile Val Ile Ser Gln Leu Asn Pro Tyr
280 285 290
act ctt cga ttt gaa gca acg tgg gag act gta tac gac aaa cgt gcc 1146
Thr Leu Arg Phe Glu Ala Thr Trp Glu Thr Val Tyr Asp Lys Arg Ala
295 300 305 310
gca tca aat gct ttt atg ata tgc gga gtc ctc tat gtg gtt agg tca 1194
Ala Ser Asn Ala Phe Met Ile Cys Gly Val Leu Tyr Val Val Arg Ser
315 320 325
gtt tat caa gac aat gaa agt gaa aca ggc aag aac tca att gat tac 1242
Val Tyr Gln Asp Asn Glu Ser Glu Thr Gly Lys Asn Ser Ile Asp Tyr
330 335 340
att tat aat acc cga tta aac cga gga gaa tat gta gac gtt ccc ttc 1290
Ile Tyr Asn Thr Arg Leu Asn Arg Gly Glu Tyr Val Asp Val Pro Phe
345 350 355
ccc aac cag tat cag tat att gct gca gtg gat tac aat cca aga gat 1338
Pro Asn Gln Tyr Gln Tyr Ile Ala Ala Val Asp Tyr Asn Pro Arg Asp
360 365 370
aac caa ctt tac gtg tgg aac aat aac ttc att tta cga tat tct ctg 1386
Asn Gln Leu Tyr Val Trp Asn Asn Asn Phe Ile Leu Arg Tyr Ser Leu
375 380 385 390
gag ttt ggt cca cct gat cct gcc caa gtg cct acc aca gct gtg aca 1434
Glu Phe Gly Pro Pro Asp Pro Ala Gln Val Pro Thr Thr Ala Val Thr
395 400 405
ata act tct tca gct gag ctg ttc aaa acc ata ata tca acc aca agc 1482
Ile Thr Ser Ser Ala Glu Leu Phe Lys Thr Ile Ile Ser Thr Thr Ser
410 415 420
act act tca cag aaa ggc ccc atg agc aca act gta gct gga tca cag 1530
Thr Thr Ser Gln Lys Gly Pro Met Ser Thr Thr Val Ala Gly Ser Gln
425 430 435
gaa gga agc aaa ggg aca aaa cca cct cca gca gtt tct aca acc aaa 1578
Glu Gly Ser Lys Gly Thr Lys Pro Pro Pro Ala Val Ser Thr Thr Lys
440 445 450
att cca cct ata aca aat att ttt ccc ctg cca gag aga ttc tgt gaa 1626
Ile Pro Pro Ile Thr Asn Ile Phe Pro Leu Pro Glu Arg Phe Cys Glu
455 460 465 470
gca tta gac tcc aag ggg ata aag tgg cct cag aca caa agg gga atg 1674
Ala Leu Asp Ser Lys Gly Ile Lys Trp Pro Gln Thr Gln Arg Gly Met
475 480 485
atg gtt gaa cga cca tgc cct aag gga aca aga gga act gcc tca tat 1722
Met Val Glu Arg Pro Cys Pro Lys Gly Thr Arg Gly Thr Ala Ser Tyr
490 495 500
ctc tgc atg att tcc act gga aca tgg aac cct aag ggc ccc gat ctt 1770
Leu Cys Met Ile Ser Thr Gly Thr Trp Asn Pro Lys Gly Pro Asp Leu
505 510 515
agc aac tgt acc tca cac tgg gtg aat cag ctg gct cag aag atc aga 1818
Ser Asn Cys Thr Ser His Trp Val Asn Gln Leu Ala Gln Lys Ile Arg
520 525 530
agc gga gaa aat gct gct agt ctt gcc aat gaa ctg gct aaa cat acc 1866
Ser Gly Glu Asn Ala Ala Ser Leu Ala Asn Glu Leu Ala Lys His Thr
535 540 545 550
aaa ggg cca gtg ttt gct ggg gat gta agt tct tca gtg aga ttg atg 1914
Lys Gly Pro Val Phe Ala Gly Asp Val Ser Ser Ser Val Arg Leu Met
555 560 565
gag cag ttg gtg gac atc ctt gat gca cag ctg cag gaa ctg aaa cct 1962
Glu Gln Leu Val Asp Ile Leu Asp Ala Gln Leu Gln Glu Leu Lys Pro
570 575 580
agt gaa aaa gat tca gct gga cgg agt tat aac aag gca att gtt gac 2010
Ser Glu Lys Asp Ser Ala Gly Arg Ser Tyr Asn Lys Ala Ile Val Asp
585 590 595
aca gtg gac aac ctt ctg aga cct gaa gct ttg gaa tca tgg aaa cat 2058
Thr Val Asp Asn Leu Leu Arg Pro Glu Ala Leu Glu Ser Trp Lys His
600 605 610
atg aat tct tct gaa caa gca cat act gca aca atg tta ctc gat aca 2106
Met Asn Ser Ser Glu Gln Ala His Thr Ala Thr Met Leu Leu Asp Thr
615 620 625 630
ttg gaa gaa gga gct ttt gtc cta gct gac aat ctt tta gaa cca aca 2154
Leu Glu Glu Gly Ala Phe Val Leu Ala Asp Asn Leu Leu Glu Pro Thr
635 640 645
agg gtc tca atg ccc aca gaa aat att gtc ctg gaa gtt gcc gta ctc 2202
Arg Val Ser Met Pro Thr Glu Asn Ile Val Leu Glu Val Ala Val Leu
650 655 660
agt aca gaa gga cag atc caa gac ttt aaa ttt cct ctg ggc atc aaa 2250
Ser Thr Glu Gly Gln Ile Gln Asp Phe Lys Phe Pro Leu Gly Ile Lys
665 670 675
gga gca ggc agc tca atc caa ctg tcc gca aat acc gtc aaa cag aac 2298
Gly Ala Gly Ser Ser Ile Gln Leu Ser Ala Asn Thr Val Lys Gln Asn
680 685 690
agc agg aat ggg ctt gca aag ttg gtg ttc atc att tac cgg agc ctg 2346
Ser Arg Asn Gly Leu Ala Lys Leu Val Phe Ile Ile Tyr Arg Ser Leu
695 700 705 710
gga cag ttc ctt agt aca gaa aat gca acc att aaa ctg ggt gct gat 2394
Gly Gln Phe Leu Ser Thr Glu Asn Ala Thr Ile Lys Leu Gly Ala Asp
715 720 725
ttt att ggt cgt aat agc acc att gca gtg aac tct cac gtc att tca 2442
Phe Ile Gly Arg Asn Ser Thr Ile Ala Val Asn Ser His Val Ile Ser
730 735 740
gtt tca atc aat aaa gag tcc agc cga gta tac ctg act gat cct gtg 2490
Val Ser Ile Asn Lys Glu Ser Ser Arg Val Tyr Leu Thr Asp Pro Val
745 750 755
ctt ttt acc ctg cca cac att gat cct gac aat tat ttc aat gca aac 2538
Leu Phe Thr Leu Pro His Ile Asp Pro Asp Asn Tyr Phe Asn Ala Asn
760 765 770
tgc tcc ttc tgg aac tac tca gag aga act atg atg gga tat tgg tct 2586
Cys Ser Phe Trp Asn Tyr Ser Glu Arg Thr Met Met Gly Tyr Trp Ser
775 780 785 790
acc cag ggc tgc aag ctg gtt gac act aat aaa act cga aca acg tgt 2634
Thr Gln Gly Cys Lys Leu Val Asp Thr Asn Lys Thr Arg Thr Thr Cys
795 800 805
gca tgc agc cac cta acc aat ttt gca att ctc atg gcc cac agg gaa 2682
Ala Cys Ser His Leu Thr Asn Phe Ala Ile Leu Met Ala His Arg Glu
810 815 820
att gca tat aaa gat ggc gtt cat gaa tta ctt ctt aca gtc atc acc 2730
Ile Ala Tyr Lys Asp Gly Val His Glu Leu Leu Leu Thr Val Ile Thr
825 830 835
tgg gtg gga att gtc att tcc ctt gtt tgc ctg gct atc tgc atc ttc 2778
Trp Val Gly Ile Val Ile Ser Leu Val Cys Leu Ala Ile Cys Ile Phe
840 845 850
acc ttc tgc ttt ttc cgt ggc cta cag agt gac cga aat act att cac 2826
Thr Phe Cys Phe Phe Arg Gly Leu Gln Ser Asp Arg Asn Thr Ile His
855 860 865 870
aag aac ctt tgt atc aac ctt ttc att gct gaa ttt att ttc cta ata 2874
Lys Asn Leu Cys Ile Asn Leu Phe Ile Ala Glu Phe Ile Phe Leu Ile
875 880 885
ggc att gat aag aca aaa tat gcg att gca tgc cca ata ttt gca gga 2922
Gly Ile Asp Lys Thr Lys Tyr Ala Ile Ala Cys Pro Ile Phe Ala Gly
890 895 900
ctt cta cac ttt ttc ttt ttg gca gct ttt gct tgg atg tgc cta gaa 2970
Leu Leu His Phe Phe Phe Leu Ala Ala Phe Ala Trp Met Cys Leu Glu
905 910 915
ggt gtg cag ctc tac cta atg tta gtt gaa gtt ttt gaa agt gaa tat 3018
Gly Val Gln Leu Tyr Leu Met Leu Val Glu Val Phe Glu Ser Glu Tyr
920 925 930
tca agg aaa aaa tat tac tat gtt gct ggt tac ttg ttt cct gcc aca 3066
Ser Arg Lys Lys Tyr Tyr Tyr Val Ala Gly Tyr Leu Phe Pro Ala Thr
935 940 945 950
gtg gtt gga gtt tca gct gct att gac tat aag agc tat gga aca gaa 3114
Val Val Gly Val Ser Ala Ala Ile Asp Tyr Lys Ser Tyr Gly Thr Glu
955 960 965
aaa gct tgc tgg ctt cat gtt gat aac tac ttt ata tgg agc ttc att 3162
Lys Ala Cys Trp Leu His Val Asp Asn Tyr Phe Ile Trp Ser Phe Ile
970 975 980
gga cct gtt acc ttc att att ctg cta aat att atc ttc ttg gtg atc 3210
Gly Pro Val Thr Phe Ile Ile Leu Leu Asn Ile Ile Phe Leu Val Ile
985 990 995
aca ttg tgc aaa atg gtg aag cat tca aac act ttg aaa cca gat tct 3258
Thr Leu Cys Lys Met Val Lys His Ser Asn Thr Leu Lys Pro Asp Ser
1000 1005 1010
agc agg ttg gaa aac att aag tct tgg gtg ctt ggc gct ttc gct ctt 3306
Ser Arg Leu Glu Asn Ile Lys Ser Trp Val Leu Gly Ala Phe Ala Leu
1015 1020 1025 1030
ctg tgt ctt ctt ggc ctc acc tgg tcc ttt ggg ttg ctt ttt att aat 3354
Leu Cys Leu Leu Gly Leu Thr Trp Ser Phe Gly Leu Leu Phe Ile Asn
1035 1040 1045
gag gag act att gtg atg gca tat ctc ttc act ata ttt aat gct ttc 3402
Glu Glu Thr Ile Val Met Ala Tyr Leu Phe Thr Ile Phe Asn Ala Phe
1050 1055 1060
cag gga gtg ttc att ttc atc ttt cac tgt gct ctc caa aag aaa gta 3450
Gln Gly Val Phe Ile Phe Ile Phe His Cys Ala Leu Gln Lys Lys Val
1065 1070 1075
cga aaa gaa tat ggc aag tgc ttc aga cac tca tac tgc tgt gga ggc 3498
Arg Lys Glu Tyr Gly Lys Cys Phe Arg His Ser Tyr Cys Cys Gly Gly
1080 1085 1090
ctc cca act gag agt ccc cac agt tca gtg aag gca tca acc acc aga 3546
Leu Pro Thr Glu Ser Pro His Ser Ser Val Lys Ala Ser Thr Thr Arg
1095 1100 1105 1110
acc agt gct cgc tat tcc tct ggc aca cag agt cgt ata aga aga atg 3594
Thr Ser Ala Arg Tyr Ser Ser Gly Thr Gln Ser Arg Ile Arg Arg Met
1115 1120 1125
tgg aat gat act gtg aga aaa caa tca gaa tct tct ttt atc tca ggt 3642
Trp Asn Asp Thr Val Arg Lys Gln Ser Glu Ser Ser Phe Ile Ser Gly
1130 1135 1140
gac atc aat agc act tca aca ctt aat caa gga ctg aca tca cat ggt 3690
Asp Ile Asn Ser Thr Ser Thr Leu Asn Gln Gly Leu Thr Ser His Gly
1145 1150 1155
ctg aga gcc cat ctt caa gat tta tat cat tta gag cta ctc tta ggc 3738
Leu Arg Ala His Leu Gln Asp Leu Tyr His Leu Glu Leu Leu Leu Gly
1160 1165 1170
cag ata gcc tgagcagaca gacatgatgt gagttgtcca aagacattca 3787
Gln Ile Ala
1175
ctgaacaatg ccagggatac aagtgccatg gatactctac cgctaaatgg taattttaac 3847
aacagctact cgctgcacaa gggtgactat aatgacagcg tgcaagttgt ggactgtgga 3907
ctaagtctga atgatactgc ttttgagaaa atgatcattt cagaattagt gcacaacaac 3967
ttacggggca gcagcaagac tcacaacctc gagctcacgc taccagtcaa acctgtgatt 4027
ggaggtagca gcagtgaaga tgatgctatt gtggcagatg cttcatcttt aatgcacagc 4087
gacaacccag ggctggagct ccatcacaaa gaactcgagg caccacttat tcctcagcgg 4147
actcactccc ttctgtacca accccagaag aaagtgaagt ccgagggaac tgacagctat 4207
gtctcccaac tgacagcaga ggctgaagat cacctacagt cccccaacag agactctctt 4267
tatacaagca tgcccaatct tagagactct ccctatccgg agagcagccc tgacatggaa 4327
gaagacctct ctccctccag gaggagtgag aatgaggaca tttactataa aagcatgcca 4387
aatcttggag ctggccatca gcttcagatg tgctaccaga tcagcagggg caatagtgat 4447
ggttatataa tccccattaa caaagaaggg tgtattccag aaggagatgt tagagaagga 4507
caaatgcagc tggttacaag tctttaatca tacagctaag gaattccaag ggccacatgc 4567
gagtattaat aaataaagac accattggcc tgacgcagct ccctcaaact ctgcttgaag 4627
agatgactct tgacctgtgg ttctctggtg taaaaaagat gactgaacct tgcagttctg 4687
tgaattttta taaaacatac aaaaactttg tatatacaca gagtatacta aagtgaatta 4747
tttgttacaa agaaaagaga tgccagccag gtattttaag attctgctgc tgtttagaga 4807
aattgtgaaa caagcaaaac aaaactttcc agccatttta ctgcagcagt ctgtgaacta 4867
aatttgtaaa tatggctgca ccatttttgt aggcctgcat tgtattatat acaagacgta 4927
ggctttaaaa tcctgtggga caaatttact gtaccttact attcctgaca agacttggaa 4987
aagcaggaga gatattctgc atcagtttgc agttcactgc aaatctttta cattaaggca 5047
aagattgaaa acatgcttaa ccactagcaa tcaagccaca ggccttattt catatgtttc 5107
ctcaactgta caatgaacta ttctcatgaa aaatggctaa agaaattata ttttgttcta 5167
ttgctagggt aaaataaata catttgtgtc caactgaaat ataattgtca ttaaaataat 5227
tttaaagagt gaagaaaata ttgtgaaaag ctcttggttg cacatgttat gaaatgtttt 5287
ttcttacact ttgtcatggt aagttctact cattttcact tcttttccac tgtatacagt 5347
gttctgcttt gacaaagtta gtctttatta cttacattta aatttcttat tgccaaaaga 5407
acgtgtttta tggggagaaa caaactcttt gaagccagtt atgtcatgcc ttgcacaaaa 5467
gtgatgaaat ctagaaaaga ttgtgtgtca cccctgttta ttcttgaaca gagggcaaag 5527
agggcactgg gcacttctca caaactttct agtgaacaaa aggtgcctat tcttttttaa 5587
aaaaaaaaaa 5597




2


1177


PRT


Homo sapiens



2
Met Val Ser Ser Gly Cys Arg Met Arg Ser Leu Trp Phe Ile Ile Val
1 5 10 15
Ile Ser Phe Leu Pro Asn Thr Glu Gly Phe Ser Arg Ala Ala Leu Pro
20 25 30
Phe Gly Leu Val Arg Arg Glu Leu Ser Cys Glu Gly Tyr Ser Ile Asp
35 40 45
Leu Arg Cys Pro Gly Ser Asp Val Ile Met Ile Glu Ser Ala Asn Tyr
50 55 60
Gly Arg Thr Asp Asp Lys Ile Cys Asp Ala Asp Pro Phe Gln Met Glu
65 70 75 80
Asn Thr Asp Cys Tyr Leu Pro Asp Ala Phe Lys Ile Met Thr Gln Arg
85 90 95
Cys Asn Asn Arg Thr Gln Cys Ile Val Val Thr Gly Ser Asp Val Phe
100 105 110
Pro Asp Pro Cys Pro Gly Thr Tyr Lys Tyr Leu Glu Val Gln Tyr Glu
115 120 125
Cys Val Pro Tyr Ile Phe Val Cys Pro Gly Thr Leu Lys Ala Ile Val
130 135 140
Asp Ser Pro Cys Ile Tyr Glu Ala Glu Gln Lys Ala Gly Ala Trp Cys
145 150 155 160
Lys Asp Pro Leu Gln Ala Ala Asp Lys Ile Tyr Phe Met Pro Trp Thr
165 170 175
Pro Tyr Arg Thr Asp Thr Leu Ile Glu Tyr Ala Ser Leu Glu Asp Phe
180 185 190
Gln Asn Ser Arg Gln Thr Thr Thr Tyr Lys Leu Pro Asn Arg Val Asp
195 200 205
Gly Thr Gly Phe Val Val Tyr Asp Gly Ala Val Phe Phe Asn Lys Glu
210 215 220
Arg Thr Arg Asn Ile Val Lys Phe Asp Leu Arg Thr Arg Ile Lys Ser
225 230 235 240
Gly Glu Ala Ile Ile Asn Tyr Ala Asn Tyr His Asp Thr Ser Pro Tyr
245 250 255
Arg Trp Gly Gly Lys Thr Asp Ile Asp Leu Ala Val Asp Glu Asn Gly
260 265 270
Leu Trp Val Ile Tyr Ala Thr Glu Gln Asn Asn Gly Met Ile Val Ile
275 280 285
Ser Gln Leu Asn Pro Tyr Thr Leu Arg Phe Glu Ala Thr Trp Glu Thr
290 295 300
Val Tyr Asp Lys Arg Ala Ala Ser Asn Ala Phe Met Ile Cys Gly Val
305 310 315 320
Leu Tyr Val Val Arg Ser Val Tyr Gln Asp Asn Glu Ser Glu Thr Gly
325 330 335
Lys Asn Ser Ile Asp Tyr Ile Tyr Asn Thr Arg Leu Asn Arg Gly Glu
340 345 350
Tyr Val Asp Val Pro Phe Pro Asn Gln Tyr Gln Tyr Ile Ala Ala Val
355 360 365
Asp Tyr Asn Pro Arg Asp Asn Gln Leu Tyr Val Trp Asn Asn Asn Phe
370 375 380
Ile Leu Arg Tyr Ser Leu Glu Phe Gly Pro Pro Asp Pro Ala Gln Val
385 390 395 400
Pro Thr Thr Ala Val Thr Ile Thr Ser Ser Ala Glu Leu Phe Lys Thr
405 410 415
Ile Ile Ser Thr Thr Ser Thr Thr Ser Gln Lys Gly Pro Met Ser Thr
420 425 430
Thr Val Ala Gly Ser Gln Glu Gly Ser Lys Gly Thr Lys Pro Pro Pro
435 440 445
Ala Val Ser Thr Thr Lys Ile Pro Pro Ile Thr Asn Ile Phe Pro Leu
450 455 460
Pro Glu Arg Phe Cys Glu Ala Leu Asp Ser Lys Gly Ile Lys Trp Pro
465 470 475 480
Gln Thr Gln Arg Gly Met Met Val Glu Arg Pro Cys Pro Lys Gly Thr
485 490 495
Arg Gly Thr Ala Ser Tyr Leu Cys Met Ile Ser Thr Gly Thr Trp Asn
500 505 510
Pro Lys Gly Pro Asp Leu Ser Asn Cys Thr Ser His Trp Val Asn Gln
515 520 525
Leu Ala Gln Lys Ile Arg Ser Gly Glu Asn Ala Ala Ser Leu Ala Asn
530 535 540
Glu Leu Ala Lys His Thr Lys Gly Pro Val Phe Ala Gly Asp Val Ser
545 550 555 560
Ser Ser Val Arg Leu Met Glu Gln Leu Val Asp Ile Leu Asp Ala Gln
565 570 575
Leu Gln Glu Leu Lys Pro Ser Glu Lys Asp Ser Ala Gly Arg Ser Tyr
580 585 590
Asn Lys Ala Ile Val Asp Thr Val Asp Asn Leu Leu Arg Pro Glu Ala
595 600 605
Leu Glu Ser Trp Lys His Met Asn Ser Ser Glu Gln Ala His Thr Ala
610 615 620
Thr Met Leu Leu Asp Thr Leu Glu Glu Gly Ala Phe Val Leu Ala Asp
625 630 635 640
Asn Leu Leu Glu Pro Thr Arg Val Ser Met Pro Thr Glu Asn Ile Val
645 650 655
Leu Glu Val Ala Val Leu Ser Thr Glu Gly Gln Ile Gln Asp Phe Lys
660 665 670
Phe Pro Leu Gly Ile Lys Gly Ala Gly Ser Ser Ile Gln Leu Ser Ala
675 680 685
Asn Thr Val Lys Gln Asn Ser Arg Asn Gly Leu Ala Lys Leu Val Phe
690 695 700
Ile Ile Tyr Arg Ser Leu Gly Gln Phe Leu Ser Thr Glu Asn Ala Thr
705 710 715 720
Ile Lys Leu Gly Ala Asp Phe Ile Gly Arg Asn Ser Thr Ile Ala Val
725 730 735
Asn Ser His Val Ile Ser Val Ser Ile Asn Lys Glu Ser Ser Arg Val
740 745 750
Tyr Leu Thr Asp Pro Val Leu Phe Thr Leu Pro His Ile Asp Pro Asp
755 760 765
Asn Tyr Phe Asn Ala Asn Cys Ser Phe Trp Asn Tyr Ser Glu Arg Thr
770 775 780
Met Met Gly Tyr Trp Ser Thr Gln Gly Cys Lys Leu Val Asp Thr Asn
785 790 795 800
Lys Thr Arg Thr Thr Cys Ala Cys Ser His Leu Thr Asn Phe Ala Ile
805 810 815
Leu Met Ala His Arg Glu Ile Ala Tyr Lys Asp Gly Val His Glu Leu
820 825 830
Leu Leu Thr Val Ile Thr Trp Val Gly Ile Val Ile Ser Leu Val Cys
835 840 845
Leu Ala Ile Cys Ile Phe Thr Phe Cys Phe Phe Arg Gly Leu Gln Ser
850 855 860
Asp Arg Asn Thr Ile His Lys Asn Leu Cys Ile Asn Leu Phe Ile Ala
865 870 875 880
Glu Phe Ile Phe Leu Ile Gly Ile Asp Lys Thr Lys Tyr Ala Ile Ala
885 890 895
Cys Pro Ile Phe Ala Gly Leu Leu His Phe Phe Phe Leu Ala Ala Phe
900 905 910
Ala Trp Met Cys Leu Glu Gly Val Gln Leu Tyr Leu Met Leu Val Glu
915 920 925
Val Phe Glu Ser Glu Tyr Ser Arg Lys Lys Tyr Tyr Tyr Val Ala Gly
930 935 940
Tyr Leu Phe Pro Ala Thr Val Val Gly Val Ser Ala Ala Ile Asp Tyr
945 950 955 960
Lys Ser Tyr Gly Thr Glu Lys Ala Cys Trp Leu His Val Asp Asn Tyr
965 970 975
Phe Ile Trp Ser Phe Ile Gly Pro Val Thr Phe Ile Ile Leu Leu Asn
980 985 990
Ile Ile Phe Leu Val Ile Thr Leu Cys Lys Met Val Lys His Ser Asn
995 1000 1005
Thr Leu Lys Pro Asp Ser Ser Arg Leu Glu Asn Ile Lys Ser Trp Val
1010 1015 1020
Leu Gly Ala Phe Ala Leu Leu Cys Leu Leu Gly Leu Thr Trp Ser Phe
1025 1030 1035 1040
Gly Leu Leu Phe Ile Asn Glu Glu Thr Ile Val Met Ala Tyr Leu Phe
1045 1050 1055
Thr Ile Phe Asn Ala Phe Gln Gly Val Phe Ile Phe Ile Phe His Cys
1060 1065 1070
Ala Leu Gln Lys Lys Val Arg Lys Glu Tyr Gly Lys Cys Phe Arg His
1075 1080 1085
Ser Tyr Cys Cys Gly Gly Leu Pro Thr Glu Ser Pro His Ser Ser Val
1090 1095 1100
Lys Ala Ser Thr Thr Arg Thr Ser Ala Arg Tyr Ser Ser Gly Thr Gln
1105 1110 1115 1120
Ser Arg Ile Arg Arg Met Trp Asn Asp Thr Val Arg Lys Gln Ser Glu
1125 1130 1135
Ser Ser Phe Ile Ser Gly Asp Ile Asn Ser Thr Ser Thr Leu Asn Gln
1140 1145 1150
Gly Leu Thr Ser His Gly Leu Arg Ala His Leu Gln Asp Leu Tyr His
1155 1160 1165
Leu Glu Leu Leu Leu Gly Gln Ile Ala
1170 1175




3


5617


DNA


Homo sapiens




CDS




(217)..(3585)





3
cggcgaacag acgttctttc tcctccatgc agttacacaa aaggagggct acggaaacta 60
aaagtttcgg ggcctctggc tcggtgtgtg gagaaaagag aaaacctgga gacgggatat 120
gaagatcaat gatgcagact gatggtcttg atgaagctgg gcatttataa ctagattcat 180
taaggaatac aaagaaaata cttaaaggga tcaata atg gtg tct tct ggt tgc 234
Met Val Ser Ser Gly Cys
1 5
aga atg cga agt ctg tgg ttt atc att gta atc agc ttc tta cca aat 282
Arg Met Arg Ser Leu Trp Phe Ile Ile Val Ile Ser Phe Leu Pro Asn
10 15 20
aca gaa ggt ttc agc aga gca gct tta cca ttt ggg ctg gtg agg cga 330
Thr Glu Gly Phe Ser Arg Ala Ala Leu Pro Phe Gly Leu Val Arg Arg
25 30 35
gaa tta tcc tgt gaa ggt tat tct ata gat ctg cga tgc ccg ggc agt 378
Glu Leu Ser Cys Glu Gly Tyr Ser Ile Asp Leu Arg Cys Pro Gly Ser
40 45 50
gat gtc atc atg att gag agc gct aac tat ggt cgg acg gat gac aag 426
Asp Val Ile Met Ile Glu Ser Ala Asn Tyr Gly Arg Thr Asp Asp Lys
55 60 65 70
att tgt gat gct gac cca ttt cag atg gag aat aca gac tgc tac ctc 474
Ile Cys Asp Ala Asp Pro Phe Gln Met Glu Asn Thr Asp Cys Tyr Leu
75 80 85
ccc gat gcc ttc aaa att atg act caa agg tgc aac aat cga aca cag 522
Pro Asp Ala Phe Lys Ile Met Thr Gln Arg Cys Asn Asn Arg Thr Gln
90 95 100
tgt ata gta gtt act ggg tca gat gtg ttt cct gat cca tgt cct gga 570
Cys Ile Val Val Thr Gly Ser Asp Val Phe Pro Asp Pro Cys Pro Gly
105 110 115
aca tac aaa tac ctt gaa gtc caa tat gaa tgt gtc cct tac att ttt 618
Thr Tyr Lys Tyr Leu Glu Val Gln Tyr Glu Cys Val Pro Tyr Ile Phe
120 125 130
gtg tgt cct ggg acc ttg aaa gca att gtg gac tca cca tgt ata tat 666
Val Cys Pro Gly Thr Leu Lys Ala Ile Val Asp Ser Pro Cys Ile Tyr
135 140 145 150
gaa gct gaa caa aag gcg ggt gct tgg tgc aag gac cct ctt cag gct 714
Glu Ala Glu Gln Lys Ala Gly Ala Trp Cys Lys Asp Pro Leu Gln Ala
155 160 165
gca gat aaa att tat ttc atg ccc tgg act ccc tat cgt acc gat act 762
Ala Asp Lys Ile Tyr Phe Met Pro Trp Thr Pro Tyr Arg Thr Asp Thr
170 175 180
tta ata gaa tat gct tct tta gaa gat ttc caa aat agt cgc caa aca 810
Leu Ile Glu Tyr Ala Ser Leu Glu Asp Phe Gln Asn Ser Arg Gln Thr
185 190 195
aca aca tat aaa ctt cca aat cga gta gat ggt act gga ttt gtg gtg 858
Thr Thr Tyr Lys Leu Pro Asn Arg Val Asp Gly Thr Gly Phe Val Val
200 205 210
tat gat ggt gct gtc ttc ttt aac aaa gaa aga acg agg aat att gtg 906
Tyr Asp Gly Ala Val Phe Phe Asn Lys Glu Arg Thr Arg Asn Ile Val
215 220 225 230
aaa ttt gac ttg agg act aga att aag agt ggc gag gcc ata att aac 954
Lys Phe Asp Leu Arg Thr Arg Ile Lys Ser Gly Glu Ala Ile Ile Asn
235 240 245
tat gcc aac tac cat gat acc tca cca tac aga tgg gga gga aag act 1002
Tyr Ala Asn Tyr His Asp Thr Ser Pro Tyr Arg Trp Gly Gly Lys Thr
250 255 260
gat atc gac cta gca gtt gat gaa aat ggt tta tgg gtc att tac gcc 1050
Asp Ile Asp Leu Ala Val Asp Glu Asn Gly Leu Trp Val Ile Tyr Ala
265 270 275
act gaa cag aac aat gga atg ata gtt att agc cag ctg aat cca tac 1098
Thr Glu Gln Asn Asn Gly Met Ile Val Ile Ser Gln Leu Asn Pro Tyr
280 285 290
act ctt cga ttt gaa gca acg tgg gag act gta tac gac aaa cgt gcc 1146
Thr Leu Arg Phe Glu Ala Thr Trp Glu Thr Val Tyr Asp Lys Arg Ala
295 300 305 310
gca tca aat gct ttt atg ata tgc gga gtc ctc tat gtg gtt agg tca 1194
Ala Ser Asn Ala Phe Met Ile Cys Gly Val Leu Tyr Val Val Arg Ser
315 320 325
gtt tat caa gac aat gaa agt gaa aca ggc aag aac tca att gat tac 1242
Val Tyr Gln Asp Asn Glu Ser Glu Thr Gly Lys Asn Ser Ile Asp Tyr
330 335 340
att tat aat acc cga tta aac cga gga gaa tat gta gac gtt ccc ttc 1290
Ile Tyr Asn Thr Arg Leu Asn Arg Gly Glu Tyr Val Asp Val Pro Phe
345 350 355
ccc aac cag tat cag tat att gct gca gtg gat tac aat cca aga gat 1338
Pro Asn Gln Tyr Gln Tyr Ile Ala Ala Val Asp Tyr Asn Pro Arg Asp
360 365 370
aac caa ctt tac gtg tgg aac aat aac ttc att tta cga tat tct ctg 1386
Asn Gln Leu Tyr Val Trp Asn Asn Asn Phe Ile Leu Arg Tyr Ser Leu
375 380 385 390
gag ttt ggt cca cct gat cct gcc caa gtg cct acc aca gct gtg aca 1434
Glu Phe Gly Pro Pro Asp Pro Ala Gln Val Pro Thr Thr Ala Val Thr
395 400 405
ata act tct tca gct gag ctg ttc aaa acc ata ata tca acc aca agc 1482
Ile Thr Ser Ser Ala Glu Leu Phe Lys Thr Ile Ile Ser Thr Thr Ser
410 415 420
act act tca cag aaa ggc ccc atg agc aca act gta gct gga tca cag 1530
Thr Thr Ser Gln Lys Gly Pro Met Ser Thr Thr Val Ala Gly Ser Gln
425 430 435
gaa gga agc aaa ggg aca aaa cca cct cca gca gtt tct aca acc aaa 1578
Glu Gly Ser Lys Gly Thr Lys Pro Pro Pro Ala Val Ser Thr Thr Lys
440 445 450
att cca cct ata aca aat att ttt ccc ctg cca gag aga ttc tgt gaa 1626
Ile Pro Pro Ile Thr Asn Ile Phe Pro Leu Pro Glu Arg Phe Cys Glu
455 460 465 470
gca tta gac tcc aag ggg ata aag tgg cct cag aca caa agg gga atg 1674
Ala Leu Asp Ser Lys Gly Ile Lys Trp Pro Gln Thr Gln Arg Gly Met
475 480 485
atg gtt gaa cga cca tgc cct aag gga aca aga gga act gcc tca tat 1722
Met Val Glu Arg Pro Cys Pro Lys Gly Thr Arg Gly Thr Ala Ser Tyr
490 495 500
ctc tgc atg att tcc act gga aca tgg aac cct aag ggc ccc gat ctt 1770
Leu Cys Met Ile Ser Thr Gly Thr Trp Asn Pro Lys Gly Pro Asp Leu
505 510 515
agc aac tgt acc tca cac tgg gtg aat cag ctg gct cag aag atc aga 1818
Ser Asn Cys Thr Ser His Trp Val Asn Gln Leu Ala Gln Lys Ile Arg
520 525 530
agc gga gaa aat gct gct agt ctt gcc aat gaa ctg gct aaa cat acc 1866
Ser Gly Glu Asn Ala Ala Ser Leu Ala Asn Glu Leu Ala Lys His Thr
535 540 545 550
aaa ggg cca gtg ttt gct ggg gat gta agt tct tca gtg aga ttg atg 1914
Lys Gly Pro Val Phe Ala Gly Asp Val Ser Ser Ser Val Arg Leu Met
555 560 565
gag cag ttg gtg gac atc ctt gat gca cag ctg cag gaa ctg aaa cct 1962
Glu Gln Leu Val Asp Ile Leu Asp Ala Gln Leu Gln Glu Leu Lys Pro
570 575 580
agt gaa aaa gat tca gct gga cgg agt tat aac aag gca att gtt gac 2010
Ser Glu Lys Asp Ser Ala Gly Arg Ser Tyr Asn Lys Ala Ile Val Asp
585 590 595
aca gtg gac aac ctt ctg aga cct gaa gct ttg gaa tca tgg aaa cat 2058
Thr Val Asp Asn Leu Leu Arg Pro Glu Ala Leu Glu Ser Trp Lys His
600 605 610
atg aat tct tct gaa caa gca cat act gca aca atg tta ctc gat aca 2106
Met Asn Ser Ser Glu Gln Ala His Thr Ala Thr Met Leu Leu Asp Thr
615 620 625 630
ttg gaa gaa gga gct ttt gtc cta gct gac aat ctt tta gaa cca aca 2154
Leu Glu Glu Gly Ala Phe Val Leu Ala Asp Asn Leu Leu Glu Pro Thr
635 640 645
agg gtc tca atg ccc aca gaa aat att gtc ctg gaa gtt gcc gta ctc 2202
Arg Val Ser Met Pro Thr Glu Asn Ile Val Leu Glu Val Ala Val Leu
650 655 660
agt aca gaa gga cag atc caa gac ttt aaa ttt cct ctg ggc atc aaa 2250
Ser Thr Glu Gly Gln Ile Gln Asp Phe Lys Phe Pro Leu Gly Ile Lys
665 670 675
gga gca ggc agc tca atc caa ctg tcc gca aat acc gtc aaa cag aac 2298
Gly Ala Gly Ser Ser Ile Gln Leu Ser Ala Asn Thr Val Lys Gln Asn
680 685 690
agc agg aat ggg ctt gca aag ttg gtg ttc atc att tac cgg agc ctg 2346
Ser Arg Asn Gly Leu Ala Lys Leu Val Phe Ile Ile Tyr Arg Ser Leu
695 700 705 710
gga cag ttc ctt agt aca gaa aat gca acc att aaa ctg ggt gct gat 2394
Gly Gln Phe Leu Ser Thr Glu Asn Ala Thr Ile Lys Leu Gly Ala Asp
715 720 725
ttt att ggt cgt aat agc acc att gca gtg aac tct cac gtc att tca 2442
Phe Ile Gly Arg Asn Ser Thr Ile Ala Val Asn Ser His Val Ile Ser
730 735 740
gtt tca atc aag aaa gag tcc agc cga gta tac ctg act gat cct gtg 2490
Val Ser Ile Lys Lys Glu Ser Ser Arg Val Tyr Leu Thr Asp Pro Val
745 750 755
ctt ttt acc ctg cca cac att gat cct gac aat tat ttc aat gca aac 2538
Leu Phe Thr Leu Pro His Ile Asp Pro Asp Asn Tyr Phe Asn Ala Asn
760 765 770
tgc tcc ttc tgg aac tac tca gag aga act atg atg gga tat tgg tct 2586
Cys Ser Phe Trp Asn Tyr Ser Glu Arg Thr Met Met Gly Tyr Trp Ser
775 780 785 790
acc cag ggc tgc aag ctg gtt gac act aat aaa act cga aca acg tgt 2634
Thr Gln Gly Cys Lys Leu Val Asp Thr Asn Lys Thr Arg Thr Thr Cys
795 800 805
gca tgc agc cac cta acc aat ttt gca att ctc atg gcc cac agg gaa 2682
Ala Cys Ser His Leu Thr Asn Phe Ala Ile Leu Met Ala His Arg Glu
810 815 820
att gca tat aaa gat ggc gtt cat gaa tta ctt ctt aca gtc atc acc 2730
Ile Ala Tyr Lys Asp Gly Val His Glu Leu Leu Leu Thr Val Ile Thr
825 830 835
tgg gtg gga att gtc att tcc ctt gtt tgc ctg gct atc tgc atc ttc 2778
Trp Val Gly Ile Val Ile Ser Leu Val Cys Leu Ala Ile Cys Ile Phe
840 845 850
acc ttc tgc ttt ttc cgt ggc cta cag agt gac cga aat act att cac 2826
Thr Phe Cys Phe Phe Arg Gly Leu Gln Ser Asp Arg Asn Thr Ile His
855 860 865 870
aag aac ctt tgt atc aac ctt ttc att gct gaa ttt att ttc cta ata 2874
Lys Asn Leu Cys Ile Asn Leu Phe Ile Ala Glu Phe Ile Phe Leu Ile
875 880 885
ggc att gat aag aca aaa tat gcg att gca tgc cca ata ttt gca gga 2922
Gly Ile Asp Lys Thr Lys Tyr Ala Ile Ala Cys Pro Ile Phe Ala Gly
890 895 900
ctt cta cac ttt ttc ttt ttg gca gct ttt gct tgg atg tgc cta gaa 2970
Leu Leu His Phe Phe Phe Leu Ala Ala Phe Ala Trp Met Cys Leu Glu
905 910 915
ggt gtg cag ctc tac cta atg tta gtt gaa gtt ttt gaa agt gaa tat 3018
Gly Val Gln Leu Tyr Leu Met Leu Val Glu Val Phe Glu Ser Glu Tyr
920 925 930
tca agg aaa aaa tat tac tat gtt gct ggt tac ttg ttt cct gcc aca 3066
Ser Arg Lys Lys Tyr Tyr Tyr Val Ala Gly Tyr Leu Phe Pro Ala Thr
935 940 945 950
gtg gtt gga gtt tca gct gct att gac tat aag agc tat gga aca gaa 3114
Val Val Gly Val Ser Ala Ala Ile Asp Tyr Lys Ser Tyr Gly Thr Glu
955 960 965
aaa gct tgc tgg ctt cat gtt gat aac tac ttt ata tgg agc ttc att 3162
Lys Ala Cys Trp Leu His Val Asp Asn Tyr Phe Ile Trp Ser Phe Ile
970 975 980
gga cct gtt acc ttc att att ctg cta aat att atc ttc ttg gtg atc 3210
Gly Pro Val Thr Phe Ile Ile Leu Leu Asn Ile Ile Phe Leu Val Ile
985 990 995
aca ttg tgc aaa atg gtg aag cat tca aac act ttg aaa cca gat tct 3258
Thr Leu Cys Lys Met Val Lys His Ser Asn Thr Leu Lys Pro Asp Ser
1000 1005 1010
agc agg ttg gaa aac att aag tct tgg gtg ctt ggc gct ttc gct ctt 3306
Ser Arg Leu Glu Asn Ile Lys Ser Trp Val Leu Gly Ala Phe Ala Leu
1015 1020 1025 1030
ctg tgt ctt ctt ggc ctc acc tgg tcc ttt ggg ttg ctt ttt att aat 3354
Leu Cys Leu Leu Gly Leu Thr Trp Ser Phe Gly Leu Leu Phe Ile Asn
1035 1040 1045
gag gag act att gtg atg gca tat ctc ttc act ata ttt aat gct ttc 3402
Glu Glu Thr Ile Val Met Ala Tyr Leu Phe Thr Ile Phe Asn Ala Phe
1050 1055 1060
cag gga gtg ttc att ttc atc ttt cac tgt gct ctc caa aag aaa gta 3450
Gln Gly Val Phe Ile Phe Ile Phe His Cys Ala Leu Gln Lys Lys Val
1065 1070 1075
cga aaa gaa tat ggc aag tgc ttc aga cac tca tac tgc tgt gga ggc 3498
Arg Lys Glu Tyr Gly Lys Cys Phe Arg His Ser Tyr Cys Cys Gly Gly
1080 1085 1090
ctc cca act gag agt ccc cac agt tca gtg aag gca tca acc acc aga 3546
Leu Pro Thr Glu Ser Pro His Ser Ser Val Lys Ala Ser Thr Thr Arg
1095 1100 1105 1110
acc agt gct cgc tat tcc tct ggc aca cag gac att cac tgaacaatgc 3595
Thr Ser Ala Arg Tyr Ser Ser Gly Thr Gln Asp Ile His
1115 1120
cagggataca agtgccatgg atactctacc gctaaatggt aattttaaca acagctactc 3655
gctgcacaag ggtgactata atgacagcgt gcaagttgtg gactgtggac taagtctgaa 3715
tgatactgct tttgagaaaa tgatcatttc agaattagtg cacaacaact tacggggcag 3775
cagcaagact cacaacctcg agctcacgct accagtcaaa cctgtgattg gaggtagcag 3835
cagtgaagat gatgctattg tggcagatgc ttcatcttta atgcacagcg acaacccagg 3895
gctggagctc catcacaaag aactcgaggc accacttatt cctcagcgga ctcactccct 3955
tctgtaccaa ccccagaaga aagtgaagtc cgagggaact gacagctatg tctcccaact 4015
gacagcagag gctgaagatc acctacagtc ccccaacaga gactctcttt atacaagcat 4075
gcccaatctt agagactctc cctatccgga gagcagccct gacatggaag aagacctctc 4135
tccctccagg aggagtgaga atgaggacat ttactataaa agcatgccaa atcttggagc 4195
tggccatcag cttcagatgt gctaccagat cagcaggggc aatagtgatg gttatataat 4255
ccccattaac aaagaagggt gtattccaga aggagatgtt agagaaggac aaatgcagct 4315
ggttacaagt ctttaatcat acagctaagg aattccaagg gccacatgcg agtattaata 4375
aataaagaca ccattggcct gacgcagctc cctcaaactc tgcttgaaga gatgactctt 4435
gacctgtggt tctctggtgt aaaaaagatg actgaacctt gcagttctgt gaatttttat 4495
aaaacataca aaaactttgt atatacacag agtatactaa agtgaattat ttgttacaaa 4555
gaaaagagat gccagccagg tattttaaga ttctgctgct gtttagagaa attgtgaaac 4615
aagcaaaaca aaactttcca gccattttac tgcagcagtc tgtgaactaa atttgtaaat 4675
atggctgcac catttttgta ggcctgcatt gtattatata caagacgtag gctttaaaat 4735
cctgtgggac aaatttactg taccttacta ttcctgacaa gacttggaaa agcaggagag 4795
atattctgca tcagtttgca gttcactgca aatcttttac attaaggcaa agattgaaaa 4855
catgcttaac cactagcaat caagccacag gccttatttc atatgtttcc tcaactgtac 4915
aatgaactat tctcatgaaa aatggctaaa gaaattatat tttgttctat tgctagggta 4975
aaataaatac atttgtgtcc aactgaaata taattgtcat taaaataatt ttaaagagtg 5035
aagaaaatat tgtgaaaagc tcttggttgc acatgttatg aaatgttttt tcttacactt 5095
tgtcatggta agttctactc attttcactt cttttccact gtatacagtg ttctgctttg 5155
acaaagttag tctttattac ttacatttaa atttcttatt gccaaaagaa cgtgttttat 5215
ggggagaaac aaactctttg aagccagtta tgtcatgcct tgcacaaaag tgatgaaatc 5275
tagaaaagat tgtgtgtcac ccctgtttat tcttgaacag agggcaaaga gggcactggg 5335
cacttctcac aaactttcta gtgaacaaaa ggtgcctatt cttttttaaa aaaataaaat 5395
aaaacataaa tattactctt ccatattcct tctgcctata tttagtaatt aatttatttt 5455
atgataaagt tctaatgaaa tgtaaattgt ttcagcaaaa ttctgctttt ttttcatccc 5515
tttgtgtaaa cctgttaata atgagcccat cactaatatc cagtgtaaag tttaacacgg 5575
tttgacagta aataaatgtg aattttttca aaaaaaaaaa aa 5617




4


1123


PRT


Homo sapiens



4
Met Val Ser Ser Gly Cys Arg Met Arg Ser Leu Trp Phe Ile Ile Val
1 5 10 15
Ile Ser Phe Leu Pro Asn Thr Glu Gly Phe Ser Arg Ala Ala Leu Pro
20 25 30
Phe Gly Leu Val Arg Arg Glu Leu Ser Cys Glu Gly Tyr Ser Ile Asp
35 40 45
Leu Arg Cys Pro Gly Ser Asp Val Ile Met Ile Glu Ser Ala Asn Tyr
50 55 60
Gly Arg Thr Asp Asp Lys Ile Cys Asp Ala Asp Pro Phe Gln Met Glu
65 70 75 80
Asn Thr Asp Cys Tyr Leu Pro Asp Ala Phe Lys Ile Met Thr Gln Arg
85 90 95
Cys Asn Asn Arg Thr Gln Cys Ile Val Val Thr Gly Ser Asp Val Phe
100 105 110
Pro Asp Pro Cys Pro Gly Thr Tyr Lys Tyr Leu Glu Val Gln Tyr Glu
115 120 125
Cys Val Pro Tyr Ile Phe Val Cys Pro Gly Thr Leu Lys Ala Ile Val
130 135 140
Asp Ser Pro Cys Ile Tyr Glu Ala Glu Gln Lys Ala Gly Ala Trp Cys
145 150 155 160
Lys Asp Pro Leu Gln Ala Ala Asp Lys Ile Tyr Phe Met Pro Trp Thr
165 170 175
Pro Tyr Arg Thr Asp Thr Leu Ile Glu Tyr Ala Ser Leu Glu Asp Phe
180 185 190
Gln Asn Ser Arg Gln Thr Thr Thr Tyr Lys Leu Pro Asn Arg Val Asp
195 200 205
Gly Thr Gly Phe Val Val Tyr Asp Gly Ala Val Phe Phe Asn Lys Glu
210 215 220
Arg Thr Arg Asn Ile Val Lys Phe Asp Leu Arg Thr Arg Ile Lys Ser
225 230 235 240
Gly Glu Ala Ile Ile Asn Tyr Ala Asn Tyr His Asp Thr Ser Pro Tyr
245 250 255
Arg Trp Gly Gly Lys Thr Asp Ile Asp Leu Ala Val Asp Glu Asn Gly
260 265 270
Leu Trp Val Ile Tyr Ala Thr Glu Gln Asn Asn Gly Met Ile Val Ile
275 280 285
Ser Gln Leu Asn Pro Tyr Thr Leu Arg Phe Glu Ala Thr Trp Glu Thr
290 295 300
Val Tyr Asp Lys Arg Ala Ala Ser Asn Ala Phe Met Ile Cys Gly Val
305 310 315 320
Leu Tyr Val Val Arg Ser Val Tyr Gln Asp Asn Glu Ser Glu Thr Gly
325 330 335
Lys Asn Ser Ile Asp Tyr Ile Tyr Asn Thr Arg Leu Asn Arg Gly Glu
340 345 350
Tyr Val Asp Val Pro Phe Pro Asn Gln Tyr Gln Tyr Ile Ala Ala Val
355 360 365
Asp Tyr Asn Pro Arg Asp Asn Gln Leu Tyr Val Trp Asn Asn Asn Phe
370 375 380
Ile Leu Arg Tyr Ser Leu Glu Phe Gly Pro Pro Asp Pro Ala Gln Val
385 390 395 400
Pro Thr Thr Ala Val Thr Ile Thr Ser Ser Ala Glu Leu Phe Lys Thr
405 410 415
Ile Ile Ser Thr Thr Ser Thr Thr Ser Gln Lys Gly Pro Met Ser Thr
420 425 430
Thr Val Ala Gly Ser Gln Glu Gly Ser Lys Gly Thr Lys Pro Pro Pro
435 440 445
Ala Val Ser Thr Thr Lys Ile Pro Pro Ile Thr Asn Ile Phe Pro Leu
450 455 460
Pro Glu Arg Phe Cys Glu Ala Leu Asp Ser Lys Gly Ile Lys Trp Pro
465 470 475 480
Gln Thr Gln Arg Gly Met Met Val Glu Arg Pro Cys Pro Lys Gly Thr
485 490 495
Arg Gly Thr Ala Ser Tyr Leu Cys Met Ile Ser Thr Gly Thr Trp Asn
500 505 510
Pro Lys Gly Pro Asp Leu Ser Asn Cys Thr Ser His Trp Val Asn Gln
515 520 525
Leu Ala Gln Lys Ile Arg Ser Gly Glu Asn Ala Ala Ser Leu Ala Asn
530 535 540
Glu Leu Ala Lys His Thr Lys Gly Pro Val Phe Ala Gly Asp Val Ser
545 550 555 560
Ser Ser Val Arg Leu Met Glu Gln Leu Val Asp Ile Leu Asp Ala Gln
565 570 575
Leu Gln Glu Leu Lys Pro Ser Glu Lys Asp Ser Ala Gly Arg Ser Tyr
580 585 590
Asn Lys Ala Ile Val Asp Thr Val Asp Asn Leu Leu Arg Pro Glu Ala
595 600 605
Leu Glu Ser Trp Lys His Met Asn Ser Ser Glu Gln Ala His Thr Ala
610 615 620
Thr Met Leu Leu Asp Thr Leu Glu Glu Gly Ala Phe Val Leu Ala Asp
625 630 635 640
Asn Leu Leu Glu Pro Thr Arg Val Ser Met Pro Thr Glu Asn Ile Val
645 650 655
Leu Glu Val Ala Val Leu Ser Thr Glu Gly Gln Ile Gln Asp Phe Lys
660 665 670
Phe Pro Leu Gly Ile Lys Gly Ala Gly Ser Ser Ile Gln Leu Ser Ala
675 680 685
Asn Thr Val Lys Gln Asn Ser Arg Asn Gly Leu Ala Lys Leu Val Phe
690 695 700
Ile Ile Tyr Arg Ser Leu Gly Gln Phe Leu Ser Thr Glu Asn Ala Thr
705 710 715 720
Ile Lys Leu Gly Ala Asp Phe Ile Gly Arg Asn Ser Thr Ile Ala Val
725 730 735
Asn Ser His Val Ile Ser Val Ser Ile Lys Lys Glu Ser Ser Arg Val
740 745 750
Tyr Leu Thr Asp Pro Val Leu Phe Thr Leu Pro His Ile Asp Pro Asp
755 760 765
Asn Tyr Phe Asn Ala Asn Cys Ser Phe Trp Asn Tyr Ser Glu Arg Thr
770 775 780
Met Met Gly Tyr Trp Ser Thr Gln Gly Cys Lys Leu Val Asp Thr Asn
785 790 795 800
Lys Thr Arg Thr Thr Cys Ala Cys Ser His Leu Thr Asn Phe Ala Ile
805 810 815
Leu Met Ala His Arg Glu Ile Ala Tyr Lys Asp Gly Val His Glu Leu
820 825 830
Leu Leu Thr Val Ile Thr Trp Val Gly Ile Val Ile Ser Leu Val Cys
835 840 845
Leu Ala Ile Cys Ile Phe Thr Phe Cys Phe Phe Arg Gly Leu Gln Ser
850 855 860
Asp Arg Asn Thr Ile His Lys Asn Leu Cys Ile Asn Leu Phe Ile Ala
865 870 875 880
Glu Phe Ile Phe Leu Ile Gly Ile Asp Lys Thr Lys Tyr Ala Ile Ala
885 890 895
Cys Pro Ile Phe Ala Gly Leu Leu His Phe Phe Phe Leu Ala Ala Phe
900 905 910
Ala Trp Met Cys Leu Glu Gly Val Gln Leu Tyr Leu Met Leu Val Glu
915 920 925
Val Phe Glu Ser Glu Tyr Ser Arg Lys Lys Tyr Tyr Tyr Val Ala Gly
930 935 940
Tyr Leu Phe Pro Ala Thr Val Val Gly Val Ser Ala Ala Ile Asp Tyr
945 950 955 960
Lys Ser Tyr Gly Thr Glu Lys Ala Cys Trp Leu His Val Asp Asn Tyr
965 970 975
Phe Ile Trp Ser Phe Ile Gly Pro Val Thr Phe Ile Ile Leu Leu Asn
980 985 990
Ile Ile Phe Leu Val Ile Thr Leu Cys Lys Met Val Lys His Ser Asn
995 1000 1005
Thr Leu Lys Pro Asp Ser Ser Arg Leu Glu Asn Ile Lys Ser Trp Val
1010 1015 1020
Leu Gly Ala Phe Ala Leu Leu Cys Leu Leu Gly Leu Thr Trp Ser Phe
025 1030 1035 1040
Gly Leu Leu Phe Ile Asn Glu Glu Thr Ile Val Met Ala Tyr Leu Phe
1045 1050 1055
Thr Ile Phe Asn Ala Phe Gln Gly Val Phe Ile Phe Ile Phe His Cys
1060 1065 1070
Ala Leu Gln Lys Lys Val Arg Lys Glu Tyr Gly Lys Cys Phe Arg His
1075 1080 1085
Ser Tyr Cys Cys Gly Gly Leu Pro Thr Glu Ser Pro His Ser Ser Val
1090 1095 1100
Lys Ala Ser Thr Thr Arg Thr Ser Ala Arg Tyr Ser Ser Gly Thr Gln
105 1110 1115 1120
Asp Ile His




5


5491


DNA


Homo sapiens




CDS




(217)..(4425)





5
cggcgaacag acgttctttc tcctccatgc agttacacaa aaggagggct acggaaacta 60
aaagtttcgg ggcctctggc tcggtgtgtg gagaaaagag aaaacctgga gacgggatat 120
gaagatcaat gatgcagact gatggtcttg atgaagctgg gcatttataa ctagattcat 180
taaggaatac aaagaaaata cttaaaggga tcaata atg gtg tct tct ggt tgc 234
Met Val Ser Ser Gly Cys
1 5
aga atg cga agt ctg tgg ttt atc att gta atc agc ttc tta cca aat 282
Arg Met Arg Ser Leu Trp Phe Ile Ile Val Ile Ser Phe Leu Pro Asn
10 15 20
aca gaa ggt ttc agc aga gca gct tta cca ttt ggg ctg gtg agg cga 330
Thr Glu Gly Phe Ser Arg Ala Ala Leu Pro Phe Gly Leu Val Arg Arg
25 30 35
gaa tta tcc tgt gaa ggt tat tct ata gat ctg cga tgc ccg ggc agt 378
Glu Leu Ser Cys Glu Gly Tyr Ser Ile Asp Leu Arg Cys Pro Gly Ser
40 45 50
gat gtc atc atg att gag agc gct aac tat ggt cgg acg gat gac aag 426
Asp Val Ile Met Ile Glu Ser Ala Asn Tyr Gly Arg Thr Asp Asp Lys
55 60 65 70
att tgt gat gct gac cca ttt cag atg gag aat aca gac tgc tac ctc 474
Ile Cys Asp Ala Asp Pro Phe Gln Met Glu Asn Thr Asp Cys Tyr Leu
75 80 85
ccc gat gcc ttc aaa att atg act caa agg tgc aac aat cga aca cag 522
Pro Asp Ala Phe Lys Ile Met Thr Gln Arg Cys Asn Asn Arg Thr Gln
90 95 100
tgt ata gta gtt act ggg tca gat gtg ttt cct gat cca tgt cct gga 570
Cys Ile Val Val Thr Gly Ser Asp Val Phe Pro Asp Pro Cys Pro Gly
105 110 115
aca tac aaa tac ctt gaa gtc caa tat gaa tgt gtc cct tac att ttt 618
Thr Tyr Lys Tyr Leu Glu Val Gln Tyr Glu Cys Val Pro Tyr Ile Phe
120 125 130
gtg tgt cct ggg acc ttg aaa gca att gtg gac tca cca tgt ata tat 666
Val Cys Pro Gly Thr Leu Lys Ala Ile Val Asp Ser Pro Cys Ile Tyr
135 140 145 150
gaa gct gaa caa aag gcg ggt gct tgg tgc aag gac cct ctt cag gct 714
Glu Ala Glu Gln Lys Ala Gly Ala Trp Cys Lys Asp Pro Leu Gln Ala
155 160 165
gca gat aaa att tat ttc atg ccc tgg act ccc tat cgt acc gat act 762
Ala Asp Lys Ile Tyr Phe Met Pro Trp Thr Pro Tyr Arg Thr Asp Thr
170 175 180
tta ata gaa tat gct tct tta gaa gat ttc caa aat agt cgc caa aca 810
Leu Ile Glu Tyr Ala Ser Leu Glu Asp Phe Gln Asn Ser Arg Gln Thr
185 190 195
aca aca tat aaa ctt cca aat cga gta gat ggt act gga ttt gtg gtg 858
Thr Thr Tyr Lys Leu Pro Asn Arg Val Asp Gly Thr Gly Phe Val Val
200 205 210
tat gat ggt gct gtc ttc ttt aac aaa gaa aga acg agg aat att gtg 906
Tyr Asp Gly Ala Val Phe Phe Asn Lys Glu Arg Thr Arg Asn Ile Val
215 220 225 230
aaa ttt gac ttg agg act aga att aag agt ggc gag gcc ata att aac 954
Lys Phe Asp Leu Arg Thr Arg Ile Lys Ser Gly Glu Ala Ile Ile Asn
235 240 245
tat gcc aac tac cat gat acc tca cca tac aga tgg gga gga aag act 1002
Tyr Ala Asn Tyr His Asp Thr Ser Pro Tyr Arg Trp Gly Gly Lys Thr
250 255 260
gat atc gac cta gca gtt gat gaa aat ggt tta tgg gtc att tac gcc 1050
Asp Ile Asp Leu Ala Val Asp Glu Asn Gly Leu Trp Val Ile Tyr Ala
265 270 275
act gaa cag aac aat gga atg ata gtt att agc cag ctg aat cca tac 1098
Thr Glu Gln Asn Asn Gly Met Ile Val Ile Ser Gln Leu Asn Pro Tyr
280 285 290
act ctt cga ttt gaa gca acg tgg gag act gta tac gac aaa cgt gcc 1146
Thr Leu Arg Phe Glu Ala Thr Trp Glu Thr Val Tyr Asp Lys Arg Ala
295 300 305 310
gca tca aat gct ttt atg ata tgc gga gtc ctc tat gtg gtt agg tca 1194
Ala Ser Asn Ala Phe Met Ile Cys Gly Val Leu Tyr Val Val Arg Ser
315 320 325
gtt tat caa gac aat gaa agt gaa aca ggc aag aac tca att gat tac 1242
Val Tyr Gln Asp Asn Glu Ser Glu Thr Gly Lys Asn Ser Ile Asp Tyr
330 335 340
att tat aat acc cga tta aac cga gga gaa tat gta gac gtt ccc ttc 1290
Ile Tyr Asn Thr Arg Leu Asn Arg Gly Glu Tyr Val Asp Val Pro Phe
345 350 355
ccc aac cag tat cag tat att gct gca gtg gat tac aat cca aga gat 1338
Pro Asn Gln Tyr Gln Tyr Ile Ala Ala Val Asp Tyr Asn Pro Arg Asp
360 365 370
aac caa ctt tac gtg tgg aac aat aac ttc att tta cga tat tct ctg 1386
Asn Gln Leu Tyr Val Trp Asn Asn Asn Phe Ile Leu Arg Tyr Ser Leu
375 380 385 390
gag ttt ggt cca cct gat cct gcc caa gtg cct acc aca gct gtg aca 1434
Glu Phe Gly Pro Pro Asp Pro Ala Gln Val Pro Thr Thr Ala Val Thr
395 400 405
ata act tct tca gct gag ctg ttc aaa acc ata ata tca acc aca agc 1482
Ile Thr Ser Ser Ala Glu Leu Phe Lys Thr Ile Ile Ser Thr Thr Ser
410 415 420
act act tca cag aaa ggc ccc atg agc aca act gta gct gga tca cag 1530
Thr Thr Ser Gln Lys Gly Pro Met Ser Thr Thr Val Ala Gly Ser Gln
425 430 435
gaa gga agc aaa ggg aca aaa cca cct cca gca gtt tct aca acc aaa 1578
Glu Gly Ser Lys Gly Thr Lys Pro Pro Pro Ala Val Ser Thr Thr Lys
440 445 450
att cca cct ata aca aat att ttt ccc ctg cca gag aga ttc tgt gaa 1626
Ile Pro Pro Ile Thr Asn Ile Phe Pro Leu Pro Glu Arg Phe Cys Glu
455 460 465 470
gca tta gac tcc aag ggg ata aag tgg cct cag aca caa agg gga atg 1674
Ala Leu Asp Ser Lys Gly Ile Lys Trp Pro Gln Thr Gln Arg Gly Met
475 480 485
atg gtt gaa cga cca tgc cct aag gga aca aga gga act gcc tca tat 1722
Met Val Glu Arg Pro Cys Pro Lys Gly Thr Arg Gly Thr Ala Ser Tyr
490 495 500
ctc tgc atg att tcc act gga aca tgg aac cct aag ggc ccc gat ctt 1770
Leu Cys Met Ile Ser Thr Gly Thr Trp Asn Pro Lys Gly Pro Asp Leu
505 510 515
agc aac tgt acc tca cac tgg gtg aat cag ctg gct cag aag atc aga 1818
Ser Asn Cys Thr Ser His Trp Val Asn Gln Leu Ala Gln Lys Ile Arg
520 525 530
agc gga gaa aat gct gct agt ctt gcc aat gaa ctg gct aaa cat acc 1866
Ser Gly Glu Asn Ala Ala Ser Leu Ala Asn Glu Leu Ala Lys His Thr
535 540 545 550
aaa ggg cca gtg ttt gct ggg gat gta agt tct tca gtg aga ttg atg 1914
Lys Gly Pro Val Phe Ala Gly Asp Val Ser Ser Ser Val Arg Leu Met
555 560 565
gag cag ttg gtg gac atc ctt gat gca cag ctg cag gaa ctg aaa cct 1962
Glu Gln Leu Val Asp Ile Leu Asp Ala Gln Leu Gln Glu Leu Lys Pro
570 575 580
agt gaa aaa gat tca gct gga cgg agt tat aac aag gca att gtt gac 2010
Ser Glu Lys Asp Ser Ala Gly Arg Ser Tyr Asn Lys Ala Ile Val Asp
585 590 595
aca gtg gac aac ctt ctg aga cct gaa gct ttg gaa tca tgg aaa cat 2058
Thr Val Asp Asn Leu Leu Arg Pro Glu Ala Leu Glu Ser Trp Lys His
600 605 610
atg aat tct tct gaa caa gca cat act gca aca atg tta ctc gat aca 2106
Met Asn Ser Ser Glu Gln Ala His Thr Ala Thr Met Leu Leu Asp Thr
615 620 625 630
ttg gaa gaa gga gct ttt gtc cta gct gac aat ctt tta gaa cca aca 2154
Leu Glu Glu Gly Ala Phe Val Leu Ala Asp Asn Leu Leu Glu Pro Thr
635 640 645
agg gtc tca atg ccc aca gaa aat att gtc ctg gaa gtt gcc gta ctc 2202
Arg Val Ser Met Pro Thr Glu Asn Ile Val Leu Glu Val Ala Val Leu
650 655 660
agt aca gaa gga cag atc caa gac ttt aaa ttt cct ctg ggc atc aaa 2250
Ser Thr Glu Gly Gln Ile Gln Asp Phe Lys Phe Pro Leu Gly Ile Lys
665 670 675
gga gca ggc agc tca atc caa ctg tcc gca aat acc gtc aaa cag aac 2298
Gly Ala Gly Ser Ser Ile Gln Leu Ser Ala Asn Thr Val Lys Gln Asn
680 685 690
agc agg aat ggg ctt gca aag ttg gtg ttc atc att tac cgg agc ctg 2346
Ser Arg Asn Gly Leu Ala Lys Leu Val Phe Ile Ile Tyr Arg Ser Leu
695 700 705 710
gga cag ttc ctt agt aca gaa aat gca acc att aaa ctg ggt gct gat 2394
Gly Gln Phe Leu Ser Thr Glu Asn Ala Thr Ile Lys Leu Gly Ala Asp
715 720 725
ttt att ggt cgt aat agc acc att gca gtg aac tct cac gtc att tca 2442
Phe Ile Gly Arg Asn Ser Thr Ile Ala Val Asn Ser His Val Ile Ser
730 735 740
gtt tca atc aat aaa gag tcc agc cga gta tac ctg act gat cct gtg 2490
Val Ser Ile Asn Lys Glu Ser Ser Arg Val Tyr Leu Thr Asp Pro Val
745 750 755
ctt ttt acc ctg cca cac att gat cct gac aat tat ttc aat gca aac 2538
Leu Phe Thr Leu Pro His Ile Asp Pro Asp Asn Tyr Phe Asn Ala Asn
760 765 770
tgc tcc ttc tgg aac tac tca gag aga act atg atg gga tat tgg tct 2586
Cys Ser Phe Trp Asn Tyr Ser Glu Arg Thr Met Met Gly Tyr Trp Ser
775 780 785 790
acc cag ggc tgc aag ctg gtt gac act aat aaa act cga aca acg tgt 2634
Thr Gln Gly Cys Lys Leu Val Asp Thr Asn Lys Thr Arg Thr Thr Cys
795 800 805
gca tgc agc cac cta acc aat ttt gca att ctc atg gcc cac agg gaa 2682
Ala Cys Ser His Leu Thr Asn Phe Ala Ile Leu Met Ala His Arg Glu
810 815 820
att gca tat aaa gat ggc gtt cat gaa tta ctt ctt aca gtc atc acc 2730
Ile Ala Tyr Lys Asp Gly Val His Glu Leu Leu Leu Thr Val Ile Thr
825 830 835
tgg gtg gga att gtc att tcc ctt gtt tgc ctg gct atc tgc atc ttc 2778
Trp Val Gly Ile Val Ile Ser Leu Val Cys Leu Ala Ile Cys Ile Phe
840 845 850
acc ttc tgc ttt ttc cgt ggc cta cag agt gac cga aat act att cac 2826
Thr Phe Cys Phe Phe Arg Gly Leu Gln Ser Asp Arg Asn Thr Ile His
855 860 865 870
aag aac ctt tgt atc aac ctt ttc att gct gaa ttt att ttc cta ata 2874
Lys Asn Leu Cys Ile Asn Leu Phe Ile Ala Glu Phe Ile Phe Leu Ile
875 880 885
ggc att gat aag aca aaa tat gcg att gca tgc cca ata ttt gca gga 2922
Gly Ile Asp Lys Thr Lys Tyr Ala Ile Ala Cys Pro Ile Phe Ala Gly
890 895 900
ctt cta cac ttt ttc ttt ttg gca gct ttt gct tgg atg tgc cta gaa 2970
Leu Leu His Phe Phe Phe Leu Ala Ala Phe Ala Trp Met Cys Leu Glu
905 910 915
ggt gtg cag ctc tac cta atg tta gtt gaa gtt ttt gaa agt gaa tat 3018
Gly Val Gln Leu Tyr Leu Met Leu Val Glu Val Phe Glu Ser Glu Tyr
920 925 930
tca agg aaa aaa tat tac tat gtt gct ggt tac ttg ttt cct gcc aca 3066
Ser Arg Lys Lys Tyr Tyr Tyr Val Ala Gly Tyr Leu Phe Pro Ala Thr
935 940 945 950
gtg gtt gga gtt tca gct gct att gac tat aag agc tat gga aca gaa 3114
Val Val Gly Val Ser Ala Ala Ile Asp Tyr Lys Ser Tyr Gly Thr Glu
955 960 965
aaa gct tgc tgg ctt cat gtt gat aac tac ttt ata tgg agc ttc att 3162
Lys Ala Cys Trp Leu His Val Asp Asn Tyr Phe Ile Trp Ser Phe Ile
970 975 980
gga cct gtt acc ttc att att ctg cta aat att atc ttc ttg gtg atc 3210
Gly Pro Val Thr Phe Ile Ile Leu Leu Asn Ile Ile Phe Leu Val Ile
985 990 995
aca ttg tgc aaa atg gtg aag cat tca aac act ttg aaa cca gat tct 3258
Thr Leu Cys Lys Met Val Lys His Ser Asn Thr Leu Lys Pro Asp Ser
1000 1005 1010
agc agg ttg gaa aac att aag tct tgg gtg ctt ggc gct ttc gct ctt 3306
Ser Arg Leu Glu Asn Ile Lys Ser Trp Val Leu Gly Ala Phe Ala Leu
1015 1020 1025 1030
ctg tgt ctt ctt ggc ctc acc tgg tcc ttt ggg ttg ctt ttt att aat 3354
Leu Cys Leu Leu Gly Leu Thr Trp Ser Phe Gly Leu Leu Phe Ile Asn
1035 1040 1045
gag gag act att gtg atg gca tat ctc ttc act ata ttt aat gct ttc 3402
Glu Glu Thr Ile Val Met Ala Tyr Leu Phe Thr Ile Phe Asn Ala Phe
1050 1055 1060
cag gga gtg ttc att ttc atc ttt cac tgt gct ctc caa aag aaa gta 3450
Gln Gly Val Phe Ile Phe Ile Phe His Cys Ala Leu Gln Lys Lys Val
1065 1070 1075
cga aaa gaa tat ggc aag tgc ttc aga cac tca tac tgc tgt gga ggc 3498
Arg Lys Glu Tyr Gly Lys Cys Phe Arg His Ser Tyr Cys Cys Gly Gly
1080 1085 1090
ctc cca act gag agt ccc cac agt tca gtg aag gca tca acc acc aga 3546
Leu Pro Thr Glu Ser Pro His Ser Ser Val Lys Ala Ser Thr Thr Arg
1095 1100 1105 1110
acc agt gct cgc tat tcc tct ggc aca cag agt cgt ata aga aga atg 3594
Thr Ser Ala Arg Tyr Ser Ser Gly Thr Gln Ser Arg Ile Arg Arg Met
1115 1120 1125
tgg aat gat act gtg aga aaa caa tca gaa tct tct ttt atc tca ggt 3642
Trp Asn Asp Thr Val Arg Lys Gln Ser Glu Ser Ser Phe Ile Ser Gly
1130 1135 1140
gac atc aat agc act tca aca ctt aat caa gga cat tca ctg aac aat 3690
Asp Ile Asn Ser Thr Ser Thr Leu Asn Gln Gly His Ser Leu Asn Asn
1145 1150 1155
gcc agg gat aca agt gcc atg gat act cta ccg cta aat ggt aat ttt 3738
Ala Arg Asp Thr Ser Ala Met Asp Thr Leu Pro Leu Asn Gly Asn Phe
1160 1165 1170
aac aac agc tac tcg ctg cac aag ggt gac tat aat gac agc gtg caa 3786
Asn Asn Ser Tyr Ser Leu His Lys Gly Asp Tyr Asn Asp Ser Val Gln
1175 1180 1185 1190
gtt gtg gac tgt gga cta agt ctg aat gat act gct ttt gag aaa atg 3834
Val Val Asp Cys Gly Leu Ser Leu Asn Asp Thr Ala Phe Glu Lys Met
1195 1200 1205
atc att tca gaa tta gtg cac aac aac tta cgg ggc agc agc aag act 3882
Ile Ile Ser Glu Leu Val His Asn Asn Leu Arg Gly Ser Ser Lys Thr
1210 1215 1220
cac aac ctc gag ctc acg cta cca gtc aaa cct gtg att gga ggt agc 3930
His Asn Leu Glu Leu Thr Leu Pro Val Lys Pro Val Ile Gly Gly Ser
1225 1230 1235
agc agt gaa gat gat gct att gtg gca gat gct tca tct tta atg cac 3978
Ser Ser Glu Asp Asp Ala Ile Val Ala Asp Ala Ser Ser Leu Met His
1240 1245 1250
agc gac aac cca ggg ctg gag ctc cat cac aaa gaa ctc gag gca cca 4026
Ser Asp Asn Pro Gly Leu Glu Leu His His Lys Glu Leu Glu Ala Pro
1255 1260 1265 1270
ctt att cct cag cgg act cac tcc ctt ctg tac caa ccc cag aag aaa 4074
Leu Ile Pro Gln Arg Thr His Ser Leu Leu Tyr Gln Pro Gln Lys Lys
1275 1280 1285
gtg aag tcc gag gga act gac agc tat gtc tcc caa ctg aca gca gag 4122
Val Lys Ser Glu Gly Thr Asp Ser Tyr Val Ser Gln Leu Thr Ala Glu
1290 1295 1300
gct gaa gat cac cta cag tcc ccc aac aga gac tct ctt tat aca agc 4170
Ala Glu Asp His Leu Gln Ser Pro Asn Arg Asp Ser Leu Tyr Thr Ser
1305 1310 1315
atg ccc aat ctt aga gac tct ccc tat ccg gag agc agc cct gac atg 4218
Met Pro Asn Leu Arg Asp Ser Pro Tyr Pro Glu Ser Ser Pro Asp Met
1320 1325 1330
gaa gaa gac ctc tct ccc tcc agg agg agt gag aat gag gac att tac 4266
Glu Glu Asp Leu Ser Pro Ser Arg Arg Ser Glu Asn Glu Asp Ile Tyr
1335 1340 1345 1350
tat aaa agc atg cca aat ctt gga gct ggc cat cag ctt cag atg tgc 4314
Tyr Lys Ser Met Pro Asn Leu Gly Ala Gly His Gln Leu Gln Met Cys
1355 1360 1365
tac cag atc agc agg ggc aat agt gat ggt tat ata atc ccc att aac 4362
Tyr Gln Ile Ser Arg Gly Asn Ser Asp Gly Tyr Ile Ile Pro Ile Asn
1370 1375 1380
aaa gaa ggg tgt att cca gaa gga gat gtt aga gaa gga caa atg cag 4410
Lys Glu Gly Cys Ile Pro Glu Gly Asp Val Arg Glu Gly Gln Met Gln
1385 1390 1395
ctg gtt aca agt ctt taatcataca gctaaggaat tccaagggcc acatgcgagt 4465
Leu Val Thr Ser Leu
1400
attaataaat aaagacacca ttggcctgac gcagctccct caaactctgc ttgaagagat 4525
gactcttgac ctgtggttct ctggtgtaaa aaagatgact gaaccttgca gttctgtgaa 4585
tttttataaa acatacaaaa actttgtata tacacagagt atactaaagt gaattatttg 4645
ttacaaagaa aagagatgcc agccaggtat tttaagattc tgctgctgtt tagagaaatt 4705
gtgaaacaag caaaacaaaa ctttccagcc attttactgc agcagtctgt gaactaaatt 4765
tgtaaatatg gctgcaccat ttttgtaggc ctgcattgta ttatatacaa gacgtaggct 4825
ttaaaatcct gtgggacaaa tttactgtac cttactattc ctgacaagac ttggaaaagc 4885
aggagagata ttctgcatca gtttgcagtt cactgcaaat cttttacatt aaggcaaaga 4945
ttgaaaacat gcttaaccac tagcaatcaa gccacaggcc ttatttcata tgtttcctca 5005
actgtacaat gaactattct catgaaaaat ggctaaagaa attatatttt gttctattgc 5065
tagggtaaaa taaatacatt tgtgtccaac tgaaatataa ttgtcattaa aataatttta 5125
aagagtgaag aaaatattgt gaaaagctct tggttgcaca tgttatgaaa tgttttttct 5185
tacactttgt catggtaagt tctactcatt ttcacttctt ttccactgta tacagtgttc 5245
tgctttgaca aagttagtct ttattactta catttaaatt tcttattgcc aaaagaacgt 5305
gttttatggg gagaaacaaa ctctttgaag ccagttatgt catgccttgc acaaaagtga 5365
tgaaatctag aaaagattgt gtgtcacccc tgtttattct tgaacagagg gcaaagaggg 5425
cactgggcac ttctcacaaa ctttctagtg aacaaaaggt gcctattctt ttttaaaaaa 5485
aaaaaa 5491




6


1403


PRT


Homo sapiens



6
Met Val Ser Ser Gly Cys Arg Met Arg Ser Leu Trp Phe Ile Ile Val
1 5 10 15
Ile Ser Phe Leu Pro Asn Thr Glu Gly Phe Ser Arg Ala Ala Leu Pro
20 25 30
Phe Gly Leu Val Arg Arg Glu Leu Ser Cys Glu Gly Tyr Ser Ile Asp
35 40 45
Leu Arg Cys Pro Gly Ser Asp Val Ile Met Ile Glu Ser Ala Asn Tyr
50 55 60
Gly Arg Thr Asp Asp Lys Ile Cys Asp Ala Asp Pro Phe Gln Met Glu
65 70 75 80
Asn Thr Asp Cys Tyr Leu Pro Asp Ala Phe Lys Ile Met Thr Gln Arg
85 90 95
Cys Asn Asn Arg Thr Gln Cys Ile Val Val Thr Gly Ser Asp Val Phe
100 105 110
Pro Asp Pro Cys Pro Gly Thr Tyr Lys Tyr Leu Glu Val Gln Tyr Glu
115 120 125
Cys Val Pro Tyr Ile Phe Val Cys Pro Gly Thr Leu Lys Ala Ile Val
130 135 140
Asp Ser Pro Cys Ile Tyr Glu Ala Glu Gln Lys Ala Gly Ala Trp Cys
145 150 155 160
Lys Asp Pro Leu Gln Ala Ala Asp Lys Ile Tyr Phe Met Pro Trp Thr
165 170 175
Pro Tyr Arg Thr Asp Thr Leu Ile Glu Tyr Ala Ser Leu Glu Asp Phe
180 185 190
Gln Asn Ser Arg Gln Thr Thr Thr Tyr Lys Leu Pro Asn Arg Val Asp
195 200 205
Gly Thr Gly Phe Val Val Tyr Asp Gly Ala Val Phe Phe Asn Lys Glu
210 215 220
Arg Thr Arg Asn Ile Val Lys Phe Asp Leu Arg Thr Arg Ile Lys Ser
225 230 235 240
Gly Glu Ala Ile Ile Asn Tyr Ala Asn Tyr His Asp Thr Ser Pro Tyr
245 250 255
Arg Trp Gly Gly Lys Thr Asp Ile Asp Leu Ala Val Asp Glu Asn Gly
260 265 270
Leu Trp Val Ile Tyr Ala Thr Glu Gln Asn Asn Gly Met Ile Val Ile
275 280 285
Ser Gln Leu Asn Pro Tyr Thr Leu Arg Phe Glu Ala Thr Trp Glu Thr
290 295 300
Val Tyr Asp Lys Arg Ala Ala Ser Asn Ala Phe Met Ile Cys Gly Val
305 310 315 320
Leu Tyr Val Val Arg Ser Val Tyr Gln Asp Asn Glu Ser Glu Thr Gly
325 330 335
Lys Asn Ser Ile Asp Tyr Ile Tyr Asn Thr Arg Leu Asn Arg Gly Glu
340 345 350
Tyr Val Asp Val Pro Phe Pro Asn Gln Tyr Gln Tyr Ile Ala Ala Val
355 360 365
Asp Tyr Asn Pro Arg Asp Asn Gln Leu Tyr Val Trp Asn Asn Asn Phe
370 375 380
Ile Leu Arg Tyr Ser Leu Glu Phe Gly Pro Pro Asp Pro Ala Gln Val
385 390 395 400
Pro Thr Thr Ala Val Thr Ile Thr Ser Ser Ala Glu Leu Phe Lys Thr
405 410 415
Ile Ile Ser Thr Thr Ser Thr Thr Ser Gln Lys Gly Pro Met Ser Thr
420 425 430
Thr Val Ala Gly Ser Gln Glu Gly Ser Lys Gly Thr Lys Pro Pro Pro
435 440 445
Ala Val Ser Thr Thr Lys Ile Pro Pro Ile Thr Asn Ile Phe Pro Leu
450 455 460
Pro Glu Arg Phe Cys Glu Ala Leu Asp Ser Lys Gly Ile Lys Trp Pro
465 470 475 480
Gln Thr Gln Arg Gly Met Met Val Glu Arg Pro Cys Pro Lys Gly Thr
485 490 495
Arg Gly Thr Ala Ser Tyr Leu Cys Met Ile Ser Thr Gly Thr Trp Asn
500 505 510
Pro Lys Gly Pro Asp Leu Ser Asn Cys Thr Ser His Trp Val Asn Gln
515 520 525
Leu Ala Gln Lys Ile Arg Ser Gly Glu Asn Ala Ala Ser Leu Ala Asn
530 535 540
Glu Leu Ala Lys His Thr Lys Gly Pro Val Phe Ala Gly Asp Val Ser
545 550 555 560
Ser Ser Val Arg Leu Met Glu Gln Leu Val Asp Ile Leu Asp Ala Gln
565 570 575
Leu Gln Glu Leu Lys Pro Ser Glu Lys Asp Ser Ala Gly Arg Ser Tyr
580 585 590
Asn Lys Ala Ile Val Asp Thr Val Asp Asn Leu Leu Arg Pro Glu Ala
595 600 605
Leu Glu Ser Trp Lys His Met Asn Ser Ser Glu Gln Ala His Thr Ala
610 615 620
Thr Met Leu Leu Asp Thr Leu Glu Glu Gly Ala Phe Val Leu Ala Asp
625 630 635 640
Asn Leu Leu Glu Pro Thr Arg Val Ser Met Pro Thr Glu Asn Ile Val
645 650 655
Leu Glu Val Ala Val Leu Ser Thr Glu Gly Gln Ile Gln Asp Phe Lys
660 665 670
Phe Pro Leu Gly Ile Lys Gly Ala Gly Ser Ser Ile Gln Leu Ser Ala
675 680 685
Asn Thr Val Lys Gln Asn Ser Arg Asn Gly Leu Ala Lys Leu Val Phe
690 695 700
Ile Ile Tyr Arg Ser Leu Gly Gln Phe Leu Ser Thr Glu Asn Ala Thr
705 710 715 720
Ile Lys Leu Gly Ala Asp Phe Ile Gly Arg Asn Ser Thr Ile Ala Val
725 730 735
Asn Ser His Val Ile Ser Val Ser Ile Asn Lys Glu Ser Ser Arg Val
740 745 750
Tyr Leu Thr Asp Pro Val Leu Phe Thr Leu Pro His Ile Asp Pro Asp
755 760 765
Asn Tyr Phe Asn Ala Asn Cys Ser Phe Trp Asn Tyr Ser Glu Arg Thr
770 775 780
Met Met Gly Tyr Trp Ser Thr Gln Gly Cys Lys Leu Val Asp Thr Asn
785 790 795 800
Lys Thr Arg Thr Thr Cys Ala Cys Ser His Leu Thr Asn Phe Ala Ile
805 810 815
Leu Met Ala His Arg Glu Ile Ala Tyr Lys Asp Gly Val His Glu Leu
820 825 830
Leu Leu Thr Val Ile Thr Trp Val Gly Ile Val Ile Ser Leu Val Cys
835 840 845
Leu Ala Ile Cys Ile Phe Thr Phe Cys Phe Phe Arg Gly Leu Gln Ser
850 855 860
Asp Arg Asn Thr Ile His Lys Asn Leu Cys Ile Asn Leu Phe Ile Ala
865 870 875 880
Glu Phe Ile Phe Leu Ile Gly Ile Asp Lys Thr Lys Tyr Ala Ile Ala
885 890 895
Cys Pro Ile Phe Ala Gly Leu Leu His Phe Phe Phe Leu Ala Ala Phe
900 905 910
Ala Trp Met Cys Leu Glu Gly Val Gln Leu Tyr Leu Met Leu Val Glu
915 920 925
Val Phe Glu Ser Glu Tyr Ser Arg Lys Lys Tyr Tyr Tyr Val Ala Gly
930 935 940
Tyr Leu Phe Pro Ala Thr Val Val Gly Val Ser Ala Ala Ile Asp Tyr
945 950 955 960
Lys Ser Tyr Gly Thr Glu Lys Ala Cys Trp Leu His Val Asp Asn Tyr
965 970 975
Phe Ile Trp Ser Phe Ile Gly Pro Val Thr Phe Ile Ile Leu Leu Asn
980 985 990
Ile Ile Phe Leu Val Ile Thr Leu Cys Lys Met Val Lys His Ser Asn
995 1000 1005
Thr Leu Lys Pro Asp Ser Ser Arg Leu Glu Asn Ile Lys Ser Trp Val
1010 1015 1020
Leu Gly Ala Phe Ala Leu Leu Cys Leu Leu Gly Leu Thr Trp Ser Phe
1025 1030 1035 1040
Gly Leu Leu Phe Ile Asn Glu Glu Thr Ile Val Met Ala Tyr Leu Phe
1045 1050 1055
Thr Ile Phe Asn Ala Phe Gln Gly Val Phe Ile Phe Ile Phe His Cys
1060 1065 1070
Ala Leu Gln Lys Lys Val Arg Lys Glu Tyr Gly Lys Cys Phe Arg His
1075 1080 1085
Ser Tyr Cys Cys Gly Gly Leu Pro Thr Glu Ser Pro His Ser Ser Val
1090 1095 1100
Lys Ala Ser Thr Thr Arg Thr Ser Ala Arg Tyr Ser Ser Gly Thr Gln
1105 1110 1115 1120
Ser Arg Ile Arg Arg Met Trp Asn Asp Thr Val Arg Lys Gln Ser Glu
1125 1130 1135
Ser Ser Phe Ile Ser Gly Asp Ile Asn Ser Thr Ser Thr Leu Asn Gln
1140 1145 1150
Gly His Ser Leu Asn Asn Ala Arg Asp Thr Ser Ala Met Asp Thr Leu
1155 1160 1165
Pro Leu Asn Gly Asn Phe Asn Asn Ser Tyr Ser Leu His Lys Gly Asp
1170 1175 1180
Tyr Asn Asp Ser Val Gln Val Val Asp Cys Gly Leu Ser Leu Asn Asp
1185 1190 1195 1200
Thr Ala Phe Glu Lys Met Ile Ile Ser Glu Leu Val His Asn Asn Leu
1205 1210 1215
Arg Gly Ser Ser Lys Thr His Asn Leu Glu Leu Thr Leu Pro Val Lys
1220 1225 1230
Pro Val Ile Gly Gly Ser Ser Ser Glu Asp Asp Ala Ile Val Ala Asp
1235 1240 1245
Ala Ser Ser Leu Met His Ser Asp Asn Pro Gly Leu Glu Leu His His
1250 1255 1260
Lys Glu Leu Glu Ala Pro Leu Ile Pro Gln Arg Thr His Ser Leu Leu
1265 1270 1275 1280
Tyr Gln Pro Gln Lys Lys Val Lys Ser Glu Gly Thr Asp Ser Tyr Val
1285 1290 1295
Ser Gln Leu Thr Ala Glu Ala Glu Asp His Leu Gln Ser Pro Asn Arg
1300 1305 1310
Asp Ser Leu Tyr Thr Ser Met Pro Asn Leu Arg Asp Ser Pro Tyr Pro
1315 1320 1325
Glu Ser Ser Pro Asp Met Glu Glu Asp Leu Ser Pro Ser Arg Arg Ser
1330 1335 1340
Glu Asn Glu Asp Ile Tyr Tyr Lys Ser Met Pro Asn Leu Gly Ala Gly
1345 1350 1355 1360
His Gln Leu Gln Met Cys Tyr Gln Ile Ser Arg Gly Asn Ser Asp Gly
1365 1370 1375
Tyr Ile Ile Pro Ile Asn Lys Glu Gly Cys Ile Pro Glu Gly Asp Val
1380 1385 1390
Arg Glu Gly Gln Met Gln Leu Val Thr Ser Leu
1395 1400




7


1527


DNA


Homo sapiens




CDS




(217)..(1527)





7
cggcgaacag acgttctttc tcctccatgc agttacacaa aaggagggct acggaaacta 60
aaagtttcgg ggcctctggc tcggtgtgtg gagaaaagag aaaacctgga gacgggatat 120
gaagatcaat gatgcagact gatggtcttg atgaagctgg gcatttataa ctagattcat 180
taaggaatac aaagaaaata cttaaaggga tcaata atg gtg tct tct ggt tgc 234
Met Val Ser Ser Gly Cys
1 5
aga atg cga agt ctg tgg ttt atc att gta atc agc ttc tta cca aat 282
Arg Met Arg Ser Leu Trp Phe Ile Ile Val Ile Ser Phe Leu Pro Asn
10 15 20
aca gaa ggt ttc agc aga gca gct tta cca ttt ggg ctg gtg agg cga 330
Thr Glu Gly Phe Ser Arg Ala Ala Leu Pro Phe Gly Leu Val Arg Arg
25 30 35
gaa tta tcc tgt gaa ggt tat tct ata gat ctg cga tgc ccg ggc agt 378
Glu Leu Ser Cys Glu Gly Tyr Ser Ile Asp Leu Arg Cys Pro Gly Ser
40 45 50
gat gtc atc atg att gag agc gct aac tat ggt cgg acg gat gac aag 426
Asp Val Ile Met Ile Glu Ser Ala Asn Tyr Gly Arg Thr Asp Asp Lys
55 60 65 70
att tgt gat gct gac cca ttt cag atg gag aat aca gac tgc tac ctc 474
Ile Cys Asp Ala Asp Pro Phe Gln Met Glu Asn Thr Asp Cys Tyr Leu
75 80 85
ccc gat gcc ttc aaa att atg act caa agg tgc aac aat cga aca cag 522
Pro Asp Ala Phe Lys Ile Met Thr Gln Arg Cys Asn Asn Arg Thr Gln
90 95 100
tgt ata gta gtt act ggg tca gat gtg ttt cct gat cca tgt cct gga 570
Cys Ile Val Val Thr Gly Ser Asp Val Phe Pro Asp Pro Cys Pro Gly
105 110 115
aca tac aaa tac ctt gaa gtc caa tat gaa tgt gtc cct tac att ttt 618
Thr Tyr Lys Tyr Leu Glu Val Gln Tyr Glu Cys Val Pro Tyr Ile Phe
120 125 130
gtg tgt cct ggg acc ttg aaa gca att gtg gac tca cca tgt ata tat 666
Val Cys Pro Gly Thr Leu Lys Ala Ile Val Asp Ser Pro Cys Ile Tyr
135 140 145 150
gaa gct gaa caa aag gcg ggt gct tgg tgc aag gac cct ctt cag gct 714
Glu Ala Glu Gln Lys Ala Gly Ala Trp Cys Lys Asp Pro Leu Gln Ala
155 160 165
gca gat aaa att tat ttc atg ccc tgg act ccc tat cgt acc gat act 762
Ala Asp Lys Ile Tyr Phe Met Pro Trp Thr Pro Tyr Arg Thr Asp Thr
170 175 180
tta ata gaa tat gct tct tta gaa gat ttc caa aat agt cgc caa aca 810
Leu Ile Glu Tyr Ala Ser Leu Glu Asp Phe Gln Asn Ser Arg Gln Thr
185 190 195
aca aca tat aaa ctt cca aat cga gta gat ggt act gga ttt gtg gtg 858
Thr Thr Tyr Lys Leu Pro Asn Arg Val Asp Gly Thr Gly Phe Val Val
200 205 210
tat gat ggt gct gtc ttc ttt aac aaa gaa aga acg agg aat att gtg 906
Tyr Asp Gly Ala Val Phe Phe Asn Lys Glu Arg Thr Arg Asn Ile Val
215 220 225 230
aaa ttt gac ttg agg act aga att aag agt ggc gag gcc ata att aac 954
Lys Phe Asp Leu Arg Thr Arg Ile Lys Ser Gly Glu Ala Ile Ile Asn
235 240 245
tat gcc aac tac cat gat acc tca cca tac aga tgg gga gga aag act 1002
Tyr Ala Asn Tyr His Asp Thr Ser Pro Tyr Arg Trp Gly Gly Lys Thr
250 255 260
gat atc gac cta gca gtt gat gaa aat ggt tta tgg gtc att tac gcc 1050
Asp Ile Asp Leu Ala Val Asp Glu Asn Gly Leu Trp Val Ile Tyr Ala
265 270 275
act gaa cag aac aat gga atg ata gtt att agc cag ctg aat cca tac 1098
Thr Glu Gln Asn Asn Gly Met Ile Val Ile Ser Gln Leu Asn Pro Tyr
280 285 290
act ctt cga ttt gaa gca acg tgg gag act gta tac gac aaa cgt gcc 1146
Thr Leu Arg Phe Glu Ala Thr Trp Glu Thr Val Tyr Asp Lys Arg Ala
295 300 305 310
gca tca aat gct ttt atg ata tgc gga gtc ctc tat gtg gtt agg tca 1194
Ala Ser Asn Ala Phe Met Ile Cys Gly Val Leu Tyr Val Val Arg Ser
315 320 325
gtt tat caa gac aat gaa agt gaa aca ggc aag aac tca att gat tac 1242
Val Tyr Gln Asp Asn Glu Ser Glu Thr Gly Lys Asn Ser Ile Asp Tyr
330 335 340
att tat aat acc cga tta aac cga gga gaa tat gta gac gtt ccc ttc 1290
Ile Tyr Asn Thr Arg Leu Asn Arg Gly Glu Tyr Val Asp Val Pro Phe
345 350 355
ccc aac cag tat cag tat att gct gca gtg gat tac aat cca aga gat 1338
Pro Asn Gln Tyr Gln Tyr Ile Ala Ala Val Asp Tyr Asn Pro Arg Asp
360 365 370
aac caa ctt tac gtg tgg aac aat aac ttc att tta cga tat tct ctg 1386
Asn Gln Leu Tyr Val Trp Asn Asn Asn Phe Ile Leu Arg Tyr Ser Leu
375 380 385 390
gag ttt ggt cca cct gat cct gcc caa gtg cct acc aca gct gtg aca 1434
Glu Phe Gly Pro Pro Asp Pro Ala Gln Val Pro Thr Thr Ala Val Thr
395 400 405
ata act tct tca gct gag ctg ttc aaa acc ata ata tca acc aca agc 1482
Ile Thr Ser Ser Ala Glu Leu Phe Lys Thr Ile Ile Ser Thr Thr Ser
410 415 420
act act tca cag aaa ggc ccc atg agc aca act gta gct gga tca 1527
Thr Thr Ser Gln Lys Gly Pro Met Ser Thr Thr Val Ala Gly Ser
425 430 435




8


437


PRT


Homo sapiens



8
Met Val Ser Ser Gly Cys Arg Met Arg Ser Leu Trp Phe Ile Ile Val
1 5 10 15
Ile Ser Phe Leu Pro Asn Thr Glu Gly Phe Ser Arg Ala Ala Leu Pro
20 25 30
Phe Gly Leu Val Arg Arg Glu Leu Ser Cys Glu Gly Tyr Ser Ile Asp
35 40 45
Leu Arg Cys Pro Gly Ser Asp Val Ile Met Ile Glu Ser Ala Asn Tyr
50 55 60
Gly Arg Thr Asp Asp Lys Ile Cys Asp Ala Asp Pro Phe Gln Met Glu
65 70 75 80
Asn Thr Asp Cys Tyr Leu Pro Asp Ala Phe Lys Ile Met Thr Gln Arg
85 90 95
Cys Asn Asn Arg Thr Gln Cys Ile Val Val Thr Gly Ser Asp Val Phe
100 105 110
Pro Asp Pro Cys Pro Gly Thr Tyr Lys Tyr Leu Glu Val Gln Tyr Glu
115 120 125
Cys Val Pro Tyr Ile Phe Val Cys Pro Gly Thr Leu Lys Ala Ile Val
130 135 140
Asp Ser Pro Cys Ile Tyr Glu Ala Glu Gln Lys Ala Gly Ala Trp Cys
145 150 155 160
Lys Asp Pro Leu Gln Ala Ala Asp Lys Ile Tyr Phe Met Pro Trp Thr
165 170 175
Pro Tyr Arg Thr Asp Thr Leu Ile Glu Tyr Ala Ser Leu Glu Asp Phe
180 185 190
Gln Asn Ser Arg Gln Thr Thr Thr Tyr Lys Leu Pro Asn Arg Val Asp
195 200 205
Gly Thr Gly Phe Val Val Tyr Asp Gly Ala Val Phe Phe Asn Lys Glu
210 215 220
Arg Thr Arg Asn Ile Val Lys Phe Asp Leu Arg Thr Arg Ile Lys Ser
225 230 235 240
Gly Glu Ala Ile Ile Asn Tyr Ala Asn Tyr His Asp Thr Ser Pro Tyr
245 250 255
Arg Trp Gly Gly Lys Thr Asp Ile Asp Leu Ala Val Asp Glu Asn Gly
260 265 270
Leu Trp Val Ile Tyr Ala Thr Glu Gln Asn Asn Gly Met Ile Val Ile
275 280 285
Ser Gln Leu Asn Pro Tyr Thr Leu Arg Phe Glu Ala Thr Trp Glu Thr
290 295 300
Val Tyr Asp Lys Arg Ala Ala Ser Asn Ala Phe Met Ile Cys Gly Val
305 310 315 320
Leu Tyr Val Val Arg Ser Val Tyr Gln Asp Asn Glu Ser Glu Thr Gly
325 330 335
Lys Asn Ser Ile Asp Tyr Ile Tyr Asn Thr Arg Leu Asn Arg Gly Glu
340 345 350
Tyr Val Asp Val Pro Phe Pro Asn Gln Tyr Gln Tyr Ile Ala Ala Val
355 360 365
Asp Tyr Asn Pro Arg Asp Asn Gln Leu Tyr Val Trp Asn Asn Asn Phe
370 375 380
Ile Leu Arg Tyr Ser Leu Glu Phe Gly Pro Pro Asp Pro Ala Gln Val
385 390 395 400
Pro Thr Thr Ala Val Thr Ile Thr Ser Ser Ala Glu Leu Phe Lys Thr
405 410 415
Ile Ile Ser Thr Thr Ser Thr Thr Ser Gln Lys Gly Pro Met Ser Thr
420 425 430
Thr Val Ala Gly Ser
435




9


4190


DNA


Homo sapiens




CDS




(1)..(2340)





9
gcc caa gtg cct acc aca gct gtg aca ata act tct tca gct gag ctg 48
Ala Gln Val Pro Thr Thr Ala Val Thr Ile Thr Ser Ser Ala Glu Leu
1 5 10 15
ttc aaa acc ata ata tca acc aca agc act act tca cag aaa ggc ccc 96
Phe Lys Thr Ile Ile Ser Thr Thr Ser Thr Thr Ser Gln Lys Gly Pro
20 25 30
atg agc aca act gta gct gga tca cag gaa gga agc aaa ggg aca aaa 144
Met Ser Thr Thr Val Ala Gly Ser Gln Glu Gly Ser Lys Gly Thr Lys
35 40 45
cca cct cca gca gtt tct aca acc aaa att cca cct ata aca aat att 192
Pro Pro Pro Ala Val Ser Thr Thr Lys Ile Pro Pro Ile Thr Asn Ile
50 55 60
ttt ccc ctg cca gag aga ttc tgt gaa gca tta gac tcc aag ggg ata 240
Phe Pro Leu Pro Glu Arg Phe Cys Glu Ala Leu Asp Ser Lys Gly Ile
65 70 75 80
aag tgg cct cag aca caa agg gga atg atg gtt gaa cga cca tgc cct 288
Lys Trp Pro Gln Thr Gln Arg Gly Met Met Val Glu Arg Pro Cys Pro
85 90 95
aag gga aca aga gga act gcc tca tat ctc tgc atg att tcc act gga 336
Lys Gly Thr Arg Gly Thr Ala Ser Tyr Leu Cys Met Ile Ser Thr Gly
100 105 110
aca tgg aac cct aag ggc ccc gat ctt agc aac tgt acc tca cac tgg 384
Thr Trp Asn Pro Lys Gly Pro Asp Leu Ser Asn Cys Thr Ser His Trp
115 120 125
gtg aat cag ctg gct cag aag atc aga agc gga gaa aat gct gct agt 432
Val Asn Gln Leu Ala Gln Lys Ile Arg Ser Gly Glu Asn Ala Ala Ser
130 135 140
ctt gcc aat gaa ctg gct aaa cat acc aaa ggg cca gtg ttt gct ggg 480
Leu Ala Asn Glu Leu Ala Lys His Thr Lys Gly Pro Val Phe Ala Gly
145 150 155 160
gat gta agt tct tca gtg aga ttg atg gag cag ttg gtg gac atc ctt 528
Asp Val Ser Ser Ser Val Arg Leu Met Glu Gln Leu Val Asp Ile Leu
165 170 175
gat gca cag ctg cag gaa ctg aaa cct agt gaa aaa gat tca gct gga 576
Asp Ala Gln Leu Gln Glu Leu Lys Pro Ser Glu Lys Asp Ser Ala Gly
180 185 190
cgg agt tat aac aag gca att gtt gac aca gtg gac aac ctt ctg aga 624
Arg Ser Tyr Asn Lys Ala Ile Val Asp Thr Val Asp Asn Leu Leu Arg
195 200 205
cct gaa gct ttg gaa tca tgg aaa cat atg aat tct tct gaa caa gca 672
Pro Glu Ala Leu Glu Ser Trp Lys His Met Asn Ser Ser Glu Gln Ala
210 215 220
cat act gca aca atg tta ctc gat aca ttg gaa gaa gga gct ttt gtc 720
His Thr Ala Thr Met Leu Leu Asp Thr Leu Glu Glu Gly Ala Phe Val
225 230 235 240
cta gct gac aat ctt tta gaa cca aca agg gtc tca atg ccc aca gaa 768
Leu Ala Asp Asn Leu Leu Glu Pro Thr Arg Val Ser Met Pro Thr Glu
245 250 255
aat att gtc ctg gaa gtt gcc gta ctc agt aca gaa gga cag atc caa 816
Asn Ile Val Leu Glu Val Ala Val Leu Ser Thr Glu Gly Gln Ile Gln
260 265 270
gac ttt aaa ttt cct ctg ggc atc aaa gga gca ggc agc tca atc caa 864
Asp Phe Lys Phe Pro Leu Gly Ile Lys Gly Ala Gly Ser Ser Ile Gln
275 280 285
ctg tcc gca aat acc gtc aaa cag aac agc agg aat ggg ctt gca aag 912
Leu Ser Ala Asn Thr Val Lys Gln Asn Ser Arg Asn Gly Leu Ala Lys
290 295 300
ttg gtg ttc atc att tac cgg agc ctg gga cag ttc ctt agt aca gaa 960
Leu Val Phe Ile Ile Tyr Arg Ser Leu Gly Gln Phe Leu Ser Thr Glu
305 310 315 320
aat gca acc att aaa ctg ggt gct gat ttt att ggt cgt aat agc acc 1008
Asn Ala Thr Ile Lys Leu Gly Ala Asp Phe Ile Gly Arg Asn Ser Thr
325 330 335
att gca gtg aac tct cac gtc att tca gtt tca atc aat aaa gag tcc 1056
Ile Ala Val Asn Ser His Val Ile Ser Val Ser Ile Asn Lys Glu Ser
340 345 350
agc cga gta tac ctg act gat cct gtg ctt ttt acc ctg cca cac att 1104
Ser Arg Val Tyr Leu Thr Asp Pro Val Leu Phe Thr Leu Pro His Ile
355 360 365
gat cct gac aat tat ttc aat gca aac tgc tcc ttc tgg aac tac tca 1152
Asp Pro Asp Asn Tyr Phe Asn Ala Asn Cys Ser Phe Trp Asn Tyr Ser
370 375 380
gag aga act atg atg gga tat tgg tct acc cag ggc tgc aag ctg gtt 1200
Glu Arg Thr Met Met Gly Tyr Trp Ser Thr Gln Gly Cys Lys Leu Val
385 390 395 400
gac act aat aaa act cga aca acg tgt gca tgc agc cac cta acc aat 1248
Asp Thr Asn Lys Thr Arg Thr Thr Cys Ala Cys Ser His Leu Thr Asn
405 410 415
ttt gca att ctc atg gcc cac agg gaa att gca tat aaa gat ggc gtt 1296
Phe Ala Ile Leu Met Ala His Arg Glu Ile Ala Tyr Lys Asp Gly Val
420 425 430
cat gaa tta ctt ctt aca gtc atc acc tgg gtg gga att gtc att tcc 1344
His Glu Leu Leu Leu Thr Val Ile Thr Trp Val Gly Ile Val Ile Ser
435 440 445
ctt gtt tgc ctg gct atc tgc atc ttc acc ttc tgc ttt ttc cgt ggc 1392
Leu Val Cys Leu Ala Ile Cys Ile Phe Thr Phe Cys Phe Phe Arg Gly
450 455 460
cta cag agt gac cga aat act att cac aag aac ctt tgt atc aac ctt 1440
Leu Gln Ser Asp Arg Asn Thr Ile His Lys Asn Leu Cys Ile Asn Leu
465 470 475 480
ttc att gct gaa ttt att ttc cta ata ggc att gat aag aca aaa tat 1488
Phe Ile Ala Glu Phe Ile Phe Leu Ile Gly Ile Asp Lys Thr Lys Tyr
485 490 495
gcg att gca tgc cca ata ttt gca gga ctt cta cac ttt ttc ttt ttg 1536
Ala Ile Ala Cys Pro Ile Phe Ala Gly Leu Leu His Phe Phe Phe Leu
500 505 510
gca gct ttt gct tgg atg tgc cta gaa ggt gtg cag ctc tac cta atg 1584
Ala Ala Phe Ala Trp Met Cys Leu Glu Gly Val Gln Leu Tyr Leu Met
515 520 525
tta gtt gaa gtt ttt gaa agt gaa tat tca agg aaa aaa tat tac tat 1632
Leu Val Glu Val Phe Glu Ser Glu Tyr Ser Arg Lys Lys Tyr Tyr Tyr
530 535 540
gtt gct ggt tac ttg ttt cct gcc aca gtg gtt gga gtt tca gct gct 1680
Val Ala Gly Tyr Leu Phe Pro Ala Thr Val Val Gly Val Ser Ala Ala
545 550 555 560
att gac tat aag agc tat gga aca gaa aaa gct tgc tgg ctt cat gtt 1728
Ile Asp Tyr Lys Ser Tyr Gly Thr Glu Lys Ala Cys Trp Leu His Val
565 570 575
gat aac tac ttt ata tgg agc ttc att gga cct gtt acc ttc att att 1776
Asp Asn Tyr Phe Ile Trp Ser Phe Ile Gly Pro Val Thr Phe Ile Ile
580 585 590
ctg cta aat att atc ttc ttg gtg atc aca ttg tgc aaa atg gtg aag 1824
Leu Leu Asn Ile Ile Phe Leu Val Ile Thr Leu Cys Lys Met Val Lys
595 600 605
cat tca aac act ttg aaa cca gat tct agc agg ttg gaa aac att aag 1872
His Ser Asn Thr Leu Lys Pro Asp Ser Ser Arg Leu Glu Asn Ile Lys
610 615 620
tct tgg gtg ctt ggc gct ttc gct ctt ctg tgt ctt ctt ggc ctc acc 1920
Ser Trp Val Leu Gly Ala Phe Ala Leu Leu Cys Leu Leu Gly Leu Thr
625 630 635 640
tgg tcc ttt ggg ttg ctt ttt att aat gag gag act att gtg atg gca 1968
Trp Ser Phe Gly Leu Leu Phe Ile Asn Glu Glu Thr Ile Val Met Ala
645 650 655
tat ctc ttc act ata ttt aat gct ttc cag gga gtg ttc att ttc atc 2016
Tyr Leu Phe Thr Ile Phe Asn Ala Phe Gln Gly Val Phe Ile Phe Ile
660 665 670
ttt cac tgt gct ctc caa aag aaa gta cga aaa gaa tat ggc aag tgc 2064
Phe His Cys Ala Leu Gln Lys Lys Val Arg Lys Glu Tyr Gly Lys Cys
675 680 685
ttc aga cac tca tac tgc tgt gga ggc ctc cca act gag agt ccc cac 2112
Phe Arg His Ser Tyr Cys Cys Gly Gly Leu Pro Thr Glu Ser Pro His
690 695 700
agt tca gtg aag gca tca acc acc aga acc agt gct cgc tat tcc tct 2160
Ser Ser Val Lys Ala Ser Thr Thr Arg Thr Ser Ala Arg Tyr Ser Ser
705 710 715 720
ggc aca cag agt cgt ata aga aga atg tgg aat gat act gtg aga aaa 2208
Gly Thr Gln Ser Arg Ile Arg Arg Met Trp Asn Asp Thr Val Arg Lys
725 730 735
caa tca gaa tct tct ttt atc tca ggt gac atc aat agc act tca aca 2256
Gln Ser Glu Ser Ser Phe Ile Ser Gly Asp Ile Asn Ser Thr Ser Thr
740 745 750
ctt aat caa gga ctg aca tca cat ggt ctg aga gcc cat ctt caa gat 2304
Leu Asn Gln Gly Leu Thr Ser His Gly Leu Arg Ala His Leu Gln Asp
755 760 765
tta tat cat tta gag cta ctc tta ggc cag ata gcc tgagcagaca 2350
Leu Tyr His Leu Glu Leu Leu Leu Gly Gln Ile Ala
770 775 780
gacatgatgt gagttgtcca aagacattca ctgaacaatg ccagggatac aagtgccatg 2410
gatactctac cgctaaatgg taattttaac aacagctact cgctgcacaa gggtgactat 2470
aatgacagcg tgcaagttgt ggactgtgga ctaagtctga atgatactgc ttttgagaaa 2530
atgatcattt cagaattagt gcacaacaac ttacggggca gcagcaagac tcacaacctc 2590
gagctcacgc taccagtcaa acctgtgatt ggaggtagca gcagtgaaga tgatgctatt 2650
gtggcagatg cttcatcttt aatgcacagc gacaacccag ggctggagct ccatcacaaa 2710
gaactcgagg caccacttat tcctcagcgg actcactccc ttctgtacca accccagaag 2770
aaagtgaagt ccgagggaac tgacagctat gtctcccaac tgacagcaga ggctgaagat 2830
cacctacagt cccccaacag agactctctt tatacaagca tgcccaatct tagagactct 2890
ccctatccgg agagcagccc tgacatggaa gaagacctct ctccctccag gaggagtgag 2950
aatgaggaca tttactataa aagcatgcca aatcttggag ctggccatca gcttcagatg 3010
tgctaccaga tcagcagggg caatagtgat ggttatataa tccccattaa caaagaaggg 3070
tgtattccag aaggagatgt tagagaagga caaatgcagc tggttacaag tctttaatca 3130
tacagctaag gaattccaag ggccacatgc gagtattaat aaataaagac accattggcc 3190
tgacgcagct ccctcaaact ctgcttgaag agatgactct tgacctgtgg ttctctggtg 3250
taaaaaagat gactgaacct tgcagttctg tgaattttta taaaacatac aaaaactttg 3310
tatatacaca gagtatacta aagtgaatta tttgttacaa agaaaagaga tgccagccag 3370
gtattttaag attctgctgc tgtttagaga aattgtgaaa caagcaaaac aaaactttcc 3430
agccatttta ctgcagcagt ctgtgaacta aatttgtaaa tatggctgca ccatttttgt 3490
aggcctgcat tgtattatat acaagacgta ggctttaaaa tcctgtggga caaatttact 3550
gtaccttact attcctgaca agacttggaa aagcaggaga gatattctgc atcagtttgc 3610
agttcactgc aaatctttta cattaaggca aagattgaaa acatgcttaa ccactagcaa 3670
tcaagccaca ggccttattt catatgtttc ctcaactgta caatgaacta ttctcatgaa 3730
aaatggctaa agaaattata ttttgttcta ttgctagggt aaaataaata catttgtgtc 3790
caactgaaat ataattgtca ttaaaataat tttaaagagt gaagaaaata ttgtgaaaag 3850
ctcttggttg cacatgttat gaaatgtttt ttcttacact ttgtcatggt aagttctact 3910
cattttcact tcttttccac tgtatacagt gttctgcttt gacaaagtta gtctttatta 3970
cttacattta aatttcttat tgccaaaaga acgtgtttta tggggagaaa caaactcttt 4030
gaagccagtt atgtcatgcc ttgcacaaaa gtgatgaaat ctagaaaaga ttgtgtgtca 4090
cccctgttta ttcttgaaca gagggcaaag agggcactgg gcacttctca caaactttct 4150
agtgaacaaa aggtgcctat tcttttttaa aaaaaaaaaa 4190




10


780


PRT


Homo sapiens



10
Ala Gln Val Pro Thr Thr Ala Val Thr Ile Thr Ser Ser Ala Glu Leu
1 5 10 15
Phe Lys Thr Ile Ile Ser Thr Thr Ser Thr Thr Ser Gln Lys Gly Pro
20 25 30
Met Ser Thr Thr Val Ala Gly Ser Gln Glu Gly Ser Lys Gly Thr Lys
35 40 45
Pro Pro Pro Ala Val Ser Thr Thr Lys Ile Pro Pro Ile Thr Asn Ile
50 55 60
Phe Pro Leu Pro Glu Arg Phe Cys Glu Ala Leu Asp Ser Lys Gly Ile
65 70 75 80
Lys Trp Pro Gln Thr Gln Arg Gly Met Met Val Glu Arg Pro Cys Pro
85 90 95
Lys Gly Thr Arg Gly Thr Ala Ser Tyr Leu Cys Met Ile Ser Thr Gly
100 105 110
Thr Trp Asn Pro Lys Gly Pro Asp Leu Ser Asn Cys Thr Ser His Trp
115 120 125
Val Asn Gln Leu Ala Gln Lys Ile Arg Ser Gly Glu Asn Ala Ala Ser
130 135 140
Leu Ala Asn Glu Leu Ala Lys His Thr Lys Gly Pro Val Phe Ala Gly
145 150 155 160
Asp Val Ser Ser Ser Val Arg Leu Met Glu Gln Leu Val Asp Ile Leu
165 170 175
Asp Ala Gln Leu Gln Glu Leu Lys Pro Ser Glu Lys Asp Ser Ala Gly
180 185 190
Arg Ser Tyr Asn Lys Ala Ile Val Asp Thr Val Asp Asn Leu Leu Arg
195 200 205
Pro Glu Ala Leu Glu Ser Trp Lys His Met Asn Ser Ser Glu Gln Ala
210 215 220
His Thr Ala Thr Met Leu Leu Asp Thr Leu Glu Glu Gly Ala Phe Val
225 230 235 240
Leu Ala Asp Asn Leu Leu Glu Pro Thr Arg Val Ser Met Pro Thr Glu
245 250 255
Asn Ile Val Leu Glu Val Ala Val Leu Ser Thr Glu Gly Gln Ile Gln
260 265 270
Asp Phe Lys Phe Pro Leu Gly Ile Lys Gly Ala Gly Ser Ser Ile Gln
275 280 285
Leu Ser Ala Asn Thr Val Lys Gln Asn Ser Arg Asn Gly Leu Ala Lys
290 295 300
Leu Val Phe Ile Ile Tyr Arg Ser Leu Gly Gln Phe Leu Ser Thr Glu
305 310 315 320
Asn Ala Thr Ile Lys Leu Gly Ala Asp Phe Ile Gly Arg Asn Ser Thr
325 330 335
Ile Ala Val Asn Ser His Val Ile Ser Val Ser Ile Asn Lys Glu Ser
340 345 350
Ser Arg Val Tyr Leu Thr Asp Pro Val Leu Phe Thr Leu Pro His Ile
355 360 365
Asp Pro Asp Asn Tyr Phe Asn Ala Asn Cys Ser Phe Trp Asn Tyr Ser
370 375 380
Glu Arg Thr Met Met Gly Tyr Trp Ser Thr Gln Gly Cys Lys Leu Val
385 390 395 400
Asp Thr Asn Lys Thr Arg Thr Thr Cys Ala Cys Ser His Leu Thr Asn
405 410 415
Phe Ala Ile Leu Met Ala His Arg Glu Ile Ala Tyr Lys Asp Gly Val
420 425 430
His Glu Leu Leu Leu Thr Val Ile Thr Trp Val Gly Ile Val Ile Ser
435 440 445
Leu Val Cys Leu Ala Ile Cys Ile Phe Thr Phe Cys Phe Phe Arg Gly
450 455 460
Leu Gln Ser Asp Arg Asn Thr Ile His Lys Asn Leu Cys Ile Asn Leu
465 470 475 480
Phe Ile Ala Glu Phe Ile Phe Leu Ile Gly Ile Asp Lys Thr Lys Tyr
485 490 495
Ala Ile Ala Cys Pro Ile Phe Ala Gly Leu Leu His Phe Phe Phe Leu
500 505 510
Ala Ala Phe Ala Trp Met Cys Leu Glu Gly Val Gln Leu Tyr Leu Met
515 520 525
Leu Val Glu Val Phe Glu Ser Glu Tyr Ser Arg Lys Lys Tyr Tyr Tyr
530 535 540
Val Ala Gly Tyr Leu Phe Pro Ala Thr Val Val Gly Val Ser Ala Ala
545 550 555 560
Ile Asp Tyr Lys Ser Tyr Gly Thr Glu Lys Ala Cys Trp Leu His Val
565 570 575
Asp Asn Tyr Phe Ile Trp Ser Phe Ile Gly Pro Val Thr Phe Ile Ile
580 585 590
Leu Leu Asn Ile Ile Phe Leu Val Ile Thr Leu Cys Lys Met Val Lys
595 600 605
His Ser Asn Thr Leu Lys Pro Asp Ser Ser Arg Leu Glu Asn Ile Lys
610 615 620
Ser Trp Val Leu Gly Ala Phe Ala Leu Leu Cys Leu Leu Gly Leu Thr
625 630 635 640
Trp Ser Phe Gly Leu Leu Phe Ile Asn Glu Glu Thr Ile Val Met Ala
645 650 655
Tyr Leu Phe Thr Ile Phe Asn Ala Phe Gln Gly Val Phe Ile Phe Ile
660 665 670
Phe His Cys Ala Leu Gln Lys Lys Val Arg Lys Glu Tyr Gly Lys Cys
675 680 685
Phe Arg His Ser Tyr Cys Cys Gly Gly Leu Pro Thr Glu Ser Pro His
690 695 700
Ser Ser Val Lys Ala Ser Thr Thr Arg Thr Ser Ala Arg Tyr Ser Ser
705 710 715 720
Gly Thr Gln Ser Arg Ile Arg Arg Met Trp Asn Asp Thr Val Arg Lys
725 730 735
Gln Ser Glu Ser Ser Phe Ile Ser Gly Asp Ile Asn Ser Thr Ser Thr
740 745 750
Leu Asn Gln Gly Leu Thr Ser His Gly Leu Arg Ala His Leu Gln Asp
755 760 765
Leu Tyr His Leu Glu Leu Leu Leu Gly Gln Ile Ala
770 775 780




11


3156


DNA


Homo sapiens




CDS




(49)..(2553)





11
ctgtcccact cactctttcc cctgccgctc ctgccggcag ctccaacc atg gga ggc 57
Met Gly Gly
1
cgc gtc ttt ctc gca ttc tgt gtc tgg ctg act ctg ccg gga gct gaa 105
Arg Val Phe Leu Ala Phe Cys Val Trp Leu Thr Leu Pro Gly Ala Glu
5 10 15
acc cag gac tcc agg ggc tgt gcc cgg tgg tgc cct cag aac tcc tcg 153
Thr Gln Asp Ser Arg Gly Cys Ala Arg Trp Cys Pro Gln Asn Ser Ser
20 25 30 35
tgt gtc aat gcc acc gcc tgt cgc tgc aat cca ggg ttc agc tct ttt 201
Cys Val Asn Ala Thr Ala Cys Arg Cys Asn Pro Gly Phe Ser Ser Phe
40 45 50
tct gag atc atc acc acc ccg acg gag act tgt gac gac atc aac gag 249
Ser Glu Ile Ile Thr Thr Pro Thr Glu Thr Cys Asp Asp Ile Asn Glu
55 60 65
tgt gca aca ccg tcg aaa gtg tca tgc gga aaa ttc tcg gac tgc tgg 297
Cys Ala Thr Pro Ser Lys Val Ser Cys Gly Lys Phe Ser Asp Cys Trp
70 75 80
aac aca gag ggg agc tac gac tgc gtg tgc agc ccg gga tat gag cct 345
Asn Thr Glu Gly Ser Tyr Asp Cys Val Cys Ser Pro Gly Tyr Glu Pro
85 90 95
gtt tct ggg aca aaa aca ttc aag aat gag agc gag aac acc tgt caa 393
Val Ser Gly Thr Lys Thr Phe Lys Asn Glu Ser Glu Asn Thr Cys Gln
100 105 110 115
gat gtg gac gaa tgt cag cag aac cca agg ctc tgt aaa agc tac ggc 441
Asp Val Asp Glu Cys Gln Gln Asn Pro Arg Leu Cys Lys Ser Tyr Gly
120 125 130
acc tgc gtc aac acc ctt ggc agc tat acc tgc cag tgc ctg cct ggc 489
Thr Cys Val Asn Thr Leu Gly Ser Tyr Thr Cys Gln Cys Leu Pro Gly
135 140 145
ttc aag ttc ata cct gag gat ccg aag gtc tgc aca gat gtg aat gaa 537
Phe Lys Phe Ile Pro Glu Asp Pro Lys Val Cys Thr Asp Val Asn Glu
150 155 160
tgc acc tcc gga caa aat ccg tgc cac agc tcc acc cac tgc ctc aac 585
Cys Thr Ser Gly Gln Asn Pro Cys His Ser Ser Thr His Cys Leu Asn
165 170 175
aac gtg ggc agc tat cag tgt cgc tgc cga ccg ggc tgg caa ccg att 633
Asn Val Gly Ser Tyr Gln Cys Arg Cys Arg Pro Gly Trp Gln Pro Ile
180 185 190 195
ccg ggg tcc ccc aat ggc cca aac aat acc gtc tgt gaa gat gtg gac 681
Pro Gly Ser Pro Asn Gly Pro Asn Asn Thr Val Cys Glu Asp Val Asp
200 205 210
gag tgc agc tcc ggg cag cat cag tgt gac agc tcc acc gtc tgc ttc 729
Glu Cys Ser Ser Gly Gln His Gln Cys Asp Ser Ser Thr Val Cys Phe
215 220 225
aac acc gtg ggt tca tac agc tgc cgc tgc cgc cca ggc tgg aag ccc 777
Asn Thr Val Gly Ser Tyr Ser Cys Arg Cys Arg Pro Gly Trp Lys Pro
230 235 240
aga cac gga atc ccg aat aac caa aag gac act gtc tgt gaa gat atg 825
Arg His Gly Ile Pro Asn Asn Gln Lys Asp Thr Val Cys Glu Asp Met
245 250 255
act ttc tcc acc tgg acc ccg ccc cct gga gtc cac agc cag acg ctt 873
Thr Phe Ser Thr Trp Thr Pro Pro Pro Gly Val His Ser Gln Thr Leu
260 265 270 275
tcc cga ttc ttc gac aaa gtc cag gac ctg ggc aga gac tcc aag aca 921
Ser Arg Phe Phe Asp Lys Val Gln Asp Leu Gly Arg Asp Ser Lys Thr
280 285 290
agc tca gcc gag gtc acc atc cag aat gtc atc aaa ttg gtg gat gaa 969
Ser Ser Ala Glu Val Thr Ile Gln Asn Val Ile Lys Leu Val Asp Glu
295 300 305
ctg atg gaa gct cct gga gac gta gag gcc ctg gcg cca cct gtc cgg 1017
Leu Met Glu Ala Pro Gly Asp Val Glu Ala Leu Ala Pro Pro Val Arg
310 315 320
cac ctc ata gcc acc cag ctg ctc tca aac ctt gaa gat atc atg agg 1065
His Leu Ile Ala Thr Gln Leu Leu Ser Asn Leu Glu Asp Ile Met Arg
325 330 335
atc ctg gcc aag agc ctg cct aaa ggc ccc ttc acc tac att tcc cct 1113
Ile Leu Ala Lys Ser Leu Pro Lys Gly Pro Phe Thr Tyr Ile Ser Pro
340 345 350 355
tcg aac aca gag ctg acc ctg atg atc cag gag cgg ggg gac aag aac 1161
Ser Asn Thr Glu Leu Thr Leu Met Ile Gln Glu Arg Gly Asp Lys Asn
360 365 370
gtc act atg ggt cag agc agc gca cgc atg aag ctg aat tgg gct gtg 1209
Val Thr Met Gly Gln Ser Ser Ala Arg Met Lys Leu Asn Trp Ala Val
375 380 385
gca gct gga gcc gag gat cca ggc ccc gcc gtg gcg ggc atc ctc tcc 1257
Ala Ala Gly Ala Glu Asp Pro Gly Pro Ala Val Ala Gly Ile Leu Ser
390 395 400
atc cag aac atg acg aca ttg ctg gcc aat gcc tcc ttg aac ctg cat 1305
Ile Gln Asn Met Thr Thr Leu Leu Ala Asn Ala Ser Leu Asn Leu His
405 410 415
tcc aag aag caa gcc gaa ctg gag gag ata tat gaa agc agc atc cgt 1353
Ser Lys Lys Gln Ala Glu Leu Glu Glu Ile Tyr Glu Ser Ser Ile Arg
420 425 430 435
ggt gtc caa ctc aga cgc ctc tct gcc gtc aac tcc atc ttt ctg agc 1401
Gly Val Gln Leu Arg Arg Leu Ser Ala Val Asn Ser Ile Phe Leu Ser
440 445 450
cac aac aac acc aag gaa ctc aac tcc ccc atc ctt ttc gcc ttc tcc 1449
His Asn Asn Thr Lys Glu Leu Asn Ser Pro Ile Leu Phe Ala Phe Ser
455 460 465
cac ctt gag tcc tcc gat ggg gag gcg gga aga gac cct cct gcc aag 1497
His Leu Glu Ser Ser Asp Gly Glu Ala Gly Arg Asp Pro Pro Ala Lys
470 475 480
gac gtg atg cct ggg cca cgg cag gag ctg ctc tgt gcc ttc tgg aag 1545
Asp Val Met Pro Gly Pro Arg Gln Glu Leu Leu Cys Ala Phe Trp Lys
485 490 495
agt gac agc gac agg gga ggg cac tgg gcc acc gag ggc tgc cag gtg 1593
Ser Asp Ser Asp Arg Gly Gly His Trp Ala Thr Glu Gly Cys Gln Val
500 505 510 515
ctg ggc agc aag aac ggc agc acc acc tgc caa tgc agc cac ctg agc 1641
Leu Gly Ser Lys Asn Gly Ser Thr Thr Cys Gln Cys Ser His Leu Ser
520 525 530
agc ttt gcg atc ctt atg gct cat tat gac gtg gag gac tgg aag ctg 1689
Ser Phe Ala Ile Leu Met Ala His Tyr Asp Val Glu Asp Trp Lys Leu
535 540 545
acc ctg atc acc agg gtg gga ctg gcg ctg tca ctc ttc tgc ctg ctg 1737
Thr Leu Ile Thr Arg Val Gly Leu Ala Leu Ser Leu Phe Cys Leu Leu
550 555 560
ctg tgc atc ctc act ttc ctg ctg gtg cgg ccc atc cag ggc tcg cgc 1785
Leu Cys Ile Leu Thr Phe Leu Leu Val Arg Pro Ile Gln Gly Ser Arg
565 570 575
acc acc ata cac ctg cac ctc tgc atc tgc ctc ttc gtg ggc tcc acc 1833
Thr Thr Ile His Leu His Leu Cys Ile Cys Leu Phe Val Gly Ser Thr
580 585 590 595
atc ttc ctg gcc ggc atc gag aac gaa ggc ggc cag gtg ggg ctg cgc 1881
Ile Phe Leu Ala Gly Ile Glu Asn Glu Gly Gly Gln Val Gly Leu Arg
600 605 610
tgc cgc ctg gtg gcc ggg ctg ctg cac tac tgt ttc ctg gcc gcc ttc 1929
Cys Arg Leu Val Ala Gly Leu Leu His Tyr Cys Phe Leu Ala Ala Phe
615 620 625
tgc tgg atg agc ctc gaa ggc ctg gag ctc tac ttt ctt gtg gtg cgc 1977
Cys Trp Met Ser Leu Glu Gly Leu Glu Leu Tyr Phe Leu Val Val Arg
630 635 640
gtg ttc caa ggc cag ggc ctg agt acg cgc tgg ctc tgc ctg atc ggc 2025
Val Phe Gln Gly Gln Gly Leu Ser Thr Arg Trp Leu Cys Leu Ile Gly
645 650 655
tat ggc gtg ccc ctg ctc atc gtg ggc gtc tcg gct gcc atc tac agc 2073
Tyr Gly Val Pro Leu Leu Ile Val Gly Val Ser Ala Ala Ile Tyr Ser
660 665 670 675
aag ggc tac ggc cgc ccc aga tac tgc tgg ttg gac ttt gag cag ggc 2121
Lys Gly Tyr Gly Arg Pro Arg Tyr Cys Trp Leu Asp Phe Glu Gln Gly
680 685 690
ttc ctc tgg agc ttc ttg gga cct gtg acc ttc atc att ttg tgc aat 2169
Phe Leu Trp Ser Phe Leu Gly Pro Val Thr Phe Ile Ile Leu Cys Asn
695 700 705
gct gtc att ttc gtg act acc gtc tgg aag ctc act cag aag ttt tct 2217
Ala Val Ile Phe Val Thr Thr Val Trp Lys Leu Thr Gln Lys Phe Ser
710 715 720
gaa atc aat cca gac atg aag aaa tta aag aag gcg agg gcg ctg acc 2265
Glu Ile Asn Pro Asp Met Lys Lys Leu Lys Lys Ala Arg Ala Leu Thr
725 730 735
atc acg gcc atc gcg cag ctc ttc ctg ttg ggc tgc acc tgg gtc ttt 2313
Ile Thr Ala Ile Ala Gln Leu Phe Leu Leu Gly Cys Thr Trp Val Phe
740 745 750 755
ggc ctg ttc atc ttc gac gat cgg agc ttg gtg ctg acc tat gtg ttt 2361
Gly Leu Phe Ile Phe Asp Asp Arg Ser Leu Val Leu Thr Tyr Val Phe
760 765 770
acc atc ctc aac tgc ctg cag ggc gcc ttc ctc tac ctg ctg cac tgc 2409
Thr Ile Leu Asn Cys Leu Gln Gly Ala Phe Leu Tyr Leu Leu His Cys
775 780 785
ctg ctc aac aag aag gtt cgg gaa gaa tac cgg aag tgg gcc tgc cta 2457
Leu Leu Asn Lys Lys Val Arg Glu Glu Tyr Arg Lys Trp Ala Cys Leu
790 795 800
gtt gct ggg ggg agc aag tac tca gaa ttc acc tcc acc acg tct ggc 2505
Val Ala Gly Gly Ser Lys Tyr Ser Glu Phe Thr Ser Thr Thr Ser Gly
805 810 815
act ggc cac aat cag acc cgg gcc ctc agg gca tca gag tcc ggc ata 2553
Thr Gly His Asn Gln Thr Arg Ala Leu Arg Ala Ser Glu Ser Gly Ile
820 825 830 835
tgaaggcgca tggttctgga cggcccagca gctcctgtgg ccacagcagc tttgtacacg 2613
aagaccatcc atcctccctt cgtccaccac tctactccct ccaccctccc tccctgatcc 2673
cgtgtgccac caggagggag tggcagctat agtctggcac caaagtccag gacacccagt 2733
ggggtggagt cggagccact ggtcctgctg ctggctgcct ctctgctcca ccttgtgacc 2793
cagggtgggg acaggggctg gcccagggct gcaatgcagc atgttgccct ggcacctgtg 2853
gccagtactc gggacagact aagggcgctt gtcccatcct ggacttttcc tctcatgtct 2913
ttgctgcaga actgaagaga ctaggcgctg gggctcagct tccctcttaa gctaagactg 2973
atgtcagagg ccccatggcg aggccccttg gggccactgc ctgaggctca cggtacagag 3033
gcctgccctg cctggccggg caggaggttc tcactgttgt gaaggttgta gacgttgtgt 3093
aatgtgtttt tatctgttaa aatttttcag tgttgacact taaaattaaa cacatgcata 3153
cag 3156




12


835


PRT


Homo sapiens



12
Met Gly Gly Arg Val Phe Leu Ala Phe Cys Val Trp Leu Thr Leu Pro
1 5 10 15
Gly Ala Glu Thr Gln Asp Ser Arg Gly Cys Ala Arg Trp Cys Pro Gln
20 25 30
Asn Ser Ser Cys Val Asn Ala Thr Ala Cys Arg Cys Asn Pro Gly Phe
35 40 45
Ser Ser Phe Ser Glu Ile Ile Thr Thr Pro Thr Glu Thr Cys Asp Asp
50 55 60
Ile Asn Glu Cys Ala Thr Pro Ser Lys Val Ser Cys Gly Lys Phe Ser
65 70 75 80
Asp Cys Trp Asn Thr Glu Gly Ser Tyr Asp Cys Val Cys Ser Pro Gly
85 90 95
Tyr Glu Pro Val Ser Gly Thr Lys Thr Phe Lys Asn Glu Ser Glu Asn
100 105 110
Thr Cys Gln Asp Val Asp Glu Cys Gln Gln Asn Pro Arg Leu Cys Lys
115 120 125
Ser Tyr Gly Thr Cys Val Asn Thr Leu Gly Ser Tyr Thr Cys Gln Cys
130 135 140
Leu Pro Gly Phe Lys Phe Ile Pro Glu Asp Pro Lys Val Cys Thr Asp
145 150 155 160
Val Asn Glu Cys Thr Ser Gly Gln Asn Pro Cys His Ser Ser Thr His
165 170 175
Cys Leu Asn Asn Val Gly Ser Tyr Gln Cys Arg Cys Arg Pro Gly Trp
180 185 190
Gln Pro Ile Pro Gly Ser Pro Asn Gly Pro Asn Asn Thr Val Cys Glu
195 200 205
Asp Val Asp Glu Cys Ser Ser Gly Gln His Gln Cys Asp Ser Ser Thr
210 215 220
Val Cys Phe Asn Thr Val Gly Ser Tyr Ser Cys Arg Cys Arg Pro Gly
225 230 235 240
Trp Lys Pro Arg His Gly Ile Pro Asn Asn Gln Lys Asp Thr Val Cys
245 250 255
Glu Asp Met Thr Phe Ser Thr Trp Thr Pro Pro Pro Gly Val His Ser
260 265 270
Gln Thr Leu Ser Arg Phe Phe Asp Lys Val Gln Asp Leu Gly Arg Asp
275 280 285
Ser Lys Thr Ser Ser Ala Glu Val Thr Ile Gln Asn Val Ile Lys Leu
290 295 300
Val Asp Glu Leu Met Glu Ala Pro Gly Asp Val Glu Ala Leu Ala Pro
305 310 315 320
Pro Val Arg His Leu Ile Ala Thr Gln Leu Leu Ser Asn Leu Glu Asp
325 330 335
Ile Met Arg Ile Leu Ala Lys Ser Leu Pro Lys Gly Pro Phe Thr Tyr
340 345 350
Ile Ser Pro Ser Asn Thr Glu Leu Thr Leu Met Ile Gln Glu Arg Gly
355 360 365
Asp Lys Asn Val Thr Met Gly Gln Ser Ser Ala Arg Met Lys Leu Asn
370 375 380
Trp Ala Val Ala Ala Gly Ala Glu Asp Pro Gly Pro Ala Val Ala Gly
385 390 395 400
Ile Leu Ser Ile Gln Asn Met Thr Thr Leu Leu Ala Asn Ala Ser Leu
405 410 415
Asn Leu His Ser Lys Lys Gln Ala Glu Leu Glu Glu Ile Tyr Glu Ser
420 425 430
Ser Ile Arg Gly Val Gln Leu Arg Arg Leu Ser Ala Val Asn Ser Ile
435 440 445
Phe Leu Ser His Asn Asn Thr Lys Glu Leu Asn Ser Pro Ile Leu Phe
450 455 460
Ala Phe Ser His Leu Glu Ser Ser Asp Gly Glu Ala Gly Arg Asp Pro
465 470 475 480
Pro Ala Lys Asp Val Met Pro Gly Pro Arg Gln Glu Leu Leu Cys Ala
485 490 495
Phe Trp Lys Ser Asp Ser Asp Arg Gly Gly His Trp Ala Thr Glu Gly
500 505 510
Cys Gln Val Leu Gly Ser Lys Asn Gly Ser Thr Thr Cys Gln Cys Ser
515 520 525
His Leu Ser Ser Phe Ala Ile Leu Met Ala His Tyr Asp Val Glu Asp
530 535 540
Trp Lys Leu Thr Leu Ile Thr Arg Val Gly Leu Ala Leu Ser Leu Phe
545 550 555 560
Cys Leu Leu Leu Cys Ile Leu Thr Phe Leu Leu Val Arg Pro Ile Gln
565 570 575
Gly Ser Arg Thr Thr Ile His Leu His Leu Cys Ile Cys Leu Phe Val
580 585 590
Gly Ser Thr Ile Phe Leu Ala Gly Ile Glu Asn Glu Gly Gly Gln Val
595 600 605
Gly Leu Arg Cys Arg Leu Val Ala Gly Leu Leu His Tyr Cys Phe Leu
610 615 620
Ala Ala Phe Cys Trp Met Ser Leu Glu Gly Leu Glu Leu Tyr Phe Leu
625 630 635 640
Val Val Arg Val Phe Gln Gly Gln Gly Leu Ser Thr Arg Trp Leu Cys
645 650 655
Leu Ile Gly Tyr Gly Val Pro Leu Leu Ile Val Gly Val Ser Ala Ala
660 665 670
Ile Tyr Ser Lys Gly Tyr Gly Arg Pro Arg Tyr Cys Trp Leu Asp Phe
675 680 685
Glu Gln Gly Phe Leu Trp Ser Phe Leu Gly Pro Val Thr Phe Ile Ile
690 695 700
Leu Cys Asn Ala Val Ile Phe Val Thr Thr Val Trp Lys Leu Thr Gln
705 710 715 720
Lys Phe Ser Glu Ile Asn Pro Asp Met Lys Lys Leu Lys Lys Ala Arg
725 730 735
Ala Leu Thr Ile Thr Ala Ile Ala Gln Leu Phe Leu Leu Gly Cys Thr
740 745 750
Trp Val Phe Gly Leu Phe Ile Phe Asp Asp Arg Ser Leu Val Leu Thr
755 760 765
Tyr Val Phe Thr Ile Leu Asn Cys Leu Gln Gly Ala Phe Leu Tyr Leu
770 775 780
Leu His Cys Leu Leu Asn Lys Lys Val Arg Glu Glu Tyr Arg Lys Trp
785 790 795 800
Ala Cys Leu Val Ala Gly Gly Ser Lys Tyr Ser Glu Phe Thr Ser Thr
805 810 815
Thr Ser Gly Thr Gly His Asn Gln Thr Arg Ala Leu Arg Ala Ser Glu
820 825 830
Ser Gly Ile
835




13


867


DNA


Homo sapiens



13
tttagaacct gaggccttct gtatcacgcg tgtggagttt cagctgctat tgactataag 60
agctatggaa cagaaaaagc ttgctggctt catgttgata actactttat atggagcttc 120
attggacctg ttaccttcat tattctgcta aatattatct tcttggtgat cacattgtgc 180
aaaatggtga agcattcaaa cactttgaaa ccagattcta gcaggttgga aaacattaag 240
tcttggggtg cttggcgctt tcgctcttct gtgtcttctt ggcctcacct gggtcctttg 300
gggttgcttt ttattaatga gggagactat tgtggatggg catatctctt tcacttatat 360
ttaattgctt tccgggggag tgttccattt tccatctttc cactgtgctc tccaaaagga 420
agtaatgatc tatatcatat atcttgatct cagcttcaaa attgctactt agctaggtat 480
atatatagta gaagatttat agtaatcaac tatctcttct ctcctagtaa gtactaatcg 540
aattcggcac gagaatcctc gagttttttt tttttttttt tttatttagt tccataaatt 600
aatattctat ttactctatc attaatacaa tgaaagttat aattaaaata taatagttat 660
cggcactaaa ttctattgca ggatattcat tgcaggccta tgcaggataa tagcacctat 720
gccgcctatg caaggcaagg atgtcctcaa tgaaggagac acgctcctga actcaagggc 780
aatgaaggca cgctcgcgca cgctcaggat aactcaggga tagatcaatt aagggtaaat 840
cggtaaatca ggctccaaaa gggaaaa 867




14


20


DNA


Artificial Sequence




Description of Artificial Sequence primer





14
tggagtttca gctgctattg 20




15


20


DNA


Artificial Sequence




Description of Artificial Sequence primer





15
tgcccatcca caatagtctc 20




16


3165


DNA


Homo sapiens



16
aagaaagagt ccagccgagt atacctgact gatcctgtgc tttttaccct gccacacatt 60
gatcctgaca attatttcaa tgcaaactgc tccttctgga actactcaga gagaactatg 120
atgggatatt ggtctaccca gggctgcaag ctggttgaca ctaataaaac tcgaacaacg 180
tgtgcatgca gccacctaac caattttgca attctcatgg cccacaggga aattgcatat 240
aaagatggcg ttcatgaatt acttcttaca gtcatcacct gggtgggaat tgtcatttcc 300
cttgtttgcc tggctatctg catcttcacc ttctgctttt tccgtggcct acagagtgac 360
cgaaatacta ttcacaagaa cctttgtatc aaccttttca ttgctgaatt tattttccta 420
ataggcattg ataagacaaa atatgcgatt gcatgcccaa tatttgcagg acttctacac 480
tttttctttt tggcagcttt tgcttggatg tgcctagaag gtgtgcagct ctacctaatg 540
ttagttgaag tttttgaaag tgaatattca aggaaaaata ttactatgtt gctggttact 600
tgtttcctgc cacagtggtt ggagtttcag ctgctattga ctataagagc tatggaacag 660
aaaaagcttg ctggcttcat gttgataact actttatatg gagcttcatt ggacctgtta 720
ccttcattat tctgctaaat attatcttct tggtgatcac attgtgcaaa atggtgaagc 780
attcaaacac tttgaaacca gattctagca ggttggaaaa cattaagtct tgggtgcttg 840
gcgctttcgc tcttctgtgt cttcttggcc tcacctggtc ctttgggttg ctttttatta 900
atgaggagac tattgtgatg gcatatctct tcactatatt taatgctttc cagggagtgt 960
tcattttcat ctttcactgt gctctccaaa agaaagtacg aaaagaatat ggcaagtgct 1020
tcagacactc atactgctgt ggaggcctcc caactgagag tccccacagt tcagtgaagg 1080
catcaaccac cagaaccagt gctcgctatt cctctggcac acaggacatt cactgaacaa 1140
tgccagggat acaagtgcca tggatactct accgctaaat ggtaatttta acaacagcta 1200
ctcgctgcac aagggtgact ataatgacag cgtgcaagtt gtggactgtg gactaagtct 1260
gaatgatact gcttttgaga aaatgatcat ttcagaatta gtgcacaaca acttacgggg 1320
cagcagcaag actcacaacc tcgagctcac gctaccagtc aaacctgtga ttggaggtag 1380
cagcagtgaa gatgatgcta ttgtggcaga tgcttcatct ttaatgcaca gcgacaaccc 1440
agggctggag ctccatcaca aagaactcga ggcaccactt attcctcagc ggactcactc 1500
ccttctgtac caaccccaga agaaagtgaa gtccgaggga actgacagct atgtctccca 1560
actgacagca gaggctgaag atcacctaca gtcccccaac agagactctc tttatacaag 1620
catgcccaat cttagagact ctccctatcc ggagagcagc cctgacatgg aagaagacct 1680
ctctccctcc aggaggagtg agaatgagga catttactat aaaagcatgc caaatcttgg 1740
agctggccat cagcttcaga tgtgctacca gatcagcagg ggcaatagtg atggttatat 1800
aatccccatt aacaaagaag ggtgtattcc agaaggagat gttagagaag gacaaatgca 1860
gctggttaca agtctttaat catacagcta aggaattcca agggccacat gcgagtatta 1920
ataaataaag acaccattgg cctgacgcag ctccctcaaa ctctgcttga agagatgact 1980
cttgacctgt ggttctctgg tgtaaaaaag atgactgaac cttgcagttc tgtgaatttt 2040
tataaaacat acaaaaactt tgtatataca cagagtatac taaagtgaat tatttgttac 2100
aaagaaaaga gatgccagcc aggtatttta agattctgct gctgtttaga gaaattgtga 2160
aacaagcaaa acaaaacttt ccagccattt tactgcagca gtctgtgaac taaatttgta 2220
aatatggctg caccattttt gtaggcctgc attgtattat atacaagacg taggctttaa 2280
aatcctgtgg gacaaattta ctgtacctta ctattcctga caagacttgg aaaagcagga 2340
gagatattct gcatcagttt gcagttcact gcaaatcttt tacattaagg caaagattga 2400
aaacatgctt aaccactagc aatcaagcca caggccttat ttcatatgtt tcctcaactg 2460
tacaatgaac tattctcatg aaaaatggct aaagaaatta tattttgttc tattgctagg 2520
gtaaaataaa tacatttgtg tccaactgaa atataattgt cattaaaata attttaaaga 2580
gtgaagaaaa tattgtgaaa agctcttggt tgcacatgtt atgaaatgtt ttttcttaca 2640
ctttgtcatg gtaagttcta ctcattttca cttcttttcc actgtataca gtgttctgct 2700
ttgacaaagt tagtctttat tacttacatt taaatttctt attgccaaaa gaacgtgttt 2760
tatggggaga aacaaactct ttgaagccag ttatgtcatg ccttgcacaa aagtgatgaa 2820
atctagaaaa gattgtgtgt cacccctgtt tattcttgaa cagagggcaa agagggcact 2880
gggcacttct cacaaacttt ctagtgaaca aaaggtgcct attctttttt aaaaaaataa 2940
aataaaacat aaatattact cttccatatt ccttctgcct atatttagta attaatttat 3000
tttatgataa agttctaatg aaatgtaaat tgtttcagca aaattctgct tttttttcat 3060
ccctttgtgt aaacctgtta ataatgagcc catcactaat atccagtgta aagtttaaca 3120
cggtttgaca gtaaataaat gtgaattttt tcaaaaaaaa aaaaa 3165




17


25


DNA


Artificial Sequence




Description of Artificial Sequence primer





17
gtgatccagc tacagttgtg ctcat 25




18


26


DNA


Artificial Sequence




Description of Artificial Sequence primer





18
ctaatgcttc acagaatctc tctggc 26




19


5693


DNA


Rattus rattus




CDS




(425)..(4822)





19
gagctctgac gccgcccccg cccctccgcc tccacgcctc gctccccggg aggggcgcag 60
acccgcgcgc ccggggccgg ggccgcctcc ggagcgccgc gatccgcctt ttctttcctt 120
ttttttccct tcccttcttc ccttttaaat tttggttggt ggcggcagtg ctgggccgga 180
ggaaagaagg gacacggagt cctccctcgc tcagccaccc cctccccgct tccccctggg 240
ccgggctccg ggagatgtgc cgggcggggg gcccggcttc gcggagccgc gggaggagcg 300
cgcacggccg accccgaagc gccgctggac aggctggtgg gccaggcctt ggtaccctgg 360
tgatgcgggg caaggccccc cccacagtcc gctgagatca ccgtgcccgc ccctggcctt 420
cgcc atg gcc cgc ttg gct gca gca ctc tgg agt ctc tgt gtg acg act 469
Met Ala Arg Leu Ala Ala Ala Leu Trp Ser Leu Cys Val Thr Thr
1 5 10 15
gtc ctc gtc acc tct gct acc caa ggc ctg agc cgg gct gga ctc cca 517
Val Leu Val Thr Ser Ala Thr Gln Gly Leu Ser Arg Ala Gly Leu Pro
20 25 30
ttt gga ttg atg cgc cgg gag cta gca tgc gaa ggc tac ccc att gag 565
Phe Gly Leu Met Arg Arg Glu Leu Ala Cys Glu Gly Tyr Pro Ile Glu
35 40 45
ctg cgg tgc ccg ggc agt gac gtc atc atg gtg gag aat gca aac tat 613
Leu Arg Cys Pro Gly Ser Asp Val Ile Met Val Glu Asn Ala Asn Tyr
50 55 60
ggg cgc aca gat gac aag atc tgc gat gcc gac cct ttt cag atg gag 661
Gly Arg Thr Asp Asp Lys Ile Cys Asp Ala Asp Pro Phe Gln Met Glu
65 70 75
aac gtg cag tgc tac ctg cct gac gcc ttc aaa atc atg tca cag aga 709
Asn Val Gln Cys Tyr Leu Pro Asp Ala Phe Lys Ile Met Ser Gln Arg
80 85 90 95
tgt aat aac cga acc cag tgt gtg gtg gtg gcc ggc tct gac gcc ttt 757
Cys Asn Asn Arg Thr Gln Cys Val Val Val Ala Gly Ser Asp Ala Phe
100 105 110
cct gac ccc tgt cct gga acc tac aag tac ctg gag gtg cag tac gac 805
Pro Asp Pro Cys Pro Gly Thr Tyr Lys Tyr Leu Glu Val Gln Tyr Asp
115 120 125
tgt gtc cct tac atc ttc gtg tgc cca ggg aca ctg cag aag gtg ctg 853
Cys Val Pro Tyr Ile Phe Val Cys Pro Gly Thr Leu Gln Lys Val Leu
130 135 140
gag ccc acc tcc aca cat gaa tcg gag cac cag tct ggc gca tgg tgc 901
Glu Pro Thr Ser Thr His Glu Ser Glu His Gln Ser Gly Ala Trp Cys
145 150 155
aag gac cca ctg cag gca ggt gac cgt atc tac gtt atg ccc tgg atc 949
Lys Asp Pro Leu Gln Ala Gly Asp Arg Ile Tyr Val Met Pro Trp Ile
160 165 170 175
ccc tac cgc acg gac aca ctg acc gag tat gct tcc tgg gag gac t at 997
Pro Tyr Arg Thr Asp Thr Leu Thr Glu Tyr Ala Ser Trp Glu Asp Tyr
180 185 190
gtg gct gca cgc cac acc acc acg tac aga ctg ccc aac cgt gta gat 1045
Val Ala Ala Arg His Thr Thr Thr Tyr Arg Leu Pro Asn Arg Val Asp
195 200 205
ggc act ggc ttt gtg gta tat gat ggt gcc gtc ttc tat aac aag gaa 1093
Gly Thr Gly Phe Val Val Tyr Asp Gly Ala Val Phe Tyr Asn Lys Glu
210 215 220
cgt act cgc aac att gtc aaa tat gac ctg cgg acc cgc atc aag agc 1141
Arg Thr Arg Asn Ile Val Lys Tyr Asp Leu Arg Thr Arg Ile Lys Ser
225 230 235
gga gaa aca gtc ata aac aca gcc aac tac cac gac acc tca cct tat 1189
Gly Glu Thr Val Ile Asn Thr Ala Asn Tyr His Asp Thr Ser Pro Tyr
240 245 250 255
cgc tgg gga ggc aaa acc gac att gac ctg gca gtg gat gag aac ggg 1237
Arg Trp Gly Gly Lys Thr Asp Ile Asp Leu Ala Val Asp Glu Asn Gly
260 265 270
ctg tgg gtc atc tat gcc acc gag ggg aac aac ggg cgt ctg gtg gtg 1285
Leu Trp Val Ile Tyr Ala Thr Glu Gly Asn Asn Gly Arg Leu Val Val
275 280 285
agc cag ctc aac ccc tac aca ctg cgt ttc gag ggc acc tgg gaa aca 1333
Ser Gln Leu Asn Pro Tyr Thr Leu Arg Phe Glu Gly Thr Trp Glu Thr
290 295 300
ggc tat gac aag cgc tca gcc tcc aat gcc ttc atg gtg tgt ggt gtc 1381
Gly Tyr Asp Lys Arg Ser Ala Ser Asn Ala Phe Met Val Cys Gly Val
305 310 315
ctc tat gtg ctg cgc tct gtt tat gtg gat gac gac agt gag gca gca 1429
Leu Tyr Val Leu Arg Ser Val Tyr Val Asp Asp Asp Ser Glu Ala Ala
320 325 330 335
ggc aac cgc gtg gac tat gcc ttt aac acc aat gca aac cga gag gag 1477
Gly Asn Arg Val Asp Tyr Ala Phe Asn Thr Asn Ala Asn Arg Glu Glu
340 345 350
ccc gtc agt ctc gcc ttc ccc aac ccc tac cag ttt gta tct tct gtt 1525
Pro Val Ser Leu Ala Phe Pro Asn Pro Tyr Gln Phe Val Ser Ser Val
355 360 365
gac tac aat ccc cgg gac aac cag ctg tat gtg tgg aac aac tat ttc 1573
Asp Tyr Asn Pro Arg Asp Asn Gln Leu Tyr Val Trp Asn Asn Tyr Phe
370 375 380
gtg gtg cgc tac agc ctg gag ttt gga ccc cca gat ccc agt gct ggc 1621
Val Val Arg Tyr Ser Leu Glu Phe Gly Pro Pro Asp Pro Ser Ala Gly
385 390 395
cca gcc act tcc cca cct ctc agt acc acc acc aca gct cgg cct acg 1669
Pro Ala Thr Ser Pro Pro Leu Ser Thr Thr Thr Thr Ala Arg Pro Thr
400 405 410 415
ccc ctc acc agc aca gcc tca cct gca gcc acc act cca ctc cgc cgg 1717
Pro Leu Thr Ser Thr Ala Ser Pro Ala Ala Thr Thr Pro Leu Arg Arg
420 425 430
gcg ccc ctc acc acg cac cca gta ggt gcc atc aac cag ctg gga cct 1765
Ala Pro Leu Thr Thr His Pro Val Gly Ala Ile Asn Gln Leu Gly Pro
435 440 445
gac ctg cct cca gcc aca gcc cca gca ccc agt acc cgg cgg cct cca 1813
Asp Leu Pro Pro Ala Thr Ala Pro Ala Pro Ser Thr Arg Arg Pro Pro
450 455 460
gcc ccc aat ctg cat gtg tcc cct gag ctc ttc tgt gaa ccc cga gag 1861
Ala Pro Asn Leu His Val Ser Pro Glu Leu Phe Cys Glu Pro Arg Glu
465 470 475
gtc cgg cgg gtc cag tgg cca gct acc cag cag ggt atg ctg gta gag 1909
Val Arg Arg Val Gln Trp Pro Ala Thr Gln Gln Gly Met Leu Val Glu
480 485 490 495
aga cct tgc ccc aag gga act cga gga att gcc tcg ttc cag tgc ctc 1957
Arg Pro Cys Pro Lys Gly Thr Arg Gly Ile Ala Ser Phe Gln Cys Leu
500 505 510
cca gct ctg ggg ctc tgg aat cct cgg ggc cct gac ctc agc aac tgc 2005
Pro Ala Leu Gly Leu Trp Asn Pro Arg Gly Pro Asp Leu Ser Asn Cys
515 520 525
act tcc ccc tgg gtc aac caa gtc gcc cag aag atc aag agt gga gag 2053
Thr Ser Pro Trp Val Asn Gln Val Ala Gln Lys Ile Lys Ser Gly Glu
530 535 540
aat gca gcc aac att gct agt gag ctg gcc cgc cac acg cgg ggc tcc 2101
Asn Ala Ala Asn Ile Ala Ser Glu Leu Ala Arg His Thr Arg Gly Ser
545 550 555
atc tat gct ggg gac gtg tcc tca tcg gtg aag ctg atg gag caa ctg 2149
Ile Tyr Ala Gly Asp Val Ser Ser Ser Val Lys Leu Met Glu Gln Leu
560 565 570 575
cta gat atc ctg gat gcc cag ctc cag gcc cta cgg ccc att gaa cga 2197
Leu Asp Ile Leu Asp Ala Gln Leu Gln Ala Leu Arg Pro Ile Glu Arg
580 585 590
gag tca gct ggc aag aac tac aat aag atg cac aag cga gag aga acc 2245
Glu Ser Ala Gly Lys Asn Tyr Asn Lys Met His Lys Arg Glu Arg Thr
595 600 605
tgc aag gac tat atc aag gct gtg gtg gag aca gtg gac aac ctg ctt 2293
Cys Lys Asp Tyr Ile Lys Ala Val Val Glu Thr Val Asp Asn Leu Leu
610 615 620
cgg cca gag gca ctt gag tca tgg aaa gac atg aat gcc acc gaa cag 2341
Arg Pro Glu Ala Leu Glu Ser Trp Lys Asp Met Asn Ala Thr Glu Gln
625 630 635
gtc cat acg gcc acc atg ctc cta gat gtc tta gag gag ggt gcc ttc 2389
Val His Thr Ala Thr Met Leu Leu Asp Val Leu Glu Glu Gly Ala Phe
640 645 650 655
ctg ctg gcc gac aat gtc aga gaa cct gct cgc ttc ttg gct gcc aag 2437
Leu Leu Ala Asp Asn Val Arg Glu Pro Ala Arg Phe Leu Ala Ala Lys
660 665 670
cag aat gtg gtc ctg gag gtc act gtc ctg agc aca gag ggt caa gtg 2485
Gln Asn Val Val Leu Glu Val Thr Val Leu Ser Thr Glu Gly Gln Val
675 680 685
cag gag ttg gtg ttc ccc cag gag tat gcc agt gag agc tcc att cag 2533
Gln Glu Leu Val Phe Pro Gln Glu Tyr Ala Ser Glu Ser Ser Ile Gln
690 695 700
ctg tcc gcc aac acc atc aag cag aac agc cgc aat ggt gtg gtg aag 2581
Leu Ser Ala Asn Thr Ile Lys Gln Asn Ser Arg Asn Gly Val Val Lys
705 710 715
gtt gtc ttc att ctc tac aac aac ctg ggc ctc ttc ttg tcc acg gag 2629
Val Val Phe Ile Leu Tyr Asn Asn Leu Gly Leu Phe Leu Ser Thr Glu
720 725 730 735
aat gcc aca gtg aag ctg gca ggt gag gca ggg acc ggt ggc cct gga 2677
Asn Ala Thr Val Lys Leu Ala Gly Glu Ala Gly Thr Gly Gly Pro Gly
740 745 750
ggt gcc tcc ctg gtg gtt aac tca cag gtc atc gca gca tcc atc aat 2725
Gly Ala Ser Leu Val Val Asn Ser Gln Val Ile Ala Ala Ser Ile Asn
755 760 765
aag gag tcc agc cgt gtc ttc ctc atg gac cct gtc atc ttt act gtg 2773
Lys Glu Ser Ser Arg Val Phe Leu Met Asp Pro Val Ile Phe Thr Val
770 775 780
gcc cac ttg gag gcc aag aac cac ttc aat gca aac tgc tcc ttc tgg 2821
Ala His Leu Glu Ala Lys Asn His Phe Asn Ala Asn Cys Ser Phe Trp
785 790 795
aac tac tca gag cgc tcc atg ctg ggc tac tgg tca acc cag ggc tgc 2869
Asn Tyr Ser Glu Arg Ser Met Leu Gly Tyr Trp Ser Thr Gln Gly Cys
800 805 810 815
cga ctg gtg gag tcc aat aag acc cat acc aca tgt gcc tgc agc cac 2917
Arg Leu Val Glu Ser Asn Lys Thr His Thr Thr Cys Ala Cys Ser His
820 825 830
ctc acc aac ttc gca gtg ctc atg gct cac cga gag atc tac caa ggc 2965
Leu Thr Asn Phe Ala Val Leu Met Ala His Arg Glu Ile Tyr Gln Gly
835 840 845
cgt att aat gag ctg ttg ctg tca gtc atc acc tgg gtt ggc att gtc 3013
Arg Ile Asn Glu Leu Leu Leu Ser Val Ile Thr Trp Val Gly Ile Val
850 855 860
atc tcc ctg gtc tgt ctg gct atc tgc atc tcc acc ttc tgc ttc ctg 3061
Ile Ser Leu Val Cys Leu Ala Ile Cys Ile Ser Thr Phe Cys Phe Leu
865 870 875
cgg ggc ctg cag acc gac cgc aac acc atc cac aag aac ctg tgc atc 3109
Arg Gly Leu Gln Thr Asp Arg Asn Thr Ile His Lys Asn Leu Cys Ile
880 885 890 895
aac ctc ttc ctt gca gag ctg ctc ttc ctg gtt gga ata gac aaa act 3157
Asn Leu Phe Leu Ala Glu Leu Leu Phe Leu Val Gly Ile Asp Lys Thr
900 905 910
cag tat gag gtc gcc tgc cct atc ttt gcg ggc ctg ctg cac tac ttc 3205
Gln Tyr Glu Val Ala Cys Pro Ile Phe Ala Gly Leu Leu His Tyr Phe
915 920 925
ttc ctg gcc gcc ttc tcc tgg ctg tgc cta gag ggc gtg cac ctc tac 3253
Phe Leu Ala Ala Phe Ser Trp Leu Cys Leu Glu Gly Val His Leu Tyr
930 935 940
ctc ctg ctg gtc gag gtg ttc gag agc gaa tat tca cgc acc aag tac 3301
Leu Leu Leu Val Glu Val Phe Glu Ser Glu Tyr Ser Arg Thr Lys Tyr
945 950 955
tat tac ctg ggc ggc tac tgc ttc cca gcc ctg gtg gta ggc atc gca 3349
Tyr Tyr Leu Gly Gly Tyr Cys Phe Pro Ala Leu Val Val Gly Ile Ala
960 965 970 975
gcc gcc att gac tac cga agc tac ggc act gag aag gcc tgc tgg ctg 3397
Ala Ala Ile Asp Tyr Arg Ser Tyr Gly Thr Glu Lys Ala Cys Trp Leu
980 985 990
agg gtg gat aac tat ttc atc tgg agc ttc att ggg ccc gtc tcc ttt 3445
Arg Val Asp Asn Tyr Phe Ile Trp Ser Phe Ile Gly Pro Val Ser Phe
995 1000 1005
gtt att gtg gtg aac ctg gtg ttc ctc atg gtg acc ctg cac aag atg 3493
Val Ile Val Val Asn Leu Val Phe Leu Met Val Thr Leu His Lys Met
1010 1015 1020
atc cga agc tca tcc gtg ctc aag cct gac tcc agc cgc ctt gac aac 3541
Ile Arg Ser Ser Ser Val Leu Lys Pro Asp Ser Ser Arg Leu Asp Asn
1025 1030 1035
atc aag tcc tgg gcg ctg ggt gcc att gca ctg ctc ttc ctg ctg ggc 3589
Ile Lys Ser Trp Ala Leu Gly Ala Ile Ala Leu Leu Phe Leu Leu Gly
1040 1045 1050 1055
ctc acc tgg gct ttc ggc ctc ctc ttc atc aac aag gag tca gta gta 3637
Leu Thr Trp Ala Phe Gly Leu Leu Phe Ile Asn Lys Glu Ser Val Val
1060 1065 1070
atg gct tac ctc ttc aca acc ttc aac gcc ttc cag ggg gtc ttc atc 3685
Met Ala Tyr Leu Phe Thr Thr Phe Asn Ala Phe Gln Gly Val Phe Ile
1075 1080 1085
ttt gtc ttt cac tgc gcc tta cag aaa aag gtg cac aag gag tac agc 3733
Phe Val Phe His Cys Ala Leu Gln Lys Lys Val His Lys Glu Tyr Ser
1090 1095 1100
aag tgc ctg cgt cac tcc tac tgc tgc att cgc tcc cca cct ggg ggg 3781
Lys Cys Leu Arg His Ser Tyr Cys Cys Ile Arg Ser Pro Pro Gly Gly
1105 1110 1115
gct cac ggc tcc ctt aag acc tca gcc atg cga agt aac acc cgc tac 3829
Ala His Gly Ser Leu Lys Thr Ser Ala Met Arg Ser Asn Thr Arg Tyr
1120 1125 1130 1135
tac aca ggg acc cag agc cga atc cgg agg atg tgg aat gac acc gtg 3877
Tyr Thr Gly Thr Gln Ser Arg Ile Arg Arg Met Trp Asn Asp Thr Val
1140 1145 1150
agg aag cag aca gag tcg tcc ttt atg gca ggg gac atc aac agc acc 3925
Arg Lys Gln Thr Glu Ser Ser Phe Met Ala Gly Asp Ile Asn Ser Thr
1155 1160 1165
ccc acc ctg aac cga ggt acc atg ggg aac cac cta ctg acc aac cct 3973
Pro Thr Leu Asn Arg Gly Thr Met Gly Asn His Leu Leu Thr Asn Pro
1170 1175 1180
gtg cta cag ccc cgt ggg ggc act agc cca tac aat aca ctc att gca 4021
Val Leu Gln Pro Arg Gly Gly Thr Ser Pro Tyr Asn Thr Leu Ile Ala
1185 1190 1195
gag tct gtg ggc ttc aat ccc tcc tcg ccc cca gtc ttc aac tcc cca 4069
Glu Ser Val Gly Phe Asn Pro Ser Ser Pro Pro Val Phe Asn Ser Pro
1200 1205 1210 1215
gga agc tac agg gaa cct aag cac ccc ttg ggc ggc cgg gaa gcc tgt 4117
Gly Ser Tyr Arg Glu Pro Lys His Pro Leu Gly Gly Arg Glu Ala Cys
1220 1225 1230
ggc atg gac aca ctg ccc ctt aat ggc aac ttc aac aac agc tac tcc 4165
Gly Met Asp Thr Leu Pro Leu Asn Gly Asn Phe Asn Asn Ser Tyr Ser
1235 1240 1245
ttg cga agt ggt gat ttc cct ccg ggg gat ggg ggt cct gag cca ccc 4213
Leu Arg Ser Gly Asp Phe Pro Pro Gly Asp Gly Gly Pro Glu Pro Pro
1250 1255 1260
cga ggc cga aac cta gcg gat gct gcg gcc ttt gag aag atg atc atc 4261
Arg Gly Arg Asn Leu Ala Asp Ala Ala Ala Phe Glu Lys Met Ile Ile
1265 1270 1275
tca gag ctg gtg cac aac aac ctt cgg ggg gcc agt ggg ggc gcc aaa 4309
Ser Glu Leu Val His Asn Asn Leu Arg Gly Ala Ser Gly Gly Ala Lys
1280 1285 1290 1295
ggt cct cca cca gag cct cct gtg cca ccc gtg cca gga gtc agt gag 4357
Gly Pro Pro Pro Glu Pro Pro Val Pro Pro Val Pro Gly Val Ser Glu
1300 1305 1310
gac gag gct ggt ggg cct ggg ggt gct gac cgg gct gag att gaa ctt 4405
Asp Glu Ala Gly Gly Pro Gly Gly Ala Asp Arg Ala Glu Ile Glu Leu
1315 1320 1325
ctc tac aag gcc ctg gag gag cca ctg ctg ctg ccc cgg gcc cag tcg 4453
Leu Tyr Lys Ala Leu Glu Glu Pro Leu Leu Leu Pro Arg Ala Gln Ser
1330 1335 1340
gtg ctg tac cag agt gat ctg gat gag tcg gag agc tgt acg gca gag 4501
Val Leu Tyr Gln Ser Asp Leu Asp Glu Ser Glu Ser Cys Thr Ala Glu
1345 1350 1355
gat ggg gcc acc agc cgg ccc ctc tcc tcc cct ccc ggc cgg gac tcc 4549
Asp Gly Ala Thr Ser Arg Pro Leu Ser Ser Pro Pro Gly Arg Asp Ser
1360 1365 1370 1375
ctc tat gcc agc ggg gcc aac ctg cgg gac tcg ccc tcc tac ccg gac 4597
Leu Tyr Ala Ser Gly Ala Asn Leu Arg Asp Ser Pro Ser Tyr Pro Asp
1380 1385 1390
agc agc ccc gaa ggg cct aat gag gcc ctg ccc cct ccc cca cct gct 4645
Ser Ser Pro Glu Gly Pro Asn Glu Ala Leu Pro Pro Pro Pro Pro Ala
1395 1400 1405
ccc cct ggg ccc cca gaa atc tac tac acc tct cgc ccg ccg gcc ctg 4693
Pro Pro Gly Pro Pro Glu Ile Tyr Tyr Thr Ser Arg Pro Pro Ala Leu
1410 1415 1420
gtg gct cgg aat ccc cta cag ggc tac tac cag gtg cgg cgg ccc agc 4741
Val Ala Arg Asn Pro Leu Gln Gly Tyr Tyr Gln Val Arg Arg Pro Ser
1425 1430 1435
cat gag ggc tac ctg gca gcc ccc agc ctt gag ggg cca ggg ccc gat 4789
His Glu Gly Tyr Leu Ala Ala Pro Ser Leu Glu Gly Pro Gly Pro Asp
1440 1445 1450 1455
ggg gat ggg caa atg cag ttg gtc act agt ctc tgaggggcct catggaccag 4842
Gly Asp Gly Gln Met Gln Leu Val Thr Ser Leu
1460 1465
aggcctggcc agggagggaa tccaggaggg gctctggtgg gagcagagac tgatggaggc 4902
agtggctggt gggccactct ctccaggtgc ccctctgcct gtgggcccca cagtcccctt 4962
ggggactatg acctgggccc caggtgccag ggttagtaga cagggtttcc accagccaca 5022
agccccagct tctttagggg agtgcattga ggagaagccc ccagggccct aggagtgagg 5082
gagaagctgg taggtgtgac caacgtccaa agctccctcc ctttggaggg agaaagcaag 5142
ggataaggct tccctaggtg tacaggggtg gccacttttg aggtggccga agccttgcag 5202
gatacaccct atctgctgct catcttcttc gtccaccaga aaggagcagt gggacagatg 5262
gacaggtcct tccatgctac agttccttgc ttcttggaga ctgggcctaa catcctgaga 5322
gagcccaggc ccaggggatg gatggggttg tgagggctgg tggttaatgg tggaactttc 5382
tctgaagctc ctttctccct tgctattggt ccctatctcc cgagcaagcc taccctaaac 5442
ccccagagtg cacccaatga ccccctccct tggggtgact cctgatgaag cacaactccc 5502
cgcagggccc caacccactg cagtggccat atttgggcag ttcccagtcc tgtgggctgg 5562
gctatctggg gagcagatgt ggggtctggg gctccctgag gagtgggtcc tgggtttgga 5622
tctttcccta gggggtcctc ttacccttct cttcctcccc tattgctgta aatatttcaa 5682
caaaatggaa a 5693




20


1466


PRT


Rattus rattus



20
Met Ala Arg Leu Ala Ala Ala Leu Trp Ser Leu Cys Val Thr Thr Val
1 5 10 15
Leu Val Thr Ser Ala Thr Gln Gly Leu Ser Arg Ala Gly Leu Pro Phe
20 25 30
Gly Leu Met Arg Arg Glu Leu Ala Cys Glu Gly Tyr Pro Ile Glu Leu
35 40 45
Arg Cys Pro Gly Ser Asp Val Ile Met Val Glu Asn Ala Asn Tyr Gly
50 55 60
Arg Thr Asp Asp Lys Ile Cys Asp Ala Asp Pro Phe Gln Met Glu Asn
65 70 75 80
Val Gln Cys Tyr Leu Pro Asp Ala Phe Lys Ile Met Ser Gln Arg Cys
85 90 95
Asn Asn Arg Thr Gln Cys Val Val Val Ala Gly Ser Asp Ala Phe Pro
100 105 110
Asp Pro Cys Pro Gly Thr Tyr Lys Tyr Leu Glu Val Gln Tyr Asp Cys
115 120 125
Val Pro Tyr Ile Phe Val Cys Pro Gly Thr Leu Gln Lys Val Leu Glu
130 135 140
Pro Thr Ser Thr His Glu Ser Glu His Gln Ser Gly Ala Trp Cys Lys
145 150 155 160
Asp Pro Leu Gln Ala Gly Asp Arg Ile Tyr Val Met Pro Trp Ile Pro
165 170 175
Tyr Arg Thr Asp Thr Leu Thr Glu Tyr Ala Ser Trp Glu Asp Tyr Val
180 185 190
Ala Ala Arg His Thr Thr Thr Tyr Arg Leu Pro Asn Arg Val Asp Gly
195 200 205
Thr Gly Phe Val Val Tyr Asp Gly Ala Val Phe Tyr Asn Lys Glu Arg
210 215 220
Thr Arg Asn Ile Val Lys Tyr Asp Leu Arg Thr Arg Ile Lys Ser Gly
225 230 235 240
Glu Thr Val Ile Asn Thr Ala Asn Tyr His Asp Thr Ser Pro Tyr Arg
245 250 255
Trp Gly Gly Lys Thr Asp Ile Asp Leu Ala Val Asp Glu Asn Gly Leu
260 265 270
Trp Val Ile Tyr Ala Thr Glu Gly Asn Asn Gly Arg Leu Val Val Ser
275 280 285
Gln Leu Asn Pro Tyr Thr Leu Arg Phe Glu Gly Thr Trp Glu Thr Gly
290 295 300
Tyr Asp Lys Arg Ser Ala Ser Asn Ala Phe Met Val Cys Gly Val Leu
305 310 315 320
Tyr Val Leu Arg Ser Val Tyr Val Asp Asp Asp Ser Glu Ala Ala Gly
325 330 335
Asn Arg Val Asp Tyr Ala Phe Asn Thr Asn Ala Asn Arg Glu Glu Pro
340 345 350
Val Ser Leu Ala Phe Pro Asn Pro Tyr Gln Phe Val Ser Ser Val Asp
355 360 365
Tyr Asn Pro Arg Asp Asn Gln Leu Tyr Val Trp Asn Asn Tyr Phe Val
370 375 380
Val Arg Tyr Ser Leu Glu Phe Gly Pro Pro Asp Pro Ser Ala Gly Pro
385 390 395 400
Ala Thr Ser Pro Pro Leu Ser Thr Thr Thr Thr Ala Arg Pro Thr Pro
405 410 415
Leu Thr Ser Thr Ala Ser Pro Ala Ala Thr Thr Pro Leu Arg Arg Ala
420 425 430
Pro Leu Thr Thr His Pro Val Gly Ala Ile Asn Gln Leu Gly Pro Asp
435 440 445
Leu Pro Pro Ala Thr Ala Pro Ala Pro Ser Thr Arg Arg Pro Pro Ala
450 455 460
Pro Asn Leu His Val Ser Pro Glu Leu Phe Cys Glu Pro Arg Glu Val
465 470 475 480
Arg Arg Val Gln Trp Pro Ala Thr Gln Gln Gly Met Leu Val Glu Arg
485 490 495
Pro Cys Pro Lys Gly Thr Arg Gly Ile Ala Ser Phe Gln Cys Leu Pro
500 505 510
Ala Leu Gly Leu Trp Asn Pro Arg Gly Pro Asp Leu Ser Asn Cys Thr
515 520 525
Ser Pro Trp Val Asn Gln Val Ala Gln Lys Ile Lys Ser Gly Glu Asn
530 535 540
Ala Ala Asn Ile Ala Ser Glu Leu Ala Arg His Thr Arg Gly Ser Ile
545 550 555 560
Tyr Ala Gly Asp Val Ser Ser Ser Val Lys Leu Met Glu Gln Leu Leu
565 570 575
Asp Ile Leu Asp Ala Gln Leu Gln Ala Leu Arg Pro Ile Glu Arg Glu
580 585 590
Ser Ala Gly Lys Asn Tyr Asn Lys Met His Lys Arg Glu Arg Thr Cys
595 600 605
Lys Asp Tyr Ile Lys Ala Val Val Glu Thr Val Asp Asn Leu Leu Arg
610 615 620
Pro Glu Ala Leu Glu Ser Trp Lys Asp Met Asn Ala Thr Glu Gln Val
625 630 635 640
His Thr Ala Thr Met Leu Leu Asp Val Leu Glu Glu Gly Ala Phe Leu
645 650 655
Leu Ala Asp Asn Val Arg Glu Pro Ala Arg Phe Leu Ala Ala Lys Gln
660 665 670
Asn Val Val Leu Glu Val Thr Val Leu Ser Thr Glu Gly Gln Val Gln
675 680 685
Glu Leu Val Phe Pro Gln Glu Tyr Ala Ser Glu Ser Ser Ile Gln Leu
690 695 700
Ser Ala Asn Thr Ile Lys Gln Asn Ser Arg Asn Gly Val Val Lys Val
705 710 715 720
Val Phe Ile Leu Tyr Asn Asn Leu Gly Leu Phe Leu Ser Thr Glu Asn
725 730 735
Ala Thr Val Lys Leu Ala Gly Glu Ala Gly Thr Gly Gly Pro Gly Gly
740 745 750
Ala Ser Leu Val Val Asn Ser Gln Val Ile Ala Ala Ser Ile Asn Lys
755 760 765
Glu Ser Ser Arg Val Phe Leu Met Asp Pro Val Ile Phe Thr Val Ala
770 775 780
His Leu Glu Ala Lys Asn His Phe Asn Ala Asn Cys Ser Phe Trp Asn
785 790 795 800
Tyr Ser Glu Arg Ser Met Leu Gly Tyr Trp Ser Thr Gln Gly Cys Arg
805 810 815
Leu Val Glu Ser Asn Lys Thr His Thr Thr Cys Ala Cys Ser His Leu
820 825 830
Thr Asn Phe Ala Val Leu Met Ala His Arg Glu Ile Tyr Gln Gly Arg
835 840 845
Ile Asn Glu Leu Leu Leu Ser Val Ile Thr Trp Val Gly Ile Val Ile
850 855 860
Ser Leu Val Cys Leu Ala Ile Cys Ile Ser Thr Phe Cys Phe Leu Arg
865 870 875 880
Gly Leu Gln Thr Asp Arg Asn Thr Ile His Lys Asn Leu Cys Ile Asn
885 890 895
Leu Phe Leu Ala Glu Leu Leu Phe Leu Val Gly Ile Asp Lys Thr Gln
900 905 910
Tyr Glu Val Ala Cys Pro Ile Phe Ala Gly Leu Leu His Tyr Phe Phe
915 920 925
Leu Ala Ala Phe Ser Trp Leu Cys Leu Glu Gly Val His Leu Tyr Leu
930 935 940
Leu Leu Val Glu Val Phe Glu Ser Glu Tyr Ser Arg Thr Lys Tyr Tyr
945 950 955 960
Tyr Leu Gly Gly Tyr Cys Phe Pro Ala Leu Val Val Gly Ile Ala Ala
965 970 975
Ala Ile Asp Tyr Arg Ser Tyr Gly Thr Glu Lys Ala Cys Trp Leu Arg
980 985 990
Val Asp Asn Tyr Phe Ile Trp Ser Phe Ile Gly Pro Val Ser Phe Val
995 1000 1005
Ile Val Val Asn Leu Val Phe Leu Met Val Thr Leu His Lys Met Ile
1010 1015 1020
Arg Ser Ser Ser Val Leu Lys Pro Asp Ser Ser Arg Leu Asp Asn Ile
1025 1030 1035 1104
Lys Ser Trp Ala Leu Gly Ala Ile Ala Leu Leu Phe Leu Leu Gly Leu
1045 1050 1055
Thr Trp Ala Phe Gly Leu Leu Phe Ile Asn Lys Glu Ser Val Val Met
1060 1065 1070
Ala Tyr Leu Phe Thr Thr Phe Asn Ala Phe Gln Gly Val Phe Ile Phe
1075 1080 1085
Val Phe His Cys Ala Leu Gln Lys Lys Val His Lys Glu Tyr Ser Lys
1090 1095 1100
Cys Leu Arg His Ser Tyr Cys Cys Ile Arg Ser Pro Pro Gly Gly Ala
1105 1110 1115 1112
His Gly Ser Leu Lys Thr Ser Ala Met Arg Ser Asn Thr Arg Tyr Tyr
1125 1130 1135
Thr Gly Thr Gln Ser Arg Ile Arg Arg Met Trp Asn Asp Thr Val Arg
1140 1145 1150
Lys Gln Thr Glu Ser Ser Phe Met Ala Gly Asp Ile Asn Ser Thr Pro
1155 1160 1165
Thr Leu Asn Arg Gly Thr Met Gly Asn His Leu Leu Thr Asn Pro Val
1170 1175 1180
Leu Gln Pro Arg Gly Gly Thr Ser Pro Tyr Asn Thr Leu Ile Ala Glu
1185 1190 1195 1120
Ser Val Gly Phe Asn Pro Ser Ser Pro Pro Val Phe Asn Ser Pro Gly
1205 1210 1215
Ser Tyr Arg Glu Pro Lys His Pro Leu Gly Gly Arg Glu Ala Cys Gly
1220 1225 1230
Met Asp Thr Leu Pro Leu Asn Gly Asn Phe Asn Asn Ser Tyr Ser Leu
1235 1240 1245
Arg Ser Gly Asp Phe Pro Pro Gly Asp Gly Gly Pro Glu Pro Pro Arg
1250 1255 1260
Gly Arg Asn Leu Ala Asp Ala Ala Ala Phe Glu Lys Met Ile Ile Ser
1265 1270 1275 1128
Glu Leu Val His Asn Asn Leu Arg Gly Ala Ser Gly Gly Ala Lys Gly
1285 1290 1295
Pro Pro Pro Glu Pro Pro Val Pro Pro Val Pro Gly Val Ser Glu Asp
1300 1305 1310
Glu Ala Gly Gly Pro Gly Gly Ala Asp Arg Ala Glu Ile Glu Leu Leu
1315 1320 1325
Tyr Lys Ala Leu Glu Glu Pro Leu Leu Leu Pro Arg Ala Gln Ser Val
1330 1335 1340
Leu Tyr Gln Ser Asp Leu Asp Glu Ser Glu Ser Cys Thr Ala Glu Asp
1345 1350 1355 1136
Gly Ala Thr Ser Arg Pro Leu Ser Ser Pro Pro Gly Arg Asp Ser Leu
1365 1370 1375
Tyr Ala Ser Gly Ala Asn Leu Arg Asp Ser Pro Ser Tyr Pro Asp Ser
1380 1385 1390
Ser Pro Glu Gly Pro Asn Glu Ala Leu Pro Pro Pro Pro Pro Ala Pro
1395 1400 1405
Pro Gly Pro Pro Glu Ile Tyr Tyr Thr Ser Arg Pro Pro Ala Leu Val
1410 1415 1420
Ala Arg Asn Pro Leu Gln Gly Tyr Tyr Gln Val Arg Arg Pro Ser His
1425 1430 1435 1144
Glu Gly Tyr Leu Ala Ala Pro Ser Leu Glu Gly Pro Gly Pro Asp Gly
1445 1450 1455
Asp Gly Gln Met Gln Leu Val Thr Ser Leu
1460 1465




21


829


DNA


Homo sapiens



21
agtggttgga gtttcagctg ctattgacta taagagctat ggaacagaaa aagcttgctg 60
gcttcatgtt gataactact ttatatggag cttcattgga cctgttacct tcattattct 120
gctaaatatt atcttcttgg tgatcacatt gtgcaaaatg gtgaagcatt caaacacttt 180
gaaaccagat tctagcaggt tggaaaacat taagtcttgg gtgcttggcg ctttcgctct 240
tctgtgtctt cttggcctca cctggtcctt tgggttgctt tttattaatg aggagactat 300
tgtgatggca tatctcttca ctatatttaa tgctttccag ggagtgttca ttttcatctt 360
tcactgtgct ctccaaaaga aagtacgaaa agaatatggc aagtgcttca gacactcata 420
ctgctgtgga ggcctcccaa ctgagagtcc ccacagttca gtgaaggcat caaccaccag 480
aaccagtgct cgctattcct ctggcacaca gagtcgtata agaagaatgt ggaatgatac 540
tgtgagaaaa caatcagaat cttcttttat ctcaggtgac atcaatagca cttcaacact 600
taatcaagga cattcactga acaatgccag ggatacaagt gccatggata ctctaccgct 660
aaatggtaat tttaacaaca gctactcgct gcacaagggt gactataatg acagcgtgca 720
agttgtggac tgtggactaa gtctgaatga tactgctttt gagaaaatga tcatttcaga 780
attagtgcac aacaacttac ggggcagcag caagactcac aacctcgag 829




22


429


DNA


Homo sapiens



22
ggggactggt gcccccacgc gtgtcagcac ggggttggtc agcaggtggt tccccatggt 60
acctcggttc agggtggggg tgctgttgat gtcacccgcc atgaaggagg actccgtctg 120
tttcctcaca gtgtcattcc acatcctccg aattcggctc tgggtccctg tgtagtagcg 180
ggtgttgctt cgcatggctg aggtcttgag ggatccgtga gtgcccccgg gtgggatgcg 240
gatgcagcag taggagtgac gcaggcactt gctgtactcc ttgtgcacct tcttctgtaa 300
ggcgcagtga aagacgaaga tgaagacccc ctggaaggcg ttgaaggtgg tgaagagata 360
ggccatgacc accgactcct tgttgatgaa gaggaggccg aaagcccagg tgaggcccag 420
caggaacag 429




23


280


DNA


Homo sapiens



23
ctgagtcttg tcgatcccga ccaggaagag cagctcagcc aggaagaggt tgatgcacag 60
gttcttgtgg atggtgttgc ggtcggtctg cagcccccgc agaagcagaa ggtggagatg 120
cagatggcca agcagaccag ggagatcaca atgcccaccc aggtgatgac cgacagcagc 180
agctcgttga tgcggccctg gtagatctca cggtgagcca tgagcacagc gaagttggtg 240
aggtggctgc aggcacacgt ggtatgggtc ttgttggact 280




24


24


DNA


Artificial Sequence




Description of Artificial Sequence primer





24
tcttcagctg agctcttcaa aacc 24




25


24


DNA


Artificial Sequence




Description of Artificial Sequence primer





25
ggttttgaag agctcagctg aaga 24




26


51


DNA


Artificial Sequence




Description of Artificial Sequence primer





26
cagcagggat ccaccatggt gtcttctggt tgcagaatgc gaagtctgtg g 51




27


55


DNA


Artificial Sequence




Description of Artificial Sequence primer





27
gacgatgacg cggccgccta ttaaagactt gtaaccagct gcatttgtcc ttctc 55




28


27


DNA


Artificial Sequence




Description of Artificial Sequence primer





28
tacaaccatg ggcacaactg tagctgg 27




29


34


DNA


Artificial Sequence




Description of Artificial Sequence primer





29
tacaagatct agcagatagc caggcaaaca aggg 34




30


439


DNA


Homo sapiens



30
aaaagcagta tcattcagac ttagtccaca gtccacaact tgcacgctgt cattatagtc 60
acccttgtgc agcgagtagt gtntgttaaa attaccattt agcggtagag tatccatggc 120
acttgtatcc ctgggcattg ttcagtgaat gtccttgatt aagtgttgaa gtgctattga 180
tgtcacctga gataaaagaa gattctgatt gttttctcac agtatcattc cacattcttc 240
ttatacggac tctgtgtgcc agagggaata gcgagcactg ggttctgggt gggttgatgc 300
cttcactgaa ctgtgggggg actctcaggt tggggagggc ctncacaggc agtatggagg 360
tgtcttgaag gcactttgcc ataattcttt ttcgtacctt tccttttggg agagcacagt 420
gaaagntgga aaattgacc 439




31


27


DNA


Artificial Sequence




Description of Artificial Sequence primer





31
tacaaccatg ggcacaactg tagctgg 27




32


34


DNA


Artificial Sequence




Description of Artificial Sequence primer





32
tacaagatct agcagatagc caggcaaaca aggg 34




33


5598


DNA


Homo sapiens




CDS




(407)..(3748)





33
cggcgaacag acgttctttc tcctccatgc agttacacaa aaggagggct acggaaacta 60
aaagtttcgg ggcctctggc tcggtgtgtg gagaaaagag aaaacctgga gacgggatat 120
gaagatcaat gatgcagact gatggtcttg atgaagctgg gcatttataa ctagattcat 180
taaggaatac aaagaaaata cttaaaggga tcaataatgg tgtcttctgg ttgcagaatg 240
cgaagtctgt ggtttatcat tgtaatcagc ttcttaccaa atacagaagg tttcagcaga 300
gcagctttac catttgggct ggtgaggcga gaattatcct gtgaaggtta ttctatagat 360
ctgcgatgcc cgggcagtga tgtcatcatg attgagagcg ctaact atg gtc gga 415
Met Val Gly
1
cgg atg aca aga ttt gtg atg ctg acc cat ttc aga tgg gag aat aca 463
Arg Met Thr Arg Phe Val Met Leu Thr His Phe Arg Trp Glu Asn Thr
5 10 15
gac tgc tac ctc ccc gat gcc ttc aaa att atg act caa agg tgc aac 511
Asp Cys Tyr Leu Pro Asp Ala Phe Lys Ile Met Thr Gln Arg Cys Asn
20 25 30 35
aat cga aca cag tgt ata gta gtt act ggg tca gat gtg ttt cct gat 559
Asn Arg Thr Gln Cys Ile Val Val Thr Gly Ser Asp Val Phe Pro Asp
40 45 50
cca tgt cct gga aca tac aaa tac ctt gaa gtc caa tat gaa tgt gtc 607
Pro Cys Pro Gly Thr Tyr Lys Tyr Leu Glu Val Gln Tyr Glu Cys Val
55 60 65
cct tac att ttt gtg tgt cct ggg acc ttg aaa gca att gtg gac tca 655
Pro Tyr Ile Phe Val Cys Pro Gly Thr Leu Lys Ala Ile Val Asp Ser
70 75 80
cca tgt ata tat gaa gct gaa caa aag gcg ggt gct tgg tgc aag gac 703
Pro Cys Ile Tyr Glu Ala Glu Gln Lys Ala Gly Ala Trp Cys Lys Asp
85 90 95
cct ctt cag gct gca gat aaa att tat ttc atg ccc tgg act ccc tat 751
Pro Leu Gln Ala Ala Asp Lys Ile Tyr Phe Met Pro Trp Thr Pro Tyr
100 105 110 115
cgt acc gat act tta ata gaa tat gct tct tta gaa gat ttc caa aat 799
Arg Thr Asp Thr Leu Ile Glu Tyr Ala Ser Leu Glu Asp Phe Gln Asn
120 125 130
agt cgc caa aca aca aca tat aaa ctt cca aat cga gta gat ggt act 847
Ser Arg Gln Thr Thr Thr Tyr Lys Leu Pro Asn Arg Val Asp Gly Thr
135 140 145
gga ttt gtg gtg tat gat ggt gct gtc ttc ttt aac aaa gaa aga acg 895
Gly Phe Val Val Tyr Asp Gly Ala Val Phe Phe Asn Lys Glu Arg Thr
150 155 160
agg aat att gtg aaa ttt gac ttg agg act aga att aag agt ggc gag 943
Arg Asn Ile Val Lys Phe Asp Leu Arg Thr Arg Ile Lys Ser Gly Glu
165 170 175
gcc ata att aac tat gcc aac tac cat gat acc tca cca tac aga tgg 991
Ala Ile Ile Asn Tyr Ala Asn Tyr His Asp Thr Ser Pro Tyr Arg Trp
180 185 190 195
gga gga aag act gat atc gac cta gca gtt gat gaa aat ggt tta tgg 1039
Gly Gly Lys Thr Asp Ile Asp Leu Ala Val Asp Glu Asn Gly Leu Trp
200 205 210
gtc att tac gcc act gaa cag aac aat gga atg ata gtt att agc cag 1087
Val Ile Tyr Ala Thr Glu Gln Asn Asn Gly Met Ile Val Ile Ser Gln
215 220 225
ctg aat cca tac act ctt cga ttt gaa gca acg tgg gag act gta tac 1135
Leu Asn Pro Tyr Thr Leu Arg Phe Glu Ala Thr Trp Glu Thr Val Tyr
230 235 240
gac aaa cgt gcc gca tca aat gct ttt atg ata tgc gga gtc ctc tat 1183
Asp Lys Arg Ala Ala Ser Asn Ala Phe Met Ile Cys Gly Val Leu Tyr
245 250 255
gtg gtt agg tca gtt tat caa gac aat gaa agt gaa aca ggc aag aac 1231
Val Val Arg Ser Val Tyr Gln Asp Asn Glu Ser Glu Thr Gly Lys Asn
260 265 270 275
tca att gat tac att tat aat acc cga tta aac cga gga gaa tat gta 1279
Ser Ile Asp Tyr Ile Tyr Asn Thr Arg Leu Asn Arg Gly Glu Tyr Val
280 285 290
gac gtt ccc ttc ccc aac cag tat cag tat att gct gca gtg gat tac 1327
Asp Val Pro Phe Pro Asn Gln Tyr Gln Tyr Ile Ala Ala Val Asp Tyr
295 300 305
aat cca aga gat aac caa ctt tac gtg tgg aac aat aac ttc att tta 1375
Asn Pro Arg Asp Asn Gln Leu Tyr Val Trp Asn Asn Asn Phe Ile Leu
310 315 320
cga tat tct ctg gag ttt ggt cca cct gat cct gcc caa gtg cct acc 1423
Arg Tyr Ser Leu Glu Phe Gly Pro Pro Asp Pro Ala Gln Val Pro Thr
325 330 335
aca gct gtg aca ata act tct tca gct gag ctg ttc aaa acc ata ata 1471
Thr Ala Val Thr Ile Thr Ser Ser Ala Glu Leu Phe Lys Thr Ile Ile
340 345 350 355
tca acc aca agc act act tca cag aaa ggc ccc atg agc aca act gta 1519
Ser Thr Thr Ser Thr Thr Ser Gln Lys Gly Pro Met Ser Thr Thr Val
360 365 370
gct gga tca cag gaa gga agc aaa ggg aca aaa cca cct cca gca gtt 1567
Ala Gly Ser Gln Glu Gly Ser Lys Gly Thr Lys Pro Pro Pro Ala Val
375 380 385
tct aca acc aaa att cca cct ata aca aat att ttt ccc ctg cca gag 1615
Ser Thr Thr Lys Ile Pro Pro Ile Thr Asn Ile Phe Pro Leu Pro Glu
390 395 400
aga ttc tgt gaa gca tta gac tcc aag ggg ata aag tgg cct cag aca 1663
Arg Phe Cys Glu Ala Leu Asp Ser Lys Gly Ile Lys Trp Pro Gln Thr
405 410 415
caa agg gga atg atg gtt gaa cga cca tgc cct aag gga aca aga gga 1711
Gln Arg Gly Met Met Val Glu Arg Pro Cys Pro Lys Gly Thr Arg Gly
420 425 430 435
act gcc tca tat ctc tgc atg att tcc act gga aca tgg aac cct aag 1759
Thr Ala Ser Tyr Leu Cys Met Ile Ser Thr Gly Thr Trp Asn Pro Lys
440 445 450
ggc ccc gat ctt agc aac tgt acc tca cac tgg gtg aat cag ctg gct 1807
Gly Pro Asp Leu Ser Asn Cys Thr Ser His Trp Val Asn Gln Leu Ala
455 460 465
cag aag atc aga agc gga gaa aat gct gct agt ctt gcc aat gaa ctg 1855
Gln Lys Ile Arg Ser Gly Glu Asn Ala Ala Ser Leu Ala Asn Glu Leu
470 475 480
gct aaa cat acc aaa ggg cca gtg ttt gct ggg gat gta agt tct tca 1903
Ala Lys His Thr Lys Gly Pro Val Phe Ala Gly Asp Val Ser Ser Ser
485 490 495
gtg aga ttg atg gag cag ttg gtg gac atc ctt gat gca cag ctg cag 1951
Val Arg Leu Met Glu Gln Leu Val Asp Ile Leu Asp Ala Gln Leu Gln
500 505 510 515
gaa ctg aaa cct agt gaa aaa gat tca gct gga cgg agt tat aac aag 1999
Glu Leu Lys Pro Ser Glu Lys Asp Ser Ala Gly Arg Ser Tyr Asn Lys
520 525 530
gca att gtt gac aca gtg gac aac ctt ctg aga cct gaa gct ttg gaa 2047
Ala Ile Val Asp Thr Val Asp Asn Leu Leu Arg Pro Glu Ala Leu Glu
535 540 545
tca tgg aaa cat atg aat tct tct gaa caa gca cat act gca aca atg 2095
Ser Trp Lys His Met Asn Ser Ser Glu Gln Ala His Thr Ala Thr Met
550 555 560
tta ctc gat aca ttg gaa gaa gga gct ttt gtc cta gct gac aat ctt 2143
Leu Leu Asp Thr Leu Glu Glu Gly Ala Phe Val Leu Ala Asp Asn Leu
565 570 575
tta gaa cca aca agg gtc tca atg ccc aca gaa aat att gtc ctg gaa 2191
Leu Glu Pro Thr Arg Val Ser Met Pro Thr Glu Asn Ile Val Leu Glu
580 585 590 595
gtt gcc gta ctc agt aca gaa gga cag atc caa gac ttt aaa ttt cct 2239
Val Ala Val Leu Ser Thr Glu Gly Gln Ile Gln Asp Phe Lys Phe Pro
600 605 610
ctg ggc atc aaa gga gca ggc agc tca atc caa ctg tcc gca aat acc 2287
Leu Gly Ile Lys Gly Ala Gly Ser Ser Ile Gln Leu Ser Ala Asn Thr
615 620 625
gtc aaa cag aac agc agg aat ggg ctt gca aag ttg gtg ttc atc att 2335
Val Lys Gln Asn Ser Arg Asn Gly Leu Ala Lys Leu Val Phe Ile Ile
630 635 640
tac cgg agc ctg gga cag ttc ctt agt aca gaa aat gca acc att aaa 2383
Tyr Arg Ser Leu Gly Gln Phe Leu Ser Thr Glu Asn Ala Thr Ile Lys
645 650 655
ctg ggt gct gat ttt att ggt cgt aat agc acc att gca gtg aac tct 2431
Leu Gly Ala Asp Phe Ile Gly Arg Asn Ser Thr Ile Ala Val Asn Ser
660 665 670 675
cac gtc att tca gtt tca atc aat aaa gag tcc agc cga gta tac ctg 2479
His Val Ile Ser Val Ser Ile Asn Lys Glu Ser Ser Arg Val Tyr Leu
680 685 690
act gat cct gtg ctt ttt acc ctg cca cac att gat cct gac aat tat 2527
Thr Asp Pro Val Leu Phe Thr Leu Pro His Ile Asp Pro Asp Asn Tyr
695 700 705
ttc aat gca aac tgc tcc ttc tgg aac tac tca gag aga act atg atg 2575
Phe Asn Ala Asn Cys Ser Phe Trp Asn Tyr Ser Glu Arg Thr Met Met
710 715 720
gga tat tgg tct acc cag ggc tgc aag ctg gtt gac act aat aaa act 2623
Gly Tyr Trp Ser Thr Gln Gly Cys Lys Leu Val Asp Thr Asn Lys Thr
725 730 735
cga aca acg tgt gca tgc agc cac cta acc aat ttt gca att ctc atg 2671
Arg Thr Thr Cys Ala Cys Ser His Leu Thr Asn Phe Ala Ile Leu Met
740 745 750 755
gcc cac agg gaa att gca tat aaa gat ggc gtt cat gaa tta ctt ctt 2719
Ala His Arg Glu Ile Ala Tyr Lys Asp Gly Val His Glu Leu Leu Leu
760 765 770
aca gtc atc acc tgg gtg gga att gtc att tcc ctt gtt tgc ctg gct 2767
Thr Val Ile Thr Trp Val Gly Ile Val Ile Ser Leu Val Cys Leu Ala
775 780 785
atc tgc atc ttc acc ttc tgc ttt ttc cgt ggc cta cag agt gac cga 2815
Ile Cys Ile Phe Thr Phe Cys Phe Phe Arg Gly Leu Gln Ser Asp Arg
790 795 800
aat act att cac aag aac ctt tgt atc aac ctt ttc att gct gaa ttt 2863
Asn Thr Ile His Lys Asn Leu Cys Ile Asn Leu Phe Ile Ala Glu Phe
805 810 815
att ttc cta ata ggc att gat aag aca aaa tat gcg att gca tgc cca 2911
Ile Phe Leu Ile Gly Ile Asp Lys Thr Lys Tyr Ala Ile Ala Cys Pro
820 825 830 835
ata ttt gca gga ctt cta cac ttt ttc ttt ttg gca gct ttt gct tgg 2959
Ile Phe Ala Gly Leu Leu His Phe Phe Phe Leu Ala Ala Phe Ala Trp
840 845 850
atg tgc cta gaa ggt gtg cag ctc tac cta atg tta gtt gaa gtt ttt 3007
Met Cys Leu Glu Gly Val Gln Leu Tyr Leu Met Leu Val Glu Val Phe
855 860 865
gaa agt gaa tat tca agg aaa aaa tat tac tat gtt gct ggt tac ttg 3055
Glu Ser Glu Tyr Ser Arg Lys Lys Tyr Tyr Tyr Val Ala Gly Tyr Leu
870 875 880
ttt cct gcc aca gtg gtt gga gtt tca gct gct att gac tat aag agc 3103
Phe Pro Ala Thr Val Val Gly Val Ser Ala Ala Ile Asp Tyr Lys Ser
885 890 895
tat gga aca gaa aaa gct tgc tgg ctt cat gtt gat aac tac ttt ata 3151
Tyr Gly Thr Glu Lys Ala Cys Trp Leu His Val Asp Asn Tyr Phe Ile
900 905 910 915
tgg agc ttc att gga cct gtt acc ttc att att ctg cta aat att atc 3199
Trp Ser Phe Ile Gly Pro Val Thr Phe Ile Ile Leu Leu Asn Ile Ile
920 925 930
ttc ttg gtg atc aca ttg tgc aaa atg gtg aag cat tca aac act ttg 3247
Phe Leu Val Ile Thr Leu Cys Lys Met Val Lys His Ser Asn Thr Leu
935 940 945
aaa cca gat tct agc agg ttg gaa aac att aag tct tgg gtg ctt ggc 3295
Lys Pro Asp Ser Ser Arg Leu Glu Asn Ile Lys Ser Trp Val Leu Gly
950 955 960
gct ttc gct ctt ctg tgt ctt ctt ggc ctc acc tgg tcc ttt ggg ttg 3343
Ala Phe Ala Leu Leu Cys Leu Leu Gly Leu Thr Trp Ser Phe Gly Leu
965 970 975
ctt ttt att aat gag gag act att gtg atg gca tat ctc ttc act ata 3391
Leu Phe Ile Asn Glu Glu Thr Ile Val Met Ala Tyr Leu Phe Thr Ile
980 985 990 995
ttt aat gct ttc cag gga gtg ttc att ttc atc ttt cac tgt gct ctc 3439
Phe Asn Ala Phe Gln Gly Val Phe Ile Phe Ile Phe His Cys Ala Leu
1000 1005 1010
caa aag aaa gta cga aaa gaa tat ggc aag tgc ttc aga cac tca tac 3487
Gln Lys Lys Val Arg Lys Glu Tyr Gly Lys Cys Phe Arg His Ser Tyr
1015 1020 1025
tgc tgt gga ggc ctc cca act gag agt ccc cac agt tca gtg aag gca 3535
Cys Cys Gly Gly Leu Pro Thr Glu Ser Pro His Ser Ser Val Lys Ala
1030 1035 1040
tca acc acc aga acc agt gct cgc tat tcc tct ggc aca cag agt cgt 3583
Ser Thr Thr Arg Thr Ser Ala Arg Tyr Ser Ser Gly Thr Gln Ser Arg
1045 1050 1055
ata aga aga atg tgg aat gat act gtg aga aaa caa tca gaa tct tct 3631
Ile Arg Arg Met Trp Asn Asp Thr Val Arg Lys Gln Ser Glu Ser Ser
1060 1065 1070 1075
ttt atc tca ggt gac atc aat agc act tca aca ctt aat caa gga ctg 3679
Phe Ile Ser Gly Asp Ile Asn Ser Thr Ser Thr Leu Asn Gln Gly Leu
1080 1085 1090
aca tca cat ggt ctg aga gcc cat ctt caa gat tta tat cat tta gag 3727
Thr Ser His Gly Leu Arg Ala His Leu Gln Asp Leu Tyr His Leu Glu
1095 1100 1105
cta ctc tta ggc cag ata gcc tgagcagaca gacatgatgt gagttgtcca 3778
Leu Leu Leu Gly Gln Ile Ala
1110
aagacattca ctgaacaatg ccagggatac aagtgccatg gatactctac cgctaaatgg 3838
taattttaac aacagctact cgctgcacaa gggtgactat aatgacagcg tgcaagttgt 3898
ggactgtgga ctaagtctga atgatactgc ttttgagaaa atgatcattt cagaattagt 3958
gcacaacaac ttacggggca gcagcaagac tcacaacctc gagctcacgc taccagtcaa 4018
acctgtgatt ggaggtagca gcagtgaaga tgatgctatt gtggcagatg cttcatcttt 4078
aatgcacagc gacaacccag ggctggagct ccatcacaaa gaactcgagg caccacttat 4138
tcctcagcgg actcactccc ttctgtacca accccagaag aaagtgaagt ccgagggaac 4198
tgacagctat gtctcccaac tgacagcaga ggctgaagat cacctacagt cccccaacag 4258
agactctctt tatacaagca tgcccaatct tagagactct ccctatccgg agagcagccc 4318
tgacatggaa gaagacctct ctccctccag gaggagtgag aatgaggaca tttactataa 4378
aagcatgcca aatcttggag ctggccatca gcttcagatg tgctaccaga tcagcagggg 4438
caatagtgat ggttatataa tccccattaa caaagaaggg tgtattccag aaggagatgt 4498
tagagaagga caaatgcagc tggttacaag tctttaatca tacagctaag gaattccaag 4558
ggccacatgc gagtattaat aaataaagac accattggcc tgacgcagct ccctcaaact 4618
ctgcttgaag agatgactct tgacctgtgg ttctctggtg taaaaaagat gactgaacct 4678
tgcagttctg tgaattttta taaaacatac aaaaactttg tatatacaca gagtatacta 4738
aagtgaatta tttgttacaa agaaaagaga tgccagccag gtattttaag attctgctgc 4798
tgtttagaga aattgtgaaa caagcaaaac aaaactttcc agccatttta ctgcagcagt 4858
ctgtgaacta aatttgtaaa tatggctgca ccatttttgt aggcctgcat tgtattatat 4918
acaagacgta ggctttaaaa tcctgtggga caaatttact gtaccttact attcctgaca 4978
agacttggaa aagcaggaga gatattctgc atcagtttgc agttcactgc aaatctttta 5038
cattaaggca aagattgaaa acatgcttaa ccactagcaa tcaagccaca ggccttattt 5098
catatgtttc ctcaactgta caatgaacta ttctcatgaa aaatggctaa agaaattata 5158
ttttgttcta ttgctagggt aaaataaata catttgtgtc caactgaaat ataattgtca 5218
ttaaaataat tttaaagagt gaagaaaata ttgtgaaaag ctcttggttg cacatgttat 5278
gaaatgtttt ttcttacact ttgtcatggt aagttctact cattttcact tcttttccac 5338
tgtatacagt gttctgcttt gacaaagtta gtctttatta cttacattta aatttcttat 5398
tgccaaaaga acgtgtttta tggggagaaa caaactcttt gaagccagtt atgtcatgcc 5458
ttgcacaaaa gtgatgaaat ctagaaaaga ttgtgtgtca cccctgttta ttcttgaaca 5518
gagggcaaag agggcactgg gcacttctca caaactttct agtgaacaaa aggtgcctat 5578
tcttttttaa aaaaaaaaaa 5598




34


1114


PRT


Homo sapiens



34
Met Val Gly Arg Met Thr Arg Phe Val Met Leu Thr His Phe Arg Trp
1 5 10 15
Glu Asn Thr Asp Cys Tyr Leu Pro Asp Ala Phe Lys Ile Met Thr Gln
20 25 30
Arg Cys Asn Asn Arg Thr Gln Cys Ile Val Val Thr Gly Ser Asp Val
35 40 45
Phe Pro Asp Pro Cys Pro Gly Thr Tyr Lys Tyr Leu Glu Val Gln Tyr
50 55 60
Glu Cys Val Pro Tyr Ile Phe Val Cys Pro Gly Thr Leu Lys Ala Ile
65 70 75 80
Val Asp Ser Pro Cys Ile Tyr Glu Ala Glu Gln Lys Ala Gly Ala Trp
85 90 95
Cys Lys Asp Pro Leu Gln Ala Ala Asp Lys Ile Tyr Phe Met Pro Trp
100 105 110
Thr Pro Tyr Arg Thr Asp Thr Leu Ile Glu Tyr Ala Ser Leu Glu Asp
115 120 125
Phe Gln Asn Ser Arg Gln Thr Thr Thr Tyr Lys Leu Pro Asn Arg Val
130 135 140
Asp Gly Thr Gly Phe Val Val Tyr Asp Gly Ala Val Phe Phe Asn Lys
145 150 155 160
Glu Arg Thr Arg Asn Ile Val Lys Phe Asp Leu Arg Thr Arg Ile Lys
165 170 175
Ser Gly Glu Ala Ile Ile Asn Tyr Ala Asn Tyr His Asp Thr Ser Pro
180 185 190
Tyr Arg Trp Gly Gly Lys Thr Asp Ile Asp Leu Ala Val Asp Glu Asn
195 200 205
Gly Leu Trp Val Ile Tyr Ala Thr Glu Gln Asn Asn Gly Met Ile Val
210 215 220
Ile Ser Gln Leu Asn Pro Tyr Thr Leu Arg Phe Glu Ala Thr Trp Glu
225 230 235 240
Thr Val Tyr Asp Lys Arg Ala Ala Ser Asn Ala Phe Met Ile Cys Gly
245 250 255
Val Leu Tyr Val Val Arg Ser Val Tyr Gln Asp Asn Glu Ser Glu Thr
260 265 270
Gly Lys Asn Ser Ile Asp Tyr Ile Tyr Asn Thr Arg Leu Asn Arg Gly
275 280 285
Glu Tyr Val Asp Val Pro Phe Pro Asn Gln Tyr Gln Tyr Ile Ala Ala
290 295 300
Val Asp Tyr Asn Pro Arg Asp Asn Gln Leu Tyr Val Trp Asn Asn Asn
305 310 315 320
Phe Ile Leu Arg Tyr Ser Leu Glu Phe Gly Pro Pro Asp Pro Ala Gln
325 330 335
Val Pro Thr Thr Ala Val Thr Ile Thr Ser Ser Ala Glu Leu Phe Lys
340 345 350
Thr Ile Ile Ser Thr Thr Ser Thr Thr Ser Gln Lys Gly Pro Met Ser
355 360 365
Thr Thr Val Ala Gly Ser Gln Glu Gly Ser Lys Gly Thr Lys Pro Pro
370 375 380
Pro Ala Val Ser Thr Thr Lys Ile Pro Pro Ile Thr Asn Ile Phe Pro
385 390 395 400
Leu Pro Glu Arg Phe Cys Glu Ala Leu Asp Ser Lys Gly Ile Lys Trp
405 410 415
Pro Gln Thr Gln Arg Gly Met Met Val Glu Arg Pro Cys Pro Lys Gly
420 425 430
Thr Arg Gly Thr Ala Ser Tyr Leu Cys Met Ile Ser Thr Gly Thr Trp
435 440 445
Asn Pro Lys Gly Pro Asp Leu Ser Asn Cys Thr Ser His Trp Val Asn
450 455 460
Gln Leu Ala Gln Lys Ile Arg Ser Gly Glu Asn Ala Ala Ser Leu Ala
465 470 475 480
Asn Glu Leu Ala Lys His Thr Lys Gly Pro Val Phe Ala Gly Asp Val
485 490 495
Ser Ser Ser Val Arg Leu Met Glu Gln Leu Val Asp Ile Leu Asp Ala
500 505 510
Gln Leu Gln Glu Leu Lys Pro Ser Glu Lys Asp Ser Ala Gly Arg Ser
515 520 525
Tyr Asn Lys Ala Ile Val Asp Thr Val Asp Asn Leu Leu Arg Pro Glu
530 535 540
Ala Leu Glu Ser Trp Lys His Met Asn Ser Ser Glu Gln Ala His Thr
545 550 555 560
Ala Thr Met Leu Leu Asp Thr Leu Glu Glu Gly Ala Phe Val Leu Ala
565 570 575
Asp Asn Leu Leu Glu Pro Thr Arg Val Ser Met Pro Thr Glu Asn Ile
580 585 590
Val Leu Glu Val Ala Val Leu Ser Thr Glu Gly Gln Ile Gln Asp Phe
595 600 605
Lys Phe Pro Leu Gly Ile Lys Gly Ala Gly Ser Ser Ile Gln Leu Ser
610 615 620
Ala Asn Thr Val Lys Gln Asn Ser Arg Asn Gly Leu Ala Lys Leu Val
625 630 635 640
Phe Ile Ile Tyr Arg Ser Leu Gly Gln Phe Leu Ser Thr Glu Asn Ala
645 650 655
Thr Ile Lys Leu Gly Ala Asp Phe Ile Gly Arg Asn Ser Thr Ile Ala
660 665 670
Val Asn Ser His Val Ile Ser Val Ser Ile Asn Lys Glu Ser Ser Arg
675 680 685
Val Tyr Leu Thr Asp Pro Val Leu Phe Thr Leu Pro His Ile Asp Pro
690 695 700
Asp Asn Tyr Phe Asn Ala Asn Cys Ser Phe Trp Asn Tyr Ser Glu Arg
705 710 715 720
Thr Met Met Gly Tyr Trp Ser Thr Gln Gly Cys Lys Leu Val Asp Thr
725 730 735
Asn Lys Thr Arg Thr Thr Cys Ala Cys Ser His Leu Thr Asn Phe Ala
740 745 750
Ile Leu Met Ala His Arg Glu Ile Ala Tyr Lys Asp Gly Val His Glu
755 760 765
Leu Leu Leu Thr Val Ile Thr Trp Val Gly Ile Val Ile Ser Leu Val
770 775 780
Cys Leu Ala Ile Cys Ile Phe Thr Phe Cys Phe Phe Arg Gly Leu Gln
785 790 795 800
Ser Asp Arg Asn Thr Ile His Lys Asn Leu Cys Ile Asn Leu Phe Ile
805 810 815
Ala Glu Phe Ile Phe Leu Ile Gly Ile Asp Lys Thr Lys Tyr Ala Ile
820 825 830
Ala Cys Pro Ile Phe Ala Gly Leu Leu His Phe Phe Phe Leu Ala Ala
835 840 845
Phe Ala Trp Met Cys Leu Glu Gly Val Gln Leu Tyr Leu Met Leu Val
850 855 860
Glu Val Phe Glu Ser Glu Tyr Ser Arg Lys Lys Tyr Tyr Tyr Val Ala
865 870 875 880
Gly Tyr Leu Phe Pro Ala Thr Val Val Gly Val Ser Ala Ala Ile Asp
885 890 895
Tyr Lys Ser Tyr Gly Thr Glu Lys Ala Cys Trp Leu His Val Asp Asn
900 905 910
Tyr Phe Ile Trp Ser Phe Ile Gly Pro Val Thr Phe Ile Ile Leu Leu
915 920 925
Asn Ile Ile Phe Leu Val Ile Thr Leu Cys Lys Met Val Lys His Ser
930 935 940
Asn Thr Leu Lys Pro Asp Ser Ser Arg Leu Glu Asn Ile Lys Ser Trp
945 950 955 960
Val Leu Gly Ala Phe Ala Leu Leu Cys Leu Leu Gly Leu Thr Trp Ser
965 970 975
Phe Gly Leu Leu Phe Ile Asn Glu Glu Thr Ile Val Met Ala Tyr Leu
980 985 990
Phe Thr Ile Phe Asn Ala Phe Gln Gly Val Phe Ile Phe Ile Phe His
995 1000 1005
Cys Ala Leu Gln Lys Lys Val Arg Lys Glu Tyr Gly Lys Cys Phe Arg
1010 1015 1020
His Ser Tyr Cys Cys Gly Gly Leu Pro Thr Glu Ser Pro His Ser Ser
1025 1030 1035 1040
Val Lys Ala Ser Thr Thr Arg Thr Ser Ala Arg Tyr Ser Ser Gly Thr
1045 1050 1055
Gln Ser Arg Ile Arg Arg Met Trp Asn Asp Thr Val Arg Lys Gln Ser
1060 1065 1070
Glu Ser Ser Phe Ile Ser Gly Asp Ile Asn Ser Thr Ser Thr Leu Asn
1075 1080 1085
Gln Gly Leu Thr Ser His Gly Leu Arg Ala His Leu Gln Asp Leu Tyr
1090 1095 1100
His Leu Glu Leu Leu Leu Gly Gln Ile Ala
1105 1110




35


28


DNA


Artificial Sequence




Description of Artificial Sequence primer





35
gggcctcacc tgggctttcg gcctcctc 28




36


28


DNA


Artificial Sequence




Description of Artificial Sequence primer





36
ggactggtgc ccccacgcgt gtcagcac 28




37


24


DNA


Artificial Sequence




Description of Artificial Sequence primer





37
ccaacaagac ccataccagc tgtg 24




38


22


DNA


Artificial Sequence




Description of Artificial Sequence primer





38
ctgagtcttg tcgatcccga cc 22




39


349


DNA


Homo sapiens



39
aagcttggca cgagggtcta tgtgcatttt ggaattactc acctgatacc atgaatggca 60
gctggtcttc agagggctgt gagctgacat actcaaatga gacccacacc tcatgccgct 120
gtaatcacct gacacatttt gcaattttga tgtcctctgg tccttccatt ggtattaaag 180
attataatat tcttacaagg gatcactcaa ctaggaataa ttatttcact gatttgtctt 240
gccatatgca tttttacctt ctggttcttc agtgaaattc aaagcaccag gacaacaatt 300
cacaaaaatc tttgctggta gcctatttct tgctgaactt ggtttttct 349




40


359


DNA


Homo sapiens



40
cagggaatgt ttatatttat tttccattgt gtcctacaga agaaggtacg aaaagagtat 60
gggaaatgcc tgcgaacaca ttgctgtagt ggcaaaagta cagagagttc cattggttca 120
gggaaaacat ctggttctcg aactcctgga cgctactcca caggctcaca gagcganatt 180
ccgtagaatg tggaatgaca cggttcgaaa gcagtcagag tcttccttta ttactggaga 240
cataaacagt tcagcgtcac tcaacagaga ggggcttctg aacaatgcca ggggatacaa 300
gtgtcatgga tactctacca ctgaatgggt aaccatgggc aatagttaca gcattgcca 359




41


480


DNA


Homo sapiens



41
tttttttttc tactacatta acaggactca aattctggag gaacagaaag cagactatat 60
gtgcaatgct agtatctgta cattacatag aaattgctca acttcttttt ctgccattag 120
ttttatcatc agttaataca gcaaatcata aaatatgcat ttagcatata attctagaat 180
tcccctccat ttcattatta attttgttgt tttattttgt tttccacagc tattccagct 240
gtgggtgaaa ttcaggttgt gagtgaccaa aaaccctatg tgatacagtt ttgctttgct 300
cttatgtttg tttgtgcagg cactccaatc taggatgcag cattgttact aatttcagac 360
aattgttctg ggccttttna aaaggcgggt ccntgttaat tttaggtaac acggcatcgg 420
ggtggtttaa agcntacaca acctattnca caggggccca tggggggcct ttttcttcaa 480




42


466


DNA


Homo sapiens



42
ngcgaaacga annngtnctt ctagnaactt caggcttgca acaacacang ggggtgggac 60
agcagtgggt gctatgttga agaaggtgat ggggacaatg tcacctgtat ctgtgaccac 120
ctaacatcat tctccatcct catgtcccct gactccccag atcctagttc tctcctggga 180
atactcctgg atattatttc ttatgttggg gtgggctttt ccatcttgag cttggcagcc 240
tgtctagttg tggaagctgt ggtgtggaaa tcggtgacca agaatcggac ttcttatatg 300
cgccacacct gcatagtgaa tatcgctgcc tcccttctgg tccgccaaca cctggttcat 360
tgtnggtcgc tggccatcca ggacaatccg ctacatactc tgcaagacag cctgtgtggc 420
tgccaccttc ttcaatccac ttcttctanc tcagcgtctt cttctn 466




43


403


DNA


Homo sapiens



43
tttttttttc ctgggaatat atttttttaa ttggttgatt tgcttcgttc aaagcgctta 60
gaatggaaga tttagtttga ggaggggcag gtttgggggt aggctcagcg ggcatagtgg 120
ccacaagaag atgcccatct cacacctgga gacgtccatg agcacctcga agctggccgt 180
ntggctgcac tggcgtacga catgggtccg gttcctggac aggagcttga agccccgggc 240
aggaccaccc tcccgtccca ctgacactgc gtagagaagg gagaagaggc aggggtgaga 300
cggttccctc cgcccatgtc tnttgggggc antctttncc cgggccctgg ggacttccca 360
ggccattcct gggccaaaac caaacagcag gtattagttg agt 403




44


358


DNA


Homo sapiens



44
ttttgagagg tttggctttt tttaatctgc ttccaaaaca aagcctcgat gatcaggcat 60
aaaatgagac ttccaatgga gatacccagt cccacatagg tgatccattt tacaacgggg 120
aagattgtag aggggacaaa aggtgacatc aatatggaga aggaggtcaa gtgagtacat 180
tggcacgtca cgatgtcttg agtttcattc actaggtggc agcctgcatc gttccactgc 240
aaatgactga aatcccaaaa cacacaatga ggctggctca ggtttgactc tatcttggaa 300
aaaaatagga aaacttcatt tatggaatag ttttgaataa ccgtggatat cacaggtc 358




45


556


DNA


Homo sapiens



45
gctggctgcc gagccagtgc catcttcctg cacttctccc tgctcacctg cctttcctgg 60
atgggcctcg aggggtacaa cctctaccga ctcgtggtgg aggtctttgg cacctatgtc 120
cctggctacc tactcaagct gagcgccatg ggctggggct tccccatctt tctggtgacg 180
ctggtggccc tggtggatgt ggacaactat ggccccatca tcttggctgt gcataggact 240
ccagagggcg tcatctaccc ttccatgtgc tggatccggg actccctggt cagctacatc 300
accaacctgg gcctcttcag cctggtgttt ctgttcaaca tggccatgct agccaccatg 360
gtggtgcaga tcctgcggct gcgcccccac acccaaaagt ggtcacatgt gctgacactg 420
ctgggcctca gcctggtcct tggcctgccc tgggccttga ccttcttctc ctttgcttct 480
ggcaccttcc agcttgtcgt cctctacctt ttcagcatca tcacctcctt ccaaggcttc 540
ctcatcttca tctggt 556




46


324


DNA


Homo sapiens



46
gatccccatt gcgccantgn ggactactcc agagcagatg ccagctcagg agtctgggnc 60
actgaaaatt gccagaccct ggagacccag gcagctcaca cccgctgcca gtgccagcac 120
ctgtccacct ttgctgtact agcccagccg cccaaggacc tgaccctgga gctggcgggc 180
tccccctcgg tccccctggt gatcggctgt gcagtgtcgt gcatggcgct gctcaccctg 240
ctcgccatct atgccgcctt ttggaggttc ataaaatctg aacgctccat catcttgctg 300
aacttntgcc tgtccatctt ggca 324




47


391


DNA


Homo sapiens



47
ttaaagcata actgtatttt tnnttttagg gccttattga tgttttgccg ttccaatgta 60
tgcatttttt nactcaataa acttgtctta attttaaata tggggcttcc ttggacctgt 120
ctgcgccatc ttctctgtga atttagttct ctttctggtg actctctgga ttttnaaaaa 180
cagactctcc tccctcaata gtgaagtgtc caccctccgg aacacaaggt ccgggagcaa 240
tatgggaaat ggtccaaagg gatcaggaaa ttgaaaactg agtctgagat gcacacactc 300
tccagcagtg ctaaggctga caactccaaa cccagcacgg gtaactagaa aaatcttctg 360
aataagatct tcccctttgc ccgtgggaaa t 391




48


5749


DNA


Homo sapiens



48
ggaaagcgga aagaggaaaa agcataagct tgagccttcc gatccgacca cgaatactcc 60
tgtaataaac ccaccgcccc aacaaatctg ccatagcagc cgccgccgcc gccggtcact 120
tctcgtctca gcgctttctt tgcttcttgg tttgttgggg gtagctttta tgaaacaaat 180
ctttgctatt aagccactta cattttgggg ggttccttag agtctccctt gggggggctt 240
ctccctccct ttagcccccc tcggtttgga ggttggattc agttggatac ggcgcaaggt 300
tctgggctcc tgctggcttt tttttcctct ctctcatcga cccccctttg gttcccaccc 360
cccacctttt gcttttcgta tgtatgcatt tttaaaaata aatcctgatt ttggaagctg 420
agccggggaa aatgggcaac ggtgattggg accgaagggg agtctctccg tcactgttgc 480
tgggacgcgt gcctgtgctg gtgtcttaga gcaagagcct ccctgagctt tcggagtgga 540
agaacagtgg aagagactgc agcctaaaga cttttaaaat taacttggca tcacttttat 600
cagctcaaag gctaaacaaa caaacaaaag cagtgtcatt tattctaaga aataacttct 660
taaaggttaa agctgaaaaa tattcaagtt atttttggat aacaacttac agaggccaaa 720
tgacatagga tgaaggctgt tcgtaacctg ctgatttata tattttccac ctatctcctg 780
gttatgtttg gatttaatgc tgcccaagac ttctggtgtt caactttggt gaagggagtc 840
atttatggat cgtattctgt aagtgaaatg tttcctaaaa actttacaaa ctgcacttgg 900
acgctggaaa atccagatcc aaccaaatat agcatttacc tgaaattttc caaaaaggac 960
cttagctgct ctaacttttc actcctggct tatcagtttg atcatttttc ccatgaaaaa 1020
ataaaggatc ttttaagaaa gaatcattct ataatgcaac tctgcaattc caagaatgct 1080
ttcgtttttc tacagtatga taaaaatttt attcaaatac gtcgagtatt tccaactaat 1140
ttcccaggat tacagaaaaa aggggaagaa gatcagaaat ctttttttga gtttttggta 1200
ttgaacaagg tcagcccaag ccagtttggt tgccatgtat tatgtacttg gttggagagc 1260
tgcttaaaat cagaaaatgg gagaacagaa tcatgtggga tcatgtatac aaaatgcacc 1320
tgccctcagc atttgggaga gtgggggatc gacgaccagt cgctgatttt gttaaataac 1380
gtggtgttac ccctgaatga gcagacagag ggctgcctga cccaggagct gcaaaccacc 1440
caagtctgca atcttaccag ggaggccaag cgaccaccca aagaagaatt tggaatgatg 1500
ggagatcata caattaaaag tcagcgacct cgatctgttc atgaaaaaag ggtccctcag 1560
gaacaagctg atgctgctaa atttatggca caaactggtg aatctggtgt ggaagagtgg 1620
tcccagtgga gcacatgttc ggttacttgt ggtcaagggt cgcaggtgcg aaccagaact 1680
tgtgtatcac cttacgggac acactgcagc ggcccattaa gagaatcaag ggtttgcaat 1740
aacactgccc tctgtccagt acacggagta tgggaggaat ggtcaccatg gagtttatgt 1800
tcatttacat gtggtcgagg ccaaagaaca agaacaaggt catgcacacc tcctcagtat 1860
ggaggaaggc cgtgtgaagg acctgaaaca catcataagc cttgtaatat tgctctttgc 1920
ccagttgatg gacagtggca agagtggagt tcgtggagcc agtgctcagt aacgtgctcg 1980
aatgggactc agcagagaag ccggcagtgc actgcagctg cccatggagg ctccgaatgc 2040
agagggccat gggcagaaag cagagagtgc tataaccctg aatgtacagc caatggtcaa 2100
tggaatcagt ggggtcattg gagtggttgt tccaagtcct gtgatggcgg ctgggaaagg 2160
cgaataagga cctgtcaggg tgcagtgata acagggcagc aatgtgaagg aacgggcgaa 2220
gaagtgagaa gatgcagtga gcagcgatgc cctgcacctt atgaaatatg ccctgaggat 2280
tatctgatgt cgatggtgtg gaaaagaact ccagcaggcg acttggcatt caatcaatgt 2340
cccctgaatg ccacaggcac cactagcaga cgctgctctc tcagtcttca tggagtggcc 2400
ttctgggaac agccgagctt tgcaagatgc atatcaaatg agtacagaca cttgcagcat 2460
tcaattaaag agcaccttgc taaggggcag cgaatgctgg caggtgatgg aatgtcccag 2520
gtgaccaaga cactgttgga tttaactcag agaaaaaatt tctatgcagg cgatcttctg 2580
atgtctgtgg agatcctgag aaatgtgaca gacacattta aaagggcaag ttacatccct 2640
gcatctgatg gtgtccagat ttatccaggg tcaatagagt taatgcaggt gattgaagat 2700
tttatacaca ttgttggaat ggggatgatg gactttcaga attcatactt aatgactgga 2760
aatgtagtgg ctagtattca gaagcttcct gcagcctctg ttctaacaga catcaacttt 2820
ccaatgaaag gacggaaggg aatggttgac tgggcaagaa actcagaaga tagggtagta 2880
attccaaaaa gcattttcac tccggtgtca tcaaaagaat tagatgaatc atctgtattt 2940
gttcttggcg cagtcctata caaaaactta gatctaattt tgcccacttt gagaaattat 3000
actgtcatta attccaaaat catcgtggtc acaataaggc ctgaacccaa aacaaccgat 3060
tcgtttctgg agatagaact agctcatttg gctaatggta ctttgaatcc ctattgtgta 3120
ttgtgggatg actccaaaac gaacgagtct ttgggaacgt ggtccaccca gggatgtaaa 3180
actgtgctta ccgatgcatc ccatacgaaa tgcttatgtg atcgtctctc taccttcgcc 3240
attttggctc agcaacctag agaaataatc atggaatcct ctggcacacc ttcagttacc 3300
ctaatagtag gcagtggtct ttcttgcttg gccttgatta ccctagcagt tgtctatgca 3360
gcattatgga ggtacatacg ctctgagaga tccataatac taattaactt ctgcctgtct 3420
atcatctcat ccaatatcct catactggtt ggacagactc agacacataa taagagtatc 3480
tgcacaacca ccactgcatt tttgcacttt ttcttcctgg cttcattctg ttgggttttg 3540
actgaggcgt ggcaatcata tatggctgta actggaaaaa ttaggacacg gcttataaga 3600
aaacgctttt tgtgccttgg atggggtaag catattgata taccgtttca tgctcttctc 3660
aaaatgacgt tgaacacaca ttagaaagca gtcatgagtg attagacaca ggctactttg 3720
tgtctaattt aatctatgga agtgaaaata catgagctgg tcagttttga acattcattg 3780
gtcatttgga actttaaaag gaagtaagta ttgaatgctc atttagctag tcagttaaca 3840
ttcaacagtg tctagatagt atgaaatgag accccgagat gcctacacac agaaaaacag 3900
tgctctctgt taatattttc tgaaagtgca aaatacctta aaattttcaa ggcctaatgt 3960
gtgatggttc actaggcatg tactcccacc aagaaaactt agaagatttc atttcaagaa 4020
atctcaaagc aattaaagaa taaaagcgat tcatttcata gggagaacac catctagaga 4080
attaatgaaa cctcacagct tgttgacctg gtcctcaaaa gcagaaacag aattgctgac 4140
agactgagaa ctaattcttt acttgtgttt attaagaagt ttctctcaaa ttgcctcatg 4200
acatggacat ctcaaagatc tatattatag ggccaattct aatgatagcc tagttaattt 4260
aagaagctac ttttagaaaa agcccaaata tacaataata tctactgtat tagaagactg 4320
gcatatggga tgctaggagg aacctgggaa attacaaata agtgtgctta taacaattcc 4380
agaattattt aggctggaaa aatatgatca agaacacgta aatattattc attaggtttc 4440
agcaaggtct attatgtcta gctaataaat taggacttta tccacagaca aatggaaaag 4500
caattaataa gaagttgaag agtaggccag acatggtggc tcacgcctgt aatcctagca 4560
ctttgggaaa ccaaggcggg tggactacct gagcgtgggt ggactacctg agcgcgggtg 4620
gactacctga gcacgggagt tcgagattag cctgagcaat atggcaaaac cccatctcta 4680
ccaaaaatgc aaaaaattag ccgggagtga tggcacatac ctgtagtccc agctactcgg 4740
gaggctaagg tgggaggatt gcatgagcct gggaagtgga ggttgcagtg agccaagatc 4800
acaccacgac actccaactt gtgtcacaga gtaagaccct atctcacacc aacacaaaag 4860
ttgaagactt tgttctactt agaatttcat caaatttttg tctaaatttc ctgacaaagg 4920
ccttctaaag ttgagatagt atttaaatca agggacactt ttgccatgaa ttagtaccat 4980
tctaagaaat acagaataca ggtaaaagaa cacatttttt gatgaagaac aaaacatggt 5040
gattttcaag attagtgact accttgttta aaattattac taaagatttt gaggagaggg 5100
ttcacagaca gtctccgtat ttacagctaa tattaaacta ctctaggtag caaaaacctg 5160
aactgatggt gctaaagtat cagaaagttt atgggttggc agaatagtgg tgtgtgtgtt 5220
tcattatgaa caagtacaat aaaatgaatc tagaaaaaat ttaatctaaa ttgtatgaaa 5280
taaatactat taattcttca gttataaccc atgaggaatt tttttttcct aatgaacttg 5340
gtccagtcaa tcaaaaaaaa tcaacaaatg acatgtgtgg aggaagagga gaaggaggga 5400
caagaagagg agaaacagaa ggaggaaagg gaagaggagg aaagggagga taaggatgag 5460
gaggggacta tatatttata attttatata catatatgta tagtcaccag tgtttgttta 5520
acactatggt gtgtccttct gagatgtttt ccatagttct tgtcattaaa tctcatgaag 5580
gaatgtgatg ccactagaga aggctcacag aagagaatag caggaggtat gtgaaatgat 5640
agtaagaaag aagacagaca gaggacatac aataaaatga ttagatgacg gatttttcaa 5700
ccggaaaagg caaacatgat cttcctgaaa agaaggcata accaaaact 5749




49


21


DNA


Artificial Sequence




Description of Artificial Sequence primer





49
tcagacactc atactgctgt g 21




50


19


DNA


Artificial Sequence




Description of Artificial Sequence primer





50
cacagtccac aacttgcac 19




51


40


DNA


Artificial Sequence




Description of Artificial Sequence primer





51
gacgctggtc gactaggtgg ctgcatgcac acgttgttcg 40




52


37


DNA


Artificial Sequence




Description of Artificial Sequence primer





52
cctaccacag ctgtgacaat aacttcttca gctgagc 37




53


16


PRT


Homo sapiens



53
Cys Leu Gln Asp Leu Tyr His Leu Glu Leu Leu Leu Gly Gln Ile Ala
1 5 10 15




54


15


PRT


Homo sapiens



54
Cys Thr Arg Thr Ser Ala Arg Tyr Ser Ser Thr Gln Asp Ile His
1 5 10 15




55


16


PRT


Homo sapiens



55
Cys Glu Gly Asp Val Arg Glu Gly Gln Met Gln Leu Val Thr Ser Leu
1 5 10 15




56


16


PRT


Homo sapiens



56
Cys Ser Arg Ile Arg Arg Met Trp Asn Asp Thr Val Arg Lys Gln Ser
1 5 10 15




57


5610


DNA


Homo sapiens




CDS




(281)..(4687)





57
ctaatttttg gtcggcggcg gtgctgggcc aggggaagga agggacacgg aggccgccct 60
cgtcccgcca cctcctaccc gcttcccccc agccccggct ccgggagatg tgccgggcgg 120
ggggcccggg ttcgccgagc cgcaggagag acacgctggg ccgaccccag agaggcgctg 180
gacaggctgg tggtccaggc cgtggtgcct gccaggtgat gtggggcaaa gccccccgca 240
caggccactg agagctccgg acacgcaccc ggctgccacc atg gcc cgc cta gcc 295
Met Ala Arg Leu Ala
1 5
gca gtg ctc tgg aat ctg tgt gtc acc gcc gtc ctg gtc acc tcg gcc 343
Ala Val Leu Trp Asn Leu Cys Val Thr Ala Val Leu Val Thr Ser Ala
10 15 20
acc caa ggc ctg agc cgg gcc ggg ctc ccg ttc ggg ctg atg cgc cgg 391
Thr Gln Gly Leu Ser Arg Ala Gly Leu Pro Phe Gly Leu Met Arg Arg
25 30 35
gag ctg gcg tgt gaa ggc tac ccc atc gag ctg cgg tgc ccc ggc agc 439
Glu Leu Ala Cys Glu Gly Tyr Pro Ile Glu Leu Arg Cys Pro Gly Ser
40 45 50
gac gtc atc atg gtg gag aat gcc aac tac ggg cgc acg gac gac aag 487
Asp Val Ile Met Val Glu Asn Ala Asn Tyr Gly Arg Thr Asp Asp Lys
55 60 65
att tgc gat gct gac cct ttc cag atg gag aat gtg cag tgc tac ctg 535
Ile Cys Asp Ala Asp Pro Phe Gln Met Glu Asn Val Gln Cys Tyr Leu
70 75 80 85
ccg gac gcc ttc aag atc atg tca cag agg tgt aac aac cgc acc cag 583
Pro Asp Ala Phe Lys Ile Met Ser Gln Arg Cys Asn Asn Arg Thr Gln
90 95 100
tgc gtg gtg gtc gcc ggc tcg gat gcc ttt cct gac ccc tgt cct ggg 631
Cys Val Val Val Ala Gly Ser Asp Ala Phe Pro Asp Pro Cys Pro Gly
105 110 115
acc tac aag tac ctg gag gtg cag tac gac tgt gtc ccc tac atc ttc 679
Thr Tyr Lys Tyr Leu Glu Val Gln Tyr Asp Cys Val Pro Tyr Ile Phe
120 125 130
gtg tgc cca ggg acc ctg cag aag gtg ctg gag ccc acc tcg aca cac 727
Val Cys Pro Gly Thr Leu Gln Lys Val Leu Glu Pro Thr Ser Thr His
135 140 145
gag tca gag cac cag tct ggc gca tgg tgc aag gac ccg ctg cag gcg 775
Glu Ser Glu His Gln Ser Gly Ala Trp Cys Lys Asp Pro Leu Gln Ala
150 155 160 165
ggt gac cgc atc tac gtg atg ccc tgg atc ccc tac cgc acg gac aca 823
Gly Asp Arg Ile Tyr Val Met Pro Trp Ile Pro Tyr Arg Thr Asp Thr
170 175 180
ctg act gag tat gcc tcg tgg gag gac tac gtg gcc gcc cgc cac acc 871
Leu Thr Glu Tyr Ala Ser Trp Glu Asp Tyr Val Ala Ala Arg His Thr
185 190 195
acc acc tac cgc ctg ccc aac cgc gtg gat ggc aca ggc ttt gtg gtc 919
Thr Thr Tyr Arg Leu Pro Asn Arg Val Asp Gly Thr Gly Phe Val Val
200 205 210
tac gat ggt gcc gtc ttg tac aac aag gag cgc acg cgc aac atc gtc 967
Tyr Asp Gly Ala Val Leu Tyr Asn Lys Glu Arg Thr Arg Asn Ile Val
215 220 225
aag tat gac cta cgg acg cgc atc aag agc ggg gag acg gtc atc aat 1015
Lys Tyr Asp Leu Arg Thr Arg Ile Lys Ser Gly Glu Thr Val Ile Asn
230 235 240 245
acc gcc aac tac cat gac acc tcg ccc tac cgc tgg ggc gga aag acc 1063
Thr Ala Asn Tyr His Asp Thr Ser Pro Tyr Arg Trp Gly Gly Lys Thr
250 255 260
gac att gac ctg gcg gtg gac gag aac ggg ctg tgg gtc atc tac gcc 1111
Asp Ile Asp Leu Ala Val Asp Glu Asn Gly Leu Trp Val Ile Tyr Ala
265 270 275
act gag ggc aac aac ggg cgg ctg gtg gtg agc cag ctg aac ccc tac 1159
Thr Glu Gly Asn Asn Gly Arg Leu Val Val Ser Gln Leu Asn Pro Tyr
280 285 290
aca ctg cgc ttt gag ggc acg tgg gag acg ggt tac gac aag cgc tcg 1207
Thr Leu Arg Phe Glu Gly Thr Trp Glu Thr Gly Tyr Asp Lys Arg Ser
295 300 305
gca tcc aac gcc ttc atg gtg tgt ggg gtc ctg tac gtc ctg cgt tcc 1255
Ala Ser Asn Ala Phe Met Val Cys Gly Val Leu Tyr Val Leu Arg Ser
310 315 320 325
gtg tac gtg gat gat gac agc gag gcg gct ggc aac cgc gtg gac tat 1303
Val Tyr Val Asp Asp Asp Ser Glu Ala Ala Gly Asn Arg Val Asp Tyr
330 335 340
gcc ttc aac acc aat gcc aac cgc gag gag cct gtc agc ctc acc ttc 1351
Ala Phe Asn Thr Asn Ala Asn Arg Glu Glu Pro Val Ser Leu Thr Phe
345 350 355
ccc aac ccc tac cag ttc atc tcc tcc gtt gac tac aac cct cgc gac 1399
Pro Asn Pro Tyr Gln Phe Ile Ser Ser Val Asp Tyr Asn Pro Arg Asp
360 365 370
aac cag ctg tac gtc tgg aac aac tat ttc gtg gtg cgc tac agc ctg 1447
Asn Gln Leu Tyr Val Trp Asn Asn Tyr Phe Val Val Arg Tyr Ser Leu
375 380 385
gag ttc ggg ccg ccc gac ccc agt gct ggc cca gcc act tcc cca ccc 1495
Glu Phe Gly Pro Pro Asp Pro Ser Ala Gly Pro Ala Thr Ser Pro Pro
390 395 400 405
ctc agc acg acc acc aca gcc agg ccc acg ccc ctc acc agc aca gcc 1543
Leu Ser Thr Thr Thr Thr Ala Arg Pro Thr Pro Leu Thr Ser Thr Ala
410 415 420
tcg ccc gca gcc acc acc ccg ctc cgc cgg gca ccc ctc acc acg cac 1591
Ser Pro Ala Ala Thr Thr Pro Leu Arg Arg Ala Pro Leu Thr Thr His
425 430 435
cca gtg ggt gcc atc aac cag ctg gga cct gat ctg cct cca gcc aca 1639
Pro Val Gly Ala Ile Asn Gln Leu Gly Pro Asp Leu Pro Pro Ala Thr
440 445 450
gcc cca gtc ccc agc acc cgg cgg ccc cca gcc ccg aat cta cac gtg 1687
Ala Pro Val Pro Ser Thr Arg Arg Pro Pro Ala Pro Asn Leu His Val
455 460 465
tcc cct gag ctc ttc tgc gag ccc cga gag gta cgg cgg gtc cag tgg 1735
Ser Pro Glu Leu Phe Cys Glu Pro Arg Glu Val Arg Arg Val Gln Trp
470 475 480 485
ccg gcc acc cag cag ggc atg ctg gtg gag agg ccc tgc ccc aag ggg 1783
Pro Ala Thr Gln Gln Gly Met Leu Val Glu Arg Pro Cys Pro Lys Gly
490 495 500
act cga gga att gcc tcc ttc cag tgt cta cca gcc ttg ggg ctc tgg 1831
Thr Arg Gly Ile Ala Ser Phe Gln Cys Leu Pro Ala Leu Gly Leu Trp
505 510 515
aac ccc cgg ggc cct gac ctc agc aac tgc acc tcc ccc tgg gtc aac 1879
Asn Pro Arg Gly Pro Asp Leu Ser Asn Cys Thr Ser Pro Trp Val Asn
520 525 530
cag gtg gcc cag aag atc aag agt ggg gag aac gcg gcc aac atc gcc 1927
Gln Val Ala Gln Lys Ile Lys Ser Gly Glu Asn Ala Ala Asn Ile Ala
535 540 545
agc gag ctg gcc cga cac acc cgg ggc tcc atc tac gcg ggg gac gtc 1975
Ser Glu Leu Ala Arg His Thr Arg Gly Ser Ile Tyr Ala Gly Asp Val
550 555 560 565
tcc tcc tct gtg aag ctg atg gag cag ctg ctg gac atc ctg gat gcc 2023
Ser Ser Ser Val Lys Leu Met Glu Gln Leu Leu Asp Ile Leu Asp Ala
570 575 580
cag ctg cag gcc ctg cgg ccc atc gag cgc gag tca gcc ggc aag aac 2071
Gln Leu Gln Ala Leu Arg Pro Ile Glu Arg Glu Ser Ala Gly Lys Asn
585 590 595
tac aac aag atg cac aag cga gag aga act tgt aag gat tat atc aag 2119
Tyr Asn Lys Met His Lys Arg Glu Arg Thr Cys Lys Asp Tyr Ile Lys
600 605 610
gcc gtg gtg gag aca gtg gac aat ctg ctc cgg cca gaa gct ctg gag 2167
Ala Val Val Glu Thr Val Asp Asn Leu Leu Arg Pro Glu Ala Leu Glu
615 620 625
tcc tgg aag gac atg aat gcc acg gag cag gtg cac acg gcc acc atg 2215
Ser Trp Lys Asp Met Asn Ala Thr Glu Gln Val His Thr Ala Thr Met
630 635 640 645
ctc ctc gac gtc ctg gag gag ggc gcc ttc ctg ctg gcc gac aat gtc 2263
Leu Leu Asp Val Leu Glu Glu Gly Ala Phe Leu Leu Ala Asp Asn Val
650 655 660
agg gag cct gcc cgc ttc ctg gct gcc aag gag aac gtg gtc ctg gag 2311
Arg Glu Pro Ala Arg Phe Leu Ala Ala Lys Glu Asn Val Val Leu Glu
665 670 675
gtc aca gtc ctg aac aca gag ggc cag gtg cag gag ctg gtg ttc ccc 2359
Val Thr Val Leu Asn Thr Glu Gly Gln Val Gln Glu Leu Val Phe Pro
680 685 690
cag gag gag tac ccg aga aag aac tcc atc cag ctg tct gcc aaa acc 2407
Gln Glu Glu Tyr Pro Arg Lys Asn Ser Ile Gln Leu Ser Ala Lys Thr
695 700 705
atc aag cag aac agc cgc aat ggg gtg gtc aaa gtt gtc ttc atc ctc 2455
Ile Lys Gln Asn Ser Arg Asn Gly Val Val Lys Val Val Phe Ile Leu
710 715 720 725
tac aac aac ctg ggc ctc ttc ctg tcc acg gag aat gcc aca gtg aag 2503
Tyr Asn Asn Leu Gly Leu Phe Leu Ser Thr Glu Asn Ala Thr Val Lys
730 735 740
ctg gcc ggc gaa gca ggc ccg ggt ggc cct ggg ggc gcc tct cta gtg 2551
Leu Ala Gly Glu Ala Gly Pro Gly Gly Pro Gly Gly Ala Ser Leu Val
745 750 755
gtg aac tca cag gtc atc gca gca tcc atc aac aag gag tcc agc cgc 2599
Val Asn Ser Gln Val Ile Ala Ala Ser Ile Asn Lys Glu Ser Ser Arg
760 765 770
gtc ttc ctc atg gac cct gtc atc ttc acc gtg gcc cac ctg gag gac 2647
Val Phe Leu Met Asp Pro Val Ile Phe Thr Val Ala His Leu Glu Asp
775 780 785
aag aac cac ttc aat gct aac tgc tcc ttc tgg aac tac tcg gag cgt 2695
Lys Asn His Phe Asn Ala Asn Cys Ser Phe Trp Asn Tyr Ser Glu Arg
790 795 800 805
tcc atg ctg ggc tac tgg tcg acc caa ggc tgc cgc ctg gtg gag tcc 2743
Ser Met Leu Gly Tyr Trp Ser Thr Gln Gly Cys Arg Leu Val Glu Ser
810 815 820
aac aag acc cat acc acg tgt gcc tgc agc cac ctc acc aac ttc gct 2791
Asn Lys Thr His Thr Thr Cys Ala Cys Ser His Leu Thr Asn Phe Ala
825 830 835
gtg ctc atg gct cac cgt gag atc tac cag ggc cgc atc aac gag ctg 2839
Val Leu Met Ala His Arg Glu Ile Tyr Gln Gly Arg Ile Asn Glu Leu
840 845 850
ctg ctg tcg gtc atc acc tgg gtg ggc att gtg atc tcc ctg gtc tgc 2887
Leu Leu Ser Val Ile Thr Trp Val Gly Ile Val Ile Ser Leu Val Cys
855 860 865
ttg gcc atc tgc atc tcc acc ttc tgc ttc ctg cgg ggg ctg cag acc 2935
Leu Ala Ile Cys Ile Ser Thr Phe Cys Phe Leu Arg Gly Leu Gln Thr
870 875 880 885
gac cgc aac acc atc cac aag aac ctg tgc atc aac ctc ttc ctg gct 2983
Asp Arg Asn Thr Ile His Lys Asn Leu Cys Ile Asn Leu Phe Leu Ala
890 895 900
gag ctg ctc ttc ctg gtc ggg atc gac aag act cag tat gag att gcc 3031
Glu Leu Leu Phe Leu Val Gly Ile Asp Lys Thr Gln Tyr Glu Ile Ala
905 910 915
tgc ccc atc ttc gcc ggc ctg ctg cac tat ttc ttc ctg gct gcc ttc 3079
Cys Pro Ile Phe Ala Gly Leu Leu His Tyr Phe Phe Leu Ala Ala Phe
920 925 930
tcc tgg ctg tgc ctg gag ggc gtg cac ctc tac ctg cta cta gtg gag 3127
Ser Trp Leu Cys Leu Glu Gly Val His Leu Tyr Leu Leu Leu Val Glu
935 940 945
gtg ttt gag agc gag tat tcc cgc acc aag tac tac tac ctg ggt ggc 3175
Val Phe Glu Ser Glu Tyr Ser Arg Thr Lys Tyr Tyr Tyr Leu Gly Gly
950 955 960 965
tac tgc ttc ccg gcc ctg gtg gtg ggc atc gcg gct gcc att gac tac 3223
Tyr Cys Phe Pro Ala Leu Val Val Gly Ile Ala Ala Ala Ile Asp Tyr
970 975 980
cgc agc tac ggc acc gag aag gcc tgc tgg ctc cga gtg gac aat tac 3271
Arg Ser Tyr Gly Thr Glu Lys Ala Cys Trp Leu Arg Val Asp Asn Tyr
985 990 995
ttc atc tgg agt ttc atc ggg cca gtc tcc ttc gtt atc gtg gtc aac 3319
Phe Ile Trp Ser Phe Ile Gly Pro Val Ser Phe Val Ile Val Val Asn
1000 1005 1010
ctg gtg ttc ctc atg gtg acc ctg cac aag atg atc cga agc tca tct 3367
Leu Val Phe Leu Met Val Thr Leu His Lys Met Ile Arg Ser Ser Ser
1015 1020 1025
gtg ctc aag ccc gac tcc agc cgc ctg gac aac att aaa tcc tgg gcg 3415
Val Leu Lys Pro Asp Ser Ser Arg Leu Asp Asn Ile Lys Ser Trp Ala
1030 1035 1040 1045
ctg ggg gcc atc gcg ctg ctg ttc ctg ctg ggc ctc acc tgg gct ttc 3463
Leu Gly Ala Ile Ala Leu Leu Phe Leu Leu Gly Leu Thr Trp Ala Phe
1050 1055 1060
ggc ctc ctc ttc atc aac aag gag tcg gtg gtc atg gcc tat ctc ttc 3511
Gly Leu Leu Phe Ile Asn Lys Glu Ser Val Val Met Ala Tyr Leu Phe
1065 1070 1075
acc acc ttc aac gcc ttc cag ggg gtc ttc atc ttc gtc ttt cac tgc 3559
Thr Thr Phe Asn Ala Phe Gln Gly Val Phe Ile Phe Val Phe His Cys
1080 1085 1090
gcc tta cag aag aag gtg cac aag gag tac agc aag tgc ctg cgt cac 3607
Ala Leu Gln Lys Lys Val His Lys Glu Tyr Ser Lys Cys Leu Arg His
1095 1100 1105
tcc tac tgc tgc atc cgc tcc cca ccc ggg ggc act cac gga tcc ctc 3655
Ser Tyr Cys Cys Ile Arg Ser Pro Pro Gly Gly Thr His Gly Ser Leu
1110 1115 1120 1125
aag acc tca gcc atg cga agc aac acc cgc tac tac aca ggg acc cag 3703
Lys Thr Ser Ala Met Arg Ser Asn Thr Arg Tyr Tyr Thr Gly Thr Gln
1130 1135 1140
agc cga att cgg agg atg tgg aat gac act gtg agg aaa cag acg gag 3751
Ser Arg Ile Arg Arg Met Trp Asn Asp Thr Val Arg Lys Gln Thr Glu
1145 1150 1155
tcc tcc ttc atg gcg ggt gac atc aac agc acc ccc acc ctg aac cga 3799
Ser Ser Phe Met Ala Gly Asp Ile Asn Ser Thr Pro Thr Leu Asn Arg
1160 1165 1170
ggt acc atg ggg aac cac ctg ctg acc aac ccc gtg ctg cag ccc cgt 3847
Gly Thr Met Gly Asn His Leu Leu Thr Asn Pro Val Leu Gln Pro Arg
1175 1180 1185
ggg ggc acc agt ccc tac aac acc ctc atc gcc gag tca gtg ggc ttc 3895
Gly Gly Thr Ser Pro Tyr Asn Thr Leu Ile Ala Glu Ser Val Gly Phe
1190 1195 1200 1205
aat ccc tcc tcg ccc cct gtc ttc aac tcc cca ggg agc tac cgg gaa 3943
Asn Pro Ser Ser Pro Pro Val Phe Asn Ser Pro Gly Ser Tyr Arg Glu
1210 1215 1220
ccc aag cac ccc ttg gga ggc cgg gaa gcc tgt ggc atg gac acc ctg 3991
Pro Lys His Pro Leu Gly Gly Arg Glu Ala Cys Gly Met Asp Thr Leu
1225 1230 1235
ccc ctg aac ggc aac ttc aat aac agt tac tcc ttg cga agt ggg gat 4039
Pro Leu Asn Gly Asn Phe Asn Asn Ser Tyr Ser Leu Arg Ser Gly Asp
1240 1245 1250
ttc cct ccc ggg gat ggg ggc cct gag ccg ccc cga ggc cgg aac cta 4087
Phe Pro Pro Gly Asp Gly Gly Pro Glu Pro Pro Arg Gly Arg Asn Leu
1255 1260 1265
gcc gat gcg gcg gcc ttt gag aag atg atc atc tca gag ctg gtg cac 4135
Ala Asp Ala Ala Ala Phe Glu Lys Met Ile Ile Ser Glu Leu Val His
1270 1275 1280 1285
aac aac ctg cgg ggg agc agc agc gcg gcc aag ggc cct cca ccg cct 4183
Asn Asn Leu Arg Gly Ser Ser Ser Ala Ala Lys Gly Pro Pro Pro Pro
1290 1295 1300
gag ccc cct gtg cca cct gtg cca ggg ggc ggg ggc gag gaa gag gcg 4231
Glu Pro Pro Val Pro Pro Val Pro Gly Gly Gly Gly Glu Glu Glu Ala
1305 1310 1315
ggc ggg ccc ggg ggt gct gac cgg gcc gag att gaa ctt ctc tat aag 4279
Gly Gly Pro Gly Gly Ala Asp Arg Ala Glu Ile Glu Leu Leu Tyr Lys
1320 1325 1330
gcc ctg gag gag cct ctg ctg ctg ccc cgg gcc cag tcg gtg ctg tac 4327
Ala Leu Glu Glu Pro Leu Leu Leu Pro Arg Ala Gln Ser Val Leu Tyr
1335 1340 1345
cag agc gat ctg gac gag tcg gag agc tgc acg gcc gag gac ggc gcc 4375
Gln Ser Asp Leu Asp Glu Ser Glu Ser Cys Thr Ala Glu Asp Gly Ala
1350 1355 1360 1365
acc agc cgg ccc ctc tcc tcc cct cct ggc cgg gac tcc ctc tat gcc 4423
Thr Ser Arg Pro Leu Ser Ser Pro Pro Gly Arg Asp Ser Leu Tyr Ala
1370 1375 1380
agc ggg gcc aac ctg cgg gac tca ccc tcc tac ccg gac agc agc cct 4471
Ser Gly Ala Asn Leu Arg Asp Ser Pro Ser Tyr Pro Asp Ser Ser Pro
1385 1390 1395
gag ggg ccc agt gag gcc ctg ccc cca ccc cct ccc gca ccc ccc ggc 4519
Glu Gly Pro Ser Glu Ala Leu Pro Pro Pro Pro Pro Ala Pro Pro Gly
1400 1405 1410
ccc ccc gaa atc tac tac acc tcg cgc ccg cca gcc ctg gtg gcc cgg 4567
Pro Pro Glu Ile Tyr Tyr Thr Ser Arg Pro Pro Ala Leu Val Ala Arg
1415 1420 1425
aat ccc ctg cag ggc tac tac cag gtg cgg cgt cct agc cac gag ggc 4615
Asn Pro Leu Gln Gly Tyr Tyr Gln Val Arg Arg Pro Ser His Glu Gly
1430 1435 1440 1445
tac ctg gca gcc cca ggc ctt gag ggg cca ggg ccc gat ggg gac ggg 4663
Tyr Leu Ala Ala Pro Gly Leu Glu Gly Pro Gly Pro Asp Gly Asp Gly
1450 1455 1460
cag atg cag ctg gtc acc agt ctc tgagggcacc tcatggacca ggggctggtg 4717
Gln Met Gln Leu Val Thr Ser Leu
1465
gcccaggcca gggagggaac cctgggcagg gctctggtgg gagagggaga cagatggagg 4777
cagtggctgg tgggccactc tctccaggtg cccctcagcc atgggcccta cagtcccctc 4837
aggggactct aacctggggg cctgaggtgc cagggttcac agacagggtt tcccaccagc 4897
cacacgcacc agctctattt gggggaagtg tagtgaggag gagcccagag gaccccaggg 4957
gagtgaggag ggagaacttg gaagggtgca gcccacttcc agactctccc ctctcccacc 5017
cttctaccct gtgaagggaa atgagggctt tagtttcctg ggcagggagg ggcagcttct 5077
gaggttgcca aaggccccca ctggatggaa cctgttagct gctcctctcc gcagccagaa 5137
atgctgccgg ctgcacccag agggagcagt gaggcaggac agatggacag gttcctcctg 5197
cgctgtaatt ccctgctccc tggagactgg gaaaaggccg cagggcaggg ggactgggcg 5257
gtggtggctg gtggtttaaa ggttgaactt tctctgaagc tcctttcccc ttgctcttgg 5317
tccctgcccc gcaagcaaac ctgccccctc tgcctcccag tgcacccaat gaccccctcc 5377
cttggggcga ctcctgatga agcacaactc cccgcagggc ccccagccca caggggtggc 5437
catatttggg cagttcccag tcctgtgggc tcggctatct ggggagcaga ttttgggtct 5497
ggatctccct ggggagtggg tcctgggctt ggatctttcc ctagggggcc ctcttactcc 5557
ttcctctctc ctcctccttc cccattgctg taaatatttc aacgaaatgg aaa 5610




58


1469


PRT


Homo sapiens



58
Met Ala Arg Leu Ala Ala Val Leu Trp Asn Leu Cys Val Thr Ala Val
1 5 10 15
Leu Val Thr Ser Ala Thr Gln Gly Leu Ser Arg Ala Gly Leu Pro Phe
20 25 30
Gly Leu Met Arg Arg Glu Leu Ala Cys Glu Gly Tyr Pro Ile Glu Leu
35 40 45
Arg Cys Pro Gly Ser Asp Val Ile Met Val Glu Asn Ala Asn Tyr Gly
50 55 60
Arg Thr Asp Asp Lys Ile Cys Asp Ala Asp Pro Phe Gln Met Glu Asn
65 70 75 80
Val Gln Cys Tyr Leu Pro Asp Ala Phe Lys Ile Met Ser Gln Arg Cys
85 90 95
Asn Asn Arg Thr Gln Cys Val Val Val Ala Gly Ser Asp Ala Phe Pro
100 105 110
Asp Pro Cys Pro Gly Thr Tyr Lys Tyr Leu Glu Val Gln Tyr Asp Cys
115 120 125
Val Pro Tyr Ile Phe Val Cys Pro Gly Thr Leu Gln Lys Val Leu Glu
130 135 140
Pro Thr Ser Thr His Glu Ser Glu His Gln Ser Gly Ala Trp Cys Lys
145 150 155 160
Asp Pro Leu Gln Ala Gly Asp Arg Ile Tyr Val Met Pro Trp Ile Pro
165 170 175
Tyr Arg Thr Asp Thr Leu Thr Glu Tyr Ala Ser Trp Glu Asp Tyr Val
180 185 190
Ala Ala Arg His Thr Thr Thr Tyr Arg Leu Pro Asn Arg Val Asp Gly
195 200 205
Thr Gly Phe Val Val Tyr Asp Gly Ala Val Leu Tyr Asn Lys Glu Arg
210 215 220
Thr Arg Asn Ile Val Lys Tyr Asp Leu Arg Thr Arg Ile Lys Ser Gly
225 230 235 240
Glu Thr Val Ile Asn Thr Ala Asn Tyr His Asp Thr Ser Pro Tyr Arg
245 250 255
Trp Gly Gly Lys Thr Asp Ile Asp Leu Ala Val Asp Glu Asn Gly Leu
260 265 270
Trp Val Ile Tyr Ala Thr Glu Gly Asn Asn Gly Arg Leu Val Val Ser
275 280 285
Gln Leu Asn Pro Tyr Thr Leu Arg Phe Glu Gly Thr Trp Glu Thr Gly
290 295 300
Tyr Asp Lys Arg Ser Ala Ser Asn Ala Phe Met Val Cys Gly Val Leu
305 310 315 320
Tyr Val Leu Arg Ser Val Tyr Val Asp Asp Asp Ser Glu Ala Ala Gly
325 330 335
Asn Arg Val Asp Tyr Ala Phe Asn Thr Asn Ala Asn Arg Glu Glu Pro
340 345 350
Val Ser Leu Thr Phe Pro Asn Pro Tyr Gln Phe Ile Ser Ser Val Asp
355 360 365
Tyr Asn Pro Arg Asp Asn Gln Leu Tyr Val Trp Asn Asn Tyr Phe Val
370 375 380
Val Arg Tyr Ser Leu Glu Phe Gly Pro Pro Asp Pro Ser Ala Gly Pro
385 390 395 400
Ala Thr Ser Pro Pro Leu Ser Thr Thr Thr Thr Ala Arg Pro Thr Pro
405 410 415
Leu Thr Ser Thr Ala Ser Pro Ala Ala Thr Thr Pro Leu Arg Arg Ala
420 425 430
Pro Leu Thr Thr His Pro Val Gly Ala Ile Asn Gln Leu Gly Pro Asp
435 440 445
Leu Pro Pro Ala Thr Ala Pro Val Pro Ser Thr Arg Arg Pro Pro Ala
450 455 460
Pro Asn Leu His Val Ser Pro Glu Leu Phe Cys Glu Pro Arg Glu Val
465 470 475 480
Arg Arg Val Gln Trp Pro Ala Thr Gln Gln Gly Met Leu Val Glu Arg
485 490 495
Pro Cys Pro Lys Gly Thr Arg Gly Ile Ala Ser Phe Gln Cys Leu Pro
500 505 510
Ala Leu Gly Leu Trp Asn Pro Arg Gly Pro Asp Leu Ser Asn Cys Thr
515 520 525
Ser Pro Trp Val Asn Gln Val Ala Gln Lys Ile Lys Ser Gly Glu Asn
530 535 540
Ala Ala Asn Ile Ala Ser Glu Leu Ala Arg His Thr Arg Gly Ser Ile
545 550 555 560
Tyr Ala Gly Asp Val Ser Ser Ser Val Lys Leu Met Glu Gln Leu Leu
565 570 575
Asp Ile Leu Asp Ala Gln Leu Gln Ala Leu Arg Pro Ile Glu Arg Glu
580 585 590
Ser Ala Gly Lys Asn Tyr Asn Lys Met His Lys Arg Glu Arg Thr Cys
595 600 605
Lys Asp Tyr Ile Lys Ala Val Val Glu Thr Val Asp Asn Leu Leu Arg
610 615 620
Pro Glu Ala Leu Glu Ser Trp Lys Asp Met Asn Ala Thr Glu Gln Val
625 630 635 640
His Thr Ala Thr Met Leu Leu Asp Val Leu Glu Glu Gly Ala Phe Leu
645 650 655
Leu Ala Asp Asn Val Arg Glu Pro Ala Arg Phe Leu Ala Ala Lys Glu
660 665 670
Asn Val Val Leu Glu Val Thr Val Leu Asn Thr Glu Gly Gln Val Gln
675 680 685
Glu Leu Val Phe Pro Gln Glu Glu Tyr Pro Arg Lys Asn Ser Ile Gln
690 695 700
Leu Ser Ala Lys Thr Ile Lys Gln Asn Ser Arg Asn Gly Val Val Lys
705 710 715 720
Val Val Phe Ile Leu Tyr Asn Asn Leu Gly Leu Phe Leu Ser Thr Glu
725 730 735
Asn Ala Thr Val Lys Leu Ala Gly Glu Ala Gly Pro Gly Gly Pro Gly
740 745 750
Gly Ala Ser Leu Val Val Asn Ser Gln Val Ile Ala Ala Ser Ile Asn
755 760 765
Lys Glu Ser Ser Arg Val Phe Leu Met Asp Pro Val Ile Phe Thr Val
770 775 780
Ala His Leu Glu Asp Lys Asn His Phe Asn Ala Asn Cys Ser Phe Trp
785 790 795 800
Asn Tyr Ser Glu Arg Ser Met Leu Gly Tyr Trp Ser Thr Gln Gly Cys
805 810 815
Arg Leu Val Glu Ser Asn Lys Thr His Thr Thr Cys Ala Cys Ser His
820 825 830
Leu Thr Asn Phe Ala Val Leu Met Ala His Arg Glu Ile Tyr Gln Gly
835 840 845
Arg Ile Asn Glu Leu Leu Leu Ser Val Ile Thr Trp Val Gly Ile Val
850 855 860
Ile Ser Leu Val Cys Leu Ala Ile Cys Ile Ser Thr Phe Cys Phe Leu
865 870 875 880
Arg Gly Leu Gln Thr Asp Arg Asn Thr Ile His Lys Asn Leu Cys Ile
885 890 895
Asn Leu Phe Leu Ala Glu Leu Leu Phe Leu Val Gly Ile Asp Lys Thr
900 905 910
Gln Tyr Glu Ile Ala Cys Pro Ile Phe Ala Gly Leu Leu His Tyr Phe
915 920 925
Phe Leu Ala Ala Phe Ser Trp Leu Cys Leu Glu Gly Val His Leu Tyr
930 935 940
Leu Leu Leu Val Glu Val Phe Glu Ser Glu Tyr Ser Arg Thr Lys Tyr
945 950 955 960
Tyr Tyr Leu Gly Gly Tyr Cys Phe Pro Ala Leu Val Val Gly Ile Ala
965 970 975
Ala Ala Ile Asp Tyr Arg Ser Tyr Gly Thr Glu Lys Ala Cys Trp Leu
980 985 990
Arg Val Asp Asn Tyr Phe Ile Trp Ser Phe Ile Gly Pro Val Ser Phe
995 1000 1005
Val Ile Val Val Asn Leu Val Phe Leu Met Val Thr Leu His Lys Met
1010 1015 1020
Ile Arg Ser Ser Ser Val Leu Lys Pro Asp Ser Ser Arg Leu Asp Asn
1025 1030 1035 1040
Ile Lys Ser Trp Ala Leu Gly Ala Ile Ala Leu Leu Phe Leu Leu Gly
1045 1050 1055
Leu Thr Trp Ala Phe Gly Leu Leu Phe Ile Asn Lys Glu Ser Val Val
1060 1065 1070
Met Ala Tyr Leu Phe Thr Thr Phe Asn Ala Phe Gln Gly Val Phe Ile
1075 1080 1085
Phe Val Phe His Cys Ala Leu Gln Lys Lys Val His Lys Glu Tyr Ser
1090 1095 1100
Lys Cys Leu Arg His Ser Tyr Cys Cys Ile Arg Ser Pro Pro Gly Gly
1105 1110 1115 1120
Thr His Gly Ser Leu Lys Thr Ser Ala Met Arg Ser Asn Thr Arg Tyr
1125 1130 1135
Tyr Thr Gly Thr Gln Ser Arg Ile Arg Arg Met Trp Asn Asp Thr Val
1140 1145 1150
Arg Lys Gln Thr Glu Ser Ser Phe Met Ala Gly Asp Ile Asn Ser Thr
1155 1160 1165
Pro Thr Leu Asn Arg Gly Thr Met Gly Asn His Leu Leu Thr Asn Pro
1170 1175 1180
Val Leu Gln Pro Arg Gly Gly Thr Ser Pro Tyr Asn Thr Leu Ile Ala
1185 1190 1195 1200
Glu Ser Val Gly Phe Asn Pro Ser Ser Pro Pro Val Phe Asn Ser Pro
1205 1210 1215
Gly Ser Tyr Arg Glu Pro Lys His Pro Leu Gly Gly Arg Glu Ala Cys
1220 1225 1230
Gly Met Asp Thr Leu Pro Leu Asn Gly Asn Phe Asn Asn Ser Tyr Ser
1235 1240 1245
Leu Arg Ser Gly Asp Phe Pro Pro Gly Asp Gly Gly Pro Glu Pro Pro
1250 1255 1260
Arg Gly Arg Asn Leu Ala Asp Ala Ala Ala Phe Glu Lys Met Ile Ile
1265 1270 1275 1280
Ser Glu Leu Val His Asn Asn Leu Arg Gly Ser Ser Ser Ala Ala Lys
1285 1290 1295
Gly Pro Pro Pro Pro Glu Pro Pro Val Pro Pro Val Pro Gly Gly Gly
1300 1305 1310
Gly Glu Glu Glu Ala Gly Gly Pro Gly Gly Ala Asp Arg Ala Glu Ile
1315 1320 1325
Glu Leu Leu Tyr Lys Ala Leu Glu Glu Pro Leu Leu Leu Pro Arg Ala
1330 1335 1340
Gln Ser Val Leu Tyr Gln Ser Asp Leu Asp Glu Ser Glu Ser Cys Thr
1345 1350 1355 1360
Ala Glu Asp Gly Ala Thr Ser Arg Pro Leu Ser Ser Pro Pro Gly Arg
1365 1370 1375
Asp Ser Leu Tyr Ala Ser Gly Ala Asn Leu Arg Asp Ser Pro Ser Tyr
1380 1385 1390
Pro Asp Ser Ser Pro Glu Gly Pro Ser Glu Ala Leu Pro Pro Pro Pro
1395 1400 1405
Pro Ala Pro Pro Gly Pro Pro Glu Ile Tyr Tyr Thr Ser Arg Pro Pro
1410 1415 1420
Ala Leu Val Ala Arg Asn Pro Leu Gln Gly Tyr Tyr Gln Val Arg Arg
1425 1430 1435 1440
Pro Ser His Glu Gly Tyr Leu Ala Ala Pro Gly Leu Glu Gly Pro Gly
1445 1450 1455
Pro Asp Gly Asp Gly Gln Met Gln Leu Val Thr Ser Leu
1460 1465




59


1548


DNA


Homo sapiens




CDS




(1)..(798)





59
gag ggg ctt ctg aac aat gcc agg gat aca agt gtc atg gat act cta 48
Glu Gly Leu Leu Asn Asn Ala Arg Asp Thr Ser Val Met Asp Thr Leu
1 5 10 15
cca ctg aat ggt aac cat ggc aat agt tac agc att gcc agc ggc gaa 96
Pro Leu Asn Gly Asn His Gly Asn Ser Tyr Ser Ile Ala Ser Gly Glu
20 25 30
tac ctg agc aac tgt gtg caa atc ata gac cgt ggc tat aac cat aac 144
Tyr Leu Ser Asn Cys Val Gln Ile Ile Asp Arg Gly Tyr Asn His Asn
35 40 45
gag acc gcc cta gag aaa aag att ctg aag gaa ctc act tcc aac tat 192
Glu Thr Ala Leu Glu Lys Lys Ile Leu Lys Glu Leu Thr Ser Asn Tyr
50 55 60
atc cct tct tac ctg aac aac cat gag cgc tcc agt gaa cag aac agg 240
Ile Pro Ser Tyr Leu Asn Asn His Glu Arg Ser Ser Glu Gln Asn Arg
65 70 75 80
aat ctg atg aac aag ctg gtg aat aac ctt ggc agt gga agg gaa gat 288
Asn Leu Met Asn Lys Leu Val Asn Asn Leu Gly Ser Gly Arg Glu Asp
85 90 95
gat gcc att gtc ctg gat gat gcc acc tcg ttt aac cac gag gag agt 336
Asp Ala Ile Val Leu Asp Asp Ala Thr Ser Phe Asn His Glu Glu Ser
100 105 110
ttg ggc ctg gaa ctc att cat gag gaa tct gat gct cct ttg ctg ccc 384
Leu Gly Leu Glu Leu Ile His Glu Glu Ser Asp Ala Pro Leu Leu Pro
115 120 125
cca aga gta tac tcc acc gag aac cac cag cca cac cat tat acc aga 432
Pro Arg Val Tyr Ser Thr Glu Asn His Gln Pro His His Tyr Thr Arg
130 135 140
agg cgg atc ccc caa gac cac agt gag agc ttt ttc cct ttg cta acc 480
Arg Arg Ile Pro Gln Asp His Ser Glu Ser Phe Phe Pro Leu Leu Thr
145 150 155 160
aac gag cag aca gaa gat ctc cag tca ccc cat aga gac tct ctc tat 528
Asn Glu Gln Thr Glu Asp Leu Gln Ser Pro His Arg Asp Ser Leu Tyr
165 170 175
acc agc atg ccg aca ctg gct ggt gtg gcc gcc aca gag agt gtt acc 576
Thr Ser Met Pro Thr Leu Ala Gly Val Ala Ala Thr Glu Ser Val Thr
180 185 190
acc agc acc cag acc gaa ccc cca ccg gcc aaa tgt ggt gat gcc gaa 624
Thr Ser Thr Gln Thr Glu Pro Pro Pro Ala Lys Cys Gly Asp Ala Glu
195 200 205
gat gtt tac tac aaa agc atg cca aac cta ggc tcc aga aac cac gtc 672
Asp Val Tyr Tyr Lys Ser Met Pro Asn Leu Gly Ser Arg Asn His Val
210 215 220
cat cag ctg cat act tac tac cag cta ggt cgc ggc agc agt gat gga 720
His Gln Leu His Thr Tyr Tyr Gln Leu Gly Arg Gly Ser Ser Asp Gly
225 230 235 240
ttt ata gtt cct cca aac aaa gat ggg acc cct ccc gag gga agt tca 768
Phe Ile Val Pro Pro Asn Lys Asp Gly Thr Pro Pro Glu Gly Ser Ser
245 250 255
aaa gga ccg gct cat ttg gtc act agt cta tagaagatga cacagaaatt 818
Lys Gly Pro Ala His Leu Val Thr Ser Leu
260 265
ggaaccaaca aaactgctaa caccttgttg actgttctga gttgatataa gcagtggtaa 878
taatgtgtgt actcctaaat ctttatgctg tcctctaaag acaaacacaa actctcagac 938
tttttttttt ttaatgggat ttttaggtca gcccagggga gaaagataac tgctaaaatt 998
cccctgtacc ccatcctttc ttgtcctttc cccttcagat ggagacttca ttatgttaat 1058
gaacaagata tgaagaaaat ggcactcatt gtggccttgt tgaattatgt tgtgtatgtt 1118
ttaacatctc tgatgctgtg ttactaaaat tacaaggacc tgctttttaa aaggccagaa 1178
caattgtctg aaattagtaa caatgctgca tctagattgg agtgctgcac aaacaaacat 1238
aagagcaaag caaaactgta tcacataggg tttttggtca ctcacaacct gaattcacca 1298
cagctggaat agctgtggaa aacaaaataa aacaacaaaa ttaataatga aatggagggg 1358
aattctagaa ttatatgcta aatgcatatt ttatgatttg ctgtattaac tgatgataaa 1418
actaatggca gaaaaagaag ttgagcaatt tctatgtaat gtacagatac tagcattgca 1478
catatagtct gctttctgtt cctccagaat ttgagtcctg ttaatgtagt agaaaaaaaa 1538
aaaaaaaaaa 1548




60


266


PRT


Homo sapiens



60
Glu Gly Leu Leu Asn Asn Ala Arg Asp Thr Ser Val Met Asp Thr Leu
1 5 10 15
Pro Leu Asn Gly Asn His Gly Asn Ser Tyr Ser Ile Ala Ser Gly Glu
20 25 30
Tyr Leu Ser Asn Cys Val Gln Ile Ile Asp Arg Gly Tyr Asn His Asn
35 40 45
Glu Thr Ala Leu Glu Lys Lys Ile Leu Lys Glu Leu Thr Ser Asn Tyr
50 55 60
Ile Pro Ser Tyr Leu Asn Asn His Glu Arg Ser Ser Glu Gln Asn Arg
65 70 75 80
Asn Leu Met Asn Lys Leu Val Asn Asn Leu Gly Ser Gly Arg Glu Asp
85 90 95
Asp Ala Ile Val Leu Asp Asp Ala Thr Ser Phe Asn His Glu Glu Ser
100 105 110
Leu Gly Leu Glu Leu Ile His Glu Glu Ser Asp Ala Pro Leu Leu Pro
115 120 125
Pro Arg Val Tyr Ser Thr Glu Asn His Gln Pro His His Tyr Thr Arg
130 135 140
Arg Arg Ile Pro Gln Asp His Ser Glu Ser Phe Phe Pro Leu Leu Thr
145 150 155 160
Asn Glu Gln Thr Glu Asp Leu Gln Ser Pro His Arg Asp Ser Leu Tyr
165 170 175
Thr Ser Met Pro Thr Leu Ala Gly Val Ala Ala Thr Glu Ser Val Thr
180 185 190
Thr Ser Thr Gln Thr Glu Pro Pro Pro Ala Lys Cys Gly Asp Ala Glu
195 200 205
Asp Val Tyr Tyr Lys Ser Met Pro Asn Leu Gly Ser Arg Asn His Val
210 215 220
His Gln Leu His Thr Tyr Tyr Gln Leu Gly Arg Gly Ser Ser Asp Gly
225 230 235 240
Phe Ile Val Pro Pro Asn Lys Asp Gly Thr Pro Pro Glu Gly Ser Ser
245 250 255
Lys Gly Pro Ala His Leu Val Thr Ser Leu
260 265




61


28


DNA


Artificial Sequence




Description of Artificial Sequence primer





61
atataagctt gctgccacca tggcccgc 28




62


20


DNA


Artificial Sequence




Description of Artificial Sequence primer





62
atgacccaca gcccgttctc 20




63


16


PRT


Homo sapiens



63
Cys Pro Gly Pro Asp Gly Asp Gly Gln Met Gln Leu Val Thr Ser Leu
1 5 10 15




64


16


PRT


Homo sapiens



64
Cys Pro Glu Gly Ser Ser Lys Gly Pro Ala His Leu Val Thr Ser Leu
1 5 10 15






Claims
  • 1. A polynuclcotidc encoding a lectomedin polypeptide, said polypeptide characterized by the ability to bind one or more lectomedin ligands Mac-2 (galectin 3), fibrinogen γ A, and immunoglobulin mu chain constant region, said polypeptide selected from the group consisting of:(a) a mature lectomedin polypeptide encoded by SEQ ID NO: 1; and (b) a polypeptide comprising of the amino acid sequence set out in SEQ ID NO:2.
  • 2. The polynucleotide according to claim 1 comprising the sequence set forth in SEQ ID NO: 1.
  • 3. The polynucleotide according to claim 1 comprising the sequence set forth in SEQ ID NO: 3.
  • 4. The polynucleotide according to claim 1 comprising the sequence set forth in SEQ ID NO: 5.
  • 5. A polynucleotide encoding a human lectomedin polypeptide, comprising extracellular lectin-binding, olfactomedin-like, and mucin-like domains, said polypeptide characterized by the ability to bind one or more lectomedin ligands Mac-2 (galeclin-3), fibrinogen γA, and immunoglobulin mu chain constant region, wherein said polynucleotide is selected from the group consisting of:(a) the polynucleotide according to claim 1; and (b) a DNA which hybridizes under highly stringent conditions to the non-coding strand of the polynucleotide of (a), said conditions including a final wash in 1×SSC at 65° C. for 1 hour.
  • 6. The polynucleotide of claim 5 which is a DNA molecule.
  • 7. The DNA of claim 6 which is a cDNA molecule.
  • 8. A fully complementary polynucleotide which specifically hybridizes with the polynucleotide of claim 6.
  • 9. A expression construct comprising the polynucleotide according to claim 5.
  • 10. A host cell transformed or transfected with the polynucleotide according to claim 9.
  • 11. The polynucleotide according to claim 5 operably linked to a heterologous promoter.
  • 12. A host cell comprising the polynucleotide according to claim 11.
  • 13. A method for producing a human lectomedin polypeptide comprising the steps ofa) growing the host cell according to claim 10 or 12 under conditions appropriate for expression of the lectomedin polypeptide and b) isolating the lectomedin polypeptide from the host cell or the medium of its growth.
Parent Case Info

The application claims priority of U.S. Provisional Application Serial No. 60/076,782, filed Mar. 4, 1998.

US Referenced Citations (2)
Number Name Date Kind
5350836 Kopchick et al. Sep 1994 A
5869632 Soppet et al. Feb 1999 A
Foreign Referenced Citations (7)
Number Date Country
WO 9109955 Jul 1991 WO
WO 9220808 Nov 1992 WO
WO 9311236 Jun 1993 WO
WO 9412650 Jun 1994 WO
WO 9707209 Feb 1997 WO
WO 9709433 Mar 1997 WO
WO 9849289 Nov 1998 WO
Non-Patent Literature Citations (63)
Entry
Vukicevic et al. PNAS USA 93:9021-9026, 1996.*
Massague J. Cell 49:437-8, 1987.*
Pilbeam et al. Bone 14:717-720, 1993.*
Skolnick et al. Trends in Biotech. 18:34-39, 2000.*
Bork P. Genome Research 10:398-400, 2000.*
Doerks et al. Trends in Genetics 14:248-250, 1998.*
Smith et al. Nature Biotechnology 15:1222-1223, 1997.*
Brenner SE. Trends in Genetics 15:132-133, 1999.*
Bork et al. Trends in Genetics 12:425-427, 1996.*
Rudinger J. et al. Characteristics of the amino acids as components of a peptide hormone sequence. in Peptide Hormones. pp. 1-7. Edited by Parsons, JA; Mill Hill, London, 1976.*
George et al. Current methods in sequence comparison and analysis. In Macromolecular Sequencing and Synthesis—selected methods and applications. Ed. Schlesinger, Alan R. Liss, Inc, NY. pp. 127-149, 1988.*
Lelianova VG. et al. a Latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors. J. Biol. Chem. vol. 272, pp. 21504-21508, 1997.*
Krasnoperov VG. a-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron. vol. 18, pp. 925-937, 1997.*
Danielson PE, et al. Four structurally distinct neuron-specific olfactomedin-related glycoproteins produced by differential promoter utilization and alternative mRNA splicing from a single gene. J. Neurosci. Res. vol. 38, pp. 468-478, 1994.
Sambrook J, et al. Molecular cloning: a laboratory manual. Second Ed. Cold Spring Harbor Laboratory Press. pp. 17.3-17.44, 1989.
Anderson, “Human gene therapy,” Nature, supplement to vol. 392:25-30 (1998).
Arar, et al., “Galectin-3 gene (LGALS3) expression in experimental atherosclerosis and cultured smooth muscle cells,” FEBS Letts. 430:307-311 (1998).
Ausubel, et al., “Screening of Recombinant DNA Libraries,” Protocols in Molecular Biology, pp. 6.0.3-6.4.10 (1994).
Baud V., “EMR1, an Unusual Member in the Family of Hormone Receptors with Seven Transmembrane Segments,” Genomics 26:334-344 (1995).
Bramlage, et al., “Designing ribozymes for the inhibition of gene expression,” Trends in Biotech 16:434-438 (1998).
Campbell, et al., “Epidermal growth factor-like modules,” Curr. Opin. Struct. Biol. 3:385-392 (1993).
Cane, et al., “Harnessing the Biosynthetic Code: Combinations, Permutations, and Mutations,” Science 282:63-68 (1998).
Capecchi, “Altering the Genome by Homologous Recombination,” Science 244:1288-1292 (1989).
Clapham, “The G-protein nanomachine,” Nature 379:297-299 (1996).
Davletov, et al., “Isolation and Biochemical Characterization of a Ca2+-independent α-Latrotoxin-binding Protein*,” J. Biol. Chem. 271:23239-23245 (1996).
Dayhoff, Atlas of Protein Sequence and Structure, 5:124 (1972).
D'Souza, et al., “Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif,” Trends Biochem. Sci., 16:246-250 (1991).
Friedmann, “Progress Toward Human Gene Therapy,” Science, 244:1275-1281 (1989).
Gibson et al., “Ribozymes; Their Function and Strategies for Their Use,” Mol. Biotech. 7:125-137 (1997).
Gray, et al., “CD97 is a Processed, Seven-Transmembrane, Heterodimeric Receptor Associated with Inflammation1,” J. Immunol 157:5438-5447 (1996).
Hamann, et al., “The Seven-Span Transmembrane Receptor CD97 Has a Cellular Ligand (CD55, DAF),” J. Exp. Med. 184:1185-1189 (1996).
Hamann J., et al., “Expression Cloning and Chromosomal Mapping of the Leukocyte Activation Antigen CD97, a New Seven-Span Transmembrane Molecule of the Secretin Receptor Superfamily with an Unusual Extracellular Domain1,” Immunol 155:1942-1950 (1996).
Harlow, et al., “Monoclonal Antibodies,” Antibodies: A Laboratory Manual, Chapter 6 (1988).
Houston et al., “The chemical-biological interface: developments in automated and miniaturised screening technology,” Curr. Opin. Biotechnol. 8:734-740 (1997).
Inohara, et al., “Galectin-3 Stimulates Cell Proliferation,” Exp. Cell. Res. 245:294-302 (1998).
Jayawickreme and Kost, “Gene expression systems in the development of high-throughout screens,” Curr. Opin. Biotechnol. 8:629-634 (1997).
Kashishian, et al., “AKAP79 Inhibits Calcineurin through a Site Distinct from the Immunophilin-binding Region*,” J. Bio. Chem. 273:27412-27419 (1998).
Kobilka, et al., “Cloning, Sequencing, and Expression of the Gene Coding for the Human Platelet α2-Adrenergic Receptor,” Science 238:650-656 (1987).
Krasnoperov, et al., “α-Latrotoxin Stimulates Exocytosis by the Interaction with a Neuronal G-Protein-Coupled Receptor,” Neuron 18:925-937 (1997).
Lavrovsky, et al., “Therapeutic Potential and Mechanism of Action of Oligonucleotides and Ribozymes,” Biochem. Mol. Med. 62:11-22 (1997).
Lehninger, “The Amino Acid Building Blocks of Proteins,” Biochemistry, pp. 71-77 (1975).
Lelianova, et al., “α-Latroxin Receptor, Latrophilin, Is a Novel Member of the Secretin Family of G Protein-coupled Receptors*,” J. Biol. Chem. 272:21504-21508 (1997).
Lewin, B., “Mechanisms of RNA Splicing,” GENES IV, p. 597 (1992).
McKnight, et al., “Molecular Cloning of F4/80, a Murine Macrophage-restricted Cell Surface Glycoprotein with Homology to the G-protein-linked Transmembrane 7 Hormone Receptor Family*,” J. Biol. Chem. 271:486-489 (1996).
McKnight, et al., “EGF-TM7: a novel subfamily of seven-transmembrane-region leukocyte cell-surface molecules,” Immunol Today 17:283-287 (1996).
Meldolesi, “Studies on α-Latrotoxin Receptors in Rat Brain Synaptosomes: Correlation Between Toxin Binding and Stimulation of Transmitter Release,” J. Neurochem. 38:1559-1569 (1982).
Miller, “Human gene therapy comes of age,” Nature 357:455-460 (1992).
Myers, “Will combinatorial chemistry deliver real medicines?,” Curr. Opin. Biotechnol. 8:701-707 (1997).
Nachtigal, et al., “Galectin-3 Expression in Human Atherosclerotic Lesions,” Am. J. Pathol. 152:1199-1208 (1998).
Nishimori, et al., “A Novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis,” Oncogene 15:2145-2150 (1997).
Ozeki, et al., “Amino Acid Sequence and Molecular Characterization of a D-Galactoside-Specific Lectin Purified from Seq Urchin (Anthocidaris crassispina) Eggs†,” Biochemistry 30:2391-2394 (1991).
Perillo, et al., “Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death,” J. Mol. Med. 76:402-412 (1998).
Pesheva, et al., “Galectin-3 Promotes Neural Cell Adhesion and Neurite Growth,” J. Neurosci. Res. 54:639-654 (1998).
Petrenko, et al., “Isolation and properties of the α-latrotoxin receptor,” EMBO J 9:2023-2027 (1990).
Petrenko, et al., “Minireview: α-Latrotoxin receptor; Implications in nerve terminal funciton,” F.E.B.S. Letts. 325:81-85 (1993).
Rao, et al., “The Structure of a Ca2+-Binding epidermal Growth Factor-like Domain: Its Role in Protein-Protein Interactions,” Cell 82:131-141 (1995).
Remington's Pharmaceutical Sciences, 18th Ed. (1990, Mack Publishing Co., Easton, PA 18042) 1435-1712.
Ross, “The pathogenesis of atherosclerosis: a perspective for the 1990s,” Nature 362:801-809 (1993).
Sadhu, et al., “LFA-1 Binding Site in ICAM-3 Contains a Conserved Motif and Non-Contiguous Amin oAcids,” Cell Adhesion and Commun. 2:429-440 (1994).
Sambrook, et al., (Eds.), Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York (1989), pp. 9.47-9.51.
Van der Vieren, M., et al., “A Novel Leukointegrin, αdβ2, Binds Preferentially to ICAM-3,” Immunity 3:683-690 (1995).
Verma, “Gene Therapy: Treatment of disease by introducing healthy genes into the body is becoming feasible. But the therapy will not reach its full potential until the genes can be coaxed to work throughout life,” Scientific American 68-84 (1990).
Yokoe and Anholt, “Molecular cloning of olfactomedin, an extracellular matrix protein specific to olfactory neuroepithelium,” Proc. Natl. Acad. Sci. (USA) 90:4655-4659 (1993).
Provisional Applications (1)
Number Date Country
60/076782 Mar 1998 US