The present disclosure relates generally to light emitting diode (LED) assemblies and their applications, more specifically to the LED assemblies suitable for omnidirectional light appliances.
LED has been used in different kinds of appliances in our life, such as traffic lights, car headlights, street lamps, computer indicators, flash lights, LCD backlight modules, and so on. LED chips, which are used as light sources for appliances, are produced by wafer manufacturing process in the front end, and then undergo LED packaging in the back end to result in LED assemblies or apparatuses.
LED packaging mainly provides mechanical, electrical, thermal and optical supports to LED chips. LED chips, which are kind of semiconductor products, are prone to degradation, or aging, if being exposed for a long time in an atmosphere full of humidity or chemical. To isolate the LED chips from unfriendly atmosphere, epoxy resins are commonly used to cover and seal them. Heat dissipation and light extraction should be also considered for LED packaging, such that LED products could have long lifespan and high brightness. For example, the heat generated at a p-n junction in an LED chip, if not being well dissipated, could deteriorate the LED chip, shorten its lifespan, and downgrade its reliability. Optical design, such as the way to extract and direct the light into a desired angle or distribution, also plays an important issue for LED packaging.
Design for packaging white LEDs is more complex and needs to further consider color temperature, color rendering index, phosphor, etc. A white LED could be provided using phosphor to convert a portion of the blue light from a blue LED chip into green/yellow light, such that the mixture of the lights is perceived as white light by human eyes. Because human eyes are vulnerable to high-intensity blue light, the blue light from a blue LED chip in a white LED package should not emit outward directly without its intensity being attenuated. In other words, the blue light should be kind of “sealed” or “capsulated” so as to prevent blue light leakage to human eyes.
Furthermore, it is a constant trend in the LED industry to pursue LED packaging processes with high stability, low cost, and high product yield.
This disclosure discloses an LED assembly. The LED assembly includes a substrate, a mount, a first LED chip, an electrode plate and a layer. The substrate has a first top surface. The mount has a second top surface and a bottom surface which is opposite to the second top surface and is positioned on the first top surface in a configuration of forming a recess. The first LED chip includes a third top surface, and arranged on the first top surface and in the recess. The electrode plate includes a fourth top surface, arranged on the second top surface, and electrically connected to the first LED chip. The layer includes a phosphor, and covering the first LED chip, the first top surface, and the electrode plate. The fourth top surface is higher than the third top surface in an elevation from the first top surface.
This disclosure also discloses an LED blub. The LED bulb includes an LED assembly, a holding element and a transparent cover. The LED assembly includes substrate, a mount, a first LED chip, an electrode plate and a layer. The substrate has a first top surface. The mount has a second top surface and a bottom surface which is opposite to the second top surface and is positioned on the first top surface in a configuration of forming a recess. The first LED chip includes a third top surface, and arranged on the first top surface and in the recess. The electrode plate includes a fourth top surface, arranged on the second top surface, and electrically connected to the first LED chip. The layer includes a phosphor, and covering the first LED chip, the first top surface, and the electrode plate. The fourth top surface is higher than the third top surface in an elevation from the first top surface.
Non-limiting and non-exhaustive embodiments of the present disclosure are described with reference to the following drawings. In the drawings, like reference numerals refer to like parts throughout the various figures unless otherwise specified. These drawings are not necessarily drawn to scale. Likewise, the relative sizes of elements illustrated by the drawings may differ from the relative sizes depicted.
The disclosure can be more fully understood by the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
A perspective view of an LED assembly 100 according to an embodiment of the disclosure is described in detail with reference to
Shown in
In this specification, “transparent” means having the property of transmitting rays of visible light, and could refer to as transparent, translucent or semitransparent. In some embodiments, the transparent mount 116 and the transparent substrate 112 are not electrically conductive, and could be made of the same or different material. For example, they could be sapphire, silicon carbide, or diamond-like carbon.
The LED chips 108 in
An LED chip 108 might have only one single LED cell, whose forward voltage is about 2 to 3 volts, and this kind of LED chip is referred to as a low-voltage LED chip hereinafter. Comparatively, an LED chip 108 in another embodiment might include several LED cells connected in series, and is referred to as a high-voltage LED chip hereinafter, because its forward voltage might be as high as 12V, 24V, or 48V, much higher than that of a low-voltage LED chip. In one high-voltage LED chip, each LED cell has a light-emitting layer, and the LED cell might be formed on an epitaxial or non-epitaxial substrate. More specifically, the LED cells in the high-voltage LED chip are electrically connected to each other on a common substrate; not by wire bonding but by some patterned conductive strips produced by wafer processes, such as metallization or lithography that processes all the LED cells at the same time. The common substrate might be an epitaxial or non-epitaxial substrate. In
Trenches 109a, 109b, 109c and 109d are formed in the transparent mount 116. Trenches 109a and 109b shown in
Both the phosphor layers 106 and 114 have at least one kind of phosphor. For example, the phosphor in the phosphor layers 106 and 114 could be excited by the blue light (with a dominant wavelength of 430 nm-480 nm) emitted from the LED chips 108 to generate yellow light (with a dominant wavelength of 570 nm-590 nm) or yellowish-green light (with a dominant wavelength of 540 nm-570 nm), such that the mixture is perceivable as white light by human eyes. The phosphor layers 106 and 114 could be transparent body in which phosphor is dispersed. The transparent body is epoxy resin, or silicone for example. The phosphor in the phosphor layer 106 might be the same as or different from that in the phosphor layer 114. The phosphor could include, but is not limited to, yttrium aluminum garnet (YAG), or terbium aluminum garnet (TAG). The phosphor layers 106 and 114 might have one or more kinds of phosphor. For instance, in one embodiment the phosphor layers 106 and 114 have two kinds of phosphor, one emitting yellow light and the other emitting red light. Phosphor emitting green light could be also included in some embodiments.
A phosphor capsule formed by the phosphor layers 106 and 114 substantially encapsulates each LED chip 108. The light emitted from the LED chips 108, whether it goes upward or sideward, confronts the phosphor layer 106 and the light emitted from the LED chips 108, whether it goes downward, confronts the phosphor layer 114. In case that some of the LED chips 108 are blue LED chips, the blue light therefrom excites the phosphor in the phosphor layer 106 or 114 to generate a yellow light or yellowish-green light such that a mixing light of the blue light and the yellow light or yellowish-green light is sensed by a human eye as a white light, so that the total intensity of the blue light is attenuated to avoid any harmful effect to human eyes.
Regarding to step 302, a sheet of the transparent mount 116 is provided and has a plurality of the same or similar repeated patterns on its surface as shown in
The pattern in
Regarding to step 304, coating or spraying is used to form the phosphor layer 114 on the transparent substrate 112, as demonstrated in
Regarding to step 306, the transparent mount 116 is attached on the transparent substrate 112 using the phosphor layer 114 or an additional transparent material as a glue layer, as demonstrated in
Regarding to step 308, the conductive electrode plates 102 and 104 are formed on the transparent mount 116, as demonstrated in
Referring to Step 310, the LED chips 108 are mounted on the transparent mount 116 by way of silver paste for example, as shown in
Referring to Step 312, bonding wires 110 are formed to provide electric interconnection between the LED chips 108, and between the LED chips 108 and the conductive electrode plates 102 and 104, as demonstrated in
Regarding to step 314, the phosphor layer 106 is formed to cover or seal the bonding wires 110, the LED chips 108, and the trenches 109a, 109b, 109c and 109d, as shown in
Referring to Step 316, the transparent substrate 112 and the transparent mount 116 are singulated, by cleaving, laser cutting, carbon dioxide laser cutting, for example to form a plurality of individual LED assemblies 100. As aforementioned, the transparent mount 116 is capable of produce eight LED assemblies 100 at one time. These LED assemblies 100 in
The method exemplified in
In another embodiment, some of the phosphor layer 106 is inside the trenches 109a, 109b, 109c, and 109c, but does not completely fill them up. The phosphor 106, nevertheless, preferably covers at least one sidewall in each of the trenches 109a, 109b, 109c, and 109c such that the phosphor 106 form walls inside the trenches to surround the area where the LED chips 108 are disposed.
The bonding wires 110 are used for electrical interconnection in
In Step 307, a phosphor layer 107 fills in the trench 109a, 109b, 109c and 109d, as demonstrated in
In
In
Some LED assemblies of the disclosure could be used as a filament in an LED bulb to form an omnidirectional lighting apparatus. Some LED assemblies of the disclosure has a blank backside with no pattern, which is immune from scratches and convenient for being contacted, held, or vacuumed during manufacturing processes.
While the disclosure has been described by way of example and in terms of preferred embodiment, it is to be understood that the disclosure is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Number | Date | Country | Kind |
---|---|---|---|
102136176 | Oct 2013 | TW | national |
This application is a continuation of U.S. application Ser. No. 17/164,750 filed Feb. 1, 2021, which is a continuation of U.S. application Ser. No. 16/436,472 filed Jun. 10, 2019 which issued as U.S. Pat. No. 10,910,528 on Feb. 2, 2021, which is a continuation of U.S. application Ser. No. 15/955,652 filed on Apr. 17, 2018 which issued as U.S. Pat. No. 10,319,886 on Jun. 11, 2019, which is a continuation of U.S. application Ser. No. 15/297,554 filed on Oct. 19, 2016 which issued as U.S. Pat. No. 9,947,839 on Apr. 17, 2018, which is a continuation of U.S. application Ser. No. 14/493,940 filed on Sep. 23, 2014 which issued as U.S. Pat. No. 9,502,622 on Nov. 22, 2016, for which priority is claimed under 35 U.S.C. § 120; and this application claims priority of Taiwan Application No. 102136176 filed on Oct. 7, 2013 under 35 U.S.C. § 119; the entire contents of all of which are incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
8319248 | Seo | Nov 2012 | B2 |
9016900 | Takeuchi | Apr 2015 | B2 |
9136447 | Yoneda et al. | Sep 2015 | B2 |
9502622 | Chen et al. | Nov 2016 | B2 |
10319886 | Chen et al. | Jun 2019 | B2 |
10910528 | Chen et al. | Feb 2021 | B2 |
20040173810 | Lin et al. | Sep 2004 | A1 |
20070139949 | Tanda et al. | Jun 2007 | A1 |
20100155769 | Lin et al. | Jun 2010 | A1 |
20120224363 | Van de Ven | Sep 2012 | A1 |
20130058080 | Ge et al. | Mar 2013 | A1 |
20130077299 | Hussell | Mar 2013 | A1 |
20130141892 | Okazaki et al. | Jun 2013 | A1 |
20130270601 | Wang et al. | Oct 2013 | A1 |
20130286645 | Bukkems | Oct 2013 | A1 |
20140027804 | Yoneda et al. | Jan 2014 | A1 |
20140240979 | Chen et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
103080631 | May 2013 | CN |
2011035198 | Feb 2011 | JP |
2012099726 | May 2012 | JP |
2012138454 | Jul 2012 | JP |
2012212682 | Nov 2012 | JP |
M459520 | Aug 2013 | TW |
2012090350 | Jul 2012 | WO |
WO2012095931 | Jul 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20230012204 A1 | Jan 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17164750 | Feb 2021 | US |
Child | 17947948 | US | |
Parent | 16436472 | Jun 2019 | US |
Child | 17164750 | US | |
Parent | 15955652 | Apr 2018 | US |
Child | 16436472 | US | |
Parent | 15297554 | Oct 2016 | US |
Child | 15955652 | US | |
Parent | 14493940 | Sep 2014 | US |
Child | 15297554 | US |