Lentiviral vectors

Abstract
This invention relates to lentiviral gene transfer vectors pseudotyped with hemagglutinin-neuraminidase (HN) and fusion (F) proteins from a respiratory paramyxovirus, comprising a promoter and a transgene; and methods of making the same. The present invention also relates to the use of said vectors in gene therapy, particularly for the treatment of respiratory tract diseases such as Cystic Fibrosis (CF).
Description
STATEMENT REGARDING SEQUENCE LISTING

The Sequence Listing associated with this application is provided in text format in lieu of a paper copy, and is hereby incorporated by reference into the specification. The name of the text file containing the Sequence Listing is 270077_402USPC_SEQUENCE_LISTING.txt. The text file is 192 KB, was created on Nov. 14, 2016, and is being submitted electronically via EFS-Web.


The present invention relates to lentiviral gene transfer vectors pseudotyped with hemagglutinin-neuraminidase (HN) and fusion (F) proteins from a respiratory paramyxovirus, comprising a promoter and a transgene; and methods of making the same. The present invention also relates to the use of said vectors in gene therapy, particularly for the treatment of respiratory tract diseases such as Cystic Fibrosis (CF).


BACKGROUND TO THE INVENTION

Lentiviruses belong to a genus of viruses of the Retroviridae family, and are characterised by a long incubation period. Lentiviruses can deliver a significant amount of viral RNA into the DNA of the host cell and have the unique ability among retroviruses of being able to infect non-dividing cells, so they are one of the most efficient methods of a gene delivery vector.


Lentiviral vectors, especially those derived from HIV-1, are widely studied and frequently used vectors. The evolution of the lentiviral vectors backbone and the ability of viruses to deliver recombinant DNA molecules (transgenes) into target cells have led to their use in many applications. Two possible applications of viral vectors include restoration of functional genes in genetic therapy and in vitro recombinant protein production.


Pseudotyping is the process of producing viruses or viral vectors in combination with foreign viral envelope proteins. As such, the foreign viral envelope proteins can be used to alter host tropism or an increased/decreased stability of the virus particles. For example, pseudotyping allows one to specify the character of the envelope proteins. A frequently used protein is the glycoprotein G of the Vesicular stomatitis virus (VSV), short VSV-G.


Efficient and controllable retroviral expression of a transgene is understood to require the presence of intron sequences. However, incorporation of such introns into retroviral vectors involves elaborate and time-consuming methods owing to the multi-step processes employed.


To date, viral gene transfer agents have not been useful for the treatment of diseases, without the transduction of stem cell populations, because of the host adaptive immune response, which prevents successful repeat administration.


Moreover, gene transfer to the airway epithelium has proven more difficult than originally anticipated. For example, the use of lentiviral pseudotypes that require disruption of epithelial integrity to transduce the airways, for example by the use of detergents such as lysophosphatidylcholine or ethylene glycol bis(2-aminoethyl ether)-N,N,N′N′-tetraacetic acid, has been linked to an increased risk of sepsis.


One example of a clinical setting which would benefit from gene transfer to the airway epithelium is treatment of Cystic Fibrosis (CF). CF is a fatal genetic disorder caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which acts as a chloride channel in airway epithelial cells. CF is characterised by recurrent chest infections, increased airway secretions, and eventually respiratory failure. In the UK, the current median age at death is ˜25 years. For most genotypes, there are no treatments targeting the basic defect; current treatments for symptomatic relief require hours of self-administered therapy daily. Gene therapy, unlike small molecule drugs, is independent of CFTR mutational class and is thus applicable to all affected CF individuals. However, to date no viral vector has met the requirements for clinical use, and the same applies to other diseases, particularly many other respiratory tract diseases.


In this regard, at least three major problems have been encountered. Gene transfer efficiency is generally poor, at least in part because the respective receptors for many viral vectors appear to be predominantly localised to the basolateral surface of the airway epithelium. Second, penetration of the respiratory tract mucus layer is generally poor. Finally, the ability to administer viral vectors repeatedly, mandatory for the life-long treatment of a self-renewing epithelium, is limited.


Administration of the vectors for clinical application is another pertinent factor. Therefore, viral stability through use of clinically relevant devices (e.g. bronchoscope and nebuliser) must be maintained for treatment efficacy.


Another example of a potential target for gene therapy is α1-antitrypsin (A1AT) deficiency. A1AT deficiency is an inherited disorder that may cause lung disease and liver disease. Symptoms include shortness of breath/wheezing, reduced ability to exercise, weight loss, recurring respiratory infections, fatigue and rapid heartbeat upon standing. Affected individuals often develop emphysema. About 10-15% percent of patients with A1AT deficiency develop liver disease. Individuals with A1AT deficiency are also at risk of developing a hepatocellular carcinoma.


A1AT is a secreted protein, produced mainly in the liver and then trafficked to the lung, with smaller amounts also being produced in the lung itself. The main function of A1AT is to bind and neutralise neutrophil elastase. A1AT gene therapy is likely to be of therapeutic value in patients with A1AT deficiency, CF and chronic obstructive pulmonary disease (COPD), where increasing or introducing A1AT may improve lung function.


A1AT therapy is also potentially valuable for the treatment of non-respiratory/non-pulmonary diseases, such as type 1 and type 2 diabetes, acute myocardial infarction, rheumatoid arthritis, inflammatory bowel disease, transplant rejection, graft versus host (GvH) disease, multiple sclerosis and infections, particularly viral infections, due to the effect of A1AT deficiency on other tissues/organs, such as the liver and pancreas (see, for example, Lewis Mol. Med. 2012; 18:957-970, which is herein incorporated by reference).


A1AT deficiency is an attractive target disease for gene therapy because the therapeutic threshold levels are well defined. A comparison of A1AT levels in subjects with the risk of developing emphysema/COPD determined a protective threshold level of 11 μM in serum, with levels below 11 μM are used as threshold for initiating protein augmentation therapy where available. A1AT levels in airway lining fluid are only ˜10% of serum level, because the lung epithelium constitutes a barrier and the therapeutic threshold in airway surface lining fluid is therefore considered to be 1.1 μM (see Ferraroti et al. Thorax. 2012 August; 67(8):669-74 and Abusriwil & Stockley 2006 Current Opinion in Pulmonary Medicine 12:125-131, each of which is herein incorporated by reference).


Six FDA-approved commercial formulations of A1AT protein isolated from pooled human blood are in clinical use in the US for the treatment of patients with severe A1AT deficiency (via weekly intravenous injections). Enzyme replacement therapy (ERT) is expensive ($100,000/year) and although biochemical efficacy for ERT protein augmentation therapy has been proven clinical efficacy has been more difficult to prove.


A1AT ERT is currently not accessible in all countries and currently not available in the UK. In addition, it is difficult to achieve sufficiently sustained tissue levels using current therapies, which may in part be responsible for the modest clinical efficacy observed so far.


Other attractive targets for gene therapy include cardiovascular diseases and blood disorders, particularly blood clotting deficiencies such as Haemophilia (A and B), von Willebrand disease and Factor VII deficiency.


Haemophilia, particularly Haemophilia A, is an attractive target for gene therapy. Haemophilia A is an inherited bleeding disorder caused by a deficiency or mutation of Factor VIII (FVIII). Its inheritance is sex-linked, with almost all patients being male. Bleeding is typically into the joints. Bleeding into the muscle, mucosal tissue and central nervous system (CNS) is uncommon but can occur. Disease severity is inversely proportional to the level of FVIII: less than 1% (<0.01 IU/ml) results in severe disease, with bleeding after minimal injury; between 1-5% (0.01 IU/ml-0.05 IU/ml) causes moderate disease, with bleeding after mild injury; and greater than 5% (>0.05 IU/ml) causes mild disease, with bleeding only after significant trauma or surgery.


There is accordingly a need for a gene therapy vector that is able to circumvent one or more of the problems described above.


SUMMARY OF THE INVENTION

The present inventors have developed a lentiviral vector, which has been pseudotyped with hemagglutinin-neuraminidase (HN) and fusion (F) proteins from a respiratory paramyxovirus, comprising a promoter and a transgene. Typically the backbone of the vector is from a simian immunodeficiency virus (SIV), such as SIV1 or African green monkey SIV (SIV-AGM). Preferably the backbone of a viral vector of the invention is from SIV-AGM. The HN and F proteins function, respectively, to attach to sialic acids and mediate cell fusion for vector entry to target cells. The present inventors have discovered that this specifically F/HN-pseudotyped lentiviral vector can efficiently transduce airway epithelium, resulting in transgene expression sustained for periods beyond the proposed lifespan of airway epithelial cells. Importantly, the present inventors have also found that re-administration does not result in a loss of efficacy. These features make the vectors of the present invention attractive candidates for treating diseases via their use in expressing therapeutic proteins: (i) within the cells of the respiratory tract; (ii) secreted into the lumen of the respiratory tract; and (iii) secreted into the circulatory system.


The present invention addresses one or more of the above needs by providing lentiviral vectors pseudotyped with hemagglutinin-neuraminidase (HN) and fusion (F) proteins from a respiratory paramyxovirus, comprising a promoter and a transgene. In one embodiment, the promoter is preferably a hybrid human CMV enhancer/EF1a (hCEF) promoter. The present invention also provides methods of manufacturing said vectors, compositions comprising said vectors, and uses thereof in therapy.


The vectors of the present invention enable higher and sustained gene expression through efficient gene transfer. The above-identified problems are addressed by the present invention which provides F/HN-pseudotyped lentiviral vectors which are capable of: (i) airway transduction without disruption of epithelial integrity; (ii) persistent gene expression; (iii) lack of chronic toxicity; and (iv) efficient repeat administration. Long term/persistent stable gene expression, preferably at a therapeutically-effective level, may be achieved using repeat doses of a vector of the present invention. Alternatively, a single dose may be used to achieve the desired long-term expression.


By contrast with known lentiviral vectors, the lentiviral vectors of the invention exhibit efficient airway cell uptake, enhanced transgene expression, and suffer no loss of efficacy upon repeated administration.


Thus, advantageously, the lentiviral vectors of the present invention can be used in gene therapy. By way of example, the efficient airway cell uptake properties of the vectors of the invention make them highly suitable for treating respiratory tract diseases. The lentiviral vectors of the invention can also be used in methods of gene therapy to promote secretion of therapeutic proteins. By way of further example, the invention provides secretion of therapeutic proteins into the lumen of the respiratory tract or the circulatory system. Thus, administration of a vector of the invention and its uptake by airway cells may enable the use of the lungs (or nose or airways) as a “factory” to produce a therapeutic protein that is then secreted and enters the general circulation at therapeutic levels, where it can travel to cells/tissues of interest to elicit a therapeutic effect. In contrast to intracellular or membrane proteins, the production of such secreted proteins does not rely on specific disease target cells being transduced, which is a significant advantage and achieves high levels of protein expression. Thus, other diseases which are not respiratory tract diseases, such as cardiovascular diseases and blood disorders, particularly blood clotting deficiencies, can also be treated by the vectors of the present invention.


As an example, Alpha-1 Antitrypsin (A1AT) is a secreted anti-protease that is produced mainly in the liver and then trafficked to the lung, with smaller amounts also being produced in the lung itself. The main function of A1AT is to bind and neutralise/inhibit neutrophil elastase. Gene therapy with A1AT according to the present invention is relevant to A1AT deficient patient, as well as in other lung diseases such as cystic fibrosis or chronic obstructive pulmonary disease (COPD), and offers the opportunity to overcome some of the problems encountered by enzyme replacement therapy.


The present inventors have previously demonstrated that there is a significant correlation between neutrophil elastase (NE) and A1AT in sputum samples from cystic fibrosis patients, showing that the body produces A1AT in response to NE challenge. The present inventors have also shown that there is a statistically significant correlation between NE and lung clearance index, a marker of small airways disease, implying that increased NE has a negative impact on lung function. As presented herein, the inventors have now surprisingly demonstrated that the lentiviral vectors of the invention can achieve high concentrations of A1AT and long term (at least 90 days) A1AT expression in vivo. Thus, gene therapy with A1AT may neutralise NE, improving the lung function of patients with cystic fibrosis and/or COPD (and having a therapeutic effect in other indications as described herein). Accordingly, the present invention relates to the use of a lentiviral vector as described herein for the administration of an A1AT transgene and gene therapy of conditions including, but not limited to, A1AT deficiency, cystic fibrosis and/or COPD. Administration of lentiviral A1AT directly to the nasal epithelium and/or lung may overcome some of the limitations currently faced by enzyme replacement therapy (A1AT isolated from human blood and administered intravenously every week), providing stable, long-lasting expression in the target tissue (lung/nasal epithelium), ease of administration and unlimited availability.


In some embodiments, transduction with a lentiviral vector of the invention leads to secretion of the recombinant protein into the lumen of the lung as well as into the circulation. One benefit of this is that the therapeutic protein reaches the interstitium. In the case of A1AT deficiency, this is advantageous because NE inhibition is also required at this site. A1AT gene therapy may therefore also be beneficial in other disease indications, non-limiting examples of which include type 1 and type 2 diabetes, acute myocardial infarction, ischemic heart disease, rheumatoid arthritis, inflammatory bowel disease, transplant rejection, graft versus host (GvH) disease, multiple sclerosis, liver disease, cirrhosis, vasculitides and infections, such as bacterial and/or viral infections.


A1AT has numerous other anti-inflammatory and tissue-protective effects, for example in pre-clinical models of diabetes, graft versus host disease and inflammatory bowel disease. The production of A1AT in the lung and/or nose following transduction according to the present invention may, therefore, be more widely applicable, including to these indications.


Other examples of diseases that may be treated with gene therapy of a secreted protein according to the present invention include cardiovascular diseases and blood disorders, particularly blood clotting deficiencies such as haemophilia (A and B), von Willebrand disease and Factor VII deficiency.


In some embodiments, Haemophilia A may be treated according to the present invention. Disease severity is inversely proportional to the level of FVIII, and an increase in FVIII of 2-5% (0.02-0.05 IU/ml) is enough to be therapeutically effective.


In some embodiments the nose is a preferred production site for a therapeutic protein using a gene therapy vector of the invention for at least one of the following reasons: (i) extracellular barriers such as inflammatory cells and sputum are less pronounced in the nose; (ii) ease of vector administration; (iii) smaller quantities of vector required; and (iv) ethical considerations. Thus, transduction of nasal epithelial cells with a lentiviral vector of the invention may result in efficient (high-level) and long-lasting expression of the therapeutic transgene of interest.


The vectors of the present invention enable long term gene expression, resulting in long term expression of a therapeutic protein. As described herein, the phrases “long term expression”, “sustained expression” and “persistent expression” are used interchangeably. Long term expression according to the present invention means expression of a therapeutic gene and/or protein, preferably at therapeutic levels, for at least 45 days, at least 60 days, at least 90 days, at least 120 days, at least 180 days, at least 250 days, at least 360 days, at least 450 days, at least 730 days or more. Preferably long term expression means expression for at least 90 days, at least 120 days, at least 180 days, at least 250 days, at least 360 days, at least 450 days, at least 720 days or more, more preferably at least 360 days, at least 450 days, at least 720 days or more. This long term expression may be achieved by repeated doses or by a single dose.


Repeated doses may be administered twice-daily, daily, twice-weekly, weekly, monthly, every two months, every three months, every four months, every six months, yearly, every two years, or more. Dosing may be continued for as long as required, for example, for at least six months, at least one year, two years, three years, four years, five years, ten years, fifteen years, twenty years, or more, up to for the lifetime of the patient to be treated.


Lentiviral vectors, such as those of the invention, can integrate into the genome of transduced cells and lead to long-lasting expression, making them suitable for transduction of stem/progenitor cells. In the lung, several cell types with regenerative capacity have been identified as responsible for maintaining specific cell lineages in the conducting airways and alveoli. These include basal cells and submucosal gland duct cells in the upper airways, Clara cells and neuroendocrine cells in the bronchiolar airways, bronchioalveolar stem cells in the terminal bronchioles and type II pneumocytes in the alveoli. Therefore, and without being bound by theory, it is believed that the vectors of the present invention bring about long term gene expression of the transgene of interest by introducing the transgene into one or more long-lived airway epithelial cells or cell types, such as basal cells and submucosal gland duct cells in the upper airways, Clara cells and neuroendocrine cells in the bronchiolar airways, bronchioalveolar stem cells in the terminal bronchioles and type II pneumocytes in the alveoli.


Accordingly, the lentiviral vectors of the invention may transduce one or more cells or cell lines with regenerative potential within the lung (including the airways and respiratory tract) to achieve long term gene expression. In a preferred embodiment the lentiviral vector of the invention transduces basal cells, such as those in the upper airways/respiratory tract. Basal cells have a central role in processes of epithelial maintenance and repair following injury. In addition, basal cells are widely distributed along the human respiratory epithelium, with a relative distribution ranging from 30% (larger airways) to 6% (smaller airways).


The lentiviral vectors of the invention may be used to transduce isolated and expanded stem/progenitor cells ex vivo prior administration to a patient. Preferably, the lentiviral vectors of the invention are used to transduce cells within the lung (or airways/respiratory tract) in vivo.


The vectors of the present invention enable high levels of gene expression, resulting in high levels (preferably therapeutic levels) of expression of a therapeutic protein. Expression may be measured by any appropriate method (qualitative or quantitative, preferably quantitative), and concentrations given in any appropriate unit of measurement, for example ng/ml. A high level of expression according to the present invention may mean expression of a therapeutic gene and/or protein at a concentration of at least 10 ng/ml, at least 20 ng/ml, at least 30 ng/ml, at least 40 ng/ml, at least 50 ng/ml, at least 60 ng/ml, at least 70 ng/ml, at least 80 ng/ml, at least 90 ng/ml, at least 100 ng/ml, at least 200 ng/ml, at least 300 ng/ml, at least 400 ng/ml, at least 500 ng/ml, at least 600 ng/ml, at least 700 ng/ml, at least 800 ng/ml, at least 900 ng/ml, at least 1,000 ng/ml, at least 2,000 ng/ml, at least 3,000 ng/ml, at least 4,000 ng/ml, at least 5,000 ng/ml, at least 10,000, at least 15,000 ng/ml, at least 20,000 ng/ml or more. Therapeutic expression may be defined using these same values.


The lentiviral vectors of the present invention typically provide high expression levels of a transgene when administered to a patient. The terms high expression and therapeutic expression are used interchangeably herein.


A high level of expression according to the present invention may mean expression of a therapeutic gene and/or protein at a concentration of at least about 100 nM, at least about 200 nM, at least about 300 nM, at least about 400 nM, at least about 500 nM, at least about 600 nM, at least about 700 nM, at least about 800 nM, at least about 900 nM, at least about 1 μM, at least about 1.1 μM, at least about 1.2 μM, at least about 1.3 μM, at least about 1.4 μM, at least about 1.5 μM, at least about 2 μM, at least about 3 μM, at least about 4 μM, at least about 5 μM, at least about 6 μM, at least about 7 μM, at least about 8 μM, at least about 9 μM, at least about 10 μM, at least about 11 μM, at least about 12 μM, at least about 13 μM, at least about 14 μM, at least about 15 μM, at least about 20 μM, at least about 25 μM, at least about 30 μM, at least about 40 μM, at least about 50 μM, at least about 75 μM, or at least about 100 μM or more. Therapeutic expression may be defined using these same values.


A high level of expression according to the present invention may mean expression of a therapeutic gene (typically measured by mRNA expression) at least about 1%, at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 6%, at least about 7%, at least about 8%, at least about 9%, at least about 10%, at least about 15%, at least about 20% or more compared with the expression level of the corresponding endogenous (defective) mRNA. Therapeutic expression may be defined using these same values. For example, a typical expression level of endogenous CFTR mRNA may be quantified in terms of the number of copies of the mRNA per lung cell, for example one copy of the endogenous CFTR mRNA per lung cell, two copies of the endogenous CFTR mRNA per lung cell, three copies of the endogenous CFTR mRNA per lung cell, four copies of the endogenous CFTR mRNA per lung cell, five copies of the endogenous CFTR mRNA per lung cell, or more, preferably two copies of the endogenous CFTR mRNA per lung cell. The expression of the therapeutic gene of the invention, such as a functional CFTR gene, may be quantified relative to the endogenous gene, such as the endogenous (dysfunctional) CFTR genes in terms of mRNA copies per cell or any other appropriate unit.


A high level of expression according to the present invention may mean expression of a therapeutic gene and/or protein at a concentration of at least about 0.5%, at least about 1%, at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 6%, at least about 7%, at least about 8%, at least about 9%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more compared with the wild type level of the therapeutic gene and/or protein, wherein the wild type level is the level in a normal individual without the disease. In some embodiments, wild type expression is given as 100%, with any improvement in gene expression measured relative to that. As a non-limiting example, if in a normal individual without the disease the expression of the functional gene is given as 100%, and in an individual with the disease, the expression of the functional gene is 0%, a therapeutic level of expression of the gene or protein may be at least about 0.5%, at least about 1%, at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 6%, at least about 7%, at least about 8%, at least about 9%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 40%, at least about 50%, or more compared with the wild type level of the therapeutic gene and/or protein. As another non-limiting example, if in a normal individual without the disease the expression of the functional gene is given as 100%, and in an individual with the disease, the expression of the functional gene is 50%, a therapeutic level of expression of the gene or protein may be at least about 55%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more compared with the wild type level of the therapeutic gene and/or protein.


For secreted proteins such as A1AT, typically the concentration in the lung or epithelial lining fluid (as measured using BAL) is approximately ten times that in serum. As a non-limiting example, if the concentration of secreted protein in the lung or epithelial lining fluid is in the region of 750 ng/ml, the serum concentration of the protein is in the region of 75 ng/ml.


Expression levels of a therapeutic gene and/or protein of the invention may be measured in the lung tissue, epithelial lining fluid and/or serum/plasma as appropriate. A high and/or therapeutic expression level may therefore refer to the concentration in the lung, epithelial lining fluid and/or serum/plasma.


As a non-limiting example, a therapeutic expression level of CFTR is typically 1-5% of the therapeutic CFTR mRNA compared with the expression level of the endogenous (defective) CFTR mRNA.


As another non-limiting example, a therapeutic expression level of A1AT is typically at least about 1 μM in the epithelial lining fluid, and/or at least about 0.1 μM in the serum. In a preferred embodiment, a therapeutic expression level of A1AT in the epithelial lining fluid is at least about 1.1 μM, and/or a therapeutic serum expression level of A1AT according to the present invention is at least about 11 μM. As another non-limiting example, a therapeutic expression level of A1AT in the epithelial lining fluid (ELF, i.e. the fluid lining the airways and airspaces in the lungs) is 70 μg/ml (compared with a “normal” target level of ATT (A1AT) in the ELF of 200 μg/ml).


As another non-limiting example, a therapeutic expression level of FVIII protein is typically at least about 1-3% or at least about 1-6% of the expression level in a normal individual who does not suffer from haemophilia.


The therapeutic gene included in the vector of the invention may be modified to facilitate expression. For example, the gene sequence may be in CpG-depleted and/or codon-optimised form to facilitate gene expression. Standard techniques for modifying the gene sequence in this way are known in the art.


The promoter included in the vector of the invention may be specifically selected and/or modified to further refine regulation of expression of the therapeutic gene. Again, suitable promoters and standard techniques for their modification are known in the art. As a non-limiting example, a number of suitable (CpG-free) promoters suitable for use in the present invention are described in Pringle et al. (J. Mol. Med. Berl. 2012, 90(12): 1487-96), which is herein incorporated by reference in its entirety.


The vector of the invention may be modified to allow shut down of gene expression. Standard techniques for modifying the vector in this way are known in the art. As a non-limiting example, Tet-responsive promoters are widely used.


The vectors of the present invention also demonstrate remarkable resistance to shear forces with only modest reduction in transduction ability when passaged through clinically-relevant delivery devices such as bronchoscopes, spray bottles and nebulisers.


In one embodiment, the invention provides F/HN lentiviral vectors comprising a promoter and a transgene, having no intron positioned between the promoter and the transgene. In one embodiment, the vector of the present invention is delivered to cells of the respiratory tract. In embodiment, the lentivirus is SIV. In one embodiment, the promoter is a hybrid human CMV enhancer/EF1a (hCEF) promoter. Typically said promoter of the invention lacks the intron corresponding to nucleotides 570-709 and the exon corresponding to nucleotides 728-733 of the hCEF promoter. A preferred example of an hCEF promoter sequence of the invention is provided by SEQ ID NO: 6. The promoter may be a CMV promoter. An example of a CMV promoter sequence is provided by SEQ ID NO: 17. Other promoters for transgene expression are known in the art and their suitability for the lentiviral vectors of the invention determined using routine techniques known in the art. Non-limiting examples of other promoters include UbC and UCOE. As described herein, the promoter may be modified to further regulate expression of the transgene of the invention.


In one embodiment, the transgene encodes a CFTR. An example of a CFTR cDNA is provided by SEQ ID NO: 7.


In one embodiment, the transgene encodes an A1AT. An example of an A1AT transgene is provided by SEQ ID NO: 15, or by the complementary sequence of SEQ ID NO: 26. SEQ ID NO: 15 is a codon-optimized CpG depleted A1AT transgene designed by the present inventors to enhance translation in human cells. Such optimisation has been shown to enhance gene expression by up to 15-fold. Thus, in one embodiment, the invention provides a polynucleotide comprising or consisting of the nucleotide sequence of SEQ ID NO: 15. Variants of same sequence (as defined herein) which possess the same technical effect of enhancing translation compared with the unmodified (wild-type) A1AT gene sequence are also encompassed by the present invention. The invention further provides a polypeptide encoded by said A1AT transgene, as exemplified by the polypeptide of SEQ ID NO: 27, plasmids (particularly vector genome plasmids as defined herein) and lentiviral vectors comprising said A1AT transgene. In a preferred embodiment, aspects of the invention relating to A1AT gene therapy according to the present invention use the A1AT transgene sequence of SEQ ID NO: 15.


In one embodiment, the transgene encodes a FVIII. Examples of a FVIII transgene are provided by SEQ ID NOs: 16 and 30, or by the respective complementary sequences of SEQ ID NO: 28 and 31.


Lentiviral vectors suitable for use in the present invention include Human immunodeficiency virus (HIV), Simian immunodeficiency virus (SIV), Feline immunodeficiency virus (FIV), Equine infectious anaemia virus (EIAV), and Visna/maedi virus. In one embodiment of the invention, an SIV vector is used, preferably SIV-AGM. In another embodiment, an HIV vector is used.


The lentiviral vectors of the present invention are pseudotyped with hemagglutinin-neuraminidase (HN) and fusion (F) proteins from a respiratory paramyxovirus. In one embodiment, the respiratory paramyxovirus is a Sendai virus (murine parainfluenza virus type 1).


In one embodiment of the invention, the lentiviral vector is integrase-competent (IC). In an alternative embodiment, the lentiviral vector is integrase-deficient (ID).


In another embodiment of the invention, the transgene of the invention is any one or more of DNAH5, DNAH11, DNAI1, and DNAI2, or other known related gene.


In one embodiment of the invention, the respiratory tract epithelium is targeted for delivery of the vector. In this embodiment, the transgene encodes Alpha-1 Antitrypsin (A1AT), Surfactant Protein B (SFTPB), or Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF). In another embodiment, the transgene encodes a monoclonal antibody (mAb) against an infectious agent. In one embodiment, transgene encodes anti-TNF alpha. In a further embodiment, the transgene encodes a therapeutic protein implicated in an inflammatory, immune or metabolic condition.


In one embodiment of the invention, the vector is delivered to the cells of the respiratory tract to allow production of proteins to be secreted into circulatory system. In this embodiment, the transgene encodes for Factor VII, Factor VIII, Factor IX, Factor X, Factor XI and/or von Willebrand's factor. Such a vector may be used in the treatment of diseases, particularly cardiovascular diseases and blood disorders, preferably blood clotting deficiencies such as Haemophilia. In another embodiment, the transgene encodes a monoclonal antibody (mAb) against an infectious agent. In one embodiment, the transgene encodes a protein implicated in an inflammatory, immune or metabolic condition, such as, lysosomal storage disease.


In accordance with the invention, there is provided an F/HN-SIV lentiviral vector comprising an hCEF promoter and a CFTR transgene, having no intron positioned between the promoter and the transgene. Similarly, there is no intron between the promoter and the transgene in the vector genome (pDNA1) plasmid (for example, pGM326 as described herein, illustrated in FIG. 1A and with the sequence of SEQ ID NO: 1).


The invention also provides an F/HN-SIV lentiviral vector comprising an hCEF promoter and an A1AT transgene, having no intron positioned between the promoter and the transgene. Such a lentiviral vector may be produced by the method described herein, using a plasmid carrying the A1AT transgene and a promoter. Similarly, there is no intron between the promoter and the A1AT transgene in the vector genome (pDNA1) plasmid. An exemplary sequence of such a plasmid is given in SEQ ID NO: 9 (F/HN-SIV-hCEF-soA1AT, illustrated in FIG. 15A).


The invention also provides an F/HN-SIV lentiviral vector comprising (i) an hCEF promoter or a CMV promoter; and (ii) an FVIII transgene; wherein no intron is positioned between the promoter and the transgene. Such a lentiviral vector may be produced by the method described herein, using a plasmid carrying the FVIII transgene and a promoter. Similarly, there is no intron between the promoter and the FVIII transgene in the vector genome (pDNA1) plasmid. Exemplary sequences of such plasmids are given in SEQ ID NO: 11 to 14 (illustrated in FIG. 22A to E).


The lentiviral vector as described above comprises a transgene. The transgene comprises a nucleic acid sequence encoding a gene product, e.g., a protein.


For example, in one embodiment, the nucleic acid sequence encoding a CFTR, A1AT or FVIII comprises (or consists of) a nucleic acid sequence having at least 90% (such as at least 90, 92, 94, 95, 96, 97, 98, 99 or 100%) sequence identity to the CFTR, A1AT or FVIII nucleic acid sequence respectively. In a further embodiment, the nucleic acid sequence encoding CFTR, A1AT or FVIII comprises (or consists of) a nucleic acid sequence having at least 95% (such as at least 95, 96, 97, 98, 99 or 100%) sequence identity to the CFTR, A1AT or FVIII nucleic acid sequence respectively. In one embodiment, the nucleic acid sequence encoding CFTR is provided by SEQ ID NO: 7, the nucleic acid sequence encoding A1AT is provided by SEQ ID NO: 15, or by the complementary sequence of SEQ ID NO: 26 and/or the nucleic acid sequence encoding FVIII is provided by SEQ ID NO: 16 and 30, or by the respective complementary sequences of SEQ ID NO: 28 and 31, or variants thereof.


The term “polypeptide” as used herein also encompasses variant sequences. Thus, the polypeptide encoded by the transgene of the invention may have at least 90% (such as at least 90, 92, 94, 95, 96, 97, 98, 99 or 100%) sequence identity to a functional CFTR, A1AT or FVIII polypeptide sequence respectively. In a further embodiment, the amino acid sequence of the CFTR, A1AT or FVIII transgene comprises (or consists of) an amino acid sequence having at least 95% (such as at least 95, 96, 97, 98, 99 or 100%) sequence identity to the functional CFTR, A1AT or FVIII polypeptide sequence respectively. In one embodiment, the amino acid sequence of the A1AT protein encoded by the transgene of the invention comprises (or consists of) the amino acid sequence of SEQ ID NO: 27, or variants thereof. Preferably said variant A1AT proteins of the invention have at least 90% (such as at least 90, 92, 94, 95, 96, 97, 98, 99 or 100%), more preferably at least 95% or more sequence identity with SEQ ID NO: 27.


In one embodiment, the nucleic acid sequence encoding CFTR, A1AT or FVIII comprises (or consists of) the CFTR, A1AT or FVII complementary DNA sequence respectively. In one embodiment, the CFTR, A1AT or FVIII transgene is a sequence-optimised CFTR, A1AT or FVIII (soCFTR2, soA1AT or FVIII). An example is provided by SEQ ID NOS: 7, 15 and 16 respectively. An exemplary complementary sequence-optimised A1AT sequence is given by SEQ ID NO: 26. Exemplary complementary sequence optimised FVIII sequences are given by SEQ ID NOs: 28 and 31.


In one embodiment of the invention, the F/HN vector transgene expression is driven by cytomegalovirus (CMV) promoter. In another embodiment, the vector transgene expression is driven by elongation factor 1a (EF1a) promoter. In a preferred embodiment, the vector transgene expression is driven by hybrid human CMV enhancer/EF1a (hCEF) promoter. In one embodiment, the hCEF promoter has all CG dinucleotides replaced with any one of AG, TG or GT. Thus, in one embodiment, the hCEF promoter is CpG-free.


In one embodiment, the lentiviral vector may be produced using the F/HN-SIV-hCEF-soCFTR2-IC plasmid. In this embodiment, CFTR is expressed under control of the hCEF promoter. This lentiviral vector may be described as comprising F/HN-SIV-hCEF-soCFTR2-IC, as it comprises the SIV F/HN elements, as well as an integrase competent expression cassette comprising CFTR under the control of the hCEF promoter. This lentiviral vector of the invention is capable of producing long-lasting, repeatable, high-level expression in airway cells without inducing an undue immune response. Consequently, the invention provides an efficient means of in vivo gene therapy, for example, CFTR gene transfer into the CF lung for the treatment of CF lung disease.


In a preferred embodiment, the lentiviral vector may be produced using the F/HN-SIV-hCEF-soA1AT plasmid. In this embodiment, A1AT is expressed under control of the hCEF promoter. This lentiviral vector may be described as comprising F/HN-SIV-hCEF-soA1AT, as it comprises the SIV F/HN elements, as well as an expression cassette comprising A1AT under the control of the hCEF promoter. This lentiviral vector of the invention is capable of producing long-lasting, repeatable, high-level expression in airway cells without inducing an undue immune response. Consequently, the invention provides an efficient means of in vivo gene therapy, for example, A1AT gene transfer into a patient's lung or nose for the production of A1AT which is then secreted into the circulatory system (as described herein). Thus, this vector and other vectors of the invention comprising the A1AT transgene may be used in the treatment of A1AT deficiency, or other indications as described herein.


In another preferred embodiment, the lentiviral vectors may be produced using the F/HN-SIV-CMV-HFVIII-V3, F/HN-SIV-hCEF-HFVIII-V3, F/HN-Sly-CMV-HFVIII-N6-co and/or F/HN-SIV-hCEF-HFVIII-N6-co plasmids. HFVIII refers to human FVIII. In this embodiment, FVIII is expressed under control of the hCEF or CMV promoter. These lentiviral vectors may be described as comprising F/HN-SIV-CMV-HFVIII-V3, F/HN-SIV-hCEF-HFVIII-V3, F/HN-SIV-CMV-HFVIII-N6-co and F/HN-Sly-hCEF-HFVIII-N6-co respectively, as they comprise the SIV F/HN elements, as well as an expression cassette comprising FVIII under the control of the hCEF/CMV promoter. Viral vector products produced using the F/HN-SIV-CMV-HFVIII-V3, F/HN-SIV-hCEF-HFVIII-V3, F/HN-SIV-CMV-HFVIII-N6-co and/or F/HN-SIV-hCEF-HFVIII-N6-co plasmids are also known as vGM126, vGM127, vGM142 and vGM129 (see FIG. 22). These lentiviral vectors of the invention are capable of producing long-lasting, repeatable, high-level expression in airway cells without inducing an undue immune response. Consequently, the invention provides an efficient means of in vivo gene therapy, for example, FVIII gene transfer into a patient's lung or nose for the production of FVIII which is then secreted into the circulatory system (as described herein). Thus, these vectors and other vectors of the invention comprising the FVIII transgene may be used in the treatment of haemophilia, or other indications as described herein.


The lentiviral vectors of the invention do not contain an intron between the promoter and the transgene. Similarly, the vector genome plasmids of the invention (used to generate said lentiviral vectors as described herein) also do not contain an intron between the promoter and the transgene. The invention therefore provides, in one embodiment, no intron between the hCEF promoter and the coding sequences to be expressed. In one preferred embodiment, the coding sequence to be expressed is a CFTR, A1AT and/or FVIII nucleic acid sequence.


In one embodiment, the vectors of the invention comprise central polypurine tract (cPPT) and the Woodchuck hepatitis virus posttranscriptional regulatory elements (WPRE). In one embodiment, the WPRE sequence is provided by SEQ ID NO: 8.


In one embodiment the vector of the invention is used for gene therapy. In one embodiment the disease to be treated is CF. In another embodiment of the invention, the disease to be treated is Primary Ciliary Dyskinesia (PCD). In one embodiment, the vector is used to treat acute lung injury. In one embodiment of the invention, the disease to be treated is Surfactant Protein B (SP-B) deficiency, Alpha 1-antitrypsin Deficiency (A1AD), Pulmonary Alveolar Proteinosis (PAP), Chronic obstructive pulmonary disease (COPD). In another embodiment, the disease is an inflammatory, immune or metabolic condition.


The disease to be treated may be a cardiovascular disease or blood disorder, particularly a blood clotting deficiency. Thus, in some embodiments, the disease to be treated is Haemophilia A, Haemophilia B, or Haemophilia C, Factor VII deficiency and/or von Willebrand disease. In yet another embodiment, the disease to be treated is an inflammatory disease, infectious disease or metabolic condition, such as, lysosomal storage disease.


Non-limiting examples of diseases which may be treated using A1AT gene therapy according to the present invention include type 1 and type 2 diabetes, acute myocardial infarction, ischemic heart disease, rheumatoid arthritis, inflammatory bowel disease, transplant rejection, graft versus host (GvH) disease, multiple sclerosis, liver disease, cirrhosis, vasculitides and infections, such as bacterial and/or viral infections.


In one aspect of the invention, the vector can effectively treat a disease by providing a transgene for the correction of the disease. For example, inserting a functional copy of the CFTR gene to ameliorate or prevent lung disease in CF patients, independent of the underlying mutation.


In another embodiment of the invention, a lentiviral production method is provided. In this embodiment, the method of the invention is a scalable GMP-compatible method. Thus, the method of the invention allows the generation of high titre purified F/HN vectors.


The method of the invention comprises the following steps:

    • (a) growing cells in suspension;
    • (b) transfecting the cells with one or more plasmids;
    • (c) adding a nuclease;
    • (d) harvesting the lentivirus;
    • (e) adding trypsin; and
    • (f) purification.


In one embodiment of the method of the invention, the one or more plasmids provide the vector genome, the Gag-Pol, Rev, F and HN. Thus, there can be five plasmids for each of the vector genome, the Gag-Pol, Rev, F and HN, respectively. In the preferred 5 plasmid method of the invention, the vector genome plasmid encodes all the genetic material that is packaged into final lentiviral vector, including the transgene. Typically only a portion of the genetic material found in the vector genome plasmid ends up in the virus. The vector genome plasmid may be designated herein as “pDNA1”. The other four plasmids are manufacturing plasmids encoding the Gag-Pol, Rev, F and HN proteins. These plasmids may be designated “pDNA2a”, “pDNA2b”, “pDNA3a” and “pDNA3b” respectively.


In one embodiment of the invention, the lentivirus is SIV, such as SIV1, preferably SIV-AGM. In one embodiment, the F and HN proteins are derived from a Paramyxovirus, such as Sendai virus. In one embodiment, the vector genome plasmid (pDNA1) comprises the transgene and the transgene promoter.


In a specific embodiment relating to CFTR, the five plasmids are characterised by FIGS. 1A-1E, thus pDNA1 is the pGM326 plasmid of FIG. 1A, pDNA2a is the pGM299 plasmid of FIG. 1B, pDNA2b is the pGM299 plasmid of FIG. 1C, pDNA3a is the pGM301 plasmid of FIG. 1D and pDNA3b is the pGM303 plasmid of FIG. 1E. In this embodiment, the final CFTR containing lentiviral vector may be referred to as vGM058 (see the Examples). The vGM058 vector is a preferred embodiment of the invention.


In an embodiment relating to A1AT, the five plasmids may be characterised by FIG. 15A (thus plasmid pDNA1 may be pGM407) and 1B-E (as above for the specific CFTR embodiment).


In an embodiment relating to FVIII, the five plasmids may be characterised by FIGS. 22C-F (thus plasmid pDNA1 may be pGM411, pGM412, pGM413 or pGM414) and 1B-E.


In these embodiments of the invention, the plasmid as defined in FIG. 1A is represented by SEQ ID NO: 1; the plasmid as defined in FIG. 1B is represented by SEQ ID NO: 2; the plasmid as defined in FIG. 10 is represented by SEQ ID NO: 3; the plasmid as defined in FIG. 1D is represented by SEQ ID NO: 4; the plasmid as defined in FIG. 1E is represented by SEQ ID NO: 5; the plasmid as defined in FIG. 15A is represented by SEQ ID NO: 9 and the F/HN-SIV-CMV-HFVIII-V3, F/HN-SIV-hCEF-HFVIII-V3, F/HN-SIV-CMV-HFVIII-N6-co and/or F/HN-SIV-hCEF-HFVIII-N6-co plasmids as defined in FIG. 22B are represented by SEQ ID NOs: 11 to 14 respectively.


In the 5 plasmid method of the invention all five plasmids contribute to the formation of the final lentiviral vector. During manufacture of the lentiviral vector, the vector genome plasmid (pDNA1) provides the enhancer/promoter, Psi, RRE, cPPT, mWPRE, SIN LTR, SV40 polyA (see FIG. 1A), which are important for viral manufacture. Using pGM326 as a non-limiting example of a pDNA1, the CMV enhancer/promoter, SV40 polyA, colE1 Ori and Kan® are involved in manufacture of the lentiviral vector of the invention (e.g. vGM058), but are not found in the final viral vector. The RRE, cPPT (central polypurine tract), hCEF, soCFTR2 (transgene) and mWPRE from pGM326 are found in the final viral vector. SIN LTR (long terminal repeats, SIN/IN self inactivating) and Psi (packaging signal) may be found in the final viral vector.


For other lentiviral vectors of the invention, corresponding elements from the other vector genome plasmids (pDNA1) are required for manufacture (but not found in the final vector), or are present in the final viral vector.


The F and HN proteins from pDNA3a and pDNA3b (preferably Sendai F and HN proteins) are important for infection of target cells with the final lentiviral vector, i.e. for entry of a patients epithelial cells (typically lung or nasal cells as described herein). The products of the pDNA2a and pDNA2b plasmids are important for virus transduction, i.e. for inserting the lentiviral DNA into the host's genome. The promoter, regulatory elements (such as WPRE) and transgene are important for transgene expression within the target cell(s).


In one embodiment, steps (a)-(f) are carried out sequentially. In one embodiment, the cells are HEK293 cells or 293T/17 cells. In one embodiment, the cells are grown in animal-component free (serum-free) media. In one embodiment, the transfection is carried out by the use of PEIPro™. In one embodiment, the nuclease is an endonuclease, for example, Benzonase®. In one embodiment, the trypsin activity is provided by an animal origin free, recombinant enzyme such as TrypLE Select™.


In one embodiment of the invention, the addition of the nuclease is at the pre-harvest stage. In an alternative embodiment, the addition of the nuclease is at the post-harvest stage. In another embodiment, the addition of trypsin is at the pre-harvest stage. In another embodiment, the addition of the trypsin is at the post-harvest stage.


In one embodiment, the purification step comprises a chromatography step. In this embodiment, mixed-mode size exclusion chromatography (SEC) is used. In one embodiment, anion exchange chromatography is used. In this embodiment, no salt gradient is used for the elution step.


In one embodiment, this method is used to produce the lentiviral vectors of the invention. In this embodiment, the vector of the invention comprises the CFTR, A1AT and/or FVIII gene. In an alternative embodiment, the vector of the invention comprises any of the above-mentioned genes, or the genes encoding the above-mentioned proteins.


In one embodiment of the method of the invention, any combination of one or more of the specific plasmid constructs provided by FIGS. 1A-1E, FIG. 15A and/or FIG. 22C-22F is used to provide a vector of the invention.


The invention further provides a method of treating a disease, the method comprising administering a lentiviral vector of the invention to a subject. In this embodiment, the invention provides a lentiviral vector of the invention for use in treatment of a lung disease. In one embodiment, disease is a chronic disease. In a specific embodiment, a method of treating CF is provided. In other embodiments, a method of treating Primary Ciliary Dyskinesia (PCD), Surfactant Protein B (SP-B) deficiency, Alpha 1-antitrypsin Deficiency (A1AD), Pulmonary Alveolar Proteinosis (PAP), Chronic obstructive pulmonary disease (COPD) is provided. In another embodiment, the disease is an inflammatory, immune or metabolic condition.


In another embodiment, the disease may be a cardiovascular disease or blood disorder, particularly a blood clotting deficiency, such as Haemophilia A, Haemophilia B, Haemophilia C, Factor VII deficiency and/or von Willebrand disease, an inflammatory disease, infectious disease or metabolic condition, such as, lysosomal storage disease.


The disease may be type 1 and type 2 diabetes, acute myocardial infarction, ischemic heart disease, rheumatoid arthritis, inflammatory bowel disease, transplant rejection, graft versus host (GvH) disease, multiple sclerosis, liver disease, cirrhosis, vasculitides and infections, such as bacterial and/or viral infections.


The lentiviral vectors of the invention may be administered in any dosage appropriate for achieving the desired therapeutic effect. Appropriate dosages may be determined by a clinician or other medical practitioner using standard techniques and within the normal course of their work. Non-limiting examples of suitable dosages include 1×108 transduction units (TU), 1×109 TU, 1×1010 TU, 1×1011 TU or more.


The invention also provides compositions comprising the lentiviral vectors described above, and a pharmaceutically-acceptable carrier. Non-limiting examples of pharmaceutically acceptable carriers include water, saline, and phosphate-buffered saline. In some embodiments, however, the composition is in lyophilized form, in which case it may include a stabilizer, such as bovine serum albumin (BSA). In some embodiments, it may be desirable to formulate the composition with a preservative, such as thiomersal or sodium azide, to facilitate long-term storage.


The vectors of the invention may be administered by any appropriate route. It may be desired to direct the compositions of the present invention (as described above) to the respiratory system of a subject. Efficient transmission of a therapeutic/prophylactic composition or medicament to the site of infection in the respiratory tract may be achieved by oral or intra-nasal administration, for example, as aerosols (e.g. nasal sprays), or by catheters. Typically the lentiviral vectors of the invention are stable in clinically relevant nebulisers, catheters and aerosols, etc.


Formulations for intra-nasal administration may be in the form of nasal droplets or a nasal spray. An intra-nasal formulation may comprise droplets having approximate diameters in the range of 100-5000 μm, such as 500-4000 μm, 1000-3000 μm or 100-1000 μm. Alternatively, in terms of volume, the droplets may be in the range of about 0.001-100 μl, such as 0.1-50 μl or 1.0-25 μl, or such as 0.001-1 μl.


The aerosol formulation may take the form of a powder, suspension or solution. The size of aerosol particles is relevant to the delivery capability of an aerosol. Smaller particles may travel further down the respiratory airway towards the alveoli than would larger particles. In one embodiment, the aerosol particles have a diameter distribution to facilitate delivery along the entire length of the bronchi, bronchioles, and alveoli. Alternatively, the particle size distribution may be selected to target a particular section of the respiratory airway, for example the alveoli. In the case of aerosol delivery of the medicament, the particles may have diameters in the approximate range of 0.1-50 μm, preferably 1-25 μm, more preferably 1-5 μm.


Aerosol particles may be for delivery using a nebulizer (e.g. via the mouth) or nasal spray. An aerosol formulation may optionally contain a propellant and/or surfactant.


As used herein, the terms “nucleic acid sequence” and “polynucleotide” are used interchangeably and do not imply any length restriction. As used herein, the terms “nucleic acid” and “nucleotide” are used interchangeably. The terms “nucleic acid sequence” and “polynucleotide” embrace DNA (including cDNA) and RNA sequences. The terms “transgene” and “gene” are also used interchangeably and both terms encompass fragments or variants thereof encoding the target protein.


The transgenes of the present invention include nucleic acid sequences that have been removed from their naturally occurring environment, recombinant or cloned DNA isolates, and chemically synthesized analogues or analogues biologically synthesized by heterologous systems.


The polynucleotides of the present invention may be prepared by any means known in the art. For example, large amounts of the polynucleotides may be produced by replication in a suitable host cell. The natural or synthetic DNA fragments coding for a desired fragment will be incorporated into recombinant nucleic acid constructs, typically DNA constructs, capable of introduction into and replication in a prokaryotic or eukaryotic cell. Usually the DNA constructs will be suitable for autonomous replication in a unicellular host, such as yeast or bacteria, but may also be intended for introduction to and integration within the genome of a cultured insect, mammalian, plant or other eukaryotic cell lines.


The polynucleotides of the present invention may also be produced by chemical synthesis, e.g. by the phosphoramidite method or the tri-ester method, and may be performed on commercial automated oligonucleotide synthesizers. A double-stranded fragment may be obtained from the single stranded product of chemical synthesis either by synthesizing the complementary strand and annealing the strand together under appropriate conditions or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.


When applied to a nucleic acid sequence, the term “isolated” in the context of the present invention denotes that the polynucleotide sequence has been removed from its natural genetic milieu and is thus free of other extraneous or unwanted coding sequences (but may include naturally occurring 5′ and 3′ untranslated regions such as promoters and terminators), and is in a form suitable for use within genetically engineered protein production systems. Such isolated molecules are those that are separated from their natural environment.


In view of the degeneracy of the genetic code, considerable sequence variation is possible among the polynucleotides of the present invention. Degenerate codons encompassing all possible codons for a given amino acid are set forth below:














Amino Acid
Codons
Degenerate Codon







Cys
TGC TGT
TGY





Ser
AGC ACT TCA TCC TCG TCT
WSN





Thr
ACA ACC ACG ACT
ACN





Pro
CCA CCC CCG CCT
CCN





Ala
GCA GCC GCG GCT
GCN





Gly
GGA GGC GGG GGT
GGN





Asn
AAC AAT
AAY





Asp
GAC GAT
GAY





Glu
GAA GAG
GAR





Gln
CAA CAG
CAR





His
CAC CAT
CAY





Arg
AGA AGG CGA CGC CGG CGT
MGN





Lys
AAA AAG
AAR





Met
ATG
ATG





Ile
ATA ATC ATT
ATH





Leu
CTA CTC CTG CTT TTA TTG
YTN





Val
GTA GTC GTG GTT
GTN





Phe
TTC TTT
TTY





Tyr
TAC TAT
TAY





Trp
TGG
TGG





Ter
TAA TAG TGA
TRR





Asn/ Asp

RAY





Glu/ Gln

SAR





Any

NNN









One of ordinary skill in the art will appreciate that flexibility exists when determining a degenerate codon, representative of all possible codons encoding each amino acid. For example, some polynucleotides encompassed by the degenerate sequence may encode variant amino acid sequences, but one of ordinary skill in the art can easily identify such variant sequences by reference to the amino acid sequences of the present invention.


A “variant” nucleic acid sequence has substantial homology or substantial similarity to a reference nucleic acid sequence (or a fragment thereof). A nucleic acid sequence or fragment thereof is “substantially homologous” (or “substantially identical”) to a reference sequence if, when optimally aligned (with appropriate nucleotide insertions or deletions) with the other nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 70%, 75%, 80%, 82, 84, 86, 88, 90, 92, 94, 96, 98 or 99% of the nucleotide bases. Methods for homology determination of nucleic acid sequences are known in the art.


Alternatively, a “variant” nucleic acid sequence is substantially homologous with (or substantially identical to) a reference sequence (or a fragment thereof) if the “variant” and the reference sequence they are capable of hybridizing under stringent (e.g. highly stringent) hybridization conditions. Nucleic acid sequence hybridization will be affected by such conditions as salt concentration (e.g. NaCl), temperature, or organic solvents, in addition to the base composition, length of the complementary strands, and the number of nucleotide base mismatches between the hybridizing nucleic acids, as will be readily appreciated by those skilled in the art. Stringent temperature conditions are preferably employed, and generally include temperatures in excess of 30° C., typically in excess of 37° C. and preferably in excess of 45° C. Stringent salt conditions will ordinarily be less than 1000 mM, typically less than 500 mM, and preferably less than 200 mM. The pH is typically between 7.0 and 8.3. The combination of parameters is much more important than any single parameter.


Methods of determining nucleic acid percentage sequence identity are known in the art. By way of example, when assessing nucleic acid sequence identity, a sequence having a defined number of contiguous nucleotides may be aligned with a nucleic acid sequence (having the same number of contiguous nucleotides) from the corresponding portion of a nucleic acid sequence of the present invention. Tools known in the art for determining nucleic acid percentage sequence identity include Nucleotide BLAST.


One of ordinary skill in the art appreciates that different species exhibit “preferential codon usage”. As used herein, the term “preferential codon usage” refers to codons that are most frequently used in cells of a certain species, thus favouring one or a few representatives of the possible codons encoding each amino acid. For example, the amino acid threonine (Thr) may be encoded by ACA, ACC, ACG, or ACT, but in mammalian host cells ACC is the most commonly used codon; in other species, different codons may be preferential. Preferential codons for a particular host cell species can be introduced into the polynucleotides of the present invention by a variety of methods known in the art. Introduction of preferential codon sequences into recombinant DNA can, for example, enhance production of the protein by making protein translation more efficient within a particular cell type or species.


Thus, in one embodiment of the invention, the nucleic acid sequence is codon optimized for expression in a host cell.


A “fragment” of a polynucleotide of interest comprises a series of consecutive nucleotides from the sequence of said full-length polynucleotide. By way of example, a “fragment” of a polynucleotide of interest may comprise (or consist of) at least 30 consecutive nucleotides from the sequence of said polynucleotide (e.g. at least 35, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800 850, 900, 950 or 1000 consecutive nucleic acid residues of said polynucleotide). A fragment may include at least one antigenic determinant and/or may encode at least one antigenic epitope of the corresponding polypeptide of interest. Typically a fragment as defined herein retains the same function as the full-length polynucleotide or polypeptide.





DESCRIPTION OF THE DRAWINGS

The present invention will now be described by way of example only with reference to the accompanying drawings, in which:



FIG. 1 shows exemplary plasmids utilised in the invention. FIGS. 1A-1E show schematic drawings of plasmids used for production of the vectors of the invention. In one embodiment of the invention, FIG. 1A provides a tool of the invention.



FIG. 2 shows the duration of F/HN-SIV transgene expression in mouse nasal tissue, which was perfused with 4×108 TU F/HN-SIV-CMV-EGFP and EGFP expression determined at the indicated number of days post-treatment. A negative control is shown where nasal tissue was perfused with vector diluent (PBS).



FIG. 3 demonstrates consistency of F/HN-SIV transgene expression, by showing at 1 year post-treatment. EGFP expression was determined in 10 independent mice at 360 days post-treatment.



FIG. 4 shows cellular distribution of F/HN-SIV transgene expression. EGFP expression was determined in histological sections of the mouse nasal cavity (2 mm from tip of nose) at 30 days post-treatment. EGFP positive cells produce a white punctate signal.



FIG. 5 shows cell types transduced by F/HN-SIV treatment of the mouse nose. 69% of the cells transduced in the mouse nasal cavity were ciliated respiratory epithelial cells. Other cell types transduced included neuronal cells in the olfactory epithelium (21%) and squamous cells (7%).



FIG. 6 shows repeat administration of F/HN-SIV to the mouse nose. Mouse nasal tissue which was transduced (as FIG. 1) with one dose of F/HN-SIV-CMV-Lux or, two doses of F/HN-SIV-CMV-EGFP followed by one dose of F/HN-SIV-CMV-Lux at 28 day intervals. Thus, repeat administration of F/HN-SIV to the mouse nose does not alter gene expression levels. Transgene expression is compared to a leading non-viral gene transfer formulation (CMV-Lux plasmid complexed with GL67A).



FIG. 7 displays transduction of human air liquid interface (ALI) respiratory cell cultures. Human ALI cultures were transduced with F/HN-SIV-Lux at the indicated multiplicity of infection (MOI) and imaged for Lux expression at 5 days post-treatment.



FIG. 8 demonstrates that F/HN-SIV can direct functional CFTR expression. HEK293T cells were transduced with F/HN-SIV-CMV-EGFP-CFTR at 500 MOI and CFTR functional activity was determined by iodide efflux. F/HN-SIV-CMV-EGFP served as a negative control.



FIG. 9 exhibits that F/HN-SIV efficiently transduces sheep & human primary lung cells and mouse lung. FIG. 9A shows that transduction of human nasal brushing cells (MOI 250) and human and sheep lung slices cultured ex vivo (1E7 TU/slice) with F/HN-SIV-CMV-Lux results in substantial luciferase transgene expression 24-48 hours post-transduction. FIGS. 9B and 9C display transduction of (1×105) primary human CF lung cells cultured at the air-liquid interface (CF hALIs) with (3E7 TU) F/HN-SIV-soCFTR2 vectors containing CMV- and hCEF transgene promoters. (B) Vector copy number (copies of pro-viral DNA per copy of endogenous CFTR DNA) at 6-8 days post-transduction. (C) CFTR mRNA expression level (% VE: copies of CFTR mRNA per copy of endogenous CFTR mRNA×100) at 6-8 days post-transduction. The horizontal line in (C) represents target expression level of 5% VE—thought to represent the therapeutic threshold. Following in vivo delivery of F/HN-SIV-EGFPLux vectors containing CMV-, EF1aS and hCEF promoters in integrase defective (ID) or integrase competent form (IC or no label) airway cells transgene expression was determined in the nasal (D) and lung (E) murine epithelium (n=6-10/group). Time course of luciferase transgene expression was monitored by repeated in vivo bioluminescence imaging and as normalised to delivered dose. FIG. 9F shows representative bioluminescence images following in vivo murine transduction at day 14 post transduction. FIG. 9G portrays representative bioluminescence images following in vitro transduction of non-CF hALI at day 5-6 post transduction. FIG. 9H represents EGFP expression at 14 days post transduction in the murine nasal epithelium following delivery of 1.6E8 TU of F/HN-SIV-hCEF-EGFPLux (vGM020). EGFP visualised by immunohistochemistry, nuclei visualised by DAPI. FIG. 9I shows time-course of luciferase transgene expression in non-CF ALIs was monitored by repeated bioluminescence imaging and was normalised to delivered dose.



FIG. 10 shows that F/HN-SIV efficiently transduces sheep lung in vivo. Figure A shows that to model virus delivery to the sheep lung, we instilled (3×100 μL aliquots over ˜5 minutes) acriflavine to a proximal airway under direct bronchoscopic visualisation. The distribution of the acriflavine can be appreciated by the orange colouration of the dissected airway at postmortem. Note the acriflavine is largely restricted to the conducting airways and absent from the alveolar regions. Arrow indicates the approximate site of instillation. Numbers on ruler are cm. FIG. 10B is a diagrammatic representation of the sheep lung (trachea centre/top). Green circle represents region in (A). In (B), line indicates passage of bronchoscope to deliver 3×100 μL aliquots of 2.2E9 TU/mL (6.6E8 TU total) F/HN SIV CMV-EGFPLux to n=3 individual sheep (animal codes T121, T156 & T251). At seven days post-delivery, 5-6 tissue sample blocks were taken at post-mortem at ˜1 cm intervals from the site of instillation. Blocks were divided into 2-3 approximately equivalent samples and analysed for transgene expression by (C) luciferase assays normalised to protein content; and (D) quantitative RT-PCR normalised to endogenous CFTR mRNA levels. Horizontal line in (C) represents highest luciferase activity noted in any sample treated with a non-viral gene transfer vector, and (D) target expression level of 5% VE—thought to represent the therapeutic threshold.



FIG. 11 depicts the production and purification of F/HN SIV Vectors. F/HN SIV Vectors were produced by 5 plasmid (pDNA) PEI-mediated transient transfection of 293T cells grown in suspension at 1 L scale in pH controlled WAVE Bioreactors (GE), using scalable methods of the invention. Vectors were clarified by depth/end-filtration (GE/Pall), contaminating nucleic acids were removed with Benzonase® (Merck), vectors were activated with TrypLE Select™ (Life Technology), purified and concentrated by anion exchange membrane chromatography (Pall) and tangential-flow filtration (Spectrum). All process vessels, containers and columns were single-use cGMP compliant. All reagents except plasmid DNA were animal-free cGMP compliant. Data from a variety of vector configurations (transgene promoter, transgene, integrase status) are shown. Physical and functional titres were determined using Q-PCR. (A) Physical titre from initial clarified harvest and final purified product. Median process yield is ˜44%. (B) Functional titre of final product. Median functional titre is ˜2×109 TU/mL product and ˜3×109 TU/L bioreactor volume. Target productivity and yields were exceeded. Lower yielding CFTR vectors utilise CMV transgene promoter. Higher yielding CFTR vectors utilise EF1aS and hCEF transgene promoters. (C) Final product particle: infectivity ratio is tightly clustered and similar to values from other high quality vector manufacturers (Oxford BioMedica, BlueBirdBio). Median particle: infectivity ratio is ˜300. Product consistency has been achieved with the use of “Design of Experiments” methods supporting ultimate transition to QbD-based regulatory agency approval of manufacturing process. (D) Final product functional titre is strongly correlated with initial physical titre indicating non-saturating process conditions with no vector concentration limiting process steps—suggests purification scale-up will be efficient.



FIG. 12 displays insertion site (IS) profiling and survival of transduced mice. FIGS. 12A-F provide a comparison of IS profiles from F/HN-SIV transduced mouse lung and VSV-G-HIV vector transduced mouse retina (Bartholomae et al, Mol Ther (2011) 19:703-710). IS profiles for (A,C,E) were derived from deep sequencing of lung DNA from two mice transduced with F/HN-SIV, and for (B,D,F) from retinal VSV-G-HIV IS sequences (Schmidt laboratory). (A,B) Aggregated IS sites (lung, 2862; retina, 262) plotted on karyograms generated via the Ensembl genome browser. (C,D) IS distances to transcription start sites (TSS). Numbers of IS in each distance bin are shown above bars. The sum exceeds the total number of IS analysed because a typical IS is located near to several TSS. Graphs were generated by use of the UCSC genome browser and the GREAT genome analyser (great.stanford.edu). (E,F) QuickMap (www.gtsg.org) comparison between random (diamond) and observed (square) insertion frequencies per chromosome. (G) Survival of mice treated with progenitor F/HN-SIV vector (virus vector manufactured in accordance with known method using adherent cells: black line, 24 months of data) and current generation vector (GTC: dark grey line, 8 months of data) compared with buffer treated mice (light grey line, 24 months of data). Data aggregated from various experiments involving mice treated with buffer or ˜1E7 TU virus by nasal sniffing.



FIG. 13 shows hCEF mediated respiratory transgene expression—using lentivirus gene transfer with a CpG rich transgene—transgene expression (average radiance p/s/cm2/sr) against days post dose. High levels of Gaussia luciferase reporter gene expression compared with the control (naïve lung) was observed in both the lung (square) and nose (circle) for at least 168 days after dosing.



FIG. 14 shows the effect of transduction of human intestinal organoids with a CFTR lentiviral vector (vGM058) of the invention. The left-hand panel shows that forskolin induced swelling was significantly (p<0.001) reduced in vGM058 transduced organoids. In the right-hand panel, A549 cells were transduced with vGM058 or a control virus and CFTR function quantified using a radioactive iodide-efflux assay. Significant (p<0.05) levels of CFTR-mediated iodide efflux were detected in vGM058 transduced cells.



FIG. 15A shows a schematic drawings of a plasmid used for production of the A1AT vectors of the invention. In one embodiment of the invention, FIG. 15A provides a tool of the invention. FIG. 15B shows a control plasmid encoding the Gaussia luciferase reporter gene.



FIG. 16 shows that F/HN-SIV efficiently transduces human primary lung cells in ALI culture. In particular, transduction of human ALI cultures results in substantial luciferase transgene expression for at least 80 days post-transduction. Each point represents the mean value of RLU/μl in the media from n=6 ALIs at the timepoint shown. Vertical bars represent the standard error of the mean.



FIG. 17 shows gene expression following transduction of human lung slices (n=6 per group) with SIV1 hCEF-sogLux (FIG. 17A) and SIV1 hCEF-sohAAT (FIG. 17B). High levels of expression were observed. Each point represents the mean value of RLU/μl in the media from n=6 lung slices at the timepoint shown. Vertical bars represent the standard error of the mean.



FIG. 18 shows long term expression (>12 months) of Gaussia luciferase following lentiviral-mediated gene transfer (SIV1 hCEF-soGLux) in vivo. A: lung tissue homogenate; B: broncho-alveolar lavage (BAL) fluid; C: serum. Each point represents the mean value of RLU/μl in one group of animals (n=5 or 6 per group) harvested at the timepoint shown. Vertical bars represent standard error of the mean.



FIG. 19 shows high levels of expression of A1AT expression following lentiviral-mediated gene transfer (SIV1 hCEF-sohAAT) in vivo. Each point represents one animal. Horizontal bars represent the median of each group.



FIG. 20 shows long term expression of A1AT following lentiviral-mediated gene transfer of the AAT (A1AT) gene in vivo. FIG. 20A: lung homogenate; FIG. 20B: BAL; and FIG. 20C: serum.



FIG. 21 shows the level of A1A1 in the epithelial lining fluid following lentiviral mediated gene transfer (SIV1 hCEF-sohAAT) in vivo. lentiviral mediated gene transfer (SIV1 hCEF-sohAAT) in vivo.



FIG. 22A shows schematic drawings of FVIII cDNA constructs used for production of the FVIII vectors of the invention. FIG. 22B shows viral vectors of the invention. In one embodiment of the invention, FIG. 22B provides a tool of the invention. FIGS. 22C-F show schematic drawings of pDNA1 plasmids used for production of the FVIII vectors of the invention. In one embodiment of the invention, FIGS. 22C-F provide tools of the invention.



FIG. 23 shows HEK293T transduction efficiency with vGM142 (SIV-F/HN-FVIII-N6-co) for batch 1 (A) and batch 2 (B). The graphs show FVIII activity for each MOI at 48 and 72 hours post-transduction. Each symbol represents an independent experiment (n=5-6 experiments). The horizontal bar indicates group mean+/−SD. Analysis was performed using One-way Anova (GraphPad Prism) with multiple comparisons to untreated control **p<0.01; ***p<0.001; ****p<0.0001.



FIG. 24 shows the assessment of vGM142 in an in vivo system (murine model). A: lung; B: BAL fluid; C: plasma. The graphs show the level of hFVIII (as a percentage of the normal level) against the different treatments for Groups 1 to 3 (Groups 1 and 2-10 day treatment, 3 doses/week of 100 μl vector per mouse (total amount of doses was equal 3 per animal); Group 3-28 day treatment, 3 doses/week of 100 μl vector per mouse (total amount of doses was equal 12 per animal)). Each symbol represents an individual mouse (Group 1 (n=4) treated with total vector dose of 1.4×106 TTU/mouse; Group 2 (n=3) treated with total vector dose of 1.57×108 TTU/mouse and Group 3 (n=4) treated with total vector dose of 3.36×108 TTU/mouse). The horizontal bar indicates mean FVIII:Ag levels+/−SD. Analysis was performed using One-way Anova (GraphPad Prism) with multiple comparisons between treated groups ****p<0.0001.





EXAMPLES

The invention is now described with reference to the Examples below. These are not limiting on the scope of the invention, and a person skilled in the art would be appreciate that suitable equivalents could be used within the scope of the present invention. Thus, the Examples may be considered component parts of the invention, and the individual aspects described therein may be considered as disclosed independently, or in any combination.


Example 1: Cell Culture

HEK293T, Freestyle 293F (Life Technologies, Paisley, UK) and 293T/17 cells (CRL-11268; ATCC, Manassas, Va.) were maintained in Dulbecco's minimal Eagle's medium (Invitrogen, Carlsbad, Calif.) containing 10% fetal bovine serum and supplemented with penicillin (100 U/ml) and streptomycin (100 μg/ml) or Freestyle™ 293 Expression Medium (Life Technologies).


Example 2: Plasmid Construction

pCAGGS-Fct4 and pCAGGS-SIVct+HN were constructed as follows:


(i) Plasmid SIVct/HN contains the gene encoding the cytoplasmic tail of SIVagm TMP (reversed) fused to the ectodomain and transmembrane regions of SeV HN protein. Three oligonucleotide pairs were synthesized: pair 1, 5′-TCGAGATGTGGTCTGAGTTAAAAATCAGGAGCAACGACGGAGGTGAAGGACCAGACGCCAACGACCC-3′ (SEQ ID NO: 18) and 5′-CCGGGGGTCGTTGGCGTCTGGTCCTTCACCTCCGTCGTTGCTCCTGATTTTTAACTCAGACCACATC-3′ (SEQ ID NO: 19); pair 2, 5′-CCGGGGAAAGGGGGTGCAACACATCCATATCCAGCCATCTCTACCTGTTTATGGACAGA-3′ (SEQ ID NO: 20) and 5′-ACCCTCTGTCCATAAACAGGTAGAGATGGCTGGATATGGATGTGTTGCACCCCTTTCC-3′ (SEQ ID NO: 21); and pair 3, 5′-GGGTTAGGTGGTTGCTGATTCTCTCATTCACCCAGTGGG-3′ (SEQ ID NO: 22) and 5′-GATCCCCACTGGGTGAATGAGAGAATCAGCAACCACCTA-3′ (SEQ ID NO: 23).


These oligonucleotide pairs were annealed and cloned into the XhoI and BamHI sites of pBluescript KS+ (Stratagene) to yield pKS+SIVct. pCAGGS-SIVct/HN was constructed by cloning the 160-bp XhoI-DraIII fragment from pKS+SIVct and a 1.5-kbp DraIII-Bsu36I fragment from pCAGGS-HN, which carries the wild-type HN gene (HNwt), in the XhoI site of pCAGGS vector, into the XhoI and Bsu36I sites of pCAGGS. This plasmid was constructed so that the cytoplasmic tail of the HN protein was replaced with the cytoplasmic tail of SIVagm TMP.


For construction of pCAGGS-SIVct+HN, the genes encoding the cytoplasmic tail of SIVagm TMP and the N terminus of HN protein were first amplified by PCR from pCAGGS-SIVct/HN with the primer pair 5′-GAGACTCGAGATGTGGTCTGAGTTAAAAATCAGG-3′ (SEQ ID NO: 24) and 5′-AGAGGTAGACCAGTACGAGTCACGTTTGCCCCTATCACCATCCCTAACCCTCTGTCATAAAC-3′ (SEQ ID NO: 25). The resulting PCR fragment was cloned into the XhoI and AccI sites of pKS+SIVct to generate pKS+SIVct-H. Then a XhoI-DraIII fragment from pKS+SIVct-H and a DraIII-Bsu36I fragment from pCAGGS-HN were cloned into the XhoI and Bsu36I sites of pCAGGS to yield pCAGGS-SIVct+HN.


The cPPT and WPRE sequences were inserted in the SIV-derived gene transfer plasmid. An example of the WPRE sequence used is provided in SEQ ID NO: 8.


The plasmid pGM101 contains the colE1 origin of replication, kanamycin resistance gene and promoter and was created by synthetic gene synthesis (GeneArt, Regensburg, Germany; now LifeTechnologies Ltd).


The hybrid CMV/SIV R U5 LTR, partial Gag, RRE, cPPT, SIN U3 and R sequences from pBS/CG2-Rc/s-CMV-D U (Nakajima et al. 2000 Human Gene Therapy 11:1863) were amplified by PCR and inserted along with the hCEF enhancer/Promoter sequence amplified by PCR from pGM169 (Hyde et al. Nature Biotechnology 26:549) and the soCFTR2 cDNA isolated from pGM169 on a NheI-ApaI restriction enzyme fragment into pGM101 to create pGM326.


The CMV enhancer/chicken beta actin promoter along with associated exon/intron sequences, SIV GagPol and RRE sequences and the SV40 polyA/origin of replication were amplified by PCR from pCAGGS/Sagm-gtr (Nakajima et al. 2000 Human Gene Therapy 11:1863) to create pGM297. The CMV enhancer/promoter along with associated exon/intron sequences and SV40 polyA sequence from pCI (Promega, Madison, Wis., USA) were isolated on a BgIII-BamHI restriction enzyme fragment and the SIV Rev sequence derived from pCAGGS/Sagm-gtr amplified by PCR were inserted into pGM101 to create pGM299.


The CMV enhancer/chicken beta actin promoter along with associated exon/intron sequences, the Fct4 cDNA and SV40 polyA/origin from pCAGGS-Fct4 were isolated on a SalI-HindIII restriction enzyme fragment by a combination of gene synthesis, PCR and restriction enzyme fragment recombination and inserted into pGM101 to create pGM301.


The CMV enhancer/chicken beta actin promoter along with associated exon/intron sequences, the SIVct+HN cDNA and SV40 polyA/origin from pCAGGS-SIVct+HN were isolated on a SalI-HindIII restriction enzyme fragment by a combination of gene synthesis, PCR and restriction enzyme fragment recombination and inserted into pGM101 to create pGM303.


Other pGM plasmids of the invention were made using standard techniques and in accordance with the above disclosure.


Throughout these plasmid DNA assembly approaches, restriction enzymes and PCR polymerases were supplied by New England Biolabs (Ipswich, Mass., USA) and DNA purification reagents were supplied by Qiagen (Limburg, Netherlands).


Example 3: Production of SIV Vector

Four Plasmid System:


Replication-defective self-inactivating SIV vector was constructed with minor modifications. Briefly, the SeV-F/HN-pseudotyped SIV vector was produced by transfecting 293T/17 cells (15 cm diameter culture dishes) with four plasmids complexed to Lipofectamine/Plus reagents (Invitrogen) according to the manufacturer's recommendations [Plasmid-1: 10 μg SIV-derived transfer plasmid carrying a GFP, a luciferase (lux) reporter gene, or a GFP-CFTR fusion construct, Plasmid-2: 3 μg packaging plasmid, Plasmid-3: 2 μg pCAGGS-Fct4, Plasmid 4: 2 μg pCAGGS-SIVct+HN; FIGS. 1A-E show schematic drawings of plasmids used for the production of vectors of the invention]. The VSV-G pseudotyped SIV vector was produced using a similar protocol, but a pVSV-G plasmid (2 μg; Clontech, Mountain View, Calif.) was used instead of pCAGGS-Fct4 and pCAGGS-SIVct+HN. At 12 hours after transfection the culture medium was replaced with 30 ml serum-free Dulbecco's modified Eagle medium containing 5 mmol/l sodium butyrate. Sodium butyrate stimulates the vector production to inhibit histone deacetylase. The culture supernatant containing the SIV vector was harvested 48 hours after transfection, filtered through a 0.45 μm filter membrane, and further concentrated by high-speed centrifugation (20,000 g for 4 hours at 4° C., Avanti JA18 rotor; Beckman Coulter, Brea, Calif.). The vector pellets were suspended in PBS (Invitrogen) to 100- to 200-fold concentration and stored at −80° C.


Five Plasmid System (Preferred):


SeV-F/HN-pseudotyped SIV vector was produced by transfecting HEK293T or 293T/17 cells cultured in FreeStyle™ 293 Expression Medium with a mixture of five plasmids with the following characteristics: pDNA1 (for example pGM326; FIG. 1A) encodes the lentiviral vector mRNA; pDNA2a (for example pGM297; FIG. 1B) encodes SIV Gag and Pol proteins; pDNA2b (for example pGM299: FIG. 1C) encodes SIV Rev proteins; pDNA3a (for example pGM301; FIG. 1D) encodes the Sendai virus-derived Fct4 protein [Kobayashi et al., 2003 J. Virol. 77:2607]; and pDNA3b (for example pGM303; FIG. 1E) encodes the Sendai virus-derived SIVct+HN [Kobayashi et al., 2003 J. Virol. 77:2607] complexed with PEIpro (Polyplus, Illkirch, France).


Cell culture media was supplemented at 12-24 post-transfection with sodium butyrate. Sodium butyrate stimulates vector production via inhibiting histone deacetylase resulting in increasing expression of the SIV and Sendai virus fusion protein components encoded by the five plasmids. Cell culture media was supplemented at 44-52 hours and/or 68-76 hours post-transfection with 5 units/mL Benzonase Nuclease (Merck Millipore, Nottingham, UK). The culture supernatant containing the SIV vector was harvested 68-76.5 hours after transfection, and clarified by filtration through a 0.45 μm membrane. The SIV vector is treated by digestion with a protease containing trypsin activity—for example an animal origin free, recombinant enzyme such as TrypLE Select™. Subsequently, SIV vector is typically further purified and concentrated by anion-exchange chromatography and/or tangential flow filtration ultra-filtration/dia-filtration.


This same method was used to generate lentiviral vectors comprising the A1AT and FVIII transgenes, with the plasmids of FIG. 15A and FIG. 22B replacing that of FIG. 1A to provide the appropriate transgene (see Examples 15 and 20).


Example 4: Vector Titration

Method 1:


The particle titre was determined using real-time reverse transcriptase-PCR. Virus RNA was purified using a QIAamp viral RNA mini-kit (QIAGEN, Strasse, Germany), and reverse transcribed using Superscript II (Invitrogen). The QuantiTect probe PCR system (QIAGEN) and primers for amplifying 131 nucleotides (bp) spanning the WPRE sequence (forward primer: 5′-ggatacgctgctttaatgcc-3′ (SEQ ID NO: 34), reverse primer: 5′-acgccacgttgcctgacaac-3′ (SEQ ID NO: 35)) were used according to the manufacturer's protocol in an ABI PRISM 7700 Sequence Detector System (PE Applied Biosystems, Foster City, Calif.). SIV gene transfer plasmid DNA (3×104 to 2×106 molecules) was used as standard.


Transduction units (TU/ml) were determined by transducing 293T cells with serial dilutions of vector stock and quantification of transduced cells by GFP fluorescence (for F/HN-SIV-GFP and VSV-G-SIV-GFP) or staining with anti-luciferase antibody (for F/HN-SIV-lux).


Method 2 (Preferred):


The particle titre (VP/mL) was typically determined using real-time reverse transcriptase-PCR. Virus RNA was purified using a QIAamp viral RNA mini-kit (QIAGEN, Strasse, Germany), and reverse transcribed using reverse transcriptase (Life Technologies). TaqMan quantitative PCR system (Life Technologies) using primers amplifying a portion of the WPRE sequence in an ABI PRISM 7700 Sequence Detector System (Life Technologies). In vitro transcribed WPRE RNA molecules were used as quantitative standards.


Transduction units (TU/mL) were determined by transducing 293T/17 or Freestyle 293F cells with serial dilutions of SIV vector and quantification of WPRE containing provirus DNA by TaqMan quantitative PCR system (Life Technologies) using primers amplifying a portion of the WPRE sequence in an ABI PRISM 7700 Sequence Detector System (Life Technologies). Plasmid DNA molecules containing WPRE sequences were used as quantitative standards.


Example 5: Generation of Basal Cells-Enriched tEC Cultures

Murine tracheal epithelial cells (tEC) were isolated as follows. C57BL/6N Mice were culled and the tracheas were excised from the larynx to the main bronchial branches using sterile surgical instruments. The tissues were placed in a tube containing cold Ham's F-12 medium with 100 U/ml penicillin (P), 100 μg/ml streptomycin (S) and 2.5 mg/ml amphotericin B (A) (Ham's F12/PSA medium) and kept on ice. In a sterile tissue culture hood, the tracheas were cleaned from adherent muscles and connective tissue, cut longitudinally to expose the internal respiratory epithelium, and placed in 0.15% pronase solution in F-12 medium (˜5 ml in 15 ml tube). Tissue digestion was performed overnight (15-18 hr) at 4° C. To block the enzymatic reaction, 10% fetal bovine serum (FBS) was added to the tissue digest. After gently inverting the tube to detach more cells, the tracheas were placed into a new tube containing 10% FBS/Ham's F-12/PS solution, and inverted as before. This step was repeated two more times. The content of the four tubes was pooled together and centrifuged at 500 g for 10 min at 4° C. The pellet was re-suspended in DNase solution (0.5 mg/ml crude pancreatic DNase plus 10 mg/ml BSA in FBS/Ham's F-12/PS solution, about 200 μl/trachea), incubated on ice for 5 minutes, and centrifuged as before.


After removing the supernatant, tEC were resuspended in Progenitor Cell Targeted (PCT) medium (CnT-17, CELLnTEC, Bern, Switzerland), an antibiotics and antimycotics-free formulation specifically designed for human and mouse airways progenitor cells isolation and proliferation. tEC were then plated in a Primaria tissue culture dish (Becton Dickinson Labwere, Franklin Lakes, N.J., USA) and incubated for 3-4 hr in 5% CO2 at 37° C. Non-adherent cells were collected and centrifuged at 500 g for 5 min at 4° C. and counted in a haemocytometer. To generate basal cells-enriched cultures, tEC were suspended in PCT medium and seeded on a Nunclon™ Δ plate (Nunc A/S, Roskilde, Denmark), coated with 50 μg/ml type 1 rat tail collagen at a recommended seeding density of 4×103 cells/cm2. tEC were also cultured in a control basic medium, containing DMEM/Ham's F12 supplemented with L-glutamine (4 mM), HEPES (15 mM) and NaHCO3 (3.4 mM). Plates were incubated at 37° C. with 5% CO2. To determine the proportion of basal cells in the tEC population before and after expansion in PCT medium, cytospin preparations were stained with the anti-KRT5 antibody and the appropriate secondary antibody.


The pool of tEC produced comprised both fully differentiated cells (Clara and ciliated cells) and basal cells. Once seeded onto permeable membranes tEC were able to generate an air liquid interface (ALI) culture system as a result of basal cell proliferation and redifferentiation into secretory and ciliated cells. To establish an alternative and rapid protocol for basal cell expansion, two-dimensional (2D) tEC cultures using a commercially available proprietary Progenitor Cell Targeted (PCT) medium, specifically formulated to support the proliferation of airway progenitor cells while maintaining them in an undifferentiated status were assessed. As a negative control, tEC were exposed to a basic media formulation without addition of specific growth factors. tEC seeded on collagen-coated plastic surfaces (4×103 cells/cm2) and exposed to PCT medium were able to grow rapidly and became confluent within 5-8 days whereas tEC exposed to the growth factor-deficient control medium were unable to adhere and propagate. To establish whether the use of PCT medium resulted in a substantial enrichment of the basal cell population, tEC were harvested at approximately 80% confluence (n=6 wells), fixed and treated with an anti-keratin 5 (Krt5) antibody, a specific marker of basal cells. Freshly isolated tEC were used as controls (n=3 unique preparations). The proportion of Krt5 positive basal cells after expansion in PCT medium was higher (78±1.4%) than in freshly isolated pools of tEC (33±0.6%), demonstrating that murine airway basal cells can be selectively and rapidly expanded from a mixed pool of tEC using a commercial medium.


Example 6: Ex Vivo Transduction of Basal Cells-Enriched tEC Cultures with F/HN-SIV-GFP

To determine whether the F/HN-SIV vector can effectively transduce basal cells ex vivo, tEC prepared in Example 5 were grown to approximately 70% confluence over 7 days in PCT medium and transduced with F/HN-SIV carrying a green fluorescent protein reporter gene (F/HN-SIV-GFP) at an MOI 100 and incubated at 37° C. with 5% CO2 for 3 days. tEC derived from wild-type and GFP transgenic animals were cultured under the same conditions and used as negative (no viral transduction) and positive control groups, respectively (n=3-6 wells/group).


To quantify the proportion of GFP-positive cells, basal cells-enriched tEC cultures were detached with the enzyme accutase (CELLnTEC), re-suspended in PBS/1% BSA and subjected to FACS analysis, counting an average of 20.277±2.478 cells/group. The F/HN-SIV vector transduced 26%±0.9% of basal cells-enriched tEC (p<0.0001 when compared to untransduced controls).


To assess whether transduced GFP-expressing cells were basal cells, three days post-infection cells were double stained with antibodies against Krt5 and GFP. Immunofluorescence staining of cultured cells showed that approximately 40% of Krt5-expressing cells also expressed the GFP reporter gene, showing that the F/HN-SIV vector can transduce progenitor basal cells ex vivo.


Example 7: In Vivo Administration to the Mouse Nose

C57BL/6N mice (female, 6-8 weeks) were used. Mice were anesthetized, placed horizontally on their backs onto a heated board, and a thin catheter (<0.5 mm outer diameter) was inserted ˜2.5 mm from the tip of nose into the left nostril. Using a syringe pump (Cole-Parmer, Vernon Hills, Ill.), vector (100 μl) was then slowly perfused onto the nasal epithelium (1.3 μl/min) for 75 minutes. Despite perfusion of virus into the left nostril, we routinely observe transfection in both left and right nostrils, which is due to dispersion of the solutions throughout the entire nasal cavity. PBS and VSV-G-SIV transduced mice preconditioned with 1% lysophosphatidylcholine as described by Limberis et al., 2002, were used as controls. At indicated time points (3-360 days after transduction), mice were culled to visualize GFP expression. As shown in FIG. 2, GFP expression was observed for at least 449 days post-transduction, whereas the negative control showed no GFP expression. As shown in FIG. 3, transgene expression with the F/NH-SIV vector was consistent, with observable GFP expression at least 360 days post-transduction in 10 independently tested mice.


Similarly, as shown in FIG. 13, transduction with an F/HN-SIV vector of the invention comprising an hCEF promoter resulted in long-term expression of a CpG rich reporter gene (luciferase). High levels of expression relative to the control were observed in both the lung and the nose for at least 169 days post-transduction.


In the repeat administration experiments groups of mice were transduced with either one dose of F/HN-SIV-lux (single-dose group), or two doses of F/HN-SIV-GFP (day 0, day 28), followed by F/HN-SIV-lux on day 56 (repeat-dose group). Importantly, mice receiving F/HN-SIV-lux (single-dose group) and F/HN-SIV-lux on day 56 (repeat-dose group) were of similar age and were transduced at the same time. Gene expression was analysed 30 days after F/HN-SIV-lux administration. For comparison, mice were transfected with the cationic lipid GL67A complexed to a luciferase reporter gene as previously described (Griesenbach, U. et al., Methods Mol Biol. 2008; 433:229-42) and luciferase expression was measured 2 days after transfection.


As shown in FIG. 6, repeat administration of F/HN-SIV to the mouse nose does not alter gene expression levels. Transgene expression is compared to a leading non-viral gene transfer formulation (CMV-Lux plasmid complexed with GL67A).


Insertion site profiling was conducted on transduced mice, and survival time investigated as set out in the description of FIG. 12 above. Transduction using the F/HN-SIV vector of the invention was not observed to have any adverse effect on mouse survival compared with an existing F/HN-SIV vector or negative (buffer only) control (see FIG. 12G).


Example 8: Induced Regeneration of Nasal Epithelial Cells by Polidocanol Treatment

Nasal epithelial cells were stripped by polidocanol treatment according to the method described (Borthwick et al., Am J Respir Cell Mol Biol. 2001 June; 24(6):662-70), with some modification. In brief, mice were anesthetized and 10 μl polidocanol (2%) was administered to the nose as a bolus by “nasal sniffing”. To confirm the stripping and regeneration of nasal epithelial cells, nasal tissue was perfused with 10 μl of 2% (vol/vol in PBS) polidocanol (nonaethylene glycol mono-dodecyl ether; SIGMA, St Louis, Mo.) and histological analysis undertaken 24 hours and 7 days after treatment (n=3/group).


To analyse transduction of possible progenitor or stem cells, we first administered F/HN-SIV-GFP (4×108 TU/mouse) vector to mouse nasal epithelium. Seven days after transduction, nasal tissue was perfused with 10 μl of 2% (vol/vol in PBS) polidocanol, and this treatment was repeated again 3 weeks later. Histological sections were analysed 58 days after vector administration (30 days after the last polidocanol treatment).


Example 9: Bioluminescent Imaging

Mice were injected intraperitoneally with 150 mg/kg of D-luciferin (Xenogen, Alameda, Calif.) 10 minutes before imaging and were anesthetized with isoflurane. Bioluminescence (photons/s/cm2/sr) from living mice was measured using an IVIS50 system (Xenogen) at a binning of 4 for 10 minutes, using the software programme Living Image (Xenogen). For anatomical localization a pseudocolor image representing light intensity (blue: least intense, red: most intense) was generated using Living Image software and superimposed over the grayscale reference image. To quantify bioluminescence in the nose, photon emission in a defined area (red box) was measured by marking a standardized area for quantification. The size of the red box was kept constant and was placed over the heads of the animals as indicated in the figure. Importantly, the areas were marked using the grayscale reference image to avoid bias.


Example 10: Tissue Preparation for Histological Assessment of GFP Expression and/or Basal Cell Detection

Mice were culled and the skin was removed. The head was cut at eye level and skin, jaw, tongue, and the soft tip of the nose were carefully removed. For in situ imaging of GFP expression in the nasal cavity, GFP fluorescence was detected using fluorescence stereoscopic microscopy (Leica, Ernst Leitz Optische Werke, Germany). Subsequently, the tissue was fixed in 4% paraformaldehyde (pH 7.4) overnight at room temperature and was then submerged in 20% EDTA (pH 7.5 for 5 days) for decalcification. The EDTA solution was changed at least every second day. After decalcification, the tissue was incubated in 15% sucrose overnight at room temperature and was then embedded in Tissue Mount (Chiba Medical, Soka, Japan). Ten micrometer sections were cut at six different positions in each mouse head (˜0-6 mm from the tip of nasal bone). GFP expression was observed using a fluorescent microscope (Leica). Quantification and identification of cell types were carried out on six levels per mouse using a ×40 or ×63 objective. Prolonged image exposure was necessary to capture the structure of the nasal epithelium using fluorescent microscopy. This led to pixel saturation of GFP-positive cells and caused GFP-positive cells to appear almost white rather than the common green appearance that we, and others, observe under higher magnification.


Cellular distribution of F/NH-SIV transgene expression was investigated in histological sections. Specifically, EGFP expression was determined in histological sections of the mouse nasal cavity (2 mm from the tip of the nose) at 30 days post treatment. FIG. 4 shows the location of EGFP expression (FIG. 4, white punctate signal).



FIG. 5 shows the cell types transduced by /NH-SIV transgene treatment of the mouse nose. 69% of the cells transduced in the mouse nasal cavity were ciliated respiratory epithelial cells. Other transduced cell types included neuronal cells in the olfactory epithelium (21%) and squamous cells (7%).


To detect basal cells following polidocanol treatment horseradish peroxidase (HRP)-based immunostaining was performed using the Envision kit (Dako, Glostrup, Denmark). Briefly, slides were treated with 0.6% hydrogen peroxide in methanol for 15 min, washed in tap water and incubated with 1.5% normal goat serum (Abcam) for 30 min. Slides were then incubated with a rabbit polyclonal anti-Cytokeratin 5 antibody (1:500) (Abcam) for 1 hr following a Goat anti-rabbit IgG conjugated to HRP (provided with the kit) for 30 min. Sections were then washed in PBS and incubated with the peroxidase substrate 3-amino-9-ethylcarbazole (AEC) (provided with the kit) for 5 min. Finally, slides were washed in distilled H2O, counterstained with aqueous Harris' hematoxylin (BDH) for 15 seconds, washed in tap water, and then in distilled H2O.


Immunofluorescence detection of GFP-positive transduced nasal epithelial cells and Krt5 positive basal cells was performed using the following primary and secondary antibodies: goat polyclonal anti-GFP antibody (1:250) (Abcam), rabbit monoclonal anti-KRT5 antibody (1:500) (Abcam), Alexa Fluor 488 donkey anti-Goat IgG (1:200) (Invitrogen, Paisley, UK) and Alexa Fluor 594 goat anti-rabbit IgG (1:200) (Invitrogen). To improve antibody performance, sections were subjected to heat-mediated antigen retrieval in citrate buffer (10 mM citric acid, 0.05% Tween20, pH 6.0) for 20 min on a water bath at 100° C. Stained sections were mounted in ProLong® Gold Antifade Reagent with DAPI (Invitrogen) and analysed with a confocal microscope as before (all Zeiss). GFP-positive basal cells (identification based on morphology and location within the epithelial layer) were quantified on a total of 13 sections/mouse. Sections that displayed putative GFP positive basal cells were selected for double staining with the anti-KRT5 and anti-GFP antibodies to confirm the basal cell phenotype.


Example 11: Transduction of ALI Cultures

Fully differentiated airway epithelial cells grown as ALI cultures were purchased from Epithelix (Geneva, Switzerland). ALIs were transfected with F/HN-SIV-lux at a multiplicity of infection ranging from ˜25 to ˜300 TU/cell. After 6 hours, the virus was removed and ALIs were incubated for 10-26 days. The basolateral medium was changed every 48 hours during this incubation period. At specified time points, the ALIs were lysed in 100 μl reporter lysis buffer and luciferase expression was quantified using the Luciferase Assay System (Promega, Southampton, UK) according to the manufacturer's instructions. The total protein content of the cultures was quantified using the BioRad protein assay kit (BioRad, Hemel Hempstead, UK). Each sample was assayed in duplicate. Luciferase expression was then presented as relative light units/mg total protein. For bioluminescence imaging 100 μg luciferin in PBS were added to the apical membrane.


As shown in FIG. 7, cells in ALI cultures were successfully transduced with F/HN-SIV-Lux, as evidenced by luciferase expression. Luciferase expression was greater at MOI 250 compared with MOI 25.


Example 12: Iodide Efflux Assay

HEK293T cells were transfected with F/HN-SIV-GFP-CFTR or an F/HN-SIV-GFP control virus at a multiplicity of infection of 500 TU/cell and cultured for 2 days. CFTR chloride channel activity was assayed by measuring the rate of 125iodide efflux as previously described (Derand, R., et al., 2003). The 125iodide efflux rates were normalized to the time of forskolin/IBMX addition (time 0). Curves were constructed by plotting rates of 125iodide efflux against time. To reflect the cumulative levels of 125iodide efflux following agonist-stimulation, all comparisons are based on areas under the time-125iodide efflux curves. The area under the curve was calculated by the trapezium rule. Experiments were carried out in duplicate (n=6 wells/group/experiment).


As shown in FIG. 8, F/HN-SIV can direct functional CFTR expression, with a relative 125iodide efflux of 0.65. In contrast, the GL67A plasmid vector achieved a lower 125iodide efflux value of 0.33.


Example 13: Transduction of Sheep and Human Primary Lung Cells and Mouse Lung

F/HN-SIV efficiently transduces sheep & human primary lung cells and mouse lung.


F/HN-SIV-CMV-Lux was used to transduce human nasal brushings (MOI 250) and human and sheep lung slices cultured ex vivo (1×107 TU/slice). As shown in FIG. 9A, transduction of both the human nasal brushing cells and human and sheep lung slices resulted in substantial luciferase transgene expression (average values in the region of 2×102 RLU/mg protein for the human nasal brushings, 1×107 RLU/mg protein for the human lung slices and 2×107 RLU/mg protein for the sheep lung slices) 24-48 hours post-transduction.


Primary human CF lung cells cultured at the air-liquid interface (CF hALIs, ˜1×105) were transduced with (3×107 TU) F/HN-SIV-soCFTR2 vectors containing CMV- and hCEF transgene promoters. Vector copy number (copies of pro-viral DNA per copy of endogenous CFTR DNA) was measured at 6-8 days post-transduction. Both the CMW and hCEF promoters were able to achieve a vector copy number of at least 1×101 (FIG. 9B).


CFTR mRNA expression level (% VE: copies of CFTR mRNA per copy of endogenous CFTR mRNA×100) at 6-8 days post-transduction was also measured. The horizontal dotted line in FIG. 9C represents a target expression level of 5% VE, which is thought to represent the therapeutic threshold. Both the F/HN-SIV-soCFTR-CMV and F/HN-SIV-soCFTR2-hCEF induced expression significantly above this target (in the region of 40583±10687 and 18509±13588 respectively, mean±SD, n=4).


Following in vivo delivery of F/HN-SIV-EGFPLux vectors containing CMV, EF1a and hCEF promoters in integrase defective (ID) or integrase competent form (IC or no label) airway cells transgene expression was determined in the nasal (FIG. 9D) and lung (FIG. 9E) murine epithelium (n=6-10/group). The time course of luciferase transgene expression was monitored by repeated in vivo bioluminescence imaging and was normalised to delivered dose. Four of the five vectors tested (vGM012 CMW, vGM014 EF1a, vGM020 hCEF and vGM076 hCEF ID) achieved expression in the nose above the target level for the whole time course of the experiment. The fifth vector, vGM074 CMV ID, achieved expression in the nose above the accepted expression level for the whole time course of the experiment.


Two of the five vectors tested (vGM014 EF1a and vGM020 hCEF) achieved expression in the lung above the target level for the whole time course of the experiment. One vector, vGM012 CMW, achieved expression in the lung above the accepted expression level for the whole time course of the experiment.


Bioluminescence was detected following in vivo murine transduction at day 14 post transduction. Representative images are shown in FIG. 9F. The vGM020 hCEF vector achieved the highest level of in vivo expression out of the five vectors tested.


Bioluminescence was also detected following in vitro transduction of non-CF hALI at day 5-6 post transduction. Representative images are shown FIG. 9G. Again, the vGM020 hCEF vector achieved the highest level of expression out of the five vectors tested.



FIG. 9H shows EGFP expression at 14 days post transduction in the murine nasal epithelium following delivery of 1.6×108 TU of F/HN-SIV-hCEF-EGFPLux (vGM020), as visualised by immunohistochemistry (nuclei stained with DAPI).


The time-course of luciferase transgene expression in non-CF ALIs was monitored by repeated bioluminescence imaging and was normalised to the delivered dose. As shown in FIG. 9I, the vGM014 EF1a and vGM020 hCEF vectors achieved the highest level of expression.


F/HN-SIV also efficiently transduces sheep lung in vivo. Acriflavine was instilled (3×100 μL aliquots over ˜5 minutes) to a proximal airway under direct bronchoscopic visualisation. The distribution of the acriflavine can be appreciated by the orange colouration of the dissected airway at postmortem (FIG. 10A).


The acriflavine was largely restricted to the conducting airways and absent from the alveolar regions. The arrow in FIG. 10A indicates the approximate site of instillation. The numbers on the ruler are in cm.



FIG. 10B is a diagrammatic representation of the sheep lung (trachea centre/top). The circle represents the region in (FIG. 10A). In FIG. 10B, the arrow indicates passage of bronchoscope to deliver 3×100 μL aliquots of 2.2E9 TU/mL (6.6E8 TU total) F/HN SIV CMV-EGFPLux to n=3 individual sheep (animal codes T121, T156 & T251). At seven days post-delivery, 5-6 tissue sample blocks were taken at post-mortem at ˜1 cm intervals from the site of instillation.


The sample blocks were divided into 2-3 approximately equivalent samples and analysed for transgene expression, the results of which are shown in FIG. 10C as luciferase assays normalised to protein content; and In FIG. 10D as quantitative RT-PCR normalised to endogenous CFTR mRNA levels. The horizontal line in FIG. 100 represents the highest luciferase activity noted in any sample treated with a non-viral gene transfer vector, and in FIG. 10D the target expression level of 5% VE (thought to represent the therapeutic threshold, see above). For each treatment group the average was higher than the non-viral vector comparison (FIG. 100), and also achieved expression above the target 5% VE threshold.


Example 14: CFTR Expression and Function Measured Using Human CF Intestinal Organoids

Human CF intestinal organoids were generated as described by Dekkers J F et al, (Nature Medicine 2013, 19(7): 939-945). Briefly, intestinal biopsies were washed in EDTA containing solutions to dissociate crypt cells. Crypt cells were then transduced with vGM058 (approximately 1×107 transduction units) or a control virus (n=3 wells/condition) and embedded in Matrigel and allowed to form organoids for 3-4 days. CFTR function was assessed by exposing the organoids to forskolin (approximately 5 μM forskolin) which increases intracellular cAMP levels and thereby activates CFTR. In response the CFTR activation the organoids increase chloride transport which leads to water uptake and swelling. Organoids (minimum 10/well) were directly analysed by confocal live-cell microscopy (LSM710, Zeiss, ×5 objective). Forskolin-stimulated organoid swelling was automatically quantified using Volocity imaging software (Improvision). The total organoid area (xy plane) increase relative to that at t=0 of forskolin treatment was calculated and averaged. Forskolin induced swelling was significantly (p<0.001) increased in vGM058 transduced organoids compared to controls (see FIG. 14A). Significant levels of CFTR-mediated iodide efflux (p<0.05) were also detected in vGM058 transduced cells (FIG. 14B) using the iodide efflux assay disclosed herein (see Example 12).


Example 15: Generation of Lentiviral Vectors for A1AT

Lentiviral vectors were prepared using the SIV backbone and 5 plasmid method described above in Examples 2 and 3 (for the CFTR lentivirus) and using the hCEF promoter as described herein. Two separate lentiviral constructs were generated: one with a human alpha-1-antitrypsin (hAAT) transgene; one with a Gaussia luciferase (Glux) transgene (see FIGS. 15A and B, SEQ ID NOs: 9 and 10 respectively). The cDNAs contained within these vectors were codon-optimised and CpG-depleted.


Example 16: Air-Liquid Interface (ALI) Culture Using Lux Reporter Gene Lentiviral Vector

Fully differentiated wild-type human ALI cultures (MucilAir) were purchased from Epithelix SARL (Geneva, CH). ALIs were cultured at 37° C. and 5% CO2 and the basolateral culture medium changed every 2-3 days. The culture medium was stored at −20° C. until further analysis.


ALIs were transduced (on day 0) by pipetting 100 μl of virus (1×107 Tagman transfection units (TTU) onto the apical surface. The virus was removed after 4 hours incubation at 37° C., and the basolateral medium replaced.


At indicated timepoints post-transduction, the apical surface of the ALIs was washed by incubating with sterile PBS for one hour. The washings were removed and stored at −20° C. until further analysis.


A Gaussia luciferase assay (New England Biolabs, Ipswich, USA) was performed according to manufacturer's recommendations. 15 μl of sample was analysed in duplicate, and luminescence determined in an Appliskan plate reader. Glux expression was expressed as RLU/μl fluid (RUL=relative light units).



FIG. 16 provides the results, with each point representing the mean value of RLU/μl in the media from n=6 ALIs at the time point shown (standard error indicated by error bars).


Lentiviral-mediated gene transfer in human air-liquid interfaces resulted in the long-term expression of secreted reporter protein Gaussia luciferase.


Example 17: Transgene Expression in Lung Slice Cultures Using A1AT and Lux Reporter Gene Lentiviral Vectors

Precision-cut human lung slices were prepared as described in Moreno L et al, Respir Res 2006 Aug. 21; 7:111. Lung slices were placed in 12-well tissue culture plates (1 slice per well) in 1 ml of media and incubated at 37° C. and 5% CO2. The media was changed daily and stored at −20° C. until further analysis.


On day 0 lung slices (n=6 per group) were transduced with SIV hCEF-sogLux (1×106 TTU) or SIV1 hCEF-sohAAT (2×106 TTU) virus diluted in medium to a final volume of 1000 μl and incubated for 4 hours. After the incubation, medium was replaced and stored at −20° C. until further analysis.


Gaussia luciferase expression was determined as described above (Example 16). As shown in FIG. 17A, high levels of expression of secreted reporter protein Gaussia luciferase followed lentiviral-mediated gene transfer in human lung slices. AAT (also referred to herein as A1AT) expression was determined using a sandwich ELISA (Abcam, Cambridge, UK), performed according to the manufacturer's recommendations. 50 μl of sample was assayed in duplicate, and measured on a microplate reader at 450 nm. As shown in FIG. 17B, high levels of expression of alpha-1-antitrypsin (AAT/A1AT) followed lentiviral-mediated gene transfer in human lung slices.


Example 18: In Vivo Administration of A1AT and Lux Reporter Gene Lentiviral Vectors to the Mouse Nose

Mouse Lung Transduction:


Female C57BL/6 mice (Charles River, UK) were anaesthetised with isoflurane and given 100 ul of virus by nasal instillation as described in Xenariou S et al, Gene Ther 2007 May; 14(9): 768-75. Animals were given between 1 and 5 doses and observed daily for signs of toxicity.


For Gaussia luciferase, female C57BL/6 mice were anaesthetised on day 0 using isoflurane and given a single 100 ul dose of the SIV1 hCEF-soGLux virus (1×106 TTU) by nasal instillation. Control animals were treated with DMEM (tissue culture medium), the main constituent of the viral preparation used in the study.


For A1AT, female C57bl/6 mice (n=5 per group) were treated with 3 doses of SIV1 hCEF-sohAAT at 10-day intervals (100 μl per dose, 6.8×107 TTU; total dose 2.4×108 TTU). Control animals were instilled with 100 ul of sterilised PBS (the main constituent of the lentivirus production batch used in the study) at each dosing point.


10 days after the third dose, animals were sacrificed and lung tissue homogenate, broncho-alveolar lavage fluid and serum analysed for AAT expression.


In addition, long term expression of A1AT was investigated. On days 1 to 5 of the experiment, C57bl/6 mice were treated with 100 μl of SIV1 hCEF-sohAAT by nasal instillation (5 doses of 4×105 TTU, i.e. 2×10e6 TTU per animal in total). Control animals were instilled with 100 ul of DMEM (tissue culture medium), the main constituent of the lentivirus production batch used in the study. Animals were sacrificed at various timepoints post-transduction and lung tissue homogenate, broncho-alveolar lavage fluid and serum were analysed for AAT expression.


Mouse Tissue Collection:


Mice were sacrificed at the indicated time-points post transduction. Blood was collected by puncturing the left ventricle, and centrifuged at 760 gav for 10 minutes to prepare serum. Serum was subsequently frozen at −80° C.


A bronco-alveolar lavage (BAL) was performed by dissecting the neck, inserting a cannula into the trachea and securing it in place with suture thread. 500 μl of PBS was instilled into the lung, and aspirated three times to obtain thorough washing of the epithelial lining. The sample was immediately snap frozen in liquid nitrogen, and stored at −80° C. for further analysis.


Lungs were then dissected and snap-frozen in liquid nitrogen, and subsequently homogenised in lysing matrix D tubes (MP Biomedicals), centrifuged in a FastPrep machine (ThermoFisher Scientific, Waltham, Mass., USA) at 4 m/s for 45 seconds, and stored at −80° C. for further analysis.


AAT (A1AT) and Gaussia luciferase (Glux) expression was determined as described in Examples 16 and 17 above. In vivo transduction of mouse airway cells with a single dose of the lux reporter gene lentiviral vector of Example 15 resulted in long-term expression (at least 12 months) of the secreted reporter protein Gaussia luciferase, in lung homogenate (FIG. 18A), bronco-alveolar lavage fluid (BAL, FIG. 18B) and serum (FIG. 18C).


High levels of expression of A1AT were observed in lung homogenate, BAL and serum following lentiviral-mediated transfer of the AAT (A1AT) gene in vivo (FIG. 19), with over a 100-fold increase in ATT (A1AT) expression in the lung homogenate and BAL observed compared with the corresponding negative (PBS) controls. A significant increase (at least one order of magnitude) in ATT (A1AT) expression was also observed in the serum.


In addition, long-term expression (at least 90 days) of alpha-1-antitrypsin was observed in lung homogenate (FIG. 20A), BAL (FIG. 20B) and serum (FIG. 20C) following lentiviral-mediated gene transfer of the AAT (A1AT) gene in vivo.


Example 19: Urea Assay

C57bl/6 mice (n=5 per group) were treated with 3 doses of SIV1 hCEF-sohAAT at 10-day intervals (100 μl per dose, 6.8×107 TTU; total dose 2.4×108 TTU). Control animals were instilled with 100 ul of sterilised PBS (the main constituent of the lentivirus production batch used in the study) at each dosing point.


10 days after the third dose, animals were sacrificed and lung tissue homogenate, broncho-alveloar lavage fluid and serum analysed for A1AT expression.


A urea assay (Abcam, Cambridge, UK) was performed according to the manufacturer's instructions.


Firstly, serial dilutions of murine serum and BAL fluid samples were prepared and analysed to determine the appropriate dilution to use in further experiments.


Secondly, corresponding serum and BAL fluid samples from single mice (n=14) were analysed to calculate the fold-difference between urea concentration in serum and BAL fluid, equivalent to the dilutional effect of BAL on epithelial lining fluid (as per Rennard SI et al, J Appl Physiol (1985). 1986 February; 60(2):532-8). The mean dilution of BAL was 41-fold (range 24-88).


Taking into account this dilutional effect, the concentration of ATT (A1AT) in the epithelial lining fluid was calculated. Specifically, the concentration of AAT in the broncho-alveolar lavage fluid was multiplied by the dilution factor, to provide an estimate of the ‘true’ AAT concentration in epithelial lining fluid.


A “protective” target level of ATT (A1AT) in the epithelial lining fluid (ELF, i.e. the fluid lining the airways and airspaces in the lungs) is 70 μg/ml (compared with a “normal” target level of ATT (A1AT) in the ELF of 200 μg/ml). As shown in FIG. 21, therapeutic levels of alpha-1-antitrypsin in epithelial lining fluid followed ATT (A1AT) lentiviral-mediated gene transfer in vivo.


Example 20: Generation of Lentiviral Vectors for FVIII

Four different FVIII lentiviral vectors were prepared using the SIV backbone and 5 plasmid method described above in Examples 2 and 3 (for the CFTR lentivirus) and 15 (for the A1AT lentivirus). The promoter-transgene plasmids have SEQ ID NOs: 11 to 14 respectively.


The SIV sequence was identical to the CFTR constructs (Examples 2 and 3) except for the promoter and cDNA. The human cytomegalovirus promotor (CMV) or tissue specific hCEFI promotor/enhancer was used as indicated (FIG. 22) to drive expression of FVIII transgenes.


SIV-F/HN-FVIII-N6-co contained the wild type human FVIII cDNA from which the BDD domain has been deleted and replaced with codon optimised 226 amino acid 6N-glycosylation fragment.


SIV-FVIII-V3 contains the wild type human FVIII cDNA from which the 226 amino acid glycosylation site has been deleted and replaced with 17 amino acid peptide which expresses 6N-glycosylation triples within the B domain (McIntosh et al., Blood 2013 121(17); 3335-3344).


Example 21: Quantification of hFVIII Antigen and Activity Levels in In Vivo and In Vitro Models

Human FVIII antigen levels in a murine model were quantified by enzyme-linked immunosorbent assay (ELISA) according to the manufacturer's protocol. Briefly, plasma, BAL and lung were analysed for the presence of FVIII antigen using Asserachrom (FVIII:Ag) Elisa (Stago Diagnostics, France).


Samples were diluted 1:2 and incubated on a mouse monoclonal anti-human factor VIII fragment-coated 96-well plate for 2 hours at room temperature. Following washing, anti-mouse secondary antibody coupled with peroxidase was added to the plate and incubation was carried out for 2 hours at RT. hFVIII:Ag levels were determined spectrophotometric at 450 nm using TMB substrate (data not shown).


Another ELISA assay was used to evaluate FVIII activity in an in vitro HEK293T model (FVIII:C, Affinity Biological, Canada). Supernatants were collected 48 and 72 hours after HEK293T transduction with SIV-F/HN-FVIII-N6 or SIV-F/HN-FVIII-N3. FVIII activity was evaluated by following the manufacturer's instructions using 50 μl supernatants assayed in duplicate. As a negative control the supernatant from untreated HEK293T cells was tested. hFVIII activity was calculated from a standard curve generated using a series of dilutions of normal human pooled plasma (13th British Standard for blood coagulation Factor VIII concentrate, Human; NIBSC).


HEK293T cells were transduced with two different batches of vGM142 (Batch 1-5.9×108 TTU/ml and Batch 2-2.8×108 TTU/ml). HEK293T cells were transduced with vGM142 Batch 1 vector (FIG. 23A) and vGM142 Batch 2 vector (FIG. 23B) at 3 different MOIs (MOI 1; 10; 100), and collected 48 and 72 hours post-transduction.


As is clear from FIG. 23, increasing FVIII activity was observed with increasing MOI for both Batch 1 and Batch 2 of vGM142 at both 48 and 72 hours post-transduction. Furthermore, FVIII activity increased from 48 hours to 72 hours for each MOI tested.


Example 22: In Vivo Administration of FVIII and Lux Reporter Gene Lentiviral Vectors to the Mouse Nose

Mouse Lung Transduction:


All animal procedures were performed in accordance with the conditions and limitation of the UK Home Office Project and Personal licence regulations under the Animal Scientific Procedure Act (1986).


Wild type C57BL/6 female mice aged 6-8 weeks old (Charles River, UK were anaesthetised using isofluorane and given 100 μl of virus in Dulbecco's phosphate-buffered saline (D-PBS), as described previously (Griesenbach et al., 2012) and the presence of FVIII antigen was assessed.


In two experiments (Group 1 and 2) mice received 3 doses (every other day) of SIV-F/HN-FVIII-N6 (vGM142) and were culled 10 days after the first dose. Group 1 (n=4) were treated with a total vector dose of 1.4×106 TTU/mouse. Group 2 (n=3) were treated with a total vector dose of 1.57×108 TTU/mouse


In one experiment (Group 3) mice were treated with 12 doses (every other day) of SIV-F/HN-FVIII-N6 (vGM142) and culled 28 days after the first dose. Group 3 (n=4) were treated with a total vector dose of 3.36×108 TTU/mouse)


Plasma, BAL fluid and Lung were collected (as described in Example 14). Briefly, the mice were sacrificed at the indicated time-points post transduction. Blood was then collected from heart into the 3.2 trisodium citrate anticoagulant collection tubes, before being centrifuged at 2000-2500×g to obtain plasma. BAL fluid was collected by applying 3 consecutive installations of PBS (500 μl) into mouse lung at room temperature. Supernatants were stored at −80° C. Lungs were collected and stored at −80° C. prior to tissue homogenisation.


The presence of FVIII expression was then assessed. FVIII levels were assessed in lung tissue homogenates (FIG. 24A), BAL fluid (FIG. 24B) and plasma (FIG. 24C) collected separately in 3 independent experiments at 10 and/or 28 days post SIV-F/HN-FVIII-N6 treatment. Analysis was performed using One-way Anova (GraphPad Prism) with multiple comparisons between treated groups (**** p<0.0001).


As is clear from FIG. 24A, all three treatment groups produced an observable increase in hFVIII levels within the lung tissue compared with the corresponding control (D-PBS). The 28 day treatment of Group 3 resulted in a significant increase in hFVIII expression compared with the 10 day treatments of Groups 1 and 2. Similar results were observed for the BAL fluid samples (FIG. 24B), although in these samples there was also a significant increase in hFVIII levels in Group 2 compared with Group 1. Group 3 treatment resulted in a significant increase in hFVIII levels in plasma (FIG. 24C).


Example 23: Manufacturing Method for Lentiviral Vectors in Accordance with the Invention

HEK293 cells are grown in suspension, in Freestyle Expression Media (chemically defined, animal & protein-free), and the cell count is monitored. Glucose concentration is determined and titrated to ˜35 mM. A transfection mixture of pDNA/PEIPro™ is prepared and the cells are transfected at 0.33 mg pDNA/1E9 cells.


Cell count is monitored again and further Freestyle Expression Media is added. Glucose concentration is again determined and titrated to ˜35 mM. 5 u/mL of Benzonase® can be added and three-stage inline virus clarification is carried out. Benzonase® is added followed by TrypLE Select™. The virus is cooled to 0° C. and kept on wet ice for all subsequent steps. After filtering any non-virus particulate matter (mPES 0.45 μm filter), the virus is loaded onto Mustang® Q XT (3 mL membrane/L clarified virus) followed by washing with 0.15M NaCl Tris pH7.5 and elution with 1.0M NaCl Tris pH7.5. The virus fraction is collected and diluted to 0.1-0.2 initial volume with Freestyle media. TrypLE Select™ can be added here if not added above and Benzonase® can be also be added at this stage in addition to or instead of above.


Spectrum Tangential flow filtration (TFF) is carried out (UF to ˜0.1-0.05 initial volume=HV; DF retentate×5 HV against formulation buffer; UF to ˜0.001-0.002 initial volume) and retentate is collected. A second TFF step may be carried out and a smaller TFF unit for DF and/or final UF can be used. Additional steps can include mixed-mode/SEC and 0.45 μm or 0.2 μm sterile filtration.



FIG. 11 depicts the production and purification of F/HN SIV Vectors. F/HN SIV Vectors were produced by 5 plasmid (pDNA) PEI-mediated transient transfection of 293T cells grown in suspension at 1 L scale in pH controlled WAVE Bioreactors (GE), using scalable methods of the invention. Vectors were clarified by depth/end-filtration (GE/Pall), contaminating nucleic acids were removed with Benzonase® (Merck), vectors were activated with TrypLE Select™ (Life Technology), purified and concentrated by anion exchange membrane chromatography (Pall) and tangential-flow filtration (Spectrum). All process vessels, containers and columns were single-use cGMP compliant. All reagents except plasmid DNA were animal-free cGMP compliant. Data from a variety of vector configurations (transgene promoter, transgene, integrase status) are shown. Physical and functional titres were determined using Q-PCR.


See the results of this exemplary method of the invention are discussed in the description of FIG. 11 above.


KEY TO SEQ ID NOS



  • SEQ ID NO: 1 Plasmid as defined in FIG. 1A (pDNA1 pGM326)

  • SEQ ID NO: 2 Plasmid as defined in FIG. 1B (pDNA2a pGM297)

  • SEQ ID NO: 3 Plasmid as defined in FIG. 1C (pDNA2b pGM299)

  • SEQ ID NO: 4 Plasmid as defined in FIG. 1D (pDNA3a pGM301)

  • SEQ ID NO: 5 Plasmid as defined in FIG. 1E (pDNA3b pGM303)

  • SEQ ID NO: 6 Exemplified hCEF promoter

  • SEQ ID NO: 7 Exemplified CFTR transgene (soCFTR2)

  • SEQ ID NO: 8 Exemplified WPRE component (mWPRE)

  • SEQ ID NO: 9 F/HN-SIV-hCEF-soA1AT plasmid as defined in FIG. 15 (pDNA1 pGM407)

  • SEQ ID NO: 10 F/HN-SIV-hCEF-sogLux plasmid as defined in FIG. 15 (pDNA1 pGM358)

  • SEQ ID NO: 11 F/HN-SIV-CMV-HFVIII-V3 plasmid as defined in FIG. 22C (pDNA1 pGM411)

  • SEQ ID NO: 12 F/HN-SIV-hCEF-HFVIII-V3 plasmid as defined in FIG. 22D (pDNA1 pGM413)

  • SEQ ID NO: 13 F/HN-SIV-CMV-HFVIII-N6-co plasmid as defined in FIG. 22E (pDNA1 pGM412)

  • SEQ ID NO: 14 F/HN-SIV-hCEF-HFVIII-N6-co plasmid as defined in FIG. 22F (pDNA1 pGM414)

  • SEQ ID NO: 15 Exemplified A1AT transgene

  • SEQ ID NO: 16 Exemplified FVIII transgene (N6)

  • SEQ ID NO: 17 Exemplified CMV promoter

  • SEQ ID NO: 18 Primer for the construction of pCAGGS-Fct4

  • SEQ ID NO: 19 Primer for the construction of pCAGGS-Fct4

  • SEQ ID NO: 20 Primer for the construction of pCAGGS-Fct4

  • SEQ ID NO: 21 Primer for the construction of pCAGGS-Fct4

  • SEQ ID NO: 22 Primer for the construction of pCAGGS-Fct4

  • SEQ ID NO: 23 Primer for the construction of pCAGGS-Fct4

  • SEQ ID NO: 24 Primer for the construction of pCAGGS-SIVct+HN

  • SEQ ID NO: 25 Primer for the construction of pCAGGS-SIVct+HN

  • SEQ ID NO: 26 Complementary strand to the exemplified A1AT transgene

  • SEQ ID NO: 27 Exemplified A1A1 peptide

  • SEQ ID NO: 28 Complementary strand to the exemplified FVIII transgene (N6)

  • SEQ ID NO: 29 Exemplified FVIII peptide (N6)

  • SEQ ID NO: 30 Exemplified FVIII transgene (V3)

  • SEQ ID NO: 31 Complementary strand to the exemplified FVIII transgene (V3)

  • SEQ ID NO: 32 Exemplified FVIII peptide (V3)

  • SEQ ID NO: 33 Complementary strand to the exemplified CMV promoter













Sequences















SEQ ID NO: 1








1
GGTACCTCAA TATTGGCCAT TAGCCATATT ATTCATTGGT TATATAGCAT



AAATCAATAT


61
TGGCTATTGG CCATTGCATA CGTTGTATCT ATATCATAAT ATGTACATTT



ATATTGGCTC


121
ATGTCCAATA TGACCGCCAT GTTGGCATTG ATTATTGACT AGTTATTAAT



AGTAATCAAT


181
TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC



TTACGGTAAA


241
TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA



TGACGTATGT


301
TCCCATAGTA ACGCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT



ATTTACGGTA


361
AACTGCCCAC TTGGCAGTAC ATCAAGTGTA TCATATGCCA AGTCCGCCCC



CTATTGACGT


421
CAATGACGGT AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAC



GGGACTTTCC


481
TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC



GGTTTTGGCA


541
GTACACCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC



TCCACCCCAT


601
TGACGTCAAT GGGAGTTTGT TTTGGCACCA AAATCAACGG GACTTTCCAA



AATGTCGTAA


661
CAACTGCGAT CGCCCGCCCC GTTGACGCAA ATGGGCGGTA GGCGTGTACG



GTGGGAGGTC


721
TATATAAGCA GAGCTCGCTG GCTTGTAACT CAGTCTCTTA CTAGGAGACC



AGCTTGAGCC


781
TGGGTGTTCG CTGGTTAGCC TAACCTGGTT GGCCACCAGG GGTAAGGACT



CCTTGGCTTA


841
GAAAGCTAAT AAACTTGCCT GCATTAGAGC TTATCTGAGT CAAGTGTCCT



CATTGACGCC


901
TCACTCTCTT GAACGGGAAT CTTCCTTACT GGGTTCTCTC TCTGACCCAG



GCGAGAGAAA


961
CTCCAGCAGT GGCGCCCGAA CAGGGACTTG AGTGAGAGTG TAGGCACGTA



CAGCTGAGAA


1021
GGCGTCGGAC GCGAAGGAAG CGCGGGGTGC GACGCGACCA AGAAGGAGAC



TTGGTGAGTA


1081
GGCTTCTCGA GTGCCGGGAA AAAGCTCGAG CCTAGTTAGA GGACTAGGAG



AGGCCGTAGC


1141
CGTAACTACT CTTGGGCAAG TAGGGCAGGC GGTGGGTACG CAATGGGGGC



GGCTACCTCA


1201
GCACTAAATA GGAGACAATT AGACCAATTT GAGAAAATAC GACTTCGCCC



GAACGGAAAG


1261
AAAAAGTACC AAATTAAACA TTTAATATGG GCAGGCAAGG AGATGGAGCG



CTTCGGCCTC


1321
CATGAGAGGT TGTTGGAGAC AGAGGAGGGG TGTAAAAGAA TCATAGAAGT



CCTCTACCCC


1381
CTAGAACCAA CAGGATCGGA GGGCTTAAAA AGTCTGTTCA ATCTTGTGTG



CGTGCTATAT


1441
TGCTTGCACA AGGAACAGAA AGTGAAAGAC ACAGAGGAAG CAGTAGCAAC



AGTAAGACAA


1501
CACTGCCATC TAGTGGAAAA AGAAAAAAGT GCAACAGAGA CATCTAGTGG



ACAAAAGAAA


1561
AATGACAAGG GAATAGCAGC GCCACCTGGT GGCAGTCAGA ATTTTCCAGC



GCAACAACAA


1621
GGAAATGCCT GGGTACATGT ACCCTTGTCA CCGCGCACCT TAAATGCGTG



GGTAAAAGCA


1681
GTAGAGGAGA AAAAATTTGG AGCAGAAATA GTACCCATTT TTTTGTTTCA



AGCCCTATCG


1741
AATTCCCGTT TGTGCTAGGG TTCTTAGGCT TCTTGGGGGC TGCTGGAACT



GCAATGGGAG


1801
CAGCGGCGAC AGCCCTGACG GTCCAGTCTC AGCATTTGCT TGCTGGGATA



CTGCAGCAGC


1861
AGAAGAATCT GCTGGCGGCT GTGGAGGCTC AACAGCAGAT GTTGAAGCTG



ACCATTTGGG


1921
GTGTTAAAAA CCTCAATGCC CGCGTCACAG CCCTTGAGAA GTACCTAGAG



GATCAGGCAC


1981
GACTAAACTC CTGGGGGTGC GCATGGAAAC AAGTATGTCA TACCACAGTG



GAGTGGCCCT


2041
GGACAAATCG GACTCCGGAT TGGCAAAATA TGACTTGGTT GGAGTGGGAA



AGACAAATAG


2101
CTGATTTGGA AAGCAACATT ACGAGACAAT TAGTGAAGGC TAGAGAACAA



GAGGAAAAGA


2161
ATCTAGATGC CTATCAGAAG TTAACTAGTT GGTCAGATTT CTGGTCTTGG



TTCGATTTCT


2221
CAAAATGGCT TAACATTTTA AAAATGGGAT TTTTAGTAAT AGTAGGAATA



ATAGGGTTAA


2281
GATTACTTTA CACAGTATAT GGATGTATAG TGAGGGTTAG GCAGGGATAT



GTTCCTCTAT


2341
CTCCACAGAT CCATATCCGC GGCAATTTTA AAAGAAAGGG AGGAATAGGG



GGACAGACTT


2401
CAGCAGAGAG ACTAATTAAT ATAATAACAA CACAATTAGA AATACAACAT



TTACAAACCA


2461
AAATTCAAAA AATTTTAAAT TTTAGAGCCG CGGAGATCTG TTACATAACT



TATGGTAAAT


2521
GGCCTGCCTG GCTGACTGCC CAATGACCCC TGCCCAATGA TGTCAATAAT



GATGTATGTT


2581
CCCATGTAAT GCCAATAGGG ACTTTCCATT GATGTCAATG GGTGGAGTAT



TTATGGTAAC


2641
TGCCCACTTG GCAGTACATC AAGTGTATCA TATGCCAAGT ATGCCCCCTA



TTGATGTCAA


2701
TGATGGTAAA TGGCCTGCCT GGCATTATGC CCAGTACATG ACCTTATGGG



ACTTTCCTAC


2761
TTGGCAGTAC ATCTATGTAT TAGTCATTGC TATTACCATG GGAATTCACT



AGTGGAGAAG


2821
AGCATGCTTG AGGGCTGAGT GCCCCTCAGT GGGCAGAGAG CACATGGCCC



ACAGTCCCTG


2881
AGAAGTTGGG GGGAGGGGTG GGCAATTGAA CTGGTGCCTA GAGAAGGTGG



GGCTTGGGTA


2941
AACTGGGAAA GTGATGTGGT GTACTGGCTC CACCTTTTTC CCCAGGGTGG



GGGAGAACCA


3001
TATATAAGTG CAGTAGTCTC TGTGAACATT CAAGCTTCTG CCTTCTCCCT



CCTGTGAGTT


3061
TGCTAGCCAC CATGCAGAGA AGCCCTCTGG AGAAGGCCTC TGTGGTGAGC



AAGCTGTTCT


3121
TCAGCTGGAC CAGGCCCATC CTGAGGAAGG GCTACAGGCA GAGACTGGAG



CTGTCTGACA


3181
TCTACCAGAT CCCCTCTGTG GACTCTGCTG ACAACCTGTC TGAGAAGCTG



GAGAGGGAGT


3241
GGGATAGAGA GCTGGCCAGC AAGAAGAACC CCAAGCTGAT CAATGCCCTG



AGGAGATGCT


3301
TCTTCTGGAG ATTCATGTTC TATGGCATCT TCCTGTACCT GGGGGAAGTG



ACCAAGGCTG


3361
TGCAGCCTCT GCTGCTGGGC AGAATCATTG CCAGCTATGA CCCTGACAAC



AAGGAGGAGA


3421
GGAGCATTGC CATCTACCTG GGCATTGGCC TGTGCCTGCT GTTCATTGTG



AGGACCCTGC


3481
TGCTGCACCC TGCCATCTTT GGCCTGCACC ACATTGGCAT GCAGATGAGG



ATTGCCATGT


3541
TCAGCCTGAT CTACAAGAAA ACCCTGAAGC TGTCCAGCAG AGTGCTGGAC



AAGATCAGCA


3601
TTGGCCAGCT GGTGAGCCTG CTGAGCAACA ACCTGAACAA GTTTGATGAG



GGCCTGGCCC


3661
TGGCCCACTT TGTGTGGATT GCCCCTCTGC AGGTGGCCCT GCTGATGGGC



CTGATTTGGG


3721
AGCTGCTGCA GGCCTCTGCC TTTTGTGGCC TGGGCTTCCT GATTGTGCTG



GCCCTGTTTC


3781
AGGCTGGCCT GGGCAGGATG ATGATGAAGT ACAGGGACCA GAGGGCAGGC



AAGATCAGTG


3841
AGAGGCTGGT GATCACCTCT GAGATGATTG AGAACATCCA GTCTGTGAAG



GCCTACTGTT


3901
GGGAGGAAGC TATGGAGAAG ATGATTGAAA ACCTGAGGCA GACAGAGCTG



AAGCTGACCA


3961
GGAAGGCTGC CTATGTGAGA TACTTCAACA GCTCTGCCTT CTTCTTCTCT



GGCTTCTTTG


4021
TGGTGTTCCT GTCTGTGCTG CCCTATGCCC TGATCAAGGG GATCATCCTG



AGAAAGATTT


4081
TCACCACCAT CAGCTTCTGC ATTGTGCTGA GGATGGCTGT GACCAGACAG



TTCCCCTGGG


4141
CTGTGCAGAC CTGGTATGAC AGCCTGGGGG CCATCAACAA GATCCAGGAC



TTCCTGCAGA


4201
AGCAGGAGTA CAAGACCCTG GAGTACAACC TGACCACCAC AGAAGTGGTG



ATGGAGAATG


4261
TGACAGCCTT CTGGGAGGAG GGCTTTGGGG AGCTGTTTGA GAAGGCCAAG



CAGAACAACA


4321
ACAACAGAAA GACCAGCAAT GGGGATGACT CCCTGTTCTT CTCCAACTTC



TCCCTGCTGG


4381
GCACACCTGT GCTGAAGGAC ATCAACTTCA AGATTGAGAG GGGGCAGCTG



CTGGCTGTGG


4441
CTGGATCTAC AGGGGCTGGC AAGACCAGCC TGCTGATGAT GATCATGGGG



GAGCTGGAGC


4501
CTTCTGAGGG CAAGATCAAG CACTCTGGCA GGATCAGCTT TTGCAGCCAG



TTCAGCTGGA


4561
TCATGCCTGG CACCATCAAG GAGAACATCA TCTTTGGAGT GAGCTATGAT



GAGTACAGAT


4621
ACAGGAGTGT GATCAAGGCC TGCCAGCTGG AGGAGGACAT CAGCAAGTTT



GCTGAGAAGG


4681
ACAACATTGT GCTGGGGGAG GGAGGCATTA CACTGTCTGG GGGCCAGAGA



GCCAGAATCA


4741
GCCTGGCCAG GGCTGTGTAC AAGGATGCTG ACCTGTACCT GCTGGACTCC



CCCTTTGGCT


4801
ACCTGGATGT GCTGACAGAG AAGGAGATTT TTGAGAGCTG TGTGTGCAAG



CTGATGGCCA


4861
ACAAGACCAG AATCCTGGTG ACCAGCAAGA TGGAGCACCT GAAGAAGGCT



GACAAGATCC


4921
TGATCCTGCA TGAGGGCAGC AGCTACTTCT ATGGGACCTT CTCTGAGCTG



CAGAACCTGC


4981
AGCCTGACTT CAGCTCTAAG CTGATGGGCT GTGACAGCTT TGACCAGTTC



TCTGCTGAGA


5041
GGAGGAACAG CATCCTGACA GAGACCCTGC ACAGATTCAG CCTGGAGGGA



GATGCCCCTG


5101
TGAGCTGGAC AGAGACCAAG AAGCAGAGCT TCAAGCAGAC AGGGGAGTTT



GGGGAGAAGA


5161
GGAAGAACTC CATCCTGAAC CCCATCAACA GCATCAGGAA GTTCAGCATT



GTGCAGAAAA


5221
CCCCCCTGCA GATGAATGGC ATTGAGGAAG ATTCTGATGA GCCCCTGGAG



AGGAGACTGA


5281
GCCTGGTGCC TGATTCTGAG CAGGGAGAGG CCATCCTGCC TAGGATCTCT



GTGATCAGCA


5341
CAGGCCCTAC ACTGCAGGCC AGAAGGAGGC AGTCTGTGCT GAACCTGATG



ACCCACTCTG


5401
TGAACCAGGG CCAGAACATC CACAGGAAAA CCACAGCCTC CACCAGGAAA



GTGAGCCTGG


5461
CCCCTCAGGC CAATCTGACA GAGCTGGACA TCTACAGCAG GAGGCTGTCT



CAGGAGACAG


5521
GCCTGGAGAT TTCTGAGGAG ATCAATGAGG AGGACCTGAA AGAGTGCTTC



TTTGATGACA


5581
TGGAGAGCAT CCCTGCTGTG ACCACCTGGA ACACCTACCT GAGATACATC



ACAGTGCACA


5641
AGAGCCTGAT CTTTGTGCTG ATCTGGTGCC TGGTGATCTT CCTGGCTGAA



GTGGCTGCCT


5701
CTCTGGTGGT GCTGTGGCTG CTGGGAAACA CCCCACTGCA GGACAAGGGC



AACAGCACCC


5761
ACAGCAGGAA CAACAGCTAT GCTGTGATCA TCACCTCCAC CTCCAGCTAC



TATGTGTTCT


5821
ACATCTATGT GGGAGTGGCT GATACCCTGC TGGCTATGGG CTTCTTTAGA



GGCCTGCCCC


5881
TGGTGCACAC ACTGATCACA GTGAGCAAGA TCCTCCACCA CAAGATGCTG



CACTCTGTGC


5941
TGCAGGCTCC TATGAGCACC CTGAATACCC TGAAGGCTGG GGGCATCCTG



AACAGATTCT


6001
CCAAGGATAT TGCCATCCTG GATGACCTGC TGCCTCTCAC CATCTTTGAC



TTCATCCAGC


6061
TGCTGCTGAT TGTGATTGGG GCCATTGCTG TGGTGGCAGT GCTGCAGCCC



TACATCTTTG


6121
TGGCCACAGT GCCTGTGATT GTGGCCTTCA TCATGCTGAG GGCCTACTTT



CTGCAGACCT


6181
CCCAGCAGCT GAAGCAGCTG GAGTCTGAGG GCAGAAGCCC CATCTTCACC



CACCTGGTGA


6241
CAAGCCTGAA GGGCCTGTGG ACCCTGAGAG CCTTTGGCAG GCAGCCCTAC



TTTGAGACCC


6301
TGTTCCACAA GGCCCTGAAC CTGCACACAG CCAACTGGTT CCTCTACCTG



TCCACCCTGA


6361
GATGGTTCCA GATGAGAATT GAGATGATCT TTGTCATCTT CTTCATTGCT



GTGACCTTCA


6421
TCAGCATTCT GACCACAGGA GAGGGAGAGG GCAGAGTGGG CATTATCCTG



ACCCTGGCCA


6481
TGAACATCAT GAGCACACTG CAGTGGGCAG TGAACAGCAG CATTGATGTG



GACAGCCTGA


6541
TGAGGAGTGT GAGCAGAGTG TTCAAGTTCA TTGATATGCC CACAGAGGGC



AAGCCTACCA


6601
AGAGCACCAA GCCCTACAAG AATGGCCAGC TGAGCAAAGT GATGATCATT



GAGAACAGCC


6661
ATGTGAAGAA GGATGATATC TGGCCCAGTG GAGGCCAGAT GACAGTGAAG



GACCTGACAG


6721
CCAAGTACAC AGAGGGGGGC AATGCTATCC TGGAGAACAT CTCCTTCAGC



ATCTCCCCTG


6781
GCCAGAGAGT GGGACTGCTG GGAAGAACAG GCTCTGGCAA GTCTACCCTG



CTGTCTGCCT


6841
TCCTGAGGCT GCTGAACACA GAGGGAGAGA TCCAGATTGA TGGAGTGTCC



TGGGACAGCA


6901
TCACACTGCA GCAGTGGAGG AAGGCCTTTG GTGTGATCCC CCAGAAAGTG



TTCATCTTCA


6961
GTGGCACCTT CAGGAAGAAC CTGGACCCCT ATGAGCAGTG GTCTGACCAG



GAGATTTGGA


7021
AAGTGGCTGA TGAAGTGGGC CTGAGAAGTG TGATTGAGCA GTTCCCTGGC



AAGCTGGACT


7081
TTGTCCTGGT GGATGGGGGC TGTGTGCTGA GCCATGGCCA CAAGCAGCTG



ATGTGCCTGG


7141
CCAGATCAGT GCTGAGCAAG GCCAAGATCC TGCTGCTGGA TGAGCCTTCT



GCCCACCTGG


7201
ATCCTGTGAC CTACCAGATC ATCAGGAGGA CCCTCAAGCA GGCCTTTGCT



GACTGCACAG


7261
TCATCCTGTG TGAGCACAGG ATTGAGGCCA TGCTGGAGTG CCAGCAGTTC



CTGGTGATTG


7321
AGGAGAACAA AGTGAGGCAG TATGACAGCA TCCAGAAGCT GCTGAATGAG



AGGAGCCTGT


7381
TCAGGCAGGC CATCAGCCCC TCTGATAGAG TGAAGCTGTT CCCCCACAGG



AACAGCTCCA


7441
AGTGCAAGAG CAAGCCCCAG ATTGCTGCCC TGAAGGAGGA GACAGAGGAG



GAAGTGCAGG


7501
ACACCAGGCT GTGAGGGCCC AATCAACCTC TGGATTACAA AATTTGTGAA



AGATTGACTG


7561
GTATTCTTAA CTATGTTGCT CCTTTTACGC TATGTGGATA CGCTGCTTTA



ATGCCTTTGT


7621
ATCATGCTAT TGCTTCCCGT ATGGCTTTCA TTTTCTCCTC CTTGTATAAA



TCCTGGTTGC


7681
TGTCTCTTTA TGAGGAGTTG TGGCCCGTTG TCAGGCAACG TGGCGTGGTG



TGCACTGTGT


7741
TTGCTGACGC AACCCCCACT GGTTGGGGCA TTGCCACCAC CTGTCAGCTC



CTTTCCGGGA


7801
CTTTCGCTTT CCCCCTCCCT ATTGCCACGG CGGAACTCAT CGCCGCCTGC



CTTGCCCGCT


7861
GCTGGACAGG GGCTCGGCTG TTGGGCACTG ACAATTCCGT GGTGTTGTCG



GGGAAATCAT


7921
CGTCCTTTCC TTGGCTGCTC GCCTGTGTTG CCACCTGGAT TCTGCGCGGG



ACGTCCTTCT


7981
GCTACGTCCC TTCGGCCCTC AATCCAGCGG ACCTTCCTTC CCGCGGCCTG



CTGCCGGCTC


8041
TGCGGCCTCT TCCGCGTCTT CGCCTTCGCC CTCAGACGAG TCGGATCTCC



CTTTGGGCCG


8101
CCTCCCCGCA AGCTTCGCAC TTTTTAAAAG AAAAGGGAGG ACTGGATGGG



ATTTATTACT


8161
CCGATAGGAC GCTGGCTTGT AACTCAGTCT CTTACTAGGA GACCAGCTTG



AGCCTGGGTG


8221
TTCGCTGGTT AGCCTAACCT GGTTGGCCAC CAGGGGTAAG GACTCCTTGG



CTTAGAAAGC


8281
TAATAAACTT GCCTGCATTA GAGCTCTTAC GCGTCCCGGG CTCGAGATCC



GCATCTCAAT


8341
TAGTCAGCAA CCATAGTCCC GCCCCTAACT CCGCCCATCC CGCCCCTAAC



TCCGCCCAGT


8401
TCCGCCCATT CTCCGCCCCA TGGCTGACTA ATTTTTTTTA TTTATGCAGA



GGCCGAGGCC


8461
GCCTCGGCCT CTGAGCTATT CCAGAAGTAG TGAGGAGGCT TTTTTGGAGG



CCTAGGCTTT


8521
TGCAAAAAGC TAACTTGTTT ATTGCAGCTT ATAATGGTTA CAAATAAAGC



AATAGCATCA


8581
CAAATTTCAC AAATAAAGCA TTTTTTTCAC TGCATTCTAG TTGTGGTTTG



TCCAAACTCA


8641
TCAATGTATC TTATCATGTC TGTCCGCTTC CTCGCTCACT GACTCGCTGC



GCTCGGTCGT


8701
TCGGCTGCGG CGAGCGGTAT CAGCTCACTC AAAGGCGGTA ATACGGTTAT



CCACAGAATC


8761
AGGGGATAAC GCAGGAAAGA ACATGTGAGC AAAAGGCCAG CAAAAGGCCA



GGAACCGTAA


8821
AAAGGCCGCG TTGCTGGCGT TTTTCCATAG GCTCCGCCCC CCTGACGAGC



ATCACAAAAA


8881
TCGACGCTCA AGTCAGAGGT GGCGAAACCC GACAGGACTA TAAAGATACC



AGGCGTTTCC


8941
CCCTGGAAGC TCCCTCGTGC GCTCTCCTGT TCCGACCCTG CCGCTTACCG



GATACCTGTC


9001
CGCCTTTCTC CCTTCGGGAA GCGTGGCGCT TTCTCATAGC TCACGCTGTA



GGTATCTCAG


9061
TTCGGTGTAG GTCGTTCGCT CCAAGCTGGG CTGTGTGCAC GAACCCCCCG



TTCAGCCCGA


9121
CCGCTGCGCC TTATCCGGTA ACTATCGTCT TGAGTCCAAC CCGGTAAGAC



ACGACTTATC


9181
GCCACTGGCA GCAGCCACTG GTAACAGGAT TAGCAGAGCG AGGTATGTAG



GCGGTGCTAC


9241
AGAGTTCTTG AAGTGGTGGC CTAACTACGG CTACACTAGA AGAACAGTAT



TTGGTATCTG


9301
CGCTCTGCTG AAGCCAGTTA CCTTCGGAAA AAGAGTTGGT AGCTCTTGAT



CCGGCAAACA


9361
AACCACCGCT GGTAGCGGTG GTTTTTTTGT TTGCAAGCAG CAGATTACGC



GCAGAAAAAA


9421
AGGATCTCAA GAAGATCCTT TGATCTTTTC TACGGGGTCT GACGCTCAGT



GGAACGAAAA


9481
CTCACGTTAA GGGATTTTGG TCATGAGATT ATCAAAAAGG ATCTTCACCT



AGATCCTTTT


9541
AAATTAAAAA TGAAGTTTTA AATCAATCTA AAGTATATAT GAGTAAACTT



GGTCTGACAG


9601
TTAGAAAAAC TCATCGAGCA TCAAATGAAA CTGCAATTTA TTCATATCAG



GATTATCAAT


9661
ACCATATTTT TGAAAAAGCC GTTTCTGTAA TGAAGGAGAA AACTCACCGA



GGCAGTTCCA


9721
TAGGATGGCA AGATCCTGGT ATCGGTCTGC GATTCCGACT CGTCCAACAT



CAATACAACC


9781
TATTAATTTC CCCTCGTCAA AAATAAGGTT ATCAAGTGAG AAATCACCAT



GAGTGACGAC


9841
TGAATCCGGT GAGAATGGCA ACAGCTTATG CATTTCTTTC CAGACTTGTT



CAACAGGCCA


9901
GCCATTACGC TCGTCATCAA AATCACTCGC ATCAACCAAA CCGTTATTCA



TTCGTGATTG


9961
CGCCTGAGCG AGACGAAATA CGCGATCGCT GTTAAAAGGA CAATTACAAA



CAGGAATCGA


10021
ATGCAACCGG CGCAGGAACA CTGCCAGCGC ATCAACAATA TTTTCACCTG



AATCAGGATA


10081
TTCTTCTAAT ACCTGGAATG CTGTTTTTCC GGGGATCGCA GTGGTGAGTA



ACCATGCATC


10141
ATCAGGAGTA CGGATAAAAT GCTTGATGGT CGGAAGAGGC ATAAATTCCG



TCAGCCAGTT


10201
TAGTCTGACC ATCTCATCTG TAACATCATT GGCAACGCTA CCTTTGCCAT



GTTTCAGAAA


10261
CAACTCTGGC GCATCGGGCT TCCCATACAA TCGATAGATT GTCGCACCTG



ATTGCCCGAC


10321
ATTATCGCGA GCCCATTTAT ACCCATATAA ATCAGCATCC ATGTTGGAAT



TTAATCGCGG


10381
CCTAGAGCAA GACGTTTCCC GTTGAATATG GCTCATAACA CCCCTTGTAT



TACTGTTTAT


10441
GTAAGCAGAC AGTTTTATTG TTCATGATGA TATATTTTTA TCTTGTGCAA



TGTAACATCA


10501
GAGATTTTGA GACACAACAA TTGGTCGACG GATCC










SEQ ID NO: 2








1
GCTCGAGACT AGTGACTTGG TGAGTAGGCT TCGAGCCTAG TTAGAGGACT



AGGAGAGGCC


61
GTAGCCGTAA CTACTCTGGG CAAGTAGGGC AGGCGGTGGG TACGCAATGG



GGGCGGCTAC


121
CTCAGCACTA AATAGGAGAC AATTAGACCA ATTTGAGAAA ATACGACTTC



GCCCGAACGG


181
AAAGAAAAAG TACCAAATTA AACATTTAAT ATGGGCAGGC AAGGAGATGG



AGCGCTTCGG


241
CCTCCATGAG AGGTTGTTGG AGACAGAGGA GGGGTGTAAA AGAATCATAG



AAGTCCTCTA


301
CCCCCTAGAA CCAACAGGAT CGGAGGGCTT AAAAAGTCTG TTCAATCTTG



TGTGCGTACT


361
ATATTGCTTG CACAAGGAAC AGAAAGTGAA AGACACAGAG GAAGCAGTAG



CAACAGTAAG


421
ACAACACTGC CATCTAGTGG AAAAAGAAAA AAGTGCAACA GAGACATCTA



GTGGACAAAA


481
GAAAAATGAC AAGGGAATAG CAGCGCCACC TGGTGGCAGT CAGAATTTTC



CAGCGCAACA


541
ACAAGGAAAT GCCTGGGTAC ATGTACCCTT GTCACCGCGC ACCTTAAATG



CGTGGGTAAA


601
AGCAGTAGAG GAGAAAAAAT TTGGAGCAGA AATAGTACCC ATGTTTCAAG



CCCTATCAGA


661
AGGCTGCACA CCCTATGACA TTAATCAGAT GCTTAATGTG CTAGGAGATC



ATCAAGGGGC


721
ATTACAAATA GTGAAAGAGA TCATTAATGA AGAAGCAGCC CAGTGGGATG



TAACACACCC


781
ACTACCCGCA GGACCCCTAC CAGCAGGACA GCTCAGGGAC CCTCGCGGCT



CAGATATAGC


841
AGGGACCACC AGCTCAGTAC AAGAACAGTT AGAATGGATC TATACTGCTA



ACCCCCGGGT


901
AGATGTAGGT GCCATCTACC GGAGATGGAT TATTCTAGGA CTTCAAAAGT



GTGTCAAAAT


961
GTACAACCCA GTATCAGTCC TAGACATTAG GCAGGGACCT AAAGAGCCCT



TCAAGGATTA


1021
TGTGGACAGA TTTTACAAGG CAATTAGAGC AGAACAAGCC TCAGGGGAAG



TGAAACAATG


1081
GATGACAGAA TCATTACTCA TTCAAAATGC TAATCCAGAT TGTAAGGTCA



TCCTGAAGGG


1141
CCTAGGAATG CACCCCACCC TTGAAGAAAT GTTAACGGCT TGTCAGGGGG



TAGGAGGCCC


1201
AAGCTACAAA GCAAAAGTAA TGGCAGAAAT GATGCAGACC ATGCAAAATC



AAAACATGGT


1261
GCAGCAGGGA GGTCCAAAAA GACAAAGACC CCCACTAAGA TGTTATAATT



GTGGAAAATT


1321
TGGCCATATG CAAAGACAAT GTCCGGAACC AAGGAAAACA AAATGTCTAA



AGTGTGGAAA


1381
ATTGGGACAC CTAGCAAAAG ACTGCAGGGG ACAGGTGAAT TTTTTAGGGT



ATGGACGGTG


1441
GATGGGGGCA AAACCGAGAA ATTTTCCCGC CGCTACTCTT GGAGCGGAAC



CGAGTGCGCC


1501
TCCTCCACCG AGCGGCACCA CCCCATACGA CCCAGCAAAG AAGCTCCTGC



AGCAATATGC


1561
AGAGAAAGGG AAACAACTGA GGGAGCAAAA GAGGAATCCA CCGGCAATGA



ATCCGGATTG


1621
GACCGAGGGA TATTCTTTGA ACTCCCTCTT TGGAGAAGAC CAATAAAGAC



AGTGTATATA


1681
GAAGGGGTCC CCATTAAGGC ACTGCTAGAC ACAGGGGCAG ATGACACCAT



AATTAAAGAA


1741
AATGATTTAC AATTATCAGG TCCATGGAGA CCCAAAATTA TAGGGGGCAT



AGGAGGAGGC


1801
CTTAATGTAA AAGAATATAA CGACAGGGAA GTAAAAATAG AAGATAAAAT



TTTGAGAGGA


1861
ACAATATTGT TAGGAGCAAC TCCCATTAAT ATAATAGGTA GAAATTTGCT



GGCCCCGGCA


1921
GGTGCCCGGT TAGTAATGGG ACAATTATCA GAAAAAATTC CTGTCACACC



TGTCAAATTG


1981
AAGGAAGGGG CTCGGGGACC CTGTGTAAGA CAATGGCCTC TCTCTAAAGA



GAAGATTGAA


2041
GCTTTACAGG AAATATGTTC CCAATTAGAG CAGGAAGGAA AAATCAGTAG



AGTAGGAGGA


2101
GAAAATGCAT ACAATACCCC AATATTTTGC ATAAAGAAGA AGGACAAATC



CCAGTGGAGG


2161
ATGCTAGTAG ACTTTAGAGA GTTAAATAAG GCAACCCAAG ATTTCTTTGA



AGTGCAATTA


2221
GGGATACCCC ACCCAGCAGG ATTAAGAAAG ATGAGACAGA TAACAGTTTT



AGATGTAGGA


2281
GACGCCTATT ATTCCATACC ATTGGATCCA AATTTTAGGA AATATACTGC



TTTTACTATT


2341
CCCACAGTGA ATAATCAGGG ACCCGGGATT AGGTATCAAT TCAACTGTCT



CCCGCAAGGG


2401
TGGAAAGGAT CTCCTACAAT CTTCCAAAAT ACAGCAGCAT CCATTTTGGA



GGAGATAAAA


2461
AGAAACTTGC CAGCACTAAC CATTGTACAA TACATGGATG ATTTATGGGT



AGGTTCTCAA


2521
GAAAATGAAC ACACCCATGA CAAATTAGTA GAACAGTTAA GAACAAAATT



ACAAGCCTGG


2581
GGCTTAGAAA CCCCAGAAAA GAAGGTGCAA AAAGAACCAC CTTATGAGTG



GATGGGATAC


2641
AAACTTTGGC CTCACAAATG GGAACTAAGC AGAATACAAC TGGAGGAAAA



AGATGAATGG


2701
ACTGTCAATG ACATCCAGAA GTTAGTTGGG AAACTAAATT GGGCAGCACA



ATTGTATCCA


2761
GGTCTTAGGA CCAAGAATAT ATGCAAGTTA ATTAGAGGAA AGAAAAATCT



GTTAGAGCTA


2821
GTGACTTGGA CACCTGAGGC AGAAGCTGAA TATGCAGAAA ATGCAGAGAT



TCTTAAAACA


2881
GAACAGGAAG GAACCTATTA CAAACCAGGA ATACCTATTA GGGCAGCAGT



ACAGAAATTG


2941
GAAGGAGGAC AGTGGAGTTA CCAATTCAAA CAAGAAGGAC AAGTCTTGAA



AGTAGGAAAA


3001
TACACCAAGC AAAAGAACAC CCATACAAAT GAACTTCGCA CATTAGCTGG



TTTAGTGCAG


3061
AAGATTTGCA AAGAAGCTCT AGTTATTTGG GGGATATTAC CAGTTCTAGA



ACTCCCGATA


3121
GAAAGAGAGG TATGGGAACA ATGGTGGGCG GATTACTGGC AGGTAAGCTG



GATTCCCGAA


3181
TGGGATTTTG TCAGCACCCC ACCTTTGCTC AAACTATGGT ACACATTAAC



AAAAGAACCC


3241
ATACCCAAGG AGGACGTTTA CTATGTAGAT GGAGCATGCA ACAGAAATTC



AAAAGAAGGA


3301
AAAGCAGGAT ACATCTCACA ATACGGAAAA CAGAGAGTAG AAACATTAGA



AAACACTACC


3361
AATCAGCAAG CAGAATTAAC AGCTATAAAA ATGGCTTTGG AAGACAGTGG



GCCTAATGTG


3421
AACATAGTAA CAGACTCTCA ATATGCAATG GGAATTTTGA CAGCACAACC



CACACAAAGT


3481
GATTCACCAT TAGTAGAGCA AATTATAGCC TTAATGATAC AAAAGCAACA



AATATATTTG


3541
CAGTGGGTAC CAGCACATAA AGGAATAGGA GGAAATGAGG AGATAGATAA



ATTAGTGAGT


3601
AAAGGCATTA GAAGAGTTTT ATTCTTAGAA AAAATAGAAG AAGCTCAAGA



AGAGCATGAA


3661
AGATATCATA ATAATTGGAA AAACCTAGCA GATACATATG GGCTTCCACA



AATAGTAGCA


3721
AAAGAGATAG TGGCCATGTG TCCAAAATGT CAGATAAAGG GAGAACCAGT



GCATGGACAA


3781
GTGGATGCCT CACCTGGAAC ATGGCAGATG GATTGTACTC ATCTAGAAGG



AAAAGTAGTC


3841
ATAGTTGCGG TCCATGTAGC CAGTGGATTC ATAGAAGCAG AAGTCATACC



TAGGGAAACA


3901
GGAAAAGAAA CGGCAAAGTT TCTATTAAAA ATACTGAGTA GATGGCCTAT



AACACAGTTA


3961
CACACAGACA ATGGGCCTAA CTTTACCTCC CAAGAAGTGG CAGCAATATG



TTGGTGGGGA


4021
AAAATTGAAC ATACAACAGG TATACCATAT AACCCCCAAT CTCAAGGATC



AATAGAAAGC


4081
ATGAACAAAC AATTAAAAGA GATAATTGGG AAAATAAGAG ATGATTGCCA



ATATACAGAG


4141
ACAGCAGTAC TGATGGCTTG CCATATTCAC AATTTTAAAA GAAAGGGAGG



AATAGGGGGA


4201
CAGACTTCAG CAGAGAGACT AATTAATATA ATAACAACAC AATTAGAAAT



ACAACATTTA


4261
CAAACCAAAA TTCAAAAAAT TTTAAATTTT AGAGTCTACT ACAGAGAAGG



GAGAGACCCT


4321
GTGTGGAAAG GACCAGCACA ATTAATCTGG AAAGGGGAAG GAGCAGTGGT



CCTCAAGGAC


4381
GGAAGTGACC TAAAGGTTGT ACCAAGAAGG AAAGCTAAAA TTATTAAGGA



TTATGAACCC


4441
AAACAAAGAG TGGGTAATGA GGGTGACGTG GAAGGTACCA GGGGATCTGA



TAACTAAATG


4501
GCAGGGAATA GTCAGATATT GGATGAGACA AAGAAATTTG AAATGGAACT



ATTATATGCA


4561
TCAGCTGGCG GCCGCGAATT CACTAGTGAT TCCCGTTTGT GCTAGGGTTC



TTAGGCTTCT


4621
TGGGGGCTGC TGGAACTGCA ATGGGAGCAG CGGCGACAGC CCTGACGGTC



CAGTCTCAGC


4681
ATTTGCTTGC TGGGATACTG CAGCAGCAGA AGAATCTGCT GGCGGCTGTG



GAGGCTCAAC


4741
AGCAGATGTT GAAGCTGACC ATTTGGGGTG TTAAAAACCT CAATGCCCGC



GTCACAGCCC


4801
TTGAGAAGTA CCTAGAGGAT CAGGCACGAC TAAACTCCTG GGGGTGCGCA



TGGAAACAAG


4861
TATGTCATAC CACAGTGGAG TGGCCCTGGA CAAATCGGAC TCCGGATTGG



CAAAATATGA


4921
CTTGGTTGGA GTGGGAAAGA CAAATAGCTG ATTTGGAAAG CAACATTACG



AGACAATTAG


4981
TGAAGGCTAG AGAACAAGAG GAAAAGAATC TAGATGCCTA TCAGAAGTTA



ACTAGTTGGT


5041
CAGATTTCTG GTCTTGGTTC GATTTCTCAA AATGGCTTAA CATTTTAAAA



ATGGGATTTT


5101
TAGTAATAGT AGGAATAATA GGGTTAAGAT TACTTTACAC AGTATATGGA



TGTATAGTGA


5161
GGGTTAGGCA GGGATATGTT CCTCTATCTC CACAGATCCA TATCCAATCG



AATTCCCGCG


5221
GCCGCAATTC ACTCCTCAGG TGCAGGCTGC CTATCAGAAG GTGGTGGCTG



GTGTGGCCAA


5281
TGCCCTGGCT CACAAATACC ACTGAGATCT TTTTCCCTCT GCCAAAAATT



ATGGGGACAT


5341
CATGAAGCCC CTTGAGCATC TGACTTCTGG CTAATAAAGG AAATTTATTT



TCATTGCAAT


5401
AGTGTGTTGG AATTTTTTGT GTCTCTCACT CGGAAGGACA TATGGGAGGG



CAAATCATTT


5461
AAAACATCAG AATGAGTATT TGGTTTAGAG TTTGGCAACA TATGCCCATA



TGCTGGCTGC


5521
CATGAACAAA GGTTGGCTAT AAAGAGGTCA TCAGTATATG AAACAGCCCC



CTGCTGTCCA


5581
TTCCTTATTC CATAGAAAAG CCTTGACTTG AGGTTAGATT TTTTTTATAT



TTTGTTTTGT


5641
GTTATTTTTT TCTTTAACAT CCCTAAAATT TTCCTTACAT GTTTTACTAG



CCAGATTTTT


5701
CCTCCTCTCC TGACTACTCC CAGTCATAGC TGTCCCTCTT CTCTTATGGA



GATCCCTCGA


5761
CCTGCAGCCC AAGCTTGGCG TAATCATGGT CATAGCTGTT TCCTGTGTGA



AATTGTTATC


5821
CGCTCACAAT TCCACACAAC ATACGAGCCG GAAGCATAAA GTGTAAAGCC



TGGGGTGCCT


5881
AATGAGTGAG CTAACTCACA TTAATTGCGT TGCGCTCACT GCCCGCTTTC



CAGTCGGGAA


5941
ACCTGTCGTG CCAGCGGATC CGCATCTCAA TTAGTCAGCA ACCATAGTCC



CGCCCCTAAC


6001
TCCGCCCATC CCGCCCCTAA CTCCGCCCAG TTCCGCCCAT TCTCCGCCCC



ATGGCTGACT


6061
AATTTTTTTT ATTTATGCAG AGGCCGAGGC CGCCTCGGCC TCTGAGCTAT



TCCAGAAGTA


6121
GTGAGGAGGC TTTTTTGGAG GCCTAGGCTT TTGCAAAAAG CTAACTTGTT



TATTGCAGCT


6181
TATAATGGTT ACAAATAAAG CAATAGCATC ACAAATTTCA CAAATAAAGC



ATTTTTTTCA


6241
CTGCATTCTA GTTGTGGTTT GTCCAAACTC ATCAATGTAT CTTATCATGT



CTGTCCGCTT


6301
CCTCGCTCAC TGACTCGCTG CGCTCGGTCG TTCGGCTGCG GCGAGCGGTA



TCAGCTCACT


6361
CAAAGGCGGT AATACGGTTA TCCACAGAAT CAGGGGATAA CGCAGGAAAG



AACATGTGAG


6421
CAAAAGGCCA GCAAAAGGCC AGGAACCGTA AAAAGGCCGC GTTGCTGGCG



TTTTTCCATA


6481
GGCTCCGCCC CCCTGACGAG CATCACAAAA ATCGACGCTC AAGTCAGAGG



TGGCGAAACC


6541
CGACAGGACT ATAAAGATAC CAGGCGTTTC CCCCTGGAAG CTCCCTCGTG



CGCTCTCCTG


6601
TTCCGACCCT GCCGCTTACC GGATACCTGT CCGCCTTTCT CCCTTCGGGA



AGCGTGGCGC


6661
TTTCTCATAG CTCACGCTGT AGGTATCTCA GTTCGGTGTA GGTCGTTCGC



TCCAAGCTGG


6721
GCTGTGTGCA CGAACCCCCC GTTCAGCCCG ACCGCTGCGC CTTATCCGGT



AACTATCGTC


6781
TTGAGTCCAA CCCGGTAAGA CACGACTTAT CGCCACTGGC AGCAGCCACT



GGTAACAGGA


6841
TTAGCAGAGC GAGGTATGTA GGCGGTGCTA CAGAGTTCTT GAAGTGGTGG



CCTAACTACG


6901
GCTACACTAG AAGAACAGTA TTTGGTATCT GCGCTCTGCT GAAGCCAGTT



ACCTTCGGAA


6961
AAAGAGTTGG TAGCTCTTGA TCCGGCAAAC AAACCACCGC TGGTAGCGGT



GGTTTTTTTG


7021
TTTGCAAGCA GCAGATTACG CGCAGAAAAA AAGGATCTCA AGAAGATCCT



TTGATCTTTT


7081
CTACGGGGTC TGACGCTCAG TGGAACGAAA ACTCACGTTA AGGGATTTTG



GTCATGAGAT


7141
TATCAAAAAG GATCTTCACC TAGATCCTTT TAAATTAAAA ATGAAGTTTT



AAATCAATCT


7201
AAAGTATATA TGAGTAAACT TGGTCTGACA GTTAGAAAAA CTCATCGAGC



ATCAAATGAA


7261
ACTGCAATTT ATTCATATCA GGATTATCAA TACCATATTT TTGAAAAAGC



CGTTTCTGTA


7321
ATGAAGGAGA AAACTCACCG AGGCAGTTCC ATAGGATGGC AAGATCCTGG



TATCGGTCTG


7381
CGATTCCGAC TCGTCCAACA TCAATACAAC CTATTAATTT CCCCTCGTCA



AAAATAAGGT


7441
TATCAAGTGA GAAATCACCA TGAGTGACGA CTGAATCCGG TGAGAATGGC



AACAGCTTAT


7501
GCATTTCTTT CCAGACTTGT TCAACAGGCC AGCCATTACG CTCGTCATCA



AAATCACTCG


7561
CATCAACCAA ACCGTTATTC ATTCGTGATT GCGCCTGAGC GAGACGAAAT



ACGCGATCGC


7621
TGTTAAAAGG ACAATTACAA ACAGGAATCG AATGCAACCG GCGCAGGAAC



ACTGCCAGCG


7681
CATCAACAAT ATTTTCACCT GAATCAGGAT ATTCTTCTAA TACCTGGAAT



GCTGTTTTTC


7741
CGGGGATCGC AGTGGTGAGT AACCATGCAT CATCAGGAGT ACGGATAAAA



TGCTTGATGG


7801
TCGGAAGAGG CATAAATTCC GTCAGCCAGT TTAGTCTGAC CATCTCATCT



GTAACATCAT


7861
TGGCAACGCT ACCTTTGCCA TGTTTCAGAA ACAACTCTGG CGCATCGGGC



TTCCCATACA


7921
ATCGATAGAT TGTCGCACCT GATTGCCCGA CATTATCGCG AGCCCATTTA



TACCCATATA


7981
AATCAGCATC CATGTTGGAA TTTAATCGCG GCCTAGAGCA AGACGTTTCC



CGTTGAATAT


8041
GGCTCATAAC ACCCCTTGTA TTACTGTTTA TGTAAGCAGA CAGTTTTATT



GTTCATGATG


8101
ATATATTTTT ATCTTGTGCA ATGTAACATC AGAGATTTTG AGACACAACA



ATTGTCGACA


8161
TTGATTATTG ACTAGTTATT AATAGTAATC AATTACGGGG TCATTAGTTC



ATAGCCCATA


8221
TATGGAGTTC CGCGTTACAT AACTTACGGT AAATGGCCCG CCTGGCTGAC



CGCCCAACGA


8281
CCCCCGCCCA TTGACGTCAA TAATGACGTA TGTTCCCATA GTAACGCCAA



TAGGGACTTT


8341
CCATTGACGT CAATGGGTGG AGTATTTACG GTAAACTGCC CACTTGGCAG



TACATCAAGT


8401
GTATCATATG CCAAGTACGC CCCCTATTGA CGTCAATGAC GGTAAATGGC



CCGCCTGGCA


8461
TTATGCCCAG TACATGACCT TATGGGACTT TCCTACTTGG CAGTACATCT



ACGTATTAGT


8521
CATCGCTATT ACCATGGTCG AGGTGAGCCC CACGTTCTGC TTCACTCTCC



CCATCTCCCC


8581
CCCCTCCCCA CCCCCAATTT TGTATTTATT TATTTTTTAA TTATTTTGTG



CAGCGATGGG


8641
GGCGGGGGGG GGGGGGGGGC GCGCGCCAGG CGGGGCGGGG CGGGGCGAGG



GGCGGGGCGG


8701
GGCGAGGCGG AGAGGTGCGG CGGCAGCCAA TCAGAGCGGC GCGCTCCGAA



AGTTTCCTTT


8761
TATGGCGAGG CGGCGGCGGC GGCGGCCCTA TAAAAAGCGA AGCGCGCGGC



GGGCGGGAGT


8821
CGCTGCGCGC TGCCTTCGCC CCGTGCCCCG CTCCGCCGCC GCCTCGCGCC



GCCCGCCCCG


8881
GCTCTGACTG ACCGCGTTAC TCCCACAGGT GAGCGGGCGG GACGGCCCTT



CTCCTCCGGG


8941
CTGTAATTAG CGCTTGGTTT AATGACGGCT TGTTTCTTTT CTGTGGCTGC



GTGAAAGCCT


9001
TGAGGGGCTC CGGGAGGGCC CTTTGTGCGG GGGGAGCGGC TCGGGGGGTG



CGTGCGTGTG


9061
TGTGTGCGTG GGGAGCGCCG CGTGCGGCTC CGCGCTGCCC GGCGGCTGTG



AGCGCTGCGG


9121
GCGCGGCGCG GGGCTTTGTG CGCTCCGCAG TGTGCGCGAG GGGAGCGCGG



CCGGGGGCGG


9181
TGCCCCGCGG TGCGGGGGGG GCTGCGAGGG GAACAAAGGC TGCGTGCGGG



GTGTGTGCGT


9241
GGGGGGGTGA GCAGGGGGTG TGGGCGCGTC GGTCGGGCTG CAACCCCCCC



TGCACCCCCC


9301
TCCCCGAGTT GCTGAGCACG GCCCGGCTTC GGGTGCGGGG CTCCGTACGG



GGCGTGGCGC


9361
GGGGCTCGCC GTGCCGGGCG GGGGGTGGCG GCAGGTGGGG GTGCCGGGCG



GGGCGGGGCC


9421
GCCTCGGGCC GGGGAGGGCT CGGGGGAGGG GCGCGGCGGC CCCCGGAGCG



CCGGCGGCTG


9481
TCGAGGCGCG GCGAGCCGCA GCCATTGCCT TTTATGGTAA TCGTGCGAGA



GGGCGCAGGG


9541
ACTTCCTTTG TCCCAAATCT GTGCGGAGCC GAAATCTGGG AGGCGCCGCC



GCACCCCCTC


9601
TAGCGGGCGC GGGGCGAAGC GGTGCGGCGC CGGCAGGAAG GAAATGGGCG



GGGAGGGCCT


9661
TCGTGCGTCG CCGCGCCGCC GTCCCCTTCT CCCTCTCCAG CCTCGGGGCT



GTCCGCGGGG


9721
GGACGGCTGC CTTCGGGGGG GACGGGGCAG GGCGGGGTTC GGCTTCTGGC



GTGTGACCGG


9781
CGGCTCTAGA GCCTCTGCTA ACCATGTTCA TGCCTTCTTC TTTTTCCTAC



AGCTCCTGGG


9841
CAACGTGCTG GTTATTGTGC TGTCTCATCA TTTTGGCAAA GAATT










SEQ ID NO: 3








1
TCAATATTGG CCATTAGCCA TATTATTCAT TGGTTATATA GCATAAATCA



ATATTGGCTA


61
TTGGCCATTG CATACGTTGT ATCTATATCA TAATATGTAC ATTTATATTG



GCTCATGTCC


121
AATATGACCG CCATGTTGGC ATTGATTATT GACTAGTTAT TAATAGTAAT



CAATTACGGG


181
GTCATTAGTT CATAGCCCAT ATATGGAGTT CCGCGTTACA TAACTTACGG



TAAATGGCCC


241
GCCTGGCTGA CCGCCCAACG ACCCCCGCCC ATTGACGTCA ATAATGACGT



ATGTTCCCAT


301
AGTAACGCCA ATAGGGACTT TCCATTGACG TCAATGGGTG GAGTATTTAC



GGTAAACTGC


361
CCACTTGGCA GTACATCAAG TGTATCATAT GCCAAGTCCG CCCCCTATTG



ACGTCAATGA


421
CGGTAAATGG CCCGCCTGGC ATTATGCCCA GTACATGACC TTACGGGACT



TTCCTACTTG


481
GCAGTACATC TACGTATTAG TCATCGCTAT TACCATGGTG ATGCGGTTTT



GGCAGTACAC


541
CAATGGGCGT GGATAGCGGT TTGACTCACG GGGATTTCCA AGTCTCCACC



CCATTGACGT


601
CAATGGGAGT TTGTTTTGGC ACCAAAATCA ACGGGACTTT CCAAAATGTC



GTAATAACCC


661
CGCCCCGTTG ACGCAAATGG GCGGTAGGCG TGTACGGTGG GAGGTCTATA



TAAGCAGAGC


721
TCGTTTAGTG AACCGTCAGA TCACTAGAAG CTTTATTGCG GTAGTTTATC



ACAGTTAAAT


781
TGCTAACGCA GTCAGTGCTT CTGACACAAC AGTCTCGAAC TTAAGCTGCA



GAAGTTGGTC


841
GTGAGGCACT GGGCAGGTAA GTATCAAGGT TACAAGACAG GTTTAAGGAG



ACCAATAGAA


901
ACTGGGCTTG TCGAGACAGA GAAGACTCTT GCGTTTCTGA TAGGCACCTA



TTGGTCTTAC


961
TGACATCCAC TTTGCCTTTC TCTCCACAGG TGTCCACTCC CAGTTCAATT



ACAGCTCTTA


1021
AGGCTAGAGT ACTTAATACG ACTCACTATA GGCTAGCCTC GAGAATTCGA



TTATGCCCCT


1081
AGGACCAGAA GAAAGAAGAT TGCTTCGCTT GATTTGGCTC CTTTACAGCA



CCAATCCATA


1141
TCCACCAAGT GGGGAAGGGA CGGCCAGACA ACGCCGACGA GCCAGGAGAA



GGTGGAGACA


1201
ACAGCAGGAT CAAATTAGAG TCTTGGTAGA AAGACTCCAA GAGCAGGTGT



ATGCAGTTGA


1261
CCGCCTGGCT GACGAGGCTC AACACTTGGC TATACAACAG TTGCCTGACC



CTCCTCATTC


1321
AGCTTAGAAT CACTAGTGAA TTCACGCGTG GTACCTCTAG AGTCGACCCG



GGCGGCCGCT


1381
TCGAGCAGAC ATGATAAGAT ACATTGATGA GTTTGGACAA ACCACAACTA



GAATGCAGTG


1441
AAAAAAATGC TTTATTTGTG AAATTTGTGA TGCTATTGCT TTATTTGTAA



CCATTATAAG


1501
CTGCAATAAA CAAGTTAACA ACAACAATTG CATTCATTTT ATGTTTCAGG



TTCAGGGGGA


1561
GATGTGGGAG GTTTTTTAAA GCAAGTAAAA CCTCTACAAA TGTGGTAAAA



TCGATAAGGA


1621
TCCGTCGACC AATTGTTGTG TCTCAAAATC TCTGATGTTA CATTGCACAA



GATAAAAATA


1681
TATCATCATG AACAATAAAA CTGTCTGCTT ACATAAACAG TAATACAAGG



GGTGTTATGA


1741
GCCATATTCA ACGGGAAACG TCTTGCTCTA GGCCGCGATT AAATTCCAAC



ATGGATGCTG


1801
ATTTATATGG GTATAAATGG GCTCGCGATA ATGTCGGGCA ATCAGGTGCG



ACAATCTATC


1861
GATTGTATGG GAAGCCCGAT GCGCCAGAGT TGTTTCTGAA ACATGGCAAA



GGTAGCGTTG


1921
CCAATGATGT TACAGATGAG ATGGTCAGAC TAAACTGGCT GACGGAATTT



ATGCCTCTTC


1981
CGACCATCAA GCATTTTATC CGTACTCCTG ATGATGCATG GTTACTCACC



ACTGCGATCC


2041
CCGGAAAAAC AGCATTCCAG GTATTAGAAG AATATCCTGA TTCAGGTGAA



AATATTGTTG


2101
ATGCGCTGGC AGTGTTCCTG CGCCGGTTGC ATTCGATTCC TGTTTGTAAT



TGTCCTTTTA


2161
ACAGCGATCG CGTATTTCGT CTCGCTCAGG CGCAATCACG AATGAATAAC



GGTTTGGTTG


2221
ATGCGAGTGA TTTTGATGAC GAGCGTAATG GCTGGCCTGT TGAACAAGTC



TGGAAAGAAA


2281
TGCATAAGCT GTTGCCATTC TCACCGGATT CAGTCGTCAC TCATGGTGAT



TTCTCACTTG


2341
ATAACCTTAT TTTTGACGAG GGGAAATTAA TAGGTTGTAT TGATGTTGGA



CGAGTCGGAA


2401
TCGCAGACCG ATACCAGGAT CTTGCCATCC TATGGAACTG CCTCGGTGAG



TTTTCTCCTT


2461
CATTACAGAA ACGGCTTTTT CAAAAATATG GTATTGATAA TCCTGATATG



AATAAATTGC


2521
AGTTTCATTT GATGCTCGAT GAGTTTTTCT AACTGTCAGA CCAAGTTTAC



TCATATATAC


2581
TTTAGATTGA TTTAAAACTT CATTTTTAAT TTAAAAGGAT CTAGGTGAAG



ATCCTTTTTG


2641
ATAATCTCAT GACCAAAATC CCTTAACGTG AGTTTTCGTT CCACTGAGCG



TCAGACCCCG


2701
TAGAAAAGAT CAAAGGATCT TCTTGAGATC CTTTTTTTCT GCGCGTAATC



TGCTGCTTGC


2761
AAACAAAAAA ACCACCGCTA CCAGCGGTGG TTTGTTTGCC GGATCAAGAG



CTACCAACTC


2821
TTTTTCCGAA GGTAACTGGC TTCAGCAGAG CGCAGATACC AAATACTGTT



CTTCTAGTGT


2881
AGCCGTAGTT AGGCCACCAC TTCAAGAACT CTGTAGCACC GCCTACATAC



CTCGCTCTGC


2941
TAATCCTGTT ACCAGTGGCT GCTGCCAGTG GCGATAAGTC GTGTCTTACC



GGGTTGGACT


3001
CAAGACGATA GTTACCGGAT AAGGCGCAGC GGTCGGGCTG AACGGGGGGT



TCGTGCACAC


3061
AGCCCAGCTT GGAGCGAACG ACCTACACCG AACTGAGATA CCTACAGCGT



GAGCTATGAG


3121
AAAGCGCCAC GCTTCCCGAA GGGAGAAAGG CGGACAGGTA TCCGGTAAGC



GGCAGGGTCG


3181
GAACAGGAGA GCGCACGAGG GAGCTTCCAG GGGGAAACGC CTGGTATCTT



TATAGTCCTG


3241
TCGGGTTTCG CCACCTCTGA CTTGAGCGTC GATTTTTGTG ATGCTCGTCA



GGGGGGCGGA


3301
GCCTATGGAA AAACGCCAGC AACGCGGCCT TTTTACGGTT CCTGGCCTTT



TGCTGGCCTT


3361
TTGCTCACAT GGCTCGACAG ATCT










SEQ ID NO: 4








1
ATTGATTATT GACTAGTTAT TAATAGTAAT CAATTACGGG GTCATTAGTT



CATAGCCCAT


61
ATATGGAGTT CCGCGTTACA TAACTTACGG TAAATGGCCC GCCTGGCTGA



CCGCCCAACG


121
ACCCCCGCCC ATTGACGTCA ATAATGACGT ATGTTCCCAT AGTAACGCCA



ATAGGGACTT


181
TCCATTGACG TCAATGGGTG GAGTATTTAC GGTAAACTGC CCACTTGGCA



GTACATCAAG


241
TGTATCATAT GCCAAGTACG CCCCCTATTG ACGTCAATGA CGGTAAATGG



CCCGCCTGGC


301
ATTATGCCCA GTACATGACC TTATGGGACT TTCCTACTTG GCAGTACATC



TACGTATTAG


361
TCATCGCTAT TACCATGGTC GAGGTGAGCC CCACGTTCTG CTTCACTCTC



CCCATCTCCC


421
CCCCCTCCCC ACCCCCAATT TTGTATTTAT TTATTTTTTA ATTATTTTGT



GCAGCGATGG


481
GGGCGGGGGG GGGGGGGGGG CGCGCGCCAG GCGGGGCGGG GCGGGGCAAG



GGGCGGGGCG


541
GGGCGAGGCG GAAAGGTGCG GCGGCAGCCA ATCAAAGCGG CGCGCTCCGA



AAGTTTCCTT


601
TTATGGCGAG GCGGCGGCGG CGGCGGCCCT ATAAAAAGCG AAGCGCGCGG



CGGGCGGGAG


661
TCGCTGCGCG CTGCCTTCGC CCCGTGCCCC GCTCCGCCGC CGCCTCGCGC



CGCCCGCCCC


721
GGCTCTGACT GACCGCGTTA CTCCCACAGG TGAGCGGGCG GGACGGCCCT



TCTCCTCCGG


781
GCTGTAATTA GCGCTTGGTT TAATGACGGC TTGTTTCTTT TCTGTGGCTG



CGTGAAAGCC


841
TTGAGGGGCT CCGGGAGGGC CCTTTGTGCG GGGGGAGCGG CTCGGGGGGT



GCGTGCGTGT


901
GTGTGTGCGT GGGGAGCGCC GCGTGCGGCT CCGCGCTGCC CGGCGGCTGT



GAGCGCTGCG


961
GGCGCGGCGC GGGGCTTTGT GCGCTCCGCA GTGTGCGCGA GGGGAGCGCG



GCCGGGGGCG


1021
GTGCCCCGCG GTGCGGGGGG GGCTGCGAGG GGAACAAAGG CTGCGTGCGG



GGTGTGTGCG


1081
TGGGGGGGTG AGCAGGGGGT GTGGGCGCGT CGGTCGGGCT GCAACCCCCC



CTGCACCCCC


1141
CTCCCCGAGT TGCTGAGCAC GGCCCGGCTT CGGGTGCGGG GCTCCGTACG



GGGCGTGGCG


1201
CGGGGCTCGC CGTGCCGGGC GGGGGGTGGC GGCAGGTGGG GGTGCCGGGC



GGGGCGGGGC


1261
CGCCTCGGGC CGGGGAGGGC TCGGGGGAGG GGCGCGGCGG CCCCCGGAGC



GCCGGCGGCT


1321
GTCGAGGCGC GGCGAGCCGC AGCCATTGCC TTTTATGGTA ATCGTGCGAG



AGGGCGCAGG


1381
GACTTCCTTT GTCCCAAATC TGTGCGGAGC CGAAATCTGG GAGGCGCCGC



CGCACCCCCT


1441
CTAGCGGGCG CGGGGCGAAG CGGTGCGGCG CCGGCAGGAA GGAAATGGGC



GGGGAGGGCC


1501
TTCGTGCGTC GCCGCGCCGC CGTCCCCTTC TCCCTCTCCA GCCTCGGGGC



TGTCCGCGGG


1561
GGGACGGCTG CCTTCGGGGG GGACGGGGCA GGGCGGGGTT CGGCTTCTGG



CGTGTGACCG


1621
GCGGCTCTAG AGCCTCTGCT AACCATGTTC ATGCCTTCTT CTTTTTCCTA



CAGCTCCTGG


1681
GCAACGTGCT GGTTATTGTG CTGTCTCATC ATTTTGGCAA AGAATTCGAT



TGCCATGGCA


1741
ACATATATCC AGAGAGTACA GTGCATCTCA ACATCACTAC TGGTTGTTCT



CACCACATTG


1801
GTCTCGTGTC AGATTCCCAG GGATAGGCTC TCTAACATAG GGGTCATAGT



CGATGAAGGG


1861
AAATCACTGA AGATAGCTGG ATCCCACGAA TCGAGGTACA TAGTACTGAG



TCTAGTTCCG


1921
GGGGTAGACT TTGAGAATGG GTGCGGAACA GCCCAGGTTA TCCAGTACAA



GAGCCTACTG


1981
AACAGGCTGT TAATCCCATT GAGGGATGCC TTAGATCTTC AGGAGGCTCT



GATAACTGTC


2041
ACCAATGATA CGACACAAAA TGCCGGTGCT CCCCAGTCGA GATTCTTCGG



TGCTGTGATT


2101
GGTACTATCG CACTTGGAGT GGCGACATCA GCACAAATCA CCGCAGGGAT



TGCACTAGCC


2161
GAAGCGAGGG AGGCCAAAAG AGACATAGCG CTCATCAAAG AATCGATGAC



AAAAACACAC


2221
AAGTCTATAG AACTGCTGCA AAACGCTGTG GGGGAACAAA TTCTTGCTCT



AAAGACACTC


2281
CAGGATTTCG TGAATGATGA GATCAAACCC GCAATAAGCG AATTAGGCTG



TGAGACTGCT


2341
GCCTTAAGAC TGGGTATAAA ATTGACACAG CATTACTCCG AGCTGTTAAC



TGCGTTCGGC


2401
TCGAATTTCG GAACCATCGG AGAGAAGAGC CTCACGCTGC AGGCGCTGTC



TTCACTTTAC


2461
TCTGCTAACA TTACTGAGAT TATGACCACA ATCAGGACAG GGCAGTCTAA



CATCTATGAT


2521
GTCATTTATA CAGAACAGAT CAAAGGAACG GTGATAGATG TGGATCTAGA



GAGATACATG


2581
GTCACCCTGT CTGTGAAGAT CCCTATTCTT TCTGAAGTCC CAGGTGTGCT



CATACACAAG


2641
GCATCATCTA TTTCTTACAA CATAGACGGG GAGGAATGGT ATGTGACTGT



CCCCAGCCAT


2701
ATACTCAGTC GTGCTTCTTT CTTAGGGGGT GCAGACATAA CCGATTGTGT



TGAGTCCAGA


2761
TTGACCTATA TATGCCCCAG GGATCCCGCA CAACTGATAC CTGACAGCCA



GCAAAAGTGT


2821
ATCCTGGGGG ACACAACAAG GTGTCCTGTC ACAAAAGTTG TGGACAGCCT



TATCCCCAAG


2881
TTTGCTTTTG TGAATGGGGG CGTTGTTGCT AACTGCATAG CATCCACATG



TACCTGCGGG


2941
ACAGGCCGAA GACCAATCAG TCAGGATCGC TCTAAAGGTG TAGTATTCCT



AACCCATGAC


3001
AACTGTGGTC TTATAGGTGT CAATGGGGTA GAATTGTATG CTAACCGGAG



AGGGCACGAT


3061
GCCACTTGGG GGGTCCAGAA CTTGACAGTC GGTCCTGCAA TTGCTATCAG



ACCCGTTGAT


3121
ATTTCTCTCA ACCTTGCTGA TGCTACGAAT TTCTTGCAAG ACTCTAAGGC



TGAGCTTGAG


3181
AAAGCACGGA AAATCCTCTC GGAGGTAGGT AGATGGTACA ACTCAAGAGA



GACTGTGATT


3241
ACGATCATAG TAGTTATGGT CGTAATATTG GTGGTCATTA TAGTGATCAT



CATCGTGCTT


3301
TATAGACTCA GAAGGTGAAA TCACTAGTGA ATTCACTCCT CAGGTGCAGG



CTGCCTATCA


3361
GAAGGTGGTG GCTGGTGTGG CCAATGCCCT GGCTCACAAA TACCACTGAG



ATCTTTTTCC


3421
CTCTGCCAAA AATTATGGGG ACATCATGAA GCCCCTTGAG CATCTGACTT



CTGGCTAATA


3481
AAGGAAATTT ATTTTCATTG CAATAGTGTG TTGGAATTTT TTGTGTCTCT



CACTCGGAAG


3541
GACATATGGG AGGGCAAATC ATTTAAAACA TCAGAATGAG TATTTGGTTT



AGAGTTTGGC


3601
AACATATGCC CATATGCTGG CTGCCATGAA CAAAGGTTGG CTATAAAGAG



GTCATCAGTA


3661
TATGAAACAG CCCCCTGCTG TCCATTCCTT ATTCCATAGA AAAGCCTTGA



CTTGAGGTTA


3721
GATTTTTTTT ATATTTTGTT TTGTGTTATT TTTTTCTTTA ACATCCCTAA



AATTTTCCTT


3781
ACATGTTTTA CTAGCCAGAT TTTTCCTCCT CTCCTGACTA CTCCCAGTCA



TAGCTGTCCC


3841
TCTTCTCTTA TGGAGATCCC TCGACCTGCA GCCCAAGCTT GGCGTAATCA



TGGTCATAGC


3901
TGTTTCCTGT GTGAAATTGT TATCCGCTCA CAATTCCACA CAACATACGA



GCCGGAAGCA


3961
TAAAGTGTAA AGCCTGGGGT GCCTAATGAG TGAGCTAACT CACATTAATT



GCGTTGCGCT


4021
CACTGCCCGC TTTCCAGTCG GGAAACCTGT CGTGCCAGCG GATCCGCATC



TCAATTAGTC


4081
AGCAACCATA GTCCCGCCCC TAACTCCGCC CATCCCGCCC CTAACTCCGC



CCAGTTCCGC


4141
CCATTCTCCG CCCCATGGCT GACTAATTTT TTTTATTTAT GCAGAGGCCG



AGGCCGCCTC


4201
GGCCTCTGAG CTATTCCAGA AGTAGTGAGG AGGCTTTTTT GGAGGCCTAG



GCTTTTGCAA


4261
AAAGCTAACT TGTTTATTGC AGCTTATAAT GGTTACAAAT AAAGCAATAG



CATCACAAAT


4321
TTCACAAATA AAGCATTTTT TTCACTGCAT TCTAGTTGTG GTTTGTCCAA



ACTCATCAAT


4381
GTATCTTATC ATGTCTGTCC GCTTCCTCGC TCACTGACTC GCTGCGCTCG



GTCGTTCGGC


4441
TGCGGCGAGC GGTATCAGCT CACTCAAAGG CGGTAATACG GTTATCCACA



GAATCAGGGG


4501
ATAACGCAGG AAAGAACATG TGAGCAAAAG GCCAGCAAAA GGCCAGGAAC



CGTAAAAAGG


4561
CCGCGTTGCT GGCGTTTTTC CATAGGCTCC GCCCCCCTGA CGAGCATCAC



AAAAATCGAC


4621
GCTCAAGTCA GAGGTGGCGA AACCCGACAG GACTATAAAG ATACCAGGCG



TTTCCCCCTG


4681
GAAGCTCCCT CGTGCGCTCT CCTGTTCCGA CCCTGCCGCT TACCGGATAC



CTGTCCGCCT


4741
TTCTCCCTTC GGGAAGCGTG GCGCTTTCTC ATAGCTCACG CTGTAGGTAT



CTCAGTTCGG


4801
TGTAGGTCGT TCGCTCCAAG CTGGGCTGTG TGCACGAACC CCCCGTTCAG



CCCGACCGCT


4861
GCGCCTTATC CGGTAACTAT CGTCTTGAGT CCAACCCGGT AAGACACGAC



TTATCGCCAC


4921
TGGCAGCAGC CACTGGTAAC AGGATTAGCA GAGCGAGGTA TGTAGGCGGT



GCTACAGAGT


4981
TCTTGAAGTG GTGGCCTAAC TACGGCTACA CTAGAAGAAC AGTATTTGGT



ATCTGCGCTC


5041
TGCTGAAGCC AGTTACCTTC GGAAAAAGAG TTGGTAGCTC TTGATCCGGC



AAACAAACCA


5101
CCGCTGGTAG CGGTGGTTTT TTTGTTTGCA AGCAGCAGAT TACGCGCAGA



AAAAAAGGAT


5161
CTCAAGAAGA TCCTTTGATC TTTTCTACGG GGTCTGACGC TCAGTGGAAC



GAAAACTCAC


5221
GTTAAGGGAT TTTGGTCATG AGATTATCAA AAAGGATCTT CACCTAGATC



CTTTTAAATT


5281
AAAAATGAAG TTTTAAATCA ATCTAAAGTA TATATGAGTA AACTTGGTCT



GACAGTTAGA


5341
AAAACTCATC GAGCATCAAA TGAAACTGCA ATTTATTCAT ATCAGGATTA



TCAATACCAT


5401
ATTTTTGAAA AAGCCGTTTC TGTAATGAAG GAGAAAACTC ACCGAGGCAG



TTCCATAGGA


5461
TGGCAAGATC CTGGTATCGG TCTGCGATTC CGACTCGTCC AACATCAATA



CAACCTATTA


5521
ATTTCCCCTC GTCAAAAATA AGGTTATCAA GTGAGAAATC ACCATGAGTG



ACGACTGAAT


5581
CCGGTGAGAA TGGCAACAGC TTATGCATTT CTTTCCAGAC TTGTTCAACA



GGCCAGCCAT


5641
TACGCTCGTC ATCAAAATCA CTCGCATCAA CCAAACCGTT ATTCATTCGT



GATTGCGCCT


5701
GAGCGAGACG AAATACGCGA TCGCTGTTAA AAGGACAATT ACAAACAGGA



ATCGAATGCA


5761
ACCGGCGCAG GAACACTGCC AGCGCATCAA CAATATTTTC ACCTGAATCA



GGATATTCTT


5821
CTAATACCTG GAATGCTGTT TTTCCGGGGA TCGCAGTGGT GAGTAACCAT



GCATCATCAG


5881
GAGTACGGAT AAAATGCTTG ATGGTCGGAA GAGGCATAAA TTCCGTCAGC



CAGTTTAGTC


5941
TGACCATCTC ATCTGTAACA TCATTGGCAA CGCTACCTTT GCCATGTTTC



AGAAACAACT


6001
CTGGCGCATC GGGCTTCCCA TACAATCGAT AGATTGTCGC ACCTGATTGC



CCGACATTAT


6061
CGCGAGCCCA TTTATACCCA TATAAATCAG CATCCATGTT GGAATTTAAT



CGCGGCCTAG


6121
AGCAAGACGT TTCCCGTTGA ATATGGCTCA TAACACCCCT TGTATTACTG



TTTATGTAAG


6181
CAGACAGTTT TATTGTTCAT GATGATATAT TTTTATCTTG TGCAATGTAA



CATCAGAGAT


6241
TTTGAGACAC AACAATTGGT CGAC










SEQ ID NO: 5








1
ATTGATTATT GACTAGTTAT TAATAGTAAT CAATTACGGG GTCATTAGTT



CATAGCCCAT


61
ATATGGAGTT CCGCGTTACA TAACTTACGG TAAATGGCCC GCCTGGCTGA



CCGCCCAACG


121
ACCCCCGCCC ATTGACGTCA ATAATGACGT ATGTTCCCAT AGTAACGCCA



ATAGGGACTT


181
TCCATTGACG TCAATGGGTG GAGTATTTAC GGTAAACTGC CCACTTGGCA



GTACATCAAG


241
TGTATCATAT GCCAAGTACG CCCCCTATTG ACGTCAATGA CGGTAAATGG



CCCGCCTGGC


301
ATTATGCCCA GTACATGACC TTATGGGACT TTCCTACTTG GCAGTACATC



TACGTATTAG


361
TCATCGCTAT TACCATGGTC GAGGTGAGCC CCACGTTCTG CTTCACTCTC



CCCATCTCCC


421
CCCCCTCCCC ACCCCCAATT TTGTATTTAT TTATTTTTTA ATTATTTTGT



GCAGCGATGG


481
GGGCGGGGGG GGGGGGGGGG CGCGCGCCAG GCGGGGCGGG GCGGGGCGAG



GGGCGGGGCG


541
GGGCGAGGCG GAAAGGTGCG GCGGCAGCCA ATCAAAGCGG CGCGCTCCGA



AAGTTTCCTT


601
TTATGGCGAG GCGGCGGCGG CGGCGGCCCT ATAAAAAGCG AAGCGCGCGG



CGGGCGGGAG


661
TCGCTGCGCG CTGCCTTCGC CCCGTGCCCC GCTCCGCCGC CGCCTCGCGC



CGCCCGCCCC


721
GGCTCTGACT GACCGCGTTA CTCCCACAGG TGAGCGGGCG GGACGGCCCT



TCTCCTCCGG


781
GCTGTAATTA GCGCTTGGTT TAATGACGGC TTGTTTCTTT TCTGTGGCTG



CGTGAAAGCC


841
TTGAGGGGCT CCGGGAGGGC CCTTTGTGCG GGGGGAGCGG CTCGGGGGGT



GCGTGCGTGT


901
GTGTGTGCGT GGGGAGCGCC GCGTGCGGCT CCGCGCTGCC CGGCGGCTGT



GAGCGCTGCG


961
GGCGCGGCGC GGGGCTTTGT GCGCTCCGCA GTGTGCGCGA GGGGAGCGCG



GCCGGGGGCG


1021
GTGCCCCGCG GTGCGGGGGG GGCTGCGAGG GGAACAAAGG CTGCGTGCGG



GGTGTGTGCG


1081
TGGGGGGGTG AGCAGGGGGT GTGGGCGCGT CGGTCGGGCT GCAACCCCCC



CTGCACCCCC


1141
CTCCCCGAGT TGCTGAGCAC GGCCCGGCTT CGGGTGCGGG GCTCCGTACG



GGGCGTGGCG


1201
CGGGGCTCGC CGTGCCGGGC GGGGGGTGGC GGCAGGTGGG GGTGCCGGGC



GGGGCGGGGC


1261
CGCCTCGGGC CGGGGAGGGC TCGGGGGAGG GGCGCGGCGG CCCCCGGAGC



GCCGGCGGCT


1321
GTCGAGGCGC GGCGAGCCGC AGCCATTGCC TTTTATGGTA ATCGTGCGAG



AGGGCGCAGG


1381
GACTTCCTTT GTCCCAAATC TGTGCGGAGC CGAAATCTGG GAGGCGCCGC



CGCACCCCCT


1441
CTAGCGGGCG CGGGGCGAAG CGGTGCGGCG CCGGCAGGAA GGAAATGGGC



GGGGAGGGCC


1501
TTCGTGCGTC GCCGCGCCGC CGTCCCCTTC TCCCTCTCCA GCCTCGGGGC



TGTCCGCGGG


1561
GGGACGGGGC AGGGCGGGGT TCGGCTTCTG GCGTGTGACC GGCGGCTCTA



GAGCCTCTGC


1621
TAACCATGTT CATGCCTTCT TCTTTTTCCT ACAGCTCCTG GGCAACGTGC



TGGTTATTGT


1681
GCTGTCTCAT CATTTTGGCA AAGAATTCCT CGAGCATGTG GTCTGAGTTA



AAAATCAGGA


1741
GCAACGACGG AGGTGAAGGA CCAGAGGACG CCAACGACCC CCGGGGAAAG



GGGGTGCAAC


1801
ACATCCATAT CCAGCCATCT CTACCTGTTT ATGGACAGAG GGTTAGGGAT



GGTGATAGGG


1861
GCAAACGTGA CTCGTACTGG TCTACTTCTC CTAGTGGTAG CACCACAAAA



CCAGCATCAG


1921
GTTGGGAGAG GTCAAGTAAA GCCGACACAT GGTTGCTGAT TCTCTCATTC



ACCCAGTGGG


1981
CTTTGTCAAT TGCCACAGTG ATCATCTGTA TCATAATTTC TGCTAGACAA



GGGTATAGTA


2041
TGAAAGAGTA CTCAATGACT GTAGAGGCAT TGAACATGAG CAGCAGGGAG



GTGAAAGAGT


2101
CACTTACCAG TCTAATAAGG CAAGAGGTTA TAGCAAGGGC TGTCAACATT



CAGAGCTCTG


2161
TGCAAACCGG AATCCCAGTC TTGTTGAACA AAAACAGCAG GGATGTCATC



CAGATGATTG


2221
ATAAGTCGTG CAGCAGACAA GAGCTCACTC AGCACTGTGA GAGTACGATC



GCAGTCCACC


2281
ATGCCGATGG AATTGCCCCA CTTGAGCCAC ATAGTTTCTG GAGATGCCCT



GTCGGAGAAC


2341
CGTATCTTAG CTCAGATCCT GAAATCTCAT TGCTGCCTGG TCCGAGCTTG



TTATCTGGTT


2401
CTACAACGAT CTCTGGATGT GTTAGGCTCC CTTCACTCTC AATTGGCGAG



GCAATCTATG


2461
CCTATTCATC AAATCTCATT ACACAAGGTT GTGCTGACAT AGGGAAATCA



TATCAGGTCC


2521
TGCAGCTAGG GTACATATCA CTCAATTCAG ATATGTTCCC TGATCTTAAC



CCCGTAGTGT


2581
CCCACACTTA TGACATCAAC GACAATCGGA AATCATGCTC TGTGGTGGCA



ACCGGGACTA


2641
GGGGTTATCA GCTTTGCTCC ATGCCGACTG TAGACGAAAG AACCGACTAC



TCTAGTGATG


2701
GTATTGAGGA TCTGGTCCTT GATGTCCTGG ATCTCAAAGG GAGAACTAAG



TCTCACCGGT


2761
ATCGCAACAG CGAGGTAGAT CTTGATCACC CGTTCTCTGC ACTATACCCC



AGTGTAGGCA


2821
ACGGCATTGC AACAGAAGGC TCATTGATAT TTCTTGGGTA TGGTGGACTA



ACCACCCCTC


2881
TGCAGGGTGA TACAAAATGT AGGACCCAAG GATGCCAACA GGTGTCGCAA



GACACATGCA


2941
ATGAGGCTCT GAAAATTACA TGGCTAGGAG GGAAACAGGT GGTCAGCGTG



ATCATCCAGG


3001
TCAATGACTA TCTCTCAGAG AGGCCAAAGA TAAGAGTCAC AACCATTCCA



ATCACTCAAA


3061
ACTATCTCGG GGCGGAAGGT AGATTATTAA AATTGGGTGA TCGGGTGTAC



ATCTATACAA


3121
GATCATCAGG CTGGCACTCT CAACTGCAGA TAGGAGTACT TGATGTCAGC



CACCCTTTGA


3181
CTATCAACTG GACACCTCAT GAAGCCTTGT CTAGACCAGG AAATAAAGAG



TGCAATTGGT


3241
ACAATAAGTG TCCGAAGGAA TGCATATCAG GCGTATACAC TGATGCTTAT



CCATTGTCCC


3301
CTGATGCAGC TAACGTCGCT ACCGTCACGC TATATGCCAA TACATCGCGT



GTCAACCCAA


3361
CAATCATGTA TTCTAACACT ACTAACATTA TAAATATGTT AAGGATAAAG



GATGTTCAAT


3421
TAGAGGCTGC ATATACCACG ACATCGTGTA TCACGCATTT TGGTAAAGGC



TACTGCTTTC


3481
ACATCATCGA GATCAATCAG AAGAGCCTGA ATACCTTACA GCCGATGCTC



TTTAAGACTA


3541
GCATCCCTAA ATTATGCAAG GCCGAGTCTT AAGCGGCCGC GCATGCGAAT



TCACTCCTCA


3601
GGTGCAGGCT GCCTATCAGA AGGTGGTGGC TGGTGTGGCC AATGCCCTGG



CTCACAAATA


3661
CCACTGAGAT CTTTTTCCCT CTGCCAAAAA TTATGGGGAC ATCATGAAGC



CCCTTGAGCA


3721
TCTGACTTCT GGCTAATAAA GGAAATTTAT TTTCATTGCA ATAGTGTGTT



GGAATTTTTT


3781
GTGTCTCTCA CTCGGAAGGA CATATGGGAG GGCAAATCAT TTAAAACATC



AGAATGAGTA


3841
TTTGGTTTAG AGTTTGGCAA CATATGCCCA TATGCTGGCT GCCATGAACA



AAGGTTGGCT


3901
ATAAAGAGGT CATCAGTATA TGAAACAGCC CCCTGCTGTC TATTCCTTAT



TCCATAGAAA


3961
AGCCTTGACT TGAGGTTAGA TTTTTTTTAT ATTTTGTTTT GTGTTATTTT



TTTCTTTAAC


4021
ATCCCTAAAA TTTTCCTTAC ATGTTTTACT AGCCAGATTT TTCCTCCTCT



CCTGACTACT


4081
CCCAGTCATA GCTGTCCCTC TTCTCTTATG GAGATCCCTC GACCTGCAGC



CCAAGCTTGG


4141
CGTAATCATG GTCATAGCTG TTTCCTGTGT GAAATTGTTA TCCGCTCACA



ATTCCACACA


4201
ACATACGAGC CGGAAGCATA AAGTGTAAAG CCTGGGGTGC CTAATGAGTG



AGCTAACTCA


4261
CATTAATTGC GTTGCGCTCA CTGCCCGCTT TCCAGTCGGG AAACCTGTCG



TGCCAGCGGA


4321
TCCGCATCTC AATTAGTCAG CAACCATAGT CCCGCCCCTA ACTCCGCCCA



TCCCGCCCCT


4381
AACTCCGCCC AGTTCCGCCC ATTCTCCGCC CCATGGCTGA CTAATTTTTT



TTATTTATGC


4441
AGAGGCCGAG GCCGCCTCGG CCTCTGAGCT ATTCCAGAAG TAGTGAGGAG



GCTTTTTTGG


4501
AGGCCTAGGC TTTTGCAAAA AGCTAACTTG TTTATTGCAG CTTATAATGG



TTACAAATAA


4561
AGCAATAGCA TCACAAATTT CACAAATAAA GCATTTTTTT CACTGCATTC



TAGTTGTGGT


4621
TTGTCCAAAC TCATCAATGT ATCTTATCAT GTCTGTCCGC TTCCTCGCTC



ACTGACTCGC


4681
TGCGCTCGGT CGTTCGGCTG CGGCGAGCGG TATCAGCTCA CTCAAAGGCG



GTAATACGGT


4741
TATCCACAGA ATCAGGGGAT AACGCAGGAA AGAACATGTG AGCAAAAGGC



CAGCAAAAGG


4801
CCAGGAACCG TAAAAAGGCC GCGTTGCTGG CGTTTTTCCA TAGGCTCCGC



CCCCCTGACG


4861
AGCATCACAA AAATCGACGC TCAAGTCAGA GGTGGCGAAA CCCGACAGGA



CTATAAAGAT


4921
ACCAGGCGTT TCCCCCTGGA AGCTCCCTCG TGCGCTCTCC TGTTCCGACC



CTGCCGCTTA


4981
CCGGATACCT GTCCGCCTTT CTCCCTTCGG GAAGCGTGGC GCTTTCTCAT



AGCTCACGCT


5041
GTAGGTATCT CAGTTCGGTG TAGGTCGTTC GCTCCAAGCT GGGCTGTGTG



CACGAACCCC


5101
CCGTTCAGCC CGACCGCTGC GCCTTATCCG GTAACTATCG TCTTGAGTCC



AACCCGGTAA


5161
GACACGACTT ATCGCCACTG GCAGCAGCCA CTGGTAACAG GATTAGCAGA



GCGAGGTATG


5221
TAGGCGGTGC TACAGAGTTC TTGAAGTGGT GGCCTAACTA CGGCTACACT



AGAAGAACAG


5281
TATTTGGTAT CTGCGCTCTG CTGAAGCCAG TTACCTTCGG AAAAAGAGTT



GGTAGCTCTT


5341
GATCCGGCAA ACAAACCACC GCTGGTAGCG GTGGTTTTTT TGTTTGCAAG



CAGCAGATTA


5401
CGCGCAGAAA AAAAGGATCT CAAGAAGATC CTTTGATCTT TTCTACGGGG



TCTGACGCTC


5461
AGTGGAACGA AAACTCACGT TAAGGGATTT TGGTCATGAG ATTATCAAAA



AGGATCTTCA


5521
CCTAGATCCT TTTAAATTAA AAATGAAGTT TTAAATCAAT CTAAAGTATA



TATGAGTAAA


5581
CTTGGTCTGA CAGTTAGAAA AACTCATCGA GCATCAAATG AAACTGCAAT



TTATTCATAT


5641
CAGGATTATC AATACCATAT TTTTGAAAAA GCCGTTTCTG TAATGAAGGA



GAAAACTCAC


5701
CGAGGCAGTT CCATAGGATG GCAAGATCCT GGTATCGGTC TGCGATTCCG



ACTCGTCCAA


5761
CATCAATACA ACCTATTAAT TTCCCCTCGT CAAAAATAAG GTTATCAAGT



GAGAAATCAC


5821
CATGAGTGAC GACTGAATCC GGTGAGAATG GCAACAGCTT ATGCATTTCT



TTCCAGACTT


5881
GTTCAACAGG CCAGCCATTA CGCTCGTCAT CAAAATCACT CGCATCAACC



AAACCGTTAT


5941
TCATTCGTGA TTGCGCCTGA GCGAGACGAA ATACGCGATC GCTGTTAAAA



GGACAATTAC


6001
AAACAGGAAT CGAATGCAAC CGGCGCAGGA ACACTGCCAG CGCATCAACA



ATATTTTCAC


6061
CTGAATCAGG ATATTCTTCT AATACCTGGA ATGCTGTTTT TCCGGGGATC



GCAGTGGTGA


6121
GTAACCATGC ATCATCAGGA GTACGGATAA AATGCTTGAT GGTCGGAAGA



GGCATAAATT


6181
CCGTCAGCCA GTTTAGTCTG ACCATCTCAT CTGTAACATC ATTGGCAACG



CTACCTTTGC


6241
CATGTTTCAG AAACAACTCT GGCGCATCGG GCTTCCCATA CAATCGATAG



ATTGTCGCAC


6301
CTGATTGCCC GACATTATCG CGAGCCCATT TATACCCATA TAAATCAGCA



TCCATGTTGG


6361
AATTTAATCG CGGCCTAGAG CAAGACGTTT CCCGTTGAAT ATGGCTCATA



ACACCCCTTG


6421
TATTACTGTT TATGTAAGCA GACAGTTTTA TTGTTCATGA TGATATATTT



TTATCTTGTG


6481
CAATGTAACA TCAGAGATTT TGAGACACAA CAATTGGTCG AC










SEQ ID NO: 6








1
AGATCTGTTA CATAACTTAT GGTAAATGGC CTGCCTGGCT GACTGCCCAA



TGACCCCTGC


61
CCAATGATGT CAATAATGAT GTATGTTCCC ATGTAATGCC AATAGGGACT



TTCCATTGAT


121
GTCAATGGGT GGAGTATTTA TGGTAACTGC CCACTTGGCA GTACATCAAG



TGTATCATAT


181
GCCAAGTATG CCCCCTATTG ATGTCAATGA TGGTAAATGG CCTGCCTGGC



ATTATGCCCA


241
GTACATGACC TTATGGGACT TTCCTACTTG GCAGTACATC TATGTATTAG



TCATTGCTAT


301
TACCATGGGA ATTCACTAGT GGAGAAGAGC ATGCTTGAGG GCTGAGTGCC



CCTCAGTGGG


361
CAGAGAGCAC ATGGCCCACA GTCCCTGAGA AGTTGGGGGG AGGGGTGGGC



AATTGAACTG


421
GTGCCTAGAG AAGGTGGGGC TTGGGTAAAC TGGGAAAGTG ATGTGGTGTA



CTGGCTCCAC


481
CTTTTTCCCC AGGGTGGGGG AGAACCATAT ATAAGTGCAG TAGTCTCTGT



GAACATTCAA


541
GCTTCTGCCT TCTCCCTCCT GTGAGTTTGC TAGC










SEQ ID NO: 7








1
GCTAGCCACC ATGCAGAGAA GCCCTCTGGA GAAGGCCTCT GTGGTGAGCA



AGCTGTTCTT


61
CAGCTGGACC AGGCCCATCC TGAGGAAGGG CTACAGGCAG AGACTGGAGC



TGTCTGACAT


121
CTACCAGATC CCCTCTGTGG ACTCTGCTGA CAACCTGTCT GAGAAGCTGG



AGAGGGAGTG


181
GGATAGAGAG CTGGCCAGCA AGAAGAACCC CAAGCTGATC AATGCCCTGA



GGAGATGCTT


241
CTTCTGGAGA TTCATGTTCT ATGGCATCTT CCTGTACCTG GGGGAAGTGA



CCAAGGCTGT


301
GCAGCCTCTG CTGCTGGGCA GAATCATTGC CAGCTATGAC CCTGACAACA



AGGAGGAGAG


361
GAGCATTGCC ATCTACCTGG GCATTGGCCT GTGCCTGCTG TTCATTGTGA



GGACCCTGCT


421
GCTGCACCCT GCCATCTTTG GCCTGCACCA CATTGGCATG CAGATGAGGA



TTGCCATGTT


481
CAGCCTGATC TACAAGAAAA CCCTGAAGCT GTCCAGCAGA GTGCTGGACA



AGATCAGCAT


541
TGGCCAGCTG GTGAGCCTGC TGAGCAACAA CCTGAACAAG TTTGATGAGG



GCCTGGCCCT


601
GGCCCACTTT GTGTGGATTG CCCCTCTGCA GGTGGCCCTG CTGATGGGCC



TGATTTGGGA


661
GCTGCTGCAG GCCTCTGCCT TTTGTGGCCT GGGCTTCCTG ATTGTGCTGG



CCCTGTTTCA


721
GGCTGGCCTG GGCAGGATGA TGATGAAGTA CAGGGACCAG AGGGCAGGCA



AGATCAGTGA


781
GAGGCTGGTG ATCACCTCTG AGATGATTGA GAACATCCAG TCTGTGAAGG



CCTACTGTTG


841
GGAGGAAGCT ATGGAGAAGA TGATTGAAAA CCTGAGGCAG ACAGAGCTGA



AGCTGACCAG


901
GAAGGCTGCC TATGTGAGAT ACTTCAACAG CTCTGCCTTC TTCTTCTCTG



GCTTCTTTGT


961
GGTGTTCCTG TCTGTGCTGC CCTATGCCCT GATCAAGGGG ATCATCCTGA



GAAAGATTTT


1021
CACCACCATC AGCTTCTGCA TTGTGCTGAG GATGGCTGTG ACCAGACAGT



TCCCCTGGGC


1081
TGTGCAGACC TGGTATGACA GCCTGGGGGC CATCAACAAG ATCCAGGACT



TCCTGCAGAA


1141
GCAGGAGTAC AAGACCCTGG AGTACAACCT GACCACCACA GAAGTGGTGA



TGGAGAATGT


1201
GACAGCCTTC TGGGAGGAGG GCTTTGGGGA GCTGTTTGAG AAGGCCAAGC



AGAACAACAA


1261
CAACAGAAAG ACCAGCAATG GGGATGACTC CCTGTTCTTC TCCAACTTCT



CCCTGCTGGG


1321
CACACCTGTG CTGAAGGACA TCAACTTCAA GATTGAGAGG GGGCAGCTGC



TGGCTGTGGC


1381
TGGATCTACA GGGGCTGGCA AGACCAGCCT GCTGATGATG ATCATGGGGG



AGCTGGAGCC


1441
TTCTGAGGGC AAGATCAAGC ACTCTGGCAG GATCAGCTTT TGCAGCCAGT



TCAGCTGGAT


1501
CATGCCTGGC ACCATCAAGG AGAACATCAT CTTTGGAGTG AGCTATGATG



AGTACAGATA


1561
CAGGAGTGTG ATCAAGGCCT GCCAGCTGGA GGAGGACATC AGCAAGTTTG



CTGAGAAGGA


1621
CAACATTGTG CTGGGGGAGG GAGGCATTAC ACTGTCTGGG GGCCAGAGAG



CCAGAATCAG


1681
CCTGGCCAGG GCTGTGTACA AGGATGCTGA CCTGTACCTG CTGGACTCCC



CCTTTGGCTA


1741
CCTGGATGTG CTGACAGAGA AGGAGATTTT TGAGAGCTGT GTGTGCAAGC



TGATGGCCAA


1801
CAAGACCAGA ATCCTGGTGA CCAGCAAGAT GGAGCACCTG AAGAAGGCTG



ACAAGATCCT


1861
GATCCTGCAT GAGGGCAGCA GCTACTTCTA TGGGACCTTC TCTGAGCTGC



AGAACCTGCA


1921
GCCTGACTTC AGCTCTAAGC TGATGGGCTG TGACAGCTTT GACCAGTTCT



CTGCTGAGAG


1981
GAGGAACAGC ATCCTGACAG AGACCCTGCA CAGATTCAGC CTGGAGGGAG



ATGCCCCTGT


2041
GAGCTGGACA GAGACCAAGA AGCAGAGCTT CAAGCAGACA GGGGAGTTTG



GGGAGAAGAG


2101
GAAGAACTCC ATCCTGAACC CCATCAACAG CATCAGGAAG TTCAGCATTG



TGCAGAAAAC


2161
CCCCCTGCAG ATGAATGGCA TTGAGGAAGA TTCTGATGAG CCCCTGGAGA



GGAGACTGAG


2221
CCTGGTGCCT GATTCTGAGC AGGGAGAGGC CATCCTGCCT AGGATCTCTG



TGATCAGCAC


2281
AGGCCCTACA CTGCAGGCCA GAAGGAGGCA GTCTGTGCTG AACCTGATGA



CCCACTCTGT


2341
GAACCAGGGC CAGAACATCC ACAGGAAAAC CACAGCCTCC ACCAGGAAAG



TGAGCCTGGC


2401
CCCTCAGGCC AATCTGACAG AGCTGGACAT CTACAGCAGG AGGCTGTCTC



AGGAGACAGG


2461
CCTGGAGATT TCTGAGGAGA TCAATGAGGA GGACCTGAAA GAGTGCTTCT



TTGATGACAT


2521
GGAGAGCATC CCTGCTGTGA CCACCTGGAA CACCTACCTG AGATACATCA



CAGTGCACAA


2581
GAGCCTGATC TTTGTGCTGA TCTGGTGCCT GGTGATCTTC CTGGCTGAAG



TGGCTGCCTC


2641
TCTGGTGGTG CTGTGGCTGC TGGGAAACAC CCCACTGCAG GACAAGGGCA



ACAGCACCCA


2701
CAGCAGGAAC AACAGCTATG CTGTGATCAT CACCTCCACC TCCAGCTACT



ATGTGTTCTA


2761
CATCTATGTG GGAGTGGCTG ATACCCTGCT GGCTATGGGC TTCTTTAGAG



GCCTGCCCCT


2821
GGTGCACACA CTGATCACAG TGAGCAAGAT CCTCCACCAC AAGATGCTGC



ACTCTGTGCT


2881
GCAGGCTCCT ATGAGCACCC TGAATACCCT GAAGGCTGGG GGCATCCTGA



ACAGATTCTC


2941
CAAGGATATT GCCATCCTGG ATGACCTGCT GCCTCTCACC ATCTTTGACT



TCATCCAGCT


3001
GCTGCTGATT GTGATTGGGG CCATTGCTGT GGTGGCAGTG CTGCAGCCCT



ACATCTTTGT


3061
GGCCACAGTG CCTGTGATTG TGGCCTTCAT CATGCTGAGG GCCTACTTTC



TGCAGACCTC


3121
CCAGCAGCTG AAGCAGCTGG AGTCTGAGGG CAGAAGCCCC ATCTTCACCC



ACCTGGTGAC


3181
AAGCCTGAAG GGCCTGTGGA CCCTGAGAGC CTTTGGCAGG CAGCCCTACT



TTGAGACCCT


3241
GTTCCACAAG GCCCTGAACC TGCACACAGC CAACTGGTTC CTCTACCTGT



CCACCCTGAG


3301
ATGGTTCCAG ATGAGAATTG AGATGATCTT TGTCATCTTC TTCATTGCTG



TGACCTTCAT


3361
CAGCATTCTG ACCACAGGAG AGGGAGAGGG CAGAGTGGGC ATTATCCTGA



CCCTGGCCAT


3421
GAACATCATG AGCACACTGC AGTGGGCAGT GAACAGCAGC ATTGATGTGG



ACAGCCTGAT


3481
GAGGAGTGTG AGCAGAGTGT TCAAGTTCAT TGATATGCCC ACAGAGGGCA



AGCCTACCAA


3541
GAGCACCAAG CCCTACAAGA ATGGCCAGCT GAGCAAAGTG ATGATCATTG



AGAACAGCCA


3601
TGTGAAGAAG GATGATATCT GGCCCAGTGG AGGCCAGATG ACAGTGAAGG



ACCTGACAGC


3661
CAAGTACACA GAGGGGGGCA ATGCTATCCT GGAGAACATC TCCTTCAGCA



TCTCCCCTGG


3721
CCAGAGAGTG GGACTGCTGG GAAGAACAGG CTCTGGCAAG TCTACCCTGC



TGTCTGCCTT


3781
CCTGAGGCTG CTGAACACAG AGGGAGAGAT CCAGATTGAT GGAGTGTCCT



GGGACAGCAT


3841
CACACTGCAG CAGTGGAGGA AGGCCTTTGG TGTGATCCCC CAGAAAGTGT



TCATCTTCAG


3901
TGGCACCTTC AGGAAGAACC TGGACCCCTA TGAGCAGTGG TCTGACCAGG



AGATTTGGAA


3961
AGTGGCTGAT GAAGTGGGCC TGAGAAGTGT GATTGAGCAG TTCCCTGGCA



AGCTGGACTT


4021
TGTCCTGGTG GATGGGGGCT GTGTGCTGAG CCATGGCCAC AAGCAGCTGA



TGTGCCTGGC


4081
CAGATCAGTG CTGAGCAAGG CCAAGATCCT GCTGCTGGAT GAGCCTTCTG



CCCACCTGGA


4141
TCCTGTGACC TACCAGATCA TCAGGAGGAC CCTCAAGCAG GCCTTTGCTG



ACTGCACAGT


4201
CATCCTGTGT GAGCACAGGA TTGAGGCCAT GCTGGAGTGC CAGCAGTTCC



TGGTGATTGA


4261
GGAGAACAAA GTGAGGCAGT ATGACAGCAT CCAGAAGCTG CTGAATGAGA



GGAGCCTGTT


4321
CAGGCAGGCC ATCAGCCCCT CTGATAGAGT GAAGCTGTTC CCCCACAGGA



ACAGCTCCAA


4381
GTGCAAGAGC AAGCCCCAGA TTGCTGCCCT GAAGGAGGAG ACAGAGGAGG



AAGTGCAGGA


4441
CACCAGGCTG TGAGGGCCC










SEQ ID NO: 8








1
GGGCCCAATC AACCTCTGGA TTACAAAATT TGTGAAAGAT TGACTGGTAT



TCTTAACTAT


61
GTTGCTCCTT TTACGCTATG TGGATACGCT GCTTTAATGC CTTTGTATCA



TGCTATTGCT


121
TCCCGTATGG CTTTCATTTT CTCCTCCTTG TATAAATCCT GGTTGCTGTC



TCTTTATGAG


181
GAGTTGTGGC CCGTTGTCAG GCAACGTGGC GTGGTGTGCA CTGTGTTTGC



TGACGCAACC


241
CCCACTGGTT GGGGCATTGC CACCACCTGT CAGCTCCTTT CCGGGACTTT



CGCTTTCCCC


301
CTCCCTATTG CCACGGCGGA ACTCATCGCC GCCTGCCTTG CCCGCTGCTG



GACAGGGGCT


361
CGGCTGTTGG GCACTGACAA TTCCGTGGTG TTGTCGGGGA AATCATCGTC



CTTTCCTTGG


421
CTGCTCGCCT GTGTTGCCAC CTGGATTCTG CGCGGGACGT CCTTCTGCTA



CGTCCCTTCG


481
GCCCTCAATC CAGCGGACCT TCCTTCCCGC GGCCTGCTGC CGGCTCTGCG



GCCTCTTCCG


541
CGTCTTCGCC TTCGCCCTCA GACGAGTCGG ATCTCCCTTT GGGCCGCCTC



CCCGCAAGCT










SEQ ID NO: 9








1
GGTACCTCAA TATTGGCCAT TAGCCATATT ATTCATTGGT TATATAGCAT



AAATCAATAT


61
TGGCTATTGG CCATTGCATA CGTTGTATCT ATATCATAAT ATGTACATTT



ATATTGGCTC


121
ATGTCCAATA TGACCGCCAT GTTGGCATTG ATTATTGACT AGTTATTAAT



AGTAATCAAT


181
TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC



TTACGGTAAA


241
TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA



TGACGTATGT


301
TCCCATAGTA ACGCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT



ATTTACGGTA


361
AACTGCCCAC TTGGCAGTAC ATCAAGTGTA TCATATGCCA AGTCCGCCCC



CTATTGACGT


421
CAATGACGGT AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAC



GGGACTTTCC


481
TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC



GGTTTTGGCA


541
GTACACCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC



TCCACCCCAT


601
TGACGTCAAT GGGAGTTTGT TTTGGCACCA AAATCAACGG GACTTTCCAA



AATGTCGTAA


661
CAACTGCGAT CGCCCGCCCC GTTGACGCAA ATGGGCGGTA GGCGTGTACG



GTGGGAGGTC


721
TATATAAGCA GAGCTCGCTG GCTTGTAACT CAGTCTCTTA CTAGGAGACC



AGCTTGAGCC


781
TGGGTGTTCG CTGGTTAGCC TAACCTGGTT GGCCACCAGG GGTAAGGACT



CCTTGGCTTA


841
GAAAGCTAAT AAACTTGCCT GCATTAGAGC TTATCTGAGT CAAGTGTCCT



CATTGACGCC


901
TCACTCTCTT GAACGGGAAT CTTCCTTACT GGGTTCTCTC TCTGACCCAG



GCGAGAGAAA


961
CTCCAGCAGT GGCGCCCGAA CAGGGACTTG AGTGAGAGTG TAGGCACGTA



CAGCTGAGAA


1021
GGCGTCGGAC GCGAAGGAAG CGCGGGGTGC GACGCGACCA AGAAGGAGAC



TTGGTGAGTA


1081
GGCTTCTCGA GTGCCGGGAA AAAGCTCGAG CCTAGTTAGA GGACTAGGAG



AGGCCGTAGC


1141
CGTAACTACT CTTGGGCAAG TAGGGCAGGC GGTGGGTACG CAATGGGGGC



GGCTACCTCA


1201
GCACTAAATA GGAGACAATT AGACCAATTT GAGAAAATAC GACTTCGCCC



GAACGGAAAG


1261
AAAAAGTACC AAATTAAACA TTTAATATGG GCAGGCAAGG AGATGGAGCG



CTTCGGCCTC


1321
CATGAGAGGT TGTTGGAGAC AGAGGAGGGG TGTAAAAGAA TCATAGAAGT



CCTCTACCCC


1381
CTAGAACCAA CAGGATCGGA GGGCTTAAAA AGTCTGTTCA ATCTTGTGTG



CGTGCTATAT


1441
TGCTTGCACA AGGAACAGAA AGTGAAAGAC ACAGAGGAAG CAGTAGCAAC



AGTAAGACAA


1501
CACTGCCATC TAGTGGAAAA AGAAAAAAGT GCAACAGAGA CATCTAGTGG



ACAAAAGAAA


1561
AATGACAAGG GAATAGCAGC GCCACCTGGT GGCAGTCAGA ATTTTCCAGC



GCAACAACAA


1621
GGAAATGCCT GGGTACATGT ACCCTTGTCA CCGCGCACCT TAAATGCGTG



GGTAAAAGCA


1681
GTAGAGGAGA AAAAATTTGG AGCAGAAATA GTACCCATTT TTTTGTTTCA



AGCCCTATCG


1741
AATTCCCGTT TGTGCTAGGG TTCTTAGGCT TCTTGGGGGC TGCTGGAACT



GCAATGGGAG


1801
CAGCGGCGAC AGCCCTGACG GTCCAGTCTC AGCATTTGCT TGCTGGGATA



CTGCAGCAGC


1861
AGAAGAATCT GCTGGCGGCT GTGGAGGCTC AACAGCAGAT GTTGAAGCTG



ACCATTTGGG


1921
GTGTTAAAAA CCTCAATGCC CGCGTCACAG CCCTTGAGAA GTACCTAGAG



GATCAGGCAC


1981
GACTAAACTC CTGGGGGTGC GCATGGAAAC AAGTATGTCA TACCACAGTG



GAGTGGCCCT


2041
GGACAAATCG GACTCCGGAT TGGCAAAATA TGACTTGGTT GGAGTGGGAA



AGACAAATAG


2101
CTGATTTGGA AAGCAACATT ACGAGACAAT TAGTGAAGGC TAGAGAACAA



GAGGAAAAGA


2161
ATCTAGATGC CTATCAGAAG TTAACTAGTT GGTCAGATTT CTGGTCTTGG



TTCGATTTCT


2221
CAAAATGGCT TAACATTTTA AAAATGGGAT TTTTAGTAAT AGTAGGAATA



ATAGGGTTAA


2281
GATTACTTTA CACAGTATAT GGATGTATAG TGAGGGTTAG GCAGGGATAT



GTTCCTCTAT


2341
CTCCACAGAT CCATATCCGC GGCAATTTTA AAAGAAAGGG AGGAATAGGG



GGACAGACTT


2401
CAGCAGAGAG ACTAATTAAT ATAATAACAA CACAATTAGA AATACAACAT



TTACAAACCA


2461
AAATTCAAAA AATTTTAAAT TTTAGAGCCG CGGAGATCTG TTACATAACT



TATGGTAAAT


2521
GGCCTGCCTG GCTGACTGCC CAATGACCCC TGCCCAATGA TGTCAATAAT



GATGTATGTT


2581
CCCATGTAAT GCCAATAGGG ACTTTCCATT GATGTCAATG GGTGGAGTAT



TTATGGTAAC


2641
TGCCCACTTG GCAGTACATC AAGTGTATCA TATGCCAAGT ATGCCCCCTA



TTGATGTCAA


2701
TGATGGTAAA TGGCCTGCCT GGCATTATGC CCAGTACATG ACCTTATGGG



ACTTTCCTAC


2761
TTGGCAGTAC ATCTATGTAT TAGTCATTGC TATTACCATG GGAATTCACT



AGTGGAGAAG


2821
AGCATGCTTG AGGGCTGAGT GCCCCTCAGT GGGCAGAGAG CACATGGCCC



ACAGTCCCTG


2881
AGAAGTTGGG GGGAGGGGTG GGCAATTGAA CTGGTGCCTA GAGAAGGTGG



GGCTTGGGTA


2941
AACTGGGAAA GTGATGTGGT GTACTGGCTC CACCTTTTTC CCCAGGGTGG



GGGAGAACCA


3001
TATATAAGTG CAGTAGTCTC TGTGAACATT CAAGCTTCTG CCTTCTCCCT



CCTGTGAGTT


3061
TGCTAGCCAC CATGCCCAGC TCTGTGTCCT GGGGCATTCT GCTGCTGGCT



GGCCTGTGCT


3121
GTCTGGTGCC TGTGTCCCTG GCTGAGGACC CTCAGGGGGA TGCTGCCCAG



AAAACAGACA


3181
CCTCCCACCA TGACCAGGAC CACCCCACCT TCAACAAGAT CACCCCCAAC



CTGGCAGAGT


3241
TTGCCTTCAG CCTGTACAGA CAGCTGGCCC ACCAGAGCAA CAGCACCAAC



ATCTTTTTCA


3301
GCCCTGTGTC CATTGCCACA GCCTTTGCCA TGCTGAGCCT GGGCACCAAG



GCTGACACCC


3361
ATGATGAGAT CCTGGAAGGC CTGAACTTCA ACCTGACAGA GATCCCTGAG



GCCCAGATCC


3421
ATGAGGGCTT CCAGGAACTG CTGAGAACCC TGAACCAGCC AGACAGCCAG



CTGCAGCTGA


3481
CAACAGGCAA TGGGCTGTTC CTGTCTGAGG GCCTGAAGCT GGTGGACAAG



TTTCTGGAAG


3541
ATGTGAAGAA GCTGTACCAC TCTGAGGCCT TCACAGTGAA CTTTGGGGAC



ACAGAAGAGG


3601
CCAAGAAACA GATCAATGAC TATGTGGAAA AGGGCACCCA GGGCAAGATT



GTGGACCTTG


3661
TGAAAGAGCT GGACAGGGAC ACTGTGTTTG CCCTTGTGAA CTACATCTTC



TTCAAGGGCA


3721
AGTGGGAGAG GCCCTTTGAA GTGAAGGACA CTGAGGAAGA GGACTTCCAT



GTGGACCAAG


3781
TGACCACAGT GAAGGTGCCA ATGATGAAGA GACTGGGGAT GTTCAATATC



CAGCACTGCA


3841
AGAAACTGAG CAGCTGGGTG CTGCTGATGA AGTACCTGGG CAATGCTACA



GCCATATTCT


3901
TTCTGCCTGA TGAGGGCAAG CTGCAGCACC TGGAAAATGA GCTGACCCAT



GACATCATCA


3961
CCAAATTTCT GGAAAATGAG GACAGAAGAT CTGCCAGCCT GCATCTGCCC



AAGCTGAGCA


4021
TCACAGGCAC ATATGACCTG AAGTCTGTGC TGGGACAGCT GGGAATCACC



AAGGTGTTCA


4081
GCAATGGGGC AGACCTGAGT GGAGTGACAG AGGAAGCCCC TCTGAAGCTG



TCCAAGGCTG


4141
TGCACAAGGC AGTGCTGACC ATTGATGAGA AGGGCACAGA GGCTGCTGGG



GCCATGTTTC


4201
TGGAAGCCAT CCCCATGTCC ATCCCCCCAG AAGTGAAGTT CAACAAGCCC



TTTGTGTTCC


4261
TGATGATTGA GCAGAACACC AAGAGCCCCC TGTTCATGGG CAAGGTTGTG



AACCCCACCC


4321
AGAAATGAGG GCCCAATCAA CCTCTGGATT ACAAAATTTG TGAAAGATTG



ACTGGTATTC


4381
TTAACTATGT TGCTCCTTTT ACGCTATGTG GATACGCTGC TTTAATGCCT



TTGTATCATG


4441
CTATTGCTTC CCGTATGGCT TTCATTTTCT CCTCCTTGTA TAAATCCTGG



TTGCTGTCTC


4501
TTTATGAGGA GTTGTGGCCC GTTGTCAGGC AACGTGGCGT GGTGTGCACT



GTGTTTGCTG


4561
ACGCAACCCC CACTGGTTGG GGCATTGCCA CCACCTGTCA GCTCCTTTCC



GGGACTTTCG


4621
CTTTCCCCCT CCCTATTGCC ACGGCGGAAC TCATCGCCGC CTGCCTTGCC



CGCTGCTGGA


4681
CAGGGGCTCG GCTGTTGGGC ACTGACAATT CCGTGGTGTT GTCGGGGAAA



TCATCGTCCT


4741
TTCCTTGGCT GCTCGCCTGT GTTGCCACCT GGATTCTGCG CGGGACGTCC



TTCTGCTACG


4801
TCCCTTCGGC CCTCAATCCA GCGGACCTTC CTTCCCGCGG CCTGCTGCCG



GCTCTGCGGC


4861
CTCTTCCGCG TCTTCGCCTT CGCCCTCAGA CGAGTCGGAT CTCCCTTTGG



GCCGCCTCCC


4921
CGCAAGCTTC GCACTTTTTA AAAGAAAAGG GAGGACTGGA TGGGATTTAT



TACTCCGATA


4981
GGACGCTGGC TTGTAACTCA GTCTCTTACT AGGAGACCAG CTTGAGCCTG



GGTGTTCGCT


5041
GGTTAGCCTA ACCTGGTTGG CCACCAGGGG TAAGGACTCC TTGGCTTAGA



AAGCTAATAA


5101
ACTTGCCTGC ATTAGAGCTC TTACGCGTCC CGGGCTCGAG ATCCGCATCT



CAATTAGTCA


5161
GCAACCATAG TCCCGCCCCT AACTCCGCCC ATCCCGCCCC TAACTCCGCC



CAGTTCCGCC


5221
CATTCTCCGC CCCATGGCTG ACTAATTTTT TTTATTTATG CAGAGGCCGA



GGCCGCCTCG


5281
GCCTCTGAGC TATTCCAGAA GTAGTGAGGA GGCTTTTTTG GAGGCCTAGG



CTTTTGCAAA


5341
AAGCTAACTT GTTTATTGCA GCTTATAATG GTTACAAATA AAGCAATAGC



ATCACAAATT


5401
TCACAAATAA AGCATTTTTT TCACTGCATT CTAGTTGTGG TTTGTCCAAA



CTCATCAATG


5461
TATCTTATCA TGTCTGTCCG CTTCCTCGCT CACTGACTCG CTGCGCTCGG



TCGTTCGGCT


5521
GCGGCGAGCG GTATCAGCTC ACTCAAAGGC GGTAATACGG TTATCCACAG



AATCAGGGGA


5581
TAACGCAGGA AAGAACATGT GAGCAAAAGG CCAGCAAAAG GCCAGGAACC



GTAAAAAGGC


5641
CGCGTTGCTG GCGTTTTTCC ATAGGCTCCG CCCCCCTGAC GAGCATCACA



AAAATCGACG


5701
CTCAAGTCAG AGGTGGCGAA ACCCGACAGG ACTATAAAGA TACCAGGCGT



TTCCCCCTGG


5761
AAGCTCCCTC GTGCGCTCTC CTGTTCCGAC CCTGCCGCTT ACCGGATACC



TGTCCGCCTT


5821
TCTCCCTTCG GGAAGCGTGG CGCTTTCTCA TAGCTCACGC TGTAGGTATC



TCAGTTCGGT


5881
GTAGGTCGTT CGCTCCAAGC TGGGCTGTGT GCACGAACCC CCCGTTCAGC



CCGACCGCTG


5941
CGCCTTATCC GGTAACTATC GTCTTGAGTC CAACCCGGTA AGACACGACT



TATCGCCACT


6001
GGCAGCAGCC ACTGGTAACA GGATTAGCAG AGCGAGGTAT GTAGGCGGTG



CTACAGAGTT


6061
CTTGAAGTGG TGGCCTAACT ACGGCTACAC TAGAAGAACA GTATTTGGTA



TCTGCGCTCT


6121
GCTGAAGCCA GTTACCTTCG GAAAAAGAGT TGGTAGCTCT TGATCCGGCA



AACAAACCAC


6181
CGCTGGTAGC GGTGGTTTTT TTGTTTGCAA GCAGCAGATT ACGCGCAGAA



AAAAAGGATC


6241
TCAAGAAGAT CCTTTGATCT TTTCTACGGG GTCTGACGCT CAGTGGAACG



AAAACTCACG


6301
TTAAGGGATT TTGGTCATGA GATTATCAAA AAGGATCTTC ACCTAGATCC



TTTTAAATTA


6361
AAAATGAAGT TTTAAATCAA TCTAAAGTAT ATATGAGTAA ACTTGGTCTG



ACAGTTAGAA


6421
AAACTCATCG AGCATCAAAT GAAACTGCAA TTTATTCATA TCAGGATTAT



CAATACCATA


6481
TTTTTGAAAA AGCCGTTTCT GTAATGAAGG AGAAAACTCA CCGAGGCAGT



TCCATAGGAT


6541
GGCAAGATCC TGGTATCGGT CTGCGATTCC GACTCGTCCA ACATCAATAC



AACCTATTAA


6601
TTTCCCCTCG TCAAAAATAA GGTTATCAAG TGAGAAATCA CCATGAGTGA



CGACTGAATC


6661
CGGTGAGAAT GGCAACAGCT TATGCATTTC TTTCCAGACT TGTTCAACAG



GCCAGCCATT


6721
ACGCTCGTCA TCAAAATCAC TCGCATCAAC CAAACCGTTA TTCATTCGTG



ATTGCGCCTG


6781
AGCGAGACGA AATACGCGAT CGCTGTTAAA AGGACAATTA CAAACAGGAA



TCGAATGCAA


6841
CCGGCGCAGG AACACTGCCA GCGCATCAAC AATATTTTCA CCTGAATCAG



GATATTCTTC


6901
TAATACCTGG AATGCTGTTT TTCCGGGGAT CGCAGTGGTG AGTAACCATG



CATCATCAGG


6961
AGTACGGATA AAATGCTTGA TGGTCGGAAG AGGCATAAAT TCCGTCAGCC



AGTTTAGTCT


7021
GACCATCTCA TCTGTAACAT CATTGGCAAC GCTACCTTTG CCATGTTTCA



GAAACAACTC


7081
TGGCGCATCG GGCTTCCCAT ACAATCGATA GATTGTCGCA CCTGATTGCC



CGACATTATC


7141
GCGAGCCCAT TTATACCCAT ATAAATCAGC ATCCATGTTG GAATTTAATC



GCGGCCTAGA


7201
GCAAGACGTT TCCCGTTGAA TATGGCTCAT AACACCCCTT GTATTACTGT



TTATGTAAGC


7261
AGACAGTTTT ATTGTTCATG ATGATATATT TTTATCTTGT GCAATGTAAC



ATCAGAGATT


7321
TTGAGACACA ACAATTGGTC GACGGATCC










SEQ ID NO: 10








1
GGTACCTCAA TATTGGCCAT TAGCCATATT ATTCATTGGT TATATAGCAT



AAATCAATAT


61
TGGCTATTGG CCATTGCATA CGTTGTATCT ATATCATAAT ATGTACATTT



ATATTGGCTC


121
ATGTCCAATA TGACCGCCAT GTTGGCATTG ATTATTGACT AGTTATTAAT



AGTAATCAAT


181
TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC



TTACGGTAAA


241
TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA



TGACGTATGT


301
TCCCATAGTA ACGCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT



ATTTACGGTA


361
AACTGCCCAC TTGGCAGTAC ATCAAGTGTA TCATATGCCA AGTCCGCCCC



CTATTGACGT


421
CAATGACGGT AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAC



GGGACTTTCC


481
TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC



GGTTTTGGCA


541
GTACACCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC



TCCACCCCAT


601
TGACGTCAAT GGGAGTTTGT TTTGGCACCA AAATCAACGG GACTTTCCAA



AATGTCGTAA


661
CAACTGCGAT CGCCCGCCCC GTTGACGCAA ATGGGCGGTA GGCGTGTACG



GTGGGAGGTC


721
TATATAAGCA GAGCTCGCTG GCTTGTAACT CAGTCTCTTA CTAGGAGACC



AGCTTGAGCC


781
TGGGTGTTCG CTGGTTAGCC TAACCTGGTT GGCCACCAGG GGTAAGGACT



CCTTGGCTTA


841
GAAAGCTAAT AAACTTGCCT GCATTAGAGC TTATCTGAGT CAAGTGTCCT



CATTGACGCC


901
TCACTCTCTT GAACGGGAAT CTTCCTTACT GGGTTCTCTC TCTGACCCAG



GCGAGAGAAA


961
CTCCAGCAGT GGCGCCCGAA CAGGGACTTG AGTGAGAGTG TAGGCACGTA



CAGCTGAGAA


1021
GGCGTCGGAC GCGAAGGAAG CGCGGGGTGC GACGCGACCA AGAAGGAGAC



TTGGTGAGTA


1081
GGCTTCTCGA GTGCCGGGAA AAAGCTCGAG CCTAGTTAGA GGACTAGGAG



AGGCCGTAGC


1141
CGTAACTACT CTTGGGCAAG TAGGGCAGGC GGTGGGTACG CAATGGGGGC



GGCTACCTCA


1201
GCACTAAATA GGAGACAATT AGACCAATTT GAGAAAATAC GACTTCGCCC



GAACGGAAAG


1261
AAAAAGTACC AAATTAAACA TTTAATATGG GCAGGCAAGG AGATGGAGCG



CTTCGGCCTC


1321
CATGAGAGGT TGTTGGAGAC AGAGGAGGGG TGTAAAAGAA TCATAGAAGT



CCTCTACCCC


1381
CTAGAACCAA CAGGATCGGA GGGCTTAAAA AGTCTGTTCA ATCTTGTGTG



CGTGCTATAT


1441
TGCTTGCACA AGGAACAGAA AGTGAAAGAC ACAGAGGAAG CAGTAGCAAC



AGTAAGACAA


1501
CACTGCCATC TAGTGGAAAA AGAAAAAAGT GCAACAGAGA CATCTAGTGG



ACAAAAGAAA


1561
AATGACAAGG GAATAGCAGC GCCACCTGGT GGCAGTCAGA ATTTTCCAGC



GCAACAACAA


1621
GGAAATGCCT GGGTACATGT ACCCTTGTCA CCGCGCACCT TAAATGCGTG



GGTAAAAGCA


1681
GTAGAGGAGA AAAAATTTGG AGCAGAAATA GTACCCATTT TTTTGTTTCA



AGCCCTATCG


1741
AATTCCCGTT TGTGCTAGGG TTCTTAGGCT TCTTGGGGGC TGCTGGAACT



GCAATGGGAG


1801
CAGCGGCGAC AGCCCTGACG GTCCAGTCTC AGCATTTGCT TGCTGGGATA



CTGCAGCAGC


1861
AGAAGAATCT GCTGGCGGCT GTGGAGGCTC AACAGCAGAT GTTGAAGCTG



ACCATTTGGG


1921
GTGTTAAAAA CCTCAATGCC CGCGTCACAG CCCTTGAGAA GTACCTAGAG



GATCAGGCAC


1981
GACTAAACTC CTGGGGGTGC GCATGGAAAC AAGTATGTCA TACCACAGTG



GAGTGGCCCT


2041
GGACAAATCG GACTCCGGAT TGGCAAAATA TGACTTGGTT GGAGTGGGAA



AGACAAATAG


2101
CTGATTTGGA AAGCAACATT ACGAGACAAT TAGTGAAGGC TAGAGAACAA



GAGGAAAAGA


2161
ATCTAGATGC CTATCAGAAG TTAACTAGTT GGTCAGATTT CTGGTCTTGG



TTCGATTTCT


2221
CAAAATGGCT TAACATTTTA AAAATGGGAT TTTTAGTAAT AGTAGGAATA



ATAGGGTTAA


2281
GATTACTTTA CACAGTATAT GGATGTATAG TGAGGGTTAG GCAGGGATAT



GTTCCTCTAT


2341
CTCCACAGAT CCATATCCGC GGCAATTTTA AAAGAAAGGG AGGAATAGGG



GGACAGACTT


2401
CAGCAGAGAG ACTAATTAAT ATAATAACAA CACAATTAGA AATACAACAT



TTACAAACCA


2461
AAATTCAAAA AATTTTAAAT TTTAGAGCCG CGGAGATCTG TTACATAACT



TATGGTAAAT


2521
GGCCTGCCTG GCTGACTGCC CAATGACCCC TGCCCAATGA TGTCAATAAT



GATGTATGTT


2581
CCCATGTAAT GCCAATAGGG ACTTTCCATT GATGTCAATG GGTGGAGTAT



TTATGGTAAC


2641
TGCCCACTTG GCAGTACATC AAGTGTATCA TATGCCAAGT ATGCCCCCTA



TTGATGTCAA


2701
TGATGGTAAA TGGCCTGCCT GGCATTATGC CCAGTACATG ACCTTATGGG



ACTTTCCTAC


2761
TTGGCAGTAC ATCTATGTAT TAGTCATTGC TATTACCATG GGAATTCACT



AGTGGAGAAG


2821
AGCATGCTTG AGGGCTGAGT GCCCCTCAGT GGGCAGAGAG CACATGGCCC



ACAGTCCCTG


2881
AGAAGTTGGG GGGAGGGGTG GGCAATTGAA CTGGTGCCTA GAGAAGGTGG



GGCTTGGGTA


2941
AACTGGGAAA GTGATGTGGT GTACTGGCTC CACCTTTTTC CCCAGGGTGG



GGGAGAACCA


3001
TATATAAGTG CAGTAGTCTC TGTGAACATT CAAGCTTCTG CCTTCTCCCT



CCTGTGAGTT


3061
TGCTAGCCAC CATGGGAGTG AAGGTGCTGT TTGCCCTGAT CTGCATTGCT



GTGGCTGAGG


3121
CCAAGCCCAC AGAGAACAAT GAGGACTTCA ACATTGTGGC TGTGGCCAGC



AACTTTGCCA


3181
CCACAGACCT GGATGCTGAC AGGGGCAAGC TGCCTGGCAA GAAGCTGCCC



CTGGAAGTCC


3241
TGAAAGAGAT GGAAGCCAAT GCCAGGAAGG CTGGCTGCAC AAGAGGCTGT



CTGATCTGCC


3301
TGAGCCACAT CAAGTGCACC CCCAAGATGA AGAAGTTCAT CCCTGGCAGG



TGCCACACCT


3361
ATGAAGGGGA CAAAGAGTCT GCCCAGGGGG GAATTGGAGA GGCCATTGTG



GACATCCCTG


3421
AGATCCCTGG CTTCAAGGAC CTGGAACCCA TGGAACAGTT CATTGCCCAG



GTGGACCTGT


3481
GTGTGGACTG CACTACAGGC TGTCTCAAGG GCCTGGCCAA TGTGCAGTGC



TCTGACCTGC


3541
TGAAGAAGTG GCTGCCCCAG AGATGTGCCA CCTTTGCCAG CAAGATCCAG



GGCCAGGTGG


3601
ACAAGATCAA GGGAGCTGGG GGAGATTGAT GAGGGCCCAA TCAACCTCTG



GATTACAAAA


3661
TTTGTGAAAG ATTGACTGGT ATTCTTAACT ATGTTGCTCC TTTTACGCTA



TGTGGATACG


3721
CTGCTTTAAT GCCTTTGTAT CATGCTATTG CTTCCCGTAT GGCTTTCATT



TTCTCCTCCT


3781
TGTATAAATC CTGGTTGCTG TCTCTTTATG AGGAGTTGTG GCCCGTTGTC



AGGCAACGTG


3841
GCGTGGTGTG CACTGTGTTT GCTGACGCAA CCCCCACTGG TTGGGGCATT



GCCACCACCT


3901
GTCAGCTCCT TTCCGGGACT TTCGCTTTCC CCCTCCCTAT TGCCACGGCG



GAACTCATCG


3961
CCGCCTGCCT TGCCCGCTGC TGGACAGGGG CTCGGCTGTT GGGCACTGAC



AATTCCGTGG


4021
TGTTGTCGGG GAAATCATCG TCCTTTCCTT GGCTGCTCGC CTGTGTTGCC



ACCTGGATTC


4081
TGCGCGGGAC GTCCTTCTGC TACGTCCCTT CGGCCCTCAA TCCAGCGGAC



CTTCCTTCCC


4141
GCGGCCTGCT GCCGGCTCTG CGGCCTCTTC CGCGTCTTCG CCTTCGCCCT



CAGACGAGTC


4201
GGATCTCCCT TTGGGCCGCC TCCCCGCAAG CTTCGCACTT TTTAAAAGAA



AAGGGAGGAC


4261
TGGATGGGAT TTATTACTCC GATAGGACGC TGGCTTGTAA CTCAGTCTCT



TACTAGGAGA


4321
CCAGCTTGAG CCTGGGTGTT CGCTGGTTAG CCTAACCTGG TTGGCCACCA



GGGGTAAGGA


4381
CTCCTTGGCT TAGAAAGCTA ATAAACTTGC CTGCATTAGA GCTCTTACGC



GTCCCGGGCT


4441
CGAGATCCGC ATCTCAATTA GTCAGCAACC ATAGTCCCGC CCCTAACTCC



GCCCATCCCG


4501
CCCCTAACTC CGCCCAGTTC CGCCCATTCT CCGCCCCATG GCTGACTAAT



TTTTTTTATT


4561
TATGCAGAGG CCGAGGCCGC CTCGGCCTCT GAGCTATTCC AGAAGTAGTG



AGGAGGCTTT


4621
TTTGGAGGCC TAGGCTTTTG CAAAAAGCTA ACTTGTTTAT TGCAGCTTAT



AATGGTTACA


4681
AATAAAGCAA TAGCATCACA AATTTCACAA ATAAAGCATT TTTTTCACTG



CATTCTAGTT


4741
GTGGTTTGTC CAAACTCATC AATGTATCTT ATCATGTCTG TCCGCTTCCT



CGCTCACTGA


4801
CTCGCTGCGC TCGGTCGTTC GGCTGCGGCG AGCGGTATCA GCTCACTCAA



AGGCGGTAAT


4861
ACGGTTATCC ACAGAATCAG GGGATAACGC AGGAAAGAAC ATGTGAGCAA



AAGGCCAGCA


4921
AAAGGCCAGG AACCGTAAAA AGGCCGCGTT GCTGGCGTTT TTCCATAGGC



TCCGCCCCCC


4981
TGACGAGCAT CACAAAAATC GACGCTCAAG TCAGAGGTGG CGAAACCCGA



CAGGACTATA


5041
AAGATACCAG GCGTTTCCCC CTGGAAGCTC CCTCGTGCGC TCTCCTGTTC



CGACCCTGCC


5101
GCTTACCGGA TACCTGTCCG CCTTTCTCCC TTCGGGAAGC GTGGCGCTTT



CTCATAGCTC


5161
ACGCTGTAGG TATCTCAGTT CGGTGTAGGT CGTTCGCTCC AAGCTGGGCT



GTGTGCACGA


5221
ACCCCCCGTT CAGCCCGACC GCTGCGCCTT ATCCGGTAAC TATCGTCTTG



AGTCCAACCC


5281
GGTAAGACAC GACTTATCGC CACTGGCAGC AGCCACTGGT AACAGGATTA



GCAGAGCGAG


5341
GTATGTAGGC GGTGCTACAG AGTTCTTGAA GTGGTGGCCT AACTACGGCT



ACACTAGAAG


5401
AACAGTATTT GGTATCTGCG CTCTGCTGAA GCCAGTTACC TTCGGAAAAA



GAGTTGGTAG


5461
CTCTTGATCC GGCAAACAAA CCACCGCTGG TAGCGGTGGT TTTTTTGTTT



GCAAGCAGCA


5521
GATTACGCGC AGAAAAAAAG GATCTCAAGA AGATCCTTTG ATCTTTTCTA



CGGGGTCTGA


5581
CGCTCAGTGG AACGAAAACT CACGTTAAGG GATTTTGGTC ATGAGATTAT



CAAAAAGGAT


5641
CTTCACCTAG ATCCTTTTAA ATTAAAAATG AAGTTTTAAA TCAATCTAAA



GTATATATGA


5701
GTAAACTTGG TCTGACAGTT AGAAAAACTC ATCGAGCATC AAATGAAACT



GCAATTTATT


5761
CATATCAGGA TTATCAATAC CATATTTTTG AAAAAGCCGT TTCTGTAATG



AAGGAGAAAA


5821
CTCACCGAGG CAGTTCCATA GGATGGCAAG ATCCTGGTAT CGGTCTGCGA



TTCCGACTCG


5881
TCCAACATCA ATACAACCTA TTAATTTCCC CTCGTCAAAA ATAAGGTTAT



CAAGTGAGAA


5941
ATCACCATGA GTGACGACTG AATCCGGTGA GAATGGCAAC AGCTTATGCA



TTTCTTTCCA


6001
GACTTGTTCA ACAGGCCAGC CATTACGCTC GTCATCAAAA TCACTCGCAT



CAACCAAACC


6061
GTTATTCATT CGTGATTGCG CCTGAGCGAG ACGAAATACG CGATCGCTGT



TAAAAGGACA


6121
ATTACAAACA GGAATCGAAT GCAACCGGCG CAGGAACACT GCCAGCGCAT



CAACAATATT


6181
TTCACCTGAA TCAGGATATT CTTCTAATAC CTGGAATGCT GTTTTTCCGG



GGATCGCAGT


6241
GGTGAGTAAC CATGCATCAT CAGGAGTACG GATAAAATGC TTGATGGTCG



GAAGAGGCAT


6301
AAATTCCGTC AGCCAGTTTA GTCTGACCAT CTCATCTGTA ACATCATTGG



CAACGCTACC


6361
TTTGCCATGT TTCAGAAACA ACTCTGGCGC ATCGGGCTTC CCATACAATC



GATAGATTGT


6421
CGCACCTGAT TGCCCGACAT TATCGCGAGC CCATTTATAC CCATATAAAT



CAGCATCCAT


6481
GTTGGAATTT AATCGCGGCC TAGAGCAAGA CGTTTCCCGT TGAATATGGC



TCATAACACC


6541
CCTTGTATTA CTGTTTATGT AAGCAGACAG TTTTATTGTT CATGATGATA



TATTTTTATC


6601
TTGTGCAATG TAACATCAGA GATTTTGAGA CACAACAATT GGTCGACGGA TCC










SEQ ID NO: 11








1
GGTACCTCAA TATTGGCCAT TAGCCATATT ATTCATTGGT TATATAGCAT



AAATCAATAT


61
TGGCTATTGG CCATTGCATA CGTTGTATCT ATATCATAAT ATGTACATTT



ATATTGGCTC


121
ATGTCCAATA TGACCGCCAT GTTGGCATTG ATTATTGACT AGTTATTAAT



AGTAATCAAT


181
TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC



TTACGGTAAA


241
TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA



TGACGTATGT


301
TCCCATAGTA ACGCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT



ATTTACGGTA


361
AACTGCCCAC TTGGCAGTAC ATCAAGTGTA TCATATGCCA AGTCCGCCCC



CTATTGACGT


421
CAATGACGGT AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAC



GGGACTTTCC


481
TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC



GGTTTTGGCA


541
GTACACCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC



TCCACCCCAT


601
TGACGTCAAT GGGAGTTTGT TTTGGCACCA AAATCAACGG GACTTTCCAA



AATGTCGTAA


661
CAACTGCGAT CGCCCGCCCC GTTGACGCAA ATGGGCGGTA GGCGTGTACG



GTGGGAGGTC


721
TATATAAGCA GAGCTCGCTG GCTTGTAACT CAGTCTCTTA CTAGGAGACC



AGCTTGAGCC


781
TGGGTGTTCG CTGGTTAGCC TAACCTGGTT GGCCACCAGG GGTAAGGACT



CCTTGGCTTA


841
GAAAGCTAAT AAACTTGCCT GCATTAGAGC TTATCTGAGT CAAGTGTCCT



CATTGACGCC


901
TCACTCTCTT GAACGGGAAT CTTCCTTACT GGGTTCTCTC TCTGACCCAG



GCGAGAGAAA


961
CTCCAGCAGT GGCGCCCGAA CAGGGACTTG AGTGAGAGTG TAGGCACGTA



CAGCTGAGAA


1021
GGCGTCGGAC GCGAAGGAAG CGCGGGGTGC GACGCGACCA AGAAGGAGAC



TTGGTGAGTA


1081
GGCTTCTCGA GTGCCGGGAA AAAGCTCGAG CCTAGTTAGA GGACTAGGAG



AGGCCGTAGC


1141
CGTAACTACT CTGGGCAAGT AGGGCAGGCG GTGGGTACGC AATGGGGGCG



GCTACCTCAG


1201
CACTAAATAG GAGACAATTA GACCAATTTG AGAAAATACG ACTTCGCCCG



AACGGAAAGA


1261
AAAAGTACCA AATTAAACAT TTAATATGGG CAGGCAAGGA GATGGAGCGC



TTCGGCCTCC


1321
ATGAGAGGTT GTTGGAGACA GAGGAGGGGT GTAAAAGAAT CATAGAAGTC



CTCTACCCCC


1381
TAGAACCAAC AGGATCGGAG GGCTTAAAAA GTCTGTTCAA TCTTGTGTGC



GTGCTATATT


1441
GCTTGCACAA GGAACAGAAA GTGAAAGACA CAGAGGAAGC AGTAGCAACA



GTAAGACAAC


1501
ACTGCCATCT AGTGGAAAAA GAAAAAAGTG CAACAGAGAC ATCTAGTGGA



CAAAAGAAAA


1561
ATGACAAGGG AATAGCAGCG CCACCTGGTG GCAGTCAGAA TTTTCCAGCG



CAACAACAAG


1621
GAAATGCCTG GGTACATGTA CCCTTGTCAC CGCGCACCTT AAATGCGTGG



GTAAAAGCAG


1681
TAGAGGAGAA AAAATTTGGA GCAGAAATAG TACCCATGTT TCAAGCCCTA



TCGAATTCCC


1741
GTTTGTGCTA GGGTTCTTAG GCTTCTTGGG GGCTGCTGGA ACTGCAATGG



GAGCAGCGGC


1801
GACAGCCCTG ACGGTCCAGT CTCAGCATTT GCTTGCTGGG ATACTGCAGC



AGCAGAAGAA


1861
TCTGCTGGCG GCTGTGGAGG CTCAACAGCA GATGTTGAAG CTGACCATTT



GGGGTGTTAA


1921
AAACCTCAAT GCCCGCGTCA CAGCCCTTGA GAAGTACCTA GAGGATCAGG



CACGACTAAA


1981
CTCCTGGGGG TGCGCATGGA AACAAGTATG TCATACCACA GTGGAGTGGC



CCTGGACAAA


2041
TCGGACTCCG GATTGGCAAA ATATGACTTG GTTGGAGTGG GAAAGACAAA



TAGCTGATTT


2101
GGAAAGCAAC ATTACGAGAC AATTAGTGAA GGCTAGAGAA CAAGAGGAAA



AGAATCTAGA


2161
TGCCTATCAG AAGTTAACTA GTTGGTCAGA TTTCTGGTCT TGGTTCGATT



TCTCAAAATG


2221
GCTTAACATT TTAAAAATGG GATTTTTAGT AATAGTAGGA ATAATAGGGT



TAAGATTACT


2281
TTACACAGTA TATGGATGTA TAGTGAGGGT TAGGCAGGGA TATGTTCCTC



TATCTCCACA


2341
GATCCATATC CGCGGCAATT TTAAAAGAAA GGGAGGAATA GGGGGACAGA



CTTCAGCAGA


2401
GAGACTAATT AATATAATAA CAACACAATT AGAAATACAA CATTTACAAA



CCAAAATTCA


2461
AAAAATTTTA AATTTTAGAG CCGCGGAGAT CTCAATATTG GCCATTAGCC



ATATTATTCA


2521
TTGGTTATAT AGCATAAATC AATATTGGCT ATTGGCCATT GCATACGTTG



TATCTATATC


2581
ATAATATGTA CATTTATATT GGCTCATGTC CAATATGACC GCCATGTTGG



CATTGATTAT


2641
TGACTAGTTA TTAATAGTAA TCAATTACGG GGTCATTAGT TCATAGCCCA



TATATGGAGT


2701
TCCGCGTTAC ATAACTTACG GTAAATGGCC CGCCTGGCTG ACCGCCCAAC



GACCCCCGCC


2761
CATTGACGTC AATAATGACG TATGTTCCCA TAGTAACGCC AATAGGGACT



TTCCATTGAC


2821
GTCAATGGGT GGAGTATTTA CGGTAAACTG CCCACTTGGC AGTACATCAA



GTGTATCATA


2881
TGCCAAGTCC GCCCCCTATT GACGTCAATG ACGGTAAATG GCCCGCCTGG



CATTATGCCC


2941
AGTACATGAC CTTACGGGAC TTTCCTACTT GGCAGTACAT CTACGTATTA



GTCATCGCTA


3001
TTACCATGGT GATGCGGTTT TGGCAGTACA CCAATGGGCG TGGATAGCGG



TTTGACTCAC


3061
GGGGATTTCC AAGTCTCCAC CCCATTGACG TCAATGGGAG TTTGTTTTGG



CACCAAAATC


3121
AACGGGACTT TCCAAAATGT CGTAATAACC CCGCCCCGTT GACGCAAATG



GGCGGTAGGC


3181
GTGTACGGTG GGAGGTCTAT ATAAGCAGAG CTCGTTTAGT GAACCGTCAG



ATCACTAGAA


3241
GCTTTATTGC GGTAGTTTAT CACAGTTAAA TTGCTAACGC AGTCAGTGCT



TCTGACACAA


3301
CAGTCTCGAA CTTAAGCTGC AGAAGTTGGT CGTGAGGCAC TGGGCAGGCT



AGCCACCAAT


3361
GCAGATTGAG CTGAGCACCT GCTTCTTCCT GTGCCTGCTG AGGTTCTGCT



TCTCTGCCAC


3421
CAGGAGATAC TACCTGGGGG CTGTGGAGCT GAGCTGGGAC TACATGCAGT



CTGACCTGGG


3481
GGAGCTGCCT GTGGATGCCA GGTTCCCCCC CAGAGTGCCC AAGAGCTTCC



CCTTCAACAC


3541
CTCTGTGGTG TACAAGAAGA CCCTGTTTGT GGAGTTCACT GACCACCTGT



TCAACATTGC


3601
CAAGCCCAGG CCCCCCTGGA TGGGCCTGCT GGGCCCCACC ATCCAGGCTG



AGGTGTATGA


3661
CACTGTGGTG ATCACCCTGA AGAACATGGC CAGCCACCCT GTGAGCCTGC



ATGCTGTGGG


3721
GGTGAGCTAC TGGAAGGCCT CTGAGGGGGC TGAGTATGAT GACCAGACCA



GCCAGAGGGA


3781
GAAGGAGGAT GACAAGGTGT TCCCTGGGGG CAGCCACACC TATGTGTGGC



AGGTGCTGAA


3841
GGAGAATGGC CCCATGGCCT CTGACCCCCT GTGCCTGACC TACAGCTACC



TGAGCCATGT


3901
GGACCTGGTG AAGGACCTGA ACTCTGGCCT GATTGGGGCC CTGCTGGTGT



GCAGGGAGGG


3961
CAGCCTGGCC AAGGAGAAGA CCCAGACCCT GCACAAGTTC ATCCTGCTGT



TTGCTGTGTT


4021
TGATGAGGGC AAGAGCTGGC ACTCTGAAAC CAAGAACAGC CTGATGCAGG



ACAGGGATGC


4081
TGCCTCTGCC AGGGCCTGGC CCAAGATGCA CACTGTGAAT GGCTATGTGA



ACAGGAGCCT


4141
GCCTGGCCTG ATTGGCTGCC ACAGGAAGTC TGTGTACTGG CATGTGATTG



GCATGGGCAC


4201
CACCCCTGAG GTGCACAGCA TCTTCCTGGA GGGCCACACC TTCCTGGTCA



GGAACCACAG


4261
GCAGGCCAGC CTGGAGATCA GCCCCATCAC CTTCCTGACT GCCCAGACCC



TGCTGATGGA


4321
CCTGGGCCAG TTCCTGCTGT TCTGCCACAT CAGCAGCCAC CAGCATGATG



GCATGGAGGC


4381
CTATGTGAAG GTGGACAGCT GCCCTGAGGA GCCCCAGCTG AGGATGAAGA



ACAATGAGGA


4441
GGCTGAGGAC TATGATGATG ACCTGACTGA CTCTGAGATG GATGTGGTGA



GGTTTGATGA


4501
TGACAACAGC CCCAGCTTCA TCCAGATCAG GTCTGTGGCC AAGAAGCACC



CCAAGACCTG


4561
GGTGCACTAC ATTGCTGCTG AGGAGGAGGA CTGGGACTAT GCCCCCCTGG



TGCTGGCCCC


4621
TGATGACAGG AGCTACAAGA GCCAGTACCT GAACAATGGC CCCCAGAGGA



TTGGCAGGAA


4681
GTACAAGAAG GTCAGGTTCA TGGCCTACAC TGATGAAACC TTCAAGACCA



GGGAGGCCAT


4741
CCAGCATGAG TCTGGCATCC TGGGCCCCCT GCTGTATGGG GAGGTGGGGG



ACACCCTGCT


4801
GATCATCTTC AAGAACCAGG CCAGCAGGCC CTACAACATC TACCCCCATG



GCATCACTGA


4861
TGTGAGGCCC CTGTACAGCA GGAGGCTGCC CAAGGGGGTG AAGCACCTGA



AGGACTTCCC


4921
CATCCTGCCT GGGGAGATCT TCAAGTACAA GTGGACTGTG ACTGTGGAGG



ATGGCCCCAC


4981
CAAGTCTGAC CCCAGGTGCC TGACCAGATA CTACAGCAGC TTTGTGAACA



TGGAGAGGGA


5041
CCTGGCCTCT GGCCTGATTG GCCCCCTGCT GATCTGCTAC AAGGAGTCTG



TGGACCAGAG


5101
GGGCAACCAG ATCATGTCTG ACAAGAGGAA TGTGATCCTG TTCTCTGTGT



TTGATGAGAA


5161
CAGGAGCTGG TACCTGACTG AGAACATCCA GAGGTTCCTG CCCAACCCTG



CTGGGGTGCA


5221
GCTGGAGGAC CCTGAGTTCC AGGCCAGCAA CATCATGCAC AGCATCAATG



GCTATGTGTT


5281
TGACAGCCTG CAGCTGTCTG TGTGCCTGCA TGAGGTGGCC TACTGGTACA



TCCTGAGCAT


5341
TGGGGCCCAG ACTGACTTCC TGTCTGTGTT CTTCTCTGGC TACACCTTCA



AGCACAAGAT


5401
GGTGTATGAG GACACCCTGA CCCTGTTCCC CTTCTCTGGG GAGACTGTGT



TCATGAGCAT


5461
GGAGAACCCT GGCCTGTGGA TTCTGGGCTG CCACAACTCT GACTTCAGGA



ACAGGGGCAT


5521
GACTGCCCTG CTGAAAGTCT CCAGCTGTGA CAAGAACACT GGGGACTACT



ATGAGGACAG


5581
CTATGAGGAC ATCTCTGCCT ACCTGCTGAG CAAGAACAAT GCCATTGAGC



CCAGGAGCTT


5641
CAGCCAGAAT GCCACTAATG TGTCTAACAA CAGCAACACC AGCAATGACA



GCAATGTGTC


5701
TCCCCCAGTG CTGAAGAGGC ACCAGAGGGA GATCACCAGG ACCACCCTGC



AGTCTGACCA


5761
GGAGGAGATT GACTATGATG ACACCATCTC TGTGGAGATG AAGAAGGAGG



ACTTTGACAT


5821
CTACGACGAG GACGAGAACC AGAGCCCCAG GAGCTTCCAG AAGAAGACCA



GGCACTACTT


5881
CATTGCTGCT GTGGAGAGGC TGTGGGACTA TGGCATGAGC AGCAGCCCCC



ATGTGCTGAG


5941
GAACAGGGCC CAGTCTGGCT CTGTGCCCCA GTTCAAGAAG GTGGTGTTCC



AGGAGTTCAC


6001
TGATGGCAGC TTCACCCAGC CCCTGTACAG AGGGGAGCTG AATGAGCACC



TGGGCCTGCT


6061
GGGCCCCTAC ATCAGGGCTG AGGTGGAGGA CAACATCATG GTGACCTTCA



GGAACCAGGC


6121
CAGCAGGCCC TACAGCTTCT ACAGCAGCCT GATCAGCTAT GAGGAGGACC



AGAGGCAGGG


6181
GGCTGAGCCC AGGAAGAACT TTGTGAAGCC CAATGAAACC AAGACCTACT



TCTGGAAGGT


6241
GCAGCACCAC ATGGCCCCCA CCAAGGATGA GTTTGACTGC AAGGCCTGGG



CCTACTTCTC


6301
TGATGTGGAC CTGGAGAAGG ATGTGCACTC TGGCCTGATT GGCCCCCTGC



TGGTGTGCCA


6361
CACCAACACC CTGAACCCTG CCCATGGCAG GCAGGTGACT GTGCAGGAGT



TTGCCCTGTT


6421
CTTCACCATC TTTGATGAAA CCAAGAGCTG GTACTTCACT GAGAACATGG



AGAGGAACTG


6481
CAGGGCCCCC TGCAACATCC AGATGGAGGA CCCCACCTTC AAGGAGAACT



ACAGGTTCCA


6541
TGCCATCAAT GGCTACATCA TGGACACCCT GCCTGGCCTG GTGATGGCCC



AGGACCAGAG


6601
GATCAGGTGG TACCTGCTGA GCATGGGCAG CAATGAGAAC ATCCACAGCA



TCCACTTCTC


6661
TGGCCATGTG TTCACTGTGA GGAAGAAGGA GGAGTACAAG ATGGCCCTGT



ACAACCTGTA


6721
CCCTGGGGTG TTTGAGACTG TGGAGATGCT GCCCAGCAAG GCTGGCATCT



GGAGGGTGGA


6781
GTGCCTGATT GGGGAGCACC TGCATGCTGG CATGAGCACC CTGTTCCTGG



TGTACAGCAA


6841
CAAGTGCCAG ACCCCCCTGG GCATGGCCTC TGGCCACATC AGGGACTTCC



AGATCACTGC


6901
CTCTGGCCAG TATGGCCAGT GGGCCCCCAA GCTGGCCAGG CTGCACTACT



CTGGCAGCAT


6961
CAATGCCTGG AGCACCAAGG AGCCCTTCAG CTGGATCAAG GTGGACCTGC



TGGCCCCCAT


7021
GATCATCCAT GGCATCAAGA CCCAGGGGGC CAGGCAGAAG TTCAGCAGCC



TGTACATCAG


7081
CCAGTTCATC ATCATGTACA GCCTGGATGG CAAGAAGTGG CAGACCTACA



GGGGCAACAG


7141
CACTGGCACC CTGATGGTGT TCTTTGGCAA TGTGGACAGC TCTGGCATCA



AGCACAACAT


7201
CTTCAACCCC CCCATCATTG CCAGATACAT CAGGCTGCAC CCCACCCACT



ACAGCATCAG


7261
GAGCACCCTG AGGATGGAGC TGATGGGCTG TGACCTGAAC AGCTGCAGCA



TGCCCCTGGG


7321
CATGGAGAGC AAGGCCATCT CTGATGCCCA GATCACTGCC AGCAGCTACT



TCACCAACAT


7381
GTTTGCCACC TGGAGCCCCA GCAAGGCCAG GCTGCACCTG CAGGGCAGGA



GCAATGCCTG


7441
GAGGCCCCAG GTCAACAACC CCAAGGAGTG GCTGCAGGTG GACTTCCAGA



AGACCATGAA


7501
GGTGACTGGG GTGACCACCC AGGGGGTGAA GAGCCTGCTG ACCAGCATGT



ATGTGAAGGA


7561
GTTCCTGATC AGCAGCAGCC AGGATGGCCA CCAGTGGACC CTGTTCTTCC



AGAATGGCAA


7621
GGTGAAGGTG TTCCAGGGCA ACCAGGACAG CTTCACCCCT GTGGTGAACA



GCCTGGACCC


7681
CCCCCTGCTG ACCAGATACC TGAGGATTCA CCCCCAGAGC TGGGTGCACC



AGATTGCCCT


7741
GAGGATGGAG GTGCTGGGCT GTGAGGCCCA GGACCTGTAC TGAGCGGCCG



CGGGCCCAAT


7801
CAACCTCTGG ATTACAAAAT TTGTGAAAGA TTGACTGGTA TTCTTAACTA



TGTTGCTCCT


7861
TTTACGCTAT GTGGATACGC TGCTTTAATG CCTTTGTATC ATGCTATTGC



TTCCCGTATG


7921
GCTTTCATTT TCTCCTCCTT GTATAAATCC TGGTTGCTGT CTCTTTATGA



GGAGTTGTGG


7981
CCCGTTGTCA GGCAACGTGG CGTGGTGTGC ACTGTGTTTG CTGACGCAAC



CCCCACTGGT


8041
TGGGGCATTG CCACCACCTG TCAGCTCCTT TCCGGGACTT TCGCTTTCCC



CCTCCCTATT


8101
GCCACGGCGG AACTCATCGC CGCCTGCCTT GCCCGCTGCT GGACAGGGGC



TCGGCTGTTG


8161
GGCACTGACA ATTCCGTGGT GTTGTCGGGG AAATCATCGT CCTTTCCTTG



GCTGCTCGCC


8221
TGTGTTGCCA CCTGGATTCT GCGCGGGACG TCCTTCTGCT ACGTCCCTTC



GGCCCTCAAT


8281
CCAGCGGACC TTCCTTCCCG CGGCCTGCTG CCGGCTCTGC GGCCTCTTCC



GCGTCTTCGC


8341
CTTCGCCCTC AGACGAGTCG GATCTCCCTT TGGGCCGCCT CCCCGCAAGC



TTCGCACTTT


8401
TTAAAAGAAA AGGGAGGACT GGATGGGATT TATTACTCCG ATAGGACGCT



GGCTTGTAAC


8461
TCAGTCTCTT ACTAGGAGAC CAGCTTGAGC CTGGGTGTTC GCTGGTTAGC



CTAACCTGGT


8521
TGGCCACCAG GGGTAAGGAC TCCTTGGCTT AGAAAGCTAA TAAACTTGCC



TGCATTAGAG


8581
CTCTTACGCG TCCCGGGCTC GAGATCCGCA TCTCAATTAG TCAGCAACCA



TAGTCCCGCC


8641
CCTAACTCCG CCCATCCCGC CCCTAACTCC GCCCAGTTCC GCCCATTCTC



CGCCCCATGG


8701
CTGACTAATT TTTTTTATTT ATGCAGAGGC CGAGGCCGCC TCGGCCTCTG



AGCTATTCCA


8761
GAAGTAGTGA GGAGGCTTTT TTGGAGGCCT AGGCTTTTGC AAAAAGCTAA



CTTGTTTATT


8821
GCAGCTTATA ATGGTTACAA ATAAAGCAAT AGCATCACAA ATTTCACAAA



TAAAGCATTT


8881
TTTTCACTGC ATTCTAGTTG TGGTTTGTCC AAACTCATCA ATGTATCTTA



TCATGTCTGT


8941
CCGCTTCCTC GCTCACTGAC TCGCTGCGCT CGGTCGTTCG GCTGCGGCGA



GCGGTATCAG


9001
CTCACTCAAA GGCGGTAATA CGGTTATCCA CAGAATCAGG GGATAACGCA



GGAAAGAACA


9061
TGTGAGCAAA AGGCCAGCAA AAGGCCAGGA ACCGTAAAAA GGCCGCGTTG



CTGGCGTTTT


9121
TCCATAGGCT CCGCCCCCCT GACGAGCATC ACAAAAATCG ACGCTCAAGT



CAGAGGTGGC


9181
GAAACCCGAC AGGACTATAA AGATACCAGG CGTTTCCCCC TGGAAGCTCC



CTCGTGCGCT


9241
CTCCTGTTCC GACCCTGCCG CTTACCGGAT ACCTGTCCGC CTTTCTCCCT



TCGGGAAGCG


9301
TGGCGCTTTC TCATAGCTCA CGCTGTAGGT ATCTCAGTTC GGTGTAGGTC



GTTCGCTCCA


9361
AGCTGGGCTG TGTGCACGAA CCCCCCGTTC AGCCCGACCG CTGCGCCTTA



TCCGGTAACT


9421
ATCGTCTTGA GTCCAACCCG GTAAGACACG ACTTATCGCC ACTGGCAGCA



GCCACTGGTA


9481
ACAGGATTAG CAGAGCGAGG TATGTAGGCG GTGCTACAGA GTTCTTGAAG



TGGTGGCCTA


9541
ACTACGGCTA CACTAGAAGA ACAGTATTTG GTATCTGCGC TCTGCTGAAG



CCAGTTACCT


9601
TCGGAAAAAG AGTTGGTAGC TCTTGATCCG GCAAACAAAC CACCGCTGGT



AGCGGTGGTT


9661
TTTTTGTTTG CAAGCAGCAG ATTACGCGCA GAAAAAAAGG ATCTCAAGAA



GATCCTTTGA


9721
TCTTTTCTAC GGGGTCTGAC GCTCAGTGGA ACGAAAACTC ACGTTAAGGG



ATTTTGGTCA


9781
TGAGATTATC AAAAAGGATC TTCACCTAGA TCCTTTTAAA TTAAAAATGA



AGTTTTAAAT


9841
CAATCTAAAG TATATATGAG TAAACTTGGT CTGACAGTTA GAAAAACTCA



TCGAGCATCA


9901
AATGAAACTG CAATTTATTC ATATCAGGAT TATCAATACC ATATTTTTGA



AAAAGCCGTT


9961
TCTGTAATGA AGGAGAAAAC TCACCGAGGC AGTTCCATAG GATGGCAAGA



TCCTGGTATC


10021
GGTCTGCGAT TCCGACTCGT CCAACATCAA TACAACCTAT TAATTTCCCC



TCGTCAAAAA


10081
TAAGGTTATC AAGTGAGAAA TCACCATGAG TGACGACTGA ATCCGGTGAG



AATGGCAACA


10141
GCTTATGCAT TTCTTTCCAG ACTTGTTCAA CAGGCCAGCC ATTACGCTCG



TCATCAAAAT


10201
CACTCGCATC AACCAAACCG TTATTCATTC GTGATTGCGC CTGAGCGAGA



CGAAATACGC


10261
GATCGCTGTT AAAAGGACAA TTACAAACAG GAATCGAATG CAACCGGCGC



AGGAACACTG


10321
CCAGCGCATC AACAATATTT TCACCTGAAT CAGGATATTC TTCTAATACC



TGGAATGCTG


10381
TTTTTCCGGG GATCGCAGTG GTGAGTAACC ATGCATCATC AGGAGTACGG



ATAAAATGCT


10441
TGATGGTCGG AAGAGGCATA AATTCCGTCA GCCAGTTTAG TCTGACCATC



TCATCTGTAA


10501
CATCATTGGC AACGCTACCT TTGCCATGTT TCAGAAACAA CTCTGGCGCA



TCGGGCTTCC


10561
CATACAATCG ATAGATTGTC GCACCTGATT GCCCGACATT ATCGCGAGCC



CATTTATACC


10621
CATATAAATC AGCATCCATG TTGGAATTTA ATCGCGGCCT AGAGCAAGAC



GTTTCCCGTT


10681
GAATATGGCT CATAACACCC CTTGTATTAC TGTTTATGTA AGCAGACAGT



TTTATTGTTC


10741
ATGATGATAT ATTTTTATCT TGTGCAATGT AACATCAGAG ATTTTGAGAC



ACAACAATTG


10801
GTCGACGGAT CC










SEQ ID NO: 12








1
GGTACCTCAA TATTGGCCAT TAGCCATATT ATTCATTGGT TATATAGCAT



AAATCAATAT


61
TGGCTATTGG CCATTGCATA CGTTGTATCT ATATCATAAT ATGTACATTT



ATATTGGCTC


121
ATGTCCAATA TGACCGCCAT GTTGGCATTG ATTATTGACT AGTTATTAAT



AGTAATCAAT


181
TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC



TTACGGTAAA


241
TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA



TGACGTATGT


301
TCCCATAGTA ACGCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT



ATTTACGGTA


361
AACTGCCCAC TTGGCAGTAC ATCAAGTGTA TCATATGCCA AGTCCGCCCC



CTATTGACGT


421
CAATGACGGT AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAC



GGGACTTTCC


481
TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC



GGTTTTGGCA


541
GTACACCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC



TCCACCCCAT


601
TGACGTCAAT GGGAGTTTGT TTTGGCACCA AAATCAACGG GACTTTCCAA



AATGTCGTAA


661
CAACTGCGAT CGCCCGCCCC GTTGACGCAA ATGGGCGGTA GGCGTGTACG



GTGGGAGGTC


721
TATATAAGCA GAGCTCGCTG GCTTGTAACT CAGTCTCTTA CTAGGAGACC



AGCTTGAGCC


781
TGGGTGTTCG CTGGTTAGCC TAACCTGGTT GGCCACCAGG GGTAAGGACT



CCTTGGCTTA


841
GAAAGCTAAT AAACTTGCCT GCATTAGAGC TTATCTGAGT CAAGTGTCCT



CATTGACGCC


901
TCACTCTCTT GAACGGGAAT CTTCCTTACT GGGTTCTCTC TCTGACCCAG



GCGAGAGAAA


961
CTCCAGCAGT GGCGCCCGAA CAGGGACTTG AGTGAGAGTG TAGGCACGTA



CAGCTGAGAA


1021
GGCGTCGGAC GCGAAGGAAG CGCGGGGTGC GACGCGACCA AGAAGGAGAC



TTGGTGAGTA


1081
GGCTTCTCGA GTGCCGGGAA AAAGCTCGAG CCTAGTTAGA GGACTAGGAG



AGGCCGTAGC


1141
CGTAACTACT CTGGGCAAGT AGGGCAGGCG GTGGGTACGC AATGGGGGCG



GCTACCTCAG


1201
CACTAAATAG GAGACAATTA GACCAATTTG AGAAAATACG ACTTCGCCCG



AACGGAAAGA


1261
AAAAGTACCA AATTAAACAT TTAATATGGG CAGGCAAGGA GATGGAGCGC



TTCGGCCTCC


1321
ATGAGAGGTT GTTGGAGACA GAGGAGGGGT GTAAAAGAAT CATAGAAGTC



CTCTACCCCC


1381
TAGAACCAAC AGGATCGGAG GGCTTAAAAA GTCTGTTCAA TCTTGTGTGC



GTGCTATATT


1441
GCTTGCACAA GGAACAGAAA GTGAAAGACA CAGAGGAAGC AGTAGCAACA



GTAAGACAAC


1501
ACTGCCATCT AGTGGAAAAA GAAAAAAGTG CAACAGAGAC ATCTAGTGGA



CAAAAGAAAA


1561
ATGACAAGGG AATAGCAGCG CCACCTGGTG GCAGTCAGAA TTTTCCAGCG



CAACAACAAG


1621
GAAATGCCTG GGTACATGTA CCCTTGTCAC CGCGCACCTT AAATGCGTGG



GTAAAAGCAG


1681
TAGAGGAGAA AAAATTTGGA GCAGAAATAG TACCCATGTT TCAAGCCCTA



TCGAATTCCC


1741
GTTTGTGCTA GGGTTCTTAG GCTTCTTGGG GGCTGCTGGA ACTGCAATGG



GAGCAGCGGC


1801
GACAGCCCTG ACGGTCCAGT CTCAGCATTT GCTTGCTGGG ATACTGCAGC



AGCAGAAGAA


1861
TCTGCTGGCG GCTGTGGAGG CTCAACAGCA GATGTTGAAG CTGACCATTT



GGGGTGTTAA


1921
AAACCTCAAT GCCCGCGTCA CAGCCCTTGA GAAGTACCTA GAGGATCAGG



CACGACTAAA


1981
CTCCTGGGGG TGCGCATGGA AACAAGTATG TCATACCACA GTGGAGTGGC



CCTGGACAAA


2041
TCGGACTCCG GATTGGCAAA ATATGACTTG GTTGGAGTGG GAAAGACAAA



TAGCTGATTT


2101
GGAAAGCAAC ATTACGAGAC AATTAGTGAA GGCTAGAGAA CAAGAGGAAA



AGAATCTAGA


2161
TGCCTATCAG AAGTTAACTA GTTGGTCAGA TTTCTGGTCT TGGTTCGATT



TCTCAAAATG


2221
GCTTAACATT TTAAAAATGG GATTTTTAGT AATAGTAGGA ATAATAGGGT



TAAGATTACT


2281
TTACACAGTA TATGGATGTA TAGTGAGGGT TAGGCAGGGA TATGTTCCTC



TATCTCCACA


2341
GATCCATATC CGCGGCAATT TTAAAAGAAA GGGAGGAATA GGGGGACAGA



CTTCAGCAGA


2401
GAGACTAATT AATATAATAA CAACACAATT AGAAATACAA CATTTACAAA



CCAAAATTCA


2461
AAAAATTTTA AATTTTAGAG CCGCGGAGAT CTGTTACATA ACTTATGGTA



AATGGCCTGC


2521
CTGGCTGACT GCCCAATGAC CCCTGCCCAA TGATGTCAAT AATGATGTAT



GTTCCCATGT


2581
AATGCCAATA GGGACTTTCC ATTGATGTCA ATGGGTGGAG TATTTATGGT



AACTGCCCAC


2641
TTGGCAGTAC ATCAAGTGTA TCATATGCCA AGTATGCCCC CTATTGATGT



CAATGATGGT


2701
AAATGGCCTG CCTGGCATTA TGCCCAGTAC ATGACCTTAT GGGACTTTCC



TACTTGGCAG


2761
TACATCTATG TATTAGTCAT TGCTATTACC ATGGGAATTC ACTAGTGGAG



AAGAGCATGC


2821
TTGAGGGCTG AGTGCCCCTC AGTGGGCAGA GAGCACATGG CCCACAGTCC



CTGAGAAGTT


2881
GGGGGGAGGG GTGGGCAATT GAACTGGTGC CTAGAGAAGG TGGGGCTTGG



GTAAACTGGG


2941
AAAGTGATGT GGTGTACTGG CTCCACCTTT TTCCCCAGGG TGGGGGAGAA



CCATATATAA


3001
GTGCAGTAGT CTCTGTGAAC ATTCAAGCTT CTGCCTTCTC CCTCCTGTGA



GTTTGCTAGC


3061
CACCAATGCA GATTGAGCTG AGCACCTGCT TCTTCCTGTG CCTGCTGAGG



TTCTGCTTCT


3121
CTGCCACCAG GAGATACTAC CTGGGGGCTG TGGAGCTGAG CTGGGACTAC



ATGCAGTCTG


3181
ACCTGGGGGA GCTGCCTGTG GATGCCAGGT TCCCCCCCAG AGTGCCCAAG



AGCTTCCCCT


3241
TCAACACCTC TGTGGTGTAC AAGAAGACCC TGTTTGTGGA GTTCACTGAC



CACCTGTTCA


3301
ACATTGCCAA GCCCAGGCCC CCCTGGATGG GCCTGCTGGG CCCCACCATC



CAGGCTGAGG


3361
TGTATGACAC TGTGGTGATC ACCCTGAAGA ACATGGCCAG CCACCCTGTG



AGCCTGCATG


3421
CTGTGGGGGT GAGCTACTGG AAGGCCTCTG AGGGGGCTGA GTATGATGAC



CAGACCAGCC


3481
AGAGGGAGAA GGAGGATGAC AAGGTGTTCC CTGGGGGCAG CCACACCTAT



GTGTGGCAGG


3541
TGCTGAAGGA GAATGGCCCC ATGGCCTCTG ACCCCCTGTG CCTGACCTAC



AGCTACCTGA


3601
GCCATGTGGA CCTGGTGAAG GACCTGAACT CTGGCCTGAT TGGGGCCCTG



CTGGTGTGCA


3661
GGGAGGGCAG CCTGGCCAAG GAGAAGACCC AGACCCTGCA CAAGTTCATC



CTGCTGTTTG


3721
CTGTGTTTGA TGAGGGCAAG AGCTGGCACT CTGAAACCAA GAACAGCCTG



ATGCAGGACA


3781
GGGATGCTGC CTCTGCCAGG GCCTGGCCCA AGATGCACAC TGTGAATGGC



TATGTGAACA


3841
GGAGCCTGCC TGGCCTGATT GGCTGCCACA GGAAGTCTGT GTACTGGCAT



GTGATTGGCA


3901
TGGGCACCAC CCCTGAGGTG CACAGCATCT TCCTGGAGGG CCACACCTTC



CTGGTCAGGA


3961
ACCACAGGCA GGCCAGCCTG GAGATCAGCC CCATCACCTT CCTGACTGCC



CAGACCCTGC


4021
TGATGGACCT GGGCCAGTTC CTGCTGTTCT GCCACATCAG CAGCCACCAG



CATGATGGCA


4081
TGGAGGCCTA TGTGAAGGTG GACAGCTGCC CTGAGGAGCC CCAGCTGAGG



ATGAAGAACA


4141
ATGAGGAGGC TGAGGACTAT GATGATGACC TGACTGACTC TGAGATGGAT



GTGGTGAGGT


4201
TTGATGATGA CAACAGCCCC AGCTTCATCC AGATCAGGTC TGTGGCCAAG



AAGCACCCCA


4261
AGACCTGGGT GCACTACATT GCTGCTGAGG AGGAGGACTG GGACTATGCC



CCCCTGGTGC


4321
TGGCCCCTGA TGACAGGAGC TACAAGAGCC AGTACCTGAA CAATGGCCCC



CAGAGGATTG


4381
GCAGGAAGTA CAAGAAGGTC AGGTTCATGG CCTACACTGA TGAAACCTTC



AAGACCAGGG


4441
AGGCCATCCA GCATGAGTCT GGCATCCTGG GCCCCCTGCT GTATGGGGAG



GTGGGGGACA


4501
CCCTGCTGAT CATCTTCAAG AACCAGGCCA GCAGGCCCTA CAACATCTAC



CCCCATGGCA


4561
TCACTGATGT GAGGCCCCTG TACAGCAGGA GGCTGCCCAA GGGGGTGAAG



CACCTGAAGG


4621
ACTTCCCCAT CCTGCCTGGG GAGATCTTCA AGTACAAGTG GACTGTGACT



GTGGAGGATG


4681
GCCCCACCAA GTCTGACCCC AGGTGCCTGA CCAGATACTA CAGCAGCTTT



GTGAACATGG


4741
AGAGGGACCT GGCCTCTGGC CTGATTGGCC CCCTGCTGAT CTGCTACAAG



GAGTCTGTGG


4801
ACCAGAGGGG CAACCAGATC ATGTCTGACA AGAGGAATGT GATCCTGTTC



TCTGTGTTTG


4861
ATGAGAACAG GAGCTGGTAC CTGACTGAGA ACATCCAGAG GTTCCTGCCC



AACCCTGCTG


4921
GGGTGCAGCT GGAGGACCCT GAGTTCCAGG CCAGCAACAT CATGCACAGC



ATCAATGGCT


4981
ATGTGTTTGA CAGCCTGCAG CTGTCTGTGT GCCTGCATGA GGTGGCCTAC



TGGTACATCC


5041
TGAGCATTGG GGCCCAGACT GACTTCCTGT CTGTGTTCTT CTCTGGCTAC



ACCTTCAAGC


5101
ACAAGATGGT GTATGAGGAC ACCCTGACCC TGTTCCCCTT CTCTGGGGAG



ACTGTGTTCA


5161
TGAGCATGGA GAACCCTGGC CTGTGGATTC TGGGCTGCCA CAACTCTGAC



TTCAGGAACA


5221
GGGGCATGAC TGCCCTGCTG AAAGTCTCCA GCTGTGACAA GAACACTGGG



GACTACTATG


5281
AGGACAGCTA TGAGGACATC TCTGCCTACC TGCTGAGCAA GAACAATGCC



ATTGAGCCCA


5341
GGAGCTTCAG CCAGAATGCC ACTAATGTGT CTAACAACAG CAACACCAGC



AATGACAGCA


5401
ATGTGTCTCC CCCAGTGCTG AAGAGGCACC AGAGGGAGAT CACCAGGACC



ACCCTGCAGT


5461
CTGACCAGGA GGAGATTGAC TATGATGACA CCATCTCTGT GGAGATGAAG



AAGGAGGACT


5521
TTGACATCTA CGACGAGGAC GAGAACCAGA GCCCCAGGAG CTTCCAGAAG



AAGACCAGGC


5581
ACTACTTCAT TGCTGCTGTG GAGAGGCTGT GGGACTATGG CATGAGCAGC



AGCCCCCATG


5641
TGCTGAGGAA CAGGGCCCAG TCTGGCTCTG TGCCCCAGTT CAAGAAGGTG



GTGTTCCAGG


5701
AGTTCACTGA TGGCAGCTTC ACCCAGCCCC TGTACAGAGG GGAGCTGAAT



GAGCACCTGG


5761
GCCTGCTGGG CCCCTACATC AGGGCTGAGG TGGAGGACAA CATCATGGTG



ACCTTCAGGA


5821
ACCAGGCCAG CAGGCCCTAC AGCTTCTACA GCAGCCTGAT CAGCTATGAG



GAGGACCAGA


5881
GGCAGGGGGC TGAGCCCAGG AAGAACTTTG TGAAGCCCAA TGAAACCAAG



ACCTACTTCT


5941
GGAAGGTGCA GCACCACATG GCCCCCACCA AGGATGAGTT TGACTGCAAG



GCCTGGGCCT


6001
ACTTCTCTGA TGTGGACCTG GAGAAGGATG TGCACTCTGG CCTGATTGGC



CCCCTGCTGG


6061
TGTGCCACAC CAACACCCTG AACCCTGCCC ATGGCAGGCA GGTGACTGTG



CAGGAGTTTG


6121
CCCTGTTCTT CACCATCTTT GATGAAACCA AGAGCTGGTA CTTCACTGAG



AACATGGAGA


6181
GGAACTGCAG GGCCCCCTGC AACATCCAGA TGGAGGACCC CACCTTCAAG



GAGAACTACA


6241
GGTTCCATGC CATCAATGGC TACATCATGG ACACCCTGCC TGGCCTGGTG



ATGGCCCAGG


6301
ACCAGAGGAT CAGGTGGTAC CTGCTGAGCA TGGGCAGCAA TGAGAACATC



CACAGCATCC


6361
ACTTCTCTGG CCATGTGTTC ACTGTGAGGA AGAAGGAGGA GTACAAGATG



GCCCTGTACA


6421
ACCTGTACCC TGGGGTGTTT GAGACTGTGG AGATGCTGCC CAGCAAGGCT



GGCATCTGGA


6481
GGGTGGAGTG CCTGATTGGG GAGCACCTGC ATGCTGGCAT GAGCACCCTG



TTCCTGGTGT


6541
ACAGCAACAA GTGCCAGACC CCCCTGGGCA TGGCCTCTGG CCACATCAGG



GACTTCCAGA


6601
TCACTGCCTC TGGCCAGTAT GGCCAGTGGG CCCCCAAGCT GGCCAGGCTG



CACTACTCTG


6661
GCAGCATCAA TGCCTGGAGC ACCAAGGAGC CCTTCAGCTG GATCAAGGTG



GACCTGCTGG


6721
CCCCCATGAT CATCCATGGC ATCAAGACCC AGGGGGCCAG GCAGAAGTTC



AGCAGCCTGT


6781
ACATCAGCCA GTTCATCATC ATGTACAGCC TGGATGGCAA GAAGTGGCAG



ACCTACAGGG


6841
GCAACAGCAC TGGCACCCTG ATGGTGTTCT TTGGCAATGT GGACAGCTCT



GGCATCAAGC


6901
ACAACATCTT CAACCCCCCC ATCATTGCCA GATACATCAG GCTGCACCCC



ACCCACTACA


6961
GCATCAGGAG CACCCTGAGG ATGGAGCTGA TGGGCTGTGA CCTGAACAGC



TGCAGCATGC


7021
CCCTGGGCAT GGAGAGCAAG GCCATCTCTG ATGCCCAGAT CACTGCCAGC



AGCTACTTCA


7081
CCAACATGTT TGCCACCTGG AGCCCCAGCA AGGCCAGGCT GCACCTGCAG



GGCAGGAGCA


7141
ATGCCTGGAG GCCCCAGGTC AACAACCCCA AGGAGTGGCT GCAGGTGGAC



TTCCAGAAGA


7201
CCATGAAGGT GACTGGGGTG ACCACCCAGG GGGTGAAGAG CCTGCTGACC



AGCATGTATG


7261
TGAAGGAGTT CCTGATCAGC AGCAGCCAGG ATGGCCACCA GTGGACCCTG



TTCTTCCAGA


7321
ATGGCAAGGT GAAGGTGTTC CAGGGCAACC AGGACAGCTT CACCCCTGTG



GTGAACAGCC


7381
TGGACCCCCC CCTGCTGACC AGATACCTGA GGATTCACCC CCAGAGCTGG



GTGCACCAGA


7441
TTGCCCTGAG GATGGAGGTG CTGGGCTGTG AGGCCCAGGA CCTGTACTGA



GCGGCCGCGG


7501
GCCCAATCAA CCTCTGGATT ACAAAATTTG TGAAAGATTG ACTGGTATTC



TTAACTATGT


7561
TGCTCCTTTT ACGCTATGTG GATACGCTGC TTTAATGCCT TTGTATCATG



CTATTGCTTC


7621
CCGTATGGCT TTCATTTTCT CCTCCTTGTA TAAATCCTGG TTGCTGTCTC



TTTATGAGGA


7681
GTTGTGGCCC GTTGTCAGGC AACGTGGCGT GGTGTGCACT GTGTTTGCTG



ACGCAACCCC


7741
CACTGGTTGG GGCATTGCCA CCACCTGTCA GCTCCTTTCC GGGACTTTCG



CTTTCCCCCT


7801
CCCTATTGCC ACGGCGGAAC TCATCGCCGC CTGCCTTGCC CGCTGCTGGA



CAGGGGCTCG


7861
GCTGTTGGGC ACTGACAATT CCGTGGTGTT GTCGGGGAAA TCATCGTCCT



TTCCTTGGCT


7921
GCTCGCCTGT GTTGCCACCT GGATTCTGCG CGGGACGTCC TTCTGCTACG



TCCCTTCGGC


7981
CCTCAATCCA GCGGACCTTC CTTCCCGCGG CCTGCTGCCG GCTCTGCGGC



CTCTTCCGCG


8041
TCTTCGCCTT CGCCCTCAGA CGAGTCGGAT CTCCCTTTGG GCCGCCTCCC



CGCAAGCTTC


8101
GCACTTTTTA AAAGAAAAGG GAGGACTGGA TGGGATTTAT TACTCCGATA



GGACGCTGGC


8161
TTGTAACTCA GTCTCTTACT AGGAGACCAG CTTGAGCCTG GGTGTTCGCT



GGTTAGCCTA


8221
ACCTGGTTGG CCACCAGGGG TAAGGACTCC TTGGCTTAGA AAGCTAATAA



ACTTGCCTGC


8281
ATTAGAGCTC TTACGCGTCC CGGGCTCGAG ATCCGCATCT CAATTAGTCA



GCAACCATAG


8341
TCCCGCCCCT AACTCCGCCC ATCCCGCCCC TAACTCCGCC CAGTTCCGCC



CATTCTCCGC


8401
CCCATGGCTG ACTAATTTTT TTTATTTATG CAGAGGCCGA GGCCGCCTCG



GCCTCTGAGC


8461
TATTCCAGAA GTAGTGAGGA GGCTTTTTTG GAGGCCTAGG CTTTTGCAAA



AAGCTAACTT


8521
GTTTATTGCA GCTTATAATG GTTACAAATA AAGCAATAGC ATCACAAATT



TCACAAATAA


8581
AGCATTTTTT TCACTGCATT CTAGTTGTGG TTTGTCCAAA CTCATCAATG



TATCTTATCA


8641
TGTCTGTCCG CTTCCTCGCT CACTGACTCG CTGCGCTCGG TCGTTCGGCT



GCGGCGAGCG


8701
GTATCAGCTC ACTCAAAGGC GGTAATACGG TTATCCACAG AATCAGGGGA



TAACGCAGGA


8761
AAGAACATGT GAGCAAAAGG CCAGCAAAAG GCCAGGAACC GTAAAAAGGC



CGCGTTGCTG


8821
GCGTTTTTCC ATAGGCTCCG CCCCCCTGAC GAGCATCACA AAAATCGACG



CTCAAGTCAG


8881
AGGTGGCGAA ACCCGACAGG ACTATAAAGA TACCAGGCGT TTCCCCCTGG



AAGCTCCCTC


8941
GTGCGCTCTC CTGTTCCGAC CCTGCCGCTT ACCGGATACC TGTCCGCCTT



TCTCCCTTCG


9001
GGAAGCGTGG CGCTTTCTCA TAGCTCACGC TGTAGGTATC TCAGTTCGGT



GTAGGTCGTT


9061
CGCTCCAAGC TGGGCTGTGT GCACGAACCC CCCGTTCAGC CCGACCGCTG



CGCCTTATCC


9121
GGTAACTATC GTCTTGAGTC CAACCCGGTA AGACACGACT TATCGCCACT



GGCAGCAGCC


9181
ACTGGTAACA GGATTAGCAG AGCGAGGTAT GTAGGCGGTG CTACAGAGTT



CTTGAAGTGG


9241
TGGCCTAACT ACGGCTACAC TAGAAGAACA GTATTTGGTA TCTGCGCTCT



GCTGAAGCCA


9301
GTTACCTTCG GAAAAAGAGT TGGTAGCTCT TGATCCGGCA AACAAACCAC



CGCTGGTAGC


9361
GGTGGTTTTT TTGTTTGCAA GCAGCAGATT ACGCGCAGAA AAAAAGGATC



TCAAGAAGAT


9421
CCTTTGATCT TTTCTACGGG GTCTGACGCT CAGTGGAACG AAAACTCACG



TTAAGGGATT


9481
TTGGTCATGA GATTATCAAA AAGGATCTTC ACCTAGATCC TTTTAAATTA



AAAATGAAGT


9541
TTTAAATCAA TCTAAAGTAT ATATGAGTAA ACTTGGTCTG ACAGTTAGAA



AAACTCATCG


9601
AGCATCAAAT GAAACTGCAA TTTATTCATA TCAGGATTAT CAATACCATA



TTTTTGAAAA


9661
AGCCGTTTCT GTAATGAAGG AGAAAACTCA CCGAGGCAGT TCCATAGGAT



GGCAAGATCC


9721
TGGTATCGGT CTGCGATTCC GACTCGTCCA ACATCAATAC AACCTATTAA



TTTCCCCTCG


9781
TCAAAAATAA GGTTATCAAG TGAGAAATCA CCATGAGTGA CGACTGAATC



CGGTGAGAAT


9841
GGCAACAGCT TATGCATTTC TTTCCAGACT TGTTCAACAG GCCAGCCATT



ACGCTCGTCA


9901
TCAAAATCAC TCGCATCAAC CAAACCGTTA TTCATTCGTG ATTGCGCCTG



AGCGAGACGA


9961
AATACGCGAT CGCTGTTAAA AGGACAATTA CAAACAGGAA TCGAATGCAA



CCGGCGCAGG


10021
AACACTGCCA GCGCATCAAC AATATTTTCA CCTGAATCAG GATATTCTTC



TAATACCTGG


10081
AATGCTGTTT TTCCGGGGAT CGCAGTGGTG AGTAACCATG CATCATCAGG



AGTACGGATA


10141
AAATGCTTGA TGGTCGGAAG AGGCATAAAT TCCGTCAGCC AGTTTAGTCT



GACCATCTCA


10201
TCTGTAACAT CATTGGCAAC GCTACCTTTG CCATGTTTCA GAAACAACTC



TGGCGCATCG


10261
GGCTTCCCAT ACAATCGATA GATTGTCGCA CCTGATTGCC CGACATTATC



GCGAGCCCAT


10321
TTATACCCAT ATAAATCAGC ATCCATGTTG GAATTTAATC GCGGCCTAGA



GCAAGACGTT


10381
TCCCGTTGAA TATGGCTCAT AACACCCCTT GTATTACTGT TTATGTAAGC



AGACAGTTTT


10441
ATTGTTCATG ATGATATATT TTTATCTTGT GCAATGTAAC ATCAGAGATT



TTGAGACACA


10501
ACAATTGGTC GACGGATCC










SEQ ID NO: 13








1
GGTACCTCAA TATTGGCCAT TAGCCATATT ATTCATTGGT TATATAGCAT



AAATCAATAT


61
TGGCTATTGG CCATTGCATA CGTTGTATCT ATATCATAAT ATGTACATTT



ATATTGGCTC


121
ATGTCCAATA TGACCGCCAT GTTGGCATTG ATTATTGACT AGTTATTAAT



AGTAATCAAT


181
TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC



TTACGGTAAA


241
TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA



TGACGTATGT


301
TCCCATAGTA ACGCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT



ATTTACGGTA


361
AACTGCCCAC TTGGCAGTAC ATCAAGTGTA TCATATGCCA AGTCCGCCCC



CTATTGACGT


421
CAATGACGGT AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAC



GGGACTTTCC


481
TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC



GGTTTTGGCA


541
GTACACCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC



TCCACCCCAT


601
TGACGTCAAT GGGAGTTTGT TTTGGCACCA AAATCAACGG GACTTTCCAA



AATGTCGTAA


661
CAACTGCGAT CGCCCGCCCC GTTGACGCAA ATGGGCGGTA GGCGTGTACG



GTGGGAGGTC


721
TATATAAGCA GAGCTCGCTG GCTTGTAACT CAGTCTCTTA CTAGGAGACC



AGCTTGAGCC


781
TGGGTGTTCG CTGGTTAGCC TAACCTGGTT GGCCACCAGG GGTAAGGACT



CCTTGGCTTA


841
GAAAGCTAAT AAACTTGCCT GCATTAGAGC TTATCTGAGT CAAGTGTCCT



CATTGACGCC


901
TCACTCTCTT GAACGGGAAT CTTCCTTACT GGGTTCTCTC TCTGACCCAG



GCGAGAGAAA


961
CTCCAGCAGT GGCGCCCGAA CAGGGACTTG AGTGAGAGTG TAGGCACGTA



CAGCTGAGAA


1021
GGCGTCGGAC GCGAAGGAAG CGCGGGGTGC GACGCGACCA AGAAGGAGAC



TTGGTGAGTA


1081
GGCTTCTCGA GTGCCGGGAA AAAGCTCGAG CCTAGTTAGA GGACTAGGAG



AGGCCGTAGC


1141
CGTAACTACT CTGGGCAAGT AGGGCAGGCG GTGGGTACGC AATGGGGGCG



GCTACCTCAG


1201
CACTAAATAG GAGACAATTA GACCAATTTG AGAAAATACG ACTTCGCCCG



AACGGAAAGA


1261
AAAAGTACCA AATTAAACAT TTAATATGGG CAGGCAAGGA GATGGAGCGC



TTCGGCCTCC


1321
ATGAGAGGTT GTTGGAGACA GAGGAGGGGT GTAAAAGAAT CATAGAAGTC



CTCTACCCCC


1381
TAGAACCAAC AGGATCGGAG GGCTTAAAAA GTCTGTTCAA TCTTGTGTGC



GTGCTATATT


1441
GCTTGCACAA GGAACAGAAA GTGAAAGACA CAGAGGAAGC AGTAGCAACA



GTAAGACAAC


1501
ACTGCCATCT AGTGGAAAAA GAAAAAAGTG CAACAGAGAC ATCTAGTGGA



CAAAAGAAAA


1561
ATGACAAGGG AATAGCAGCG CCACCTGGTG GCAGTCAGAA TTTTCCAGCG



CAACAACAAG


1621
GAAATGCCTG GGTACATGTA CCCTTGTCAC CGCGCACCTT AAATGCGTGG



GTAAAAGCAG


1681
TAGAGGAGAA AAAATTTGGA GCAGAAATAG TACCCATGTT TCAAGCCCTA



TCGAATTCCC


1741
GTTTGTGCTA GGGTTCTTAG GCTTCTTGGG GGCTGCTGGA ACTGCAATGG



GAGCAGCGGC


1801
GACAGCCCTG ACGGTCCAGT CTCAGCATTT GCTTGCTGGG ATACTGCAGC



AGCAGAAGAA


1861
TCTGCTGGCG GCTGTGGAGG CTCAACAGCA GATGTTGAAG CTGACCATTT



GGGGTGTTAA


1921
AAACCTCAAT GCCCGCGTCA CAGCCCTTGA GAAGTACCTA GAGGATCAGG



CACGACTAAA


1981
CTCCTGGGGG TGCGCATGGA AACAAGTATG TCATACCACA GTGGAGTGGC



CCTGGACAAA


2041
TCGGACTCCG GATTGGCAAA ATATGACTTG GTTGGAGTGG GAAAGACAAA



TAGCTGATTT


2101
GGAAAGCAAC ATTACGAGAC AATTAGTGAA GGCTAGAGAA CAAGAGGAAA



AGAATCTAGA


2161
TGCCTATCAG AAGTTAACTA GTTGGTCAGA TTTCTGGTCT TGGTTCGATT



TCTCAAAATG


2221
GCTTAACATT TTAAAAATGG GATTTTTAGT AATAGTAGGA ATAATAGGGT



TAAGATTACT


2281
TTACACAGTA TATGGATGTA TAGTGAGGGT TAGGCAGGGA TATGTTCCTC



TATCTCCACA


2341
GATCCATATC CGCGGCAATT TTAAAAGAAA GGGAGGAATA GGGGGACAGA



CTTCAGCAGA


2401
GAGACTAATT AATATAATAA CAACACAATT AGAAATACAA CATTTACAAA



CCAAAATTCA


2461
AAAAATTTTA AATTTTAGAG CCGCGGAGAT CTCAATATTG GCCATTAGCC



ATATTATTCA


2521
TTGGTTATAT AGCATAAATC AATATTGGCT ATTGGCCATT GCATACGTTG



TATCTATATC


2581
ATAATATGTA CATTTATATT GGCTCATGTC CAATATGACC GCCATGTTGG



CATTGATTAT


2641
TGACTAGTTA TTAATAGTAA TCAATTACGG GGTCATTAGT TCATAGCCCA



TATATGGAGT


2701
TCCGCGTTAC ATAACTTACG GTAAATGGCC CGCCTGGCTG ACCGCCCAAC



GACCCCCGCC


2761
CATTGACGTC AATAATGACG TATGTTCCCA TAGTAACGCC AATAGGGACT



TTCCATTGAC


2821
GTCAATGGGT GGAGTATTTA CGGTAAACTG CCCACTTGGC AGTACATCAA



GTGTATCATA


2881
TGCCAAGTCC GCCCCCTATT GACGTCAATG ACGGTAAATG GCCCGCCTGG



CATTATGCCC


2941
AGTACATGAC CTTACGGGAC TTTCCTACTT GGCAGTACAT CTACGTATTA



GTCATCGCTA


3001
TTACCATGGT GATGCGGTTT TGGCAGTACA CCAATGGGCG TGGATAGCGG



TTTGACTCAC


3061
GGGGATTTCC AAGTCTCCAC CCCATTGACG TCAATGGGAG TTTGTTTTGG



CACCAAAATC


3121
AACGGGACTT TCCAAAATGT CGTAATAACC CCGCCCCGTT GACGCAAATG



GGCGGTAGGC


3181
GTGTACGGTG GGAGGTCTAT ATAAGCAGAG CTCGTTTAGT GAACCGTCAG



ATCACTAGAA


3241
GCTTTATTGC GGTAGTTTAT CACAGTTAAA TTGCTAACGC AGTCAGTGCT



TCTGACACAA


3301
CAGTCTCGAA CTTAAGCTGC AGAAGTTGGT CGTGAGGCAC TGGGCAGGCT



AGCCACCAAT


3361
GCAGATTGAG CTGAGCACCT GCTTCTTCCT GTGCCTGCTG AGGTTCTGCT



TCTCTGCCAC


3421
CAGGAGATAC TACCTGGGGG CTGTGGAGCT GAGCTGGGAC TACATGCAGT



CTGACCTGGG


3481
GGAGCTGCCT GTGGATGCCA GGTTCCCCCC CAGAGTGCCC AAGAGCTTCC



CCTTCAACAC


3541
CTCTGTGGTG TACAAGAAGA CCCTGTTTGT GGAGTTCACT GACCACCTGT



TCAACATTGC


3601
CAAGCCCAGG CCCCCCTGGA TGGGCCTGCT GGGCCCCACC ATCCAGGCTG



AGGTGTATGA


3661
CACTGTGGTG ATCACCCTGA AGAACATGGC CAGCCACCCT GTGAGCCTGC



ATGCTGTGGG


3721
GGTGAGCTAC TGGAAGGCCT CTGAGGGGGC TGAGTATGAT GACCAGACCA



GCCAGAGGGA


3781
GAAGGAGGAT GACAAGGTGT TCCCTGGGGG CAGCCACACC TATGTGTGGC



AGGTGCTGAA


3841
GGAGAATGGC CCCATGGCCT CTGACCCCCT GTGCCTGACC TACAGCTACC



TGAGCCATGT


3901
GGACCTGGTG AAGGACCTGA ACTCTGGCCT GATTGGGGCC CTGCTGGTGT



GCAGGGAGGG


3961
CAGCCTGGCC AAGGAGAAGA CCCAGACCCT GCACAAGTTC ATCCTGCTGT



TTGCTGTGTT


4021
TGATGAGGGC AAGAGCTGGC ACTCTGAAAC CAAGAACAGC CTGATGCAGG



ACAGGGATGC


4081
TGCCTCTGCC AGGGCCTGGC CCAAGATGCA CACTGTGAAT GGCTATGTGA



ACAGGAGCCT


4141
GCCTGGCCTG ATTGGCTGCC ACAGGAAGTC TGTGTACTGG CATGTGATTG



GCATGGGCAC


4201
CACCCCTGAG GTGCACAGCA TCTTCCTGGA GGGCCACACC TTCCTGGTCA



GGAACCACAG


4261
GCAGGCCAGC CTGGAGATCA GCCCCATCAC CTTCCTGACT GCCCAGACCC



TGCTGATGGA


4321
CCTGGGCCAG TTCCTGCTGT TCTGCCACAT CAGCAGCCAC CAGCATGATG



GCATGGAGGC


4381
CTATGTGAAG GTGGACAGCT GCCCTGAGGA GCCCCAGCTG AGGATGAAGA



ACAATGAGGA


4441
GGCTGAGGAC TATGATGATG ACCTGACTGA CTCTGAGATG GATGTGGTGA



GGTTTGATGA


4501
TGACAACAGC CCCAGCTTCA TCCAGATCAG GTCTGTGGCC AAGAAGCACC



CCAAGACCTG


4561
GGTGCACTAC ATTGCTGCTG AGGAGGAGGA CTGGGACTAT GCCCCCCTGG



TGCTGGCCCC


4621
TGATGACAGG AGCTACAAGA GCCAGTACCT GAACAATGGC CCCCAGAGGA



TTGGCAGGAA


4681
GTACAAGAAG GTCAGGTTCA TGGCCTACAC TGATGAAACC TTCAAGACCA



GGGAGGCCAT


4741
CCAGCATGAG TCTGGCATCC TGGGCCCCCT GCTGTATGGG GAGGTGGGGG



ACACCCTGCT


4801
GATCATCTTC AAGAACCAGG CCAGCAGGCC CTACAACATC TACCCCCATG



GCATCACTGA


4861
TGTGAGGCCC CTGTACAGCA GGAGGCTGCC CAAGGGGGTG AAGCACCTGA



AGGACTTCCC


4921
CATCCTGCCT GGGGAGATCT TCAAGTACAA GTGGACTGTG ACTGTGGAGG



ATGGCCCCAC


4981
CAAGTCTGAC CCCAGGTGCC TGACCAGATA CTACAGCAGC TTTGTGAACA



TGGAGAGGGA


5041
CCTGGCCTCT GGCCTGATTG GCCCCCTGCT GATCTGCTAC AAGGAGTCTG



TGGACCAGAG


5101
GGGCAACCAG ATCATGTCTG ACAAGAGGAA TGTGATCCTG TTCTCTGTGT



TTGATGAGAA


5161
CAGGAGCTGG TACCTGACTG AGAACATCCA GAGGTTCCTG CCCAACCCTG



CTGGGGTGCA


5221
GCTGGAGGAC CCTGAGTTCC AGGCCAGCAA CATCATGCAC AGCATCAATG



GCTATGTGTT


5281
TGACAGCCTG CAGCTGTCTG TGTGCCTGCA TGAGGTGGCC TACTGGTACA



TCCTGAGCAT


5341
TGGGGCCCAG ACTGACTTCC TGTCTGTGTT CTTCTCTGGC TACACCTTCA



AGCACAAGAT


5401
GGTGTATGAG GACACCCTGA CCCTGTTCCC CTTCTCTGGG GAGACTGTGT



TCATGAGCAT


5461
GGAGAACCCT GGCCTGTGGA TTCTGGGCTG CCACAACTCT GACTTCAGGA



ACAGGGGCAT


5521
GACTGCCCTG CTGAAAGTCT CCAGCTGTGA CAAGAACACT GGGGACTACT



ATGAGGACAG


5581
CTATGAGGAC ATCTCTGCCT ACCTGCTGAG CAAGAACAAT GCCATTGAGC



CCAGGAGCTT


5641
CAGCCAGAAC AGCAGGCACC CCAGCACCAG GCAGAAGCAG TTCAATGCCA



CCACCATCCC


5701
TGAGAATGAC ATAGAGAAGA CAGACCCATG GTTTGCCCAC CGGACCCCCA



TGCCCAAGAT


5761
CCAGAATGTG AGCAGCTCTG ACCTGCTGAT GCTGCTGAGG CAGAGCCCCA



CCCCCCATGG


5821
CCTGAGCCTG TCTGACCTGC AGGAGGCCAA GTATGAAACC TTCTCTGATG



ACCCCAGCCC


5881
TGGGGCCATT GACAGCAACA ACAGCCTGTC TGAGATGACC CACTTCAGGC



CCCAGCTGCA


5941
CCACTCTGGG GACATGGTGT TCACCCCTGA GTCTGGCCTG CAGCTGAGGC



TGAATGAGAA


6001
GCTGGGCACC ACTGCTGCCA CTGAGCTGAA GAAGCTGGAC TTCAAAGTCT



CCAGCACCAG


6061
CAACAACCTG ATCAGCACCA TCCCCTCTGA CAACCTGGCT GCTGGCACTG



ACAACACCAG


6121
CAGCCTGGGC CCCCCCAGCA TGCCTGTGCA CTATGACAGC CAGCTGGACA



CCACCCTGTT


6181
TGGCAAGAAG AGCAGCCCCC TGACTGAGTC TGGGGGCCCC CTGAGCCTGT



CTGAGGAGAA


6241
CAATGACAGC AAGCTGCTGG AGTCTGGCCT GATGAACAGC CAGGAGAGCA



GCTGGGGCAA


6301
GAATGTGAGC AGCAGGGAGA TCACCAGGAC CACCCTGCAG TCTGACCAGG



AGGAGATTGA


6361
CTATGATGAC ACCATCTCTG TGGAGATGAA GAAGGAGGAC TTTGACATCT



ACGACGAGGA


6421
CGAGAACCAG AGCCCCAGGA GCTTCCAGAA GAAGACCAGG CACTACTTCA



TTGCTGCTGT


6481
GGAGAGGCTG TGGGACTATG GCATGAGCAG CAGCCCCCAT GTGCTGAGGA



ACAGGGCCCA


6541
GTCTGGCTCT GTGCCCCAGT TCAAGAAGGT GGTGTTCCAG GAGTTCACTG



ATGGCAGCTT


6601
CACCCAGCCC CTGTACAGAG GGGAGCTGAA TGAGCACCTG GGCCTGCTGG



GCCCCTACAT


6661
CAGGGCTGAG GTGGAGGACA ACATCATGGT GACCTTCAGG AACCAGGCCA



GCAGGCCCTA


6721
CAGCTTCTAC AGCAGCCTGA TCAGCTATGA GGAGGACCAG AGGCAGGGGG



CTGAGCCCAG


6781
GAAGAACTTT GTGAAGCCCA ATGAAACCAA GACCTACTTC TGGAAGGTGC



AGCACCACAT


6841
GGCCCCCACC AAGGATGAGT TTGACTGCAA GGCCTGGGCC TACTTCTCTG



ATGTGGACCT


6901
GGAGAAGGAT GTGCACTCTG GCCTGATTGG CCCCCTGCTG GTGTGCCACA



CCAACACCCT


6961
GAACCCTGCC CATGGCAGGC AGGTGACTGT GCAGGAGTTT GCCCTGTTCT



TCACCATCTT


7021
TGATGAAACC AAGAGCTGGT ACTTCACTGA GAACATGGAG AGGAACTGCA



GGGCCCCCTG


7081
CAACATCCAG ATGGAGGACC CCACCTTCAA GGAGAACTAC AGGTTCCATG



CCATCAATGG


7141
CTACATCATG GACACCCTGC CTGGCCTGGT GATGGCCCAG GACCAGAGGA



TCAGGTGGTA


7201
CCTGCTGAGC ATGGGCAGCA ATGAGAACAT CCACAGCATC CACTTCTCTG



GCCATGTGTT


7261
CACTGTGAGG AAGAAGGAGG AGTACAAGAT GGCCCTGTAC AACCTGTACC



CTGGGGTGTT


7321
TGAGACTGTG GAGATGCTGC CCAGCAAGGC TGGCATCTGG AGGGTGGAGT



GCCTGATTGG


7381
GGAGCACCTG CATGCTGGCA TGAGCACCCT GTTCCTGGTG TACAGCAACA



AGTGCCAGAC


7441
CCCCCTGGGC ATGGCCTCTG GCCACATCAG GGACTTCCAG ATCACTGCCT



CTGGCCAGTA


7501
TGGCCAGTGG GCCCCCAAGC TGGCCAGGCT GCACTACTCT GGCAGCATCA



ATGCCTGGAG


7561
CACCAAGGAG CCCTTCAGCT GGATCAAGGT GGACCTGCTG GCCCCCATGA



TCATCCATGG


7621
CATCAAGACC CAGGGGGCCA GGCAGAAGTT CAGCAGCCTG TACATCAGCC



AGTTCATCAT


7681
CATGTACAGC CTGGATGGCA AGAAGTGGCA GACCTACAGG GGCAACAGCA



CTGGCACCCT


7741
GATGGTGTTC TTTGGCAATG TGGACAGCTC TGGCATCAAG CACAACATCT



TCAACCCCCC


7801
CATCATTGCC AGATACATCA GGCTGCACCC CACCCACTAC AGCATCAGGA



GCACCCTGAG


7861
GATGGAGCTG ATGGGCTGTG ACCTGAACAG CTGCAGCATG CCCCTGGGCA



TGGAGAGCAA


7921
GGCCATCTCT GATGCCCAGA TCACTGCCAG CAGCTACTTC ACCAACATGT



TTGCCACCTG


7981
GAGCCCCAGC AAGGCCAGGC TGCACCTGCA GGGCAGGAGC AATGCCTGGA



GGCCCCAGGT


8041
CAACAACCCC AAGGAGTGGC TGCAGGTGGA CTTCCAGAAG ACCATGAAGG



TGACTGGGGT


8101
GACCACCCAG GGGGTGAAGA GCCTGCTGAC CAGCATGTAT GTGAAGGAGT



TCCTGATCAG


8161
CAGCAGCCAG GATGGCCACC AGTGGACCCT GTTCTTCCAG AATGGCAAGG



TGAAGGTGTT


8221
CCAGGGCAAC CAGGACAGCT TCACCCCTGT GGTGAACAGC CTGGACCCCC



CCCTGCTGAC


8281
CAGATACCTG AGGATTCACC CCCAGAGCTG GGTGCACCAG ATTGCCCTGA



GGATGGAGGT


8341
GCTGGGCTGT GAGGCCCAGG ACCTGTACTG AGCGGCCGCG GGCCCAATCA



ACCTCTGGAT


8401
TACAAAATTT GTGAAAGATT GACTGGTATT CTTAACTATG TTGCTCCTTT



TACGCTATGT


8461
GGATACGCTG CTTTAATGCC TTTGTATCAT GCTATTGCTT CCCGTATGGC



TTTCATTTTC


8521
TCCTCCTTGT ATAAATCCTG GTTGCTGTCT CTTTATGAGG AGTTGTGGCC



CGTTGTCAGG


8581
CAACGTGGCG TGGTGTGCAC TGTGTTTGCT GACGCAACCC CCACTGGTTG



GGGCATTGCC


8641
ACCACCTGTC AGCTCCTTTC CGGGACTTTC GCTTTCCCCC TCCCTATTGC



CACGGCGGAA


8701
CTCATCGCCG CCTGCCTTGC CCGCTGCTGG ACAGGGGCTC GGCTGTTGGG



CACTGACAAT


8761
TCCGTGGTGT TGTCGGGGAA ATCATCGTCC TTTCCTTGGC TGCTCGCCTG



TGTTGCCACC


8821
TGGATTCTGC GCGGGACGTC CTTCTGCTAC GTCCCTTCGG CCCTCAATCC



AGCGGACCTT


8881
CCTTCCCGCG GCCTGCTGCC GGCTCTGCGG CCTCTTCCGC GTCTTCGCCT



TCGCCCTCAG


8941
ACGAGTCGGA TCTCCCTTTG GGCCGCCTCC CCGCAAGCTT CGCACTTTTT



AAAAGAAAAG


9001
GGAGGACTGG ATGGGATTTA TTACTCCGAT AGGACGCTGG CTTGTAACTC



AGTCTCTTAC


9061
TAGGAGACCA GCTTGAGCCT GGGTGTTCGC TGGTTAGCCT AACCTGGTTG



GCCACCAGGG


9121
GTAAGGACTC CTTGGCTTAG AAAGCTAATA AACTTGCCTG CATTAGAGCT



CTTACGCGTC


9181
CCGGGCTCGA GATCCGCATC TCAATTAGTC AGCAACCATA GTCCCGCCCC



TAACTCCGCC


9241
CATCCCGCCC CTAACTCCGC CCAGTTCCGC CCATTCTCCG CCCCATGGCT



GACTAATTTT


9301
TTTTATTTAT GCAGAGGCCG AGGCCGCCTC GGCCTCTGAG CTATTCCAGA



AGTAGTGAGG


9361
AGGCTTTTTT GGAGGCCTAG GCTTTTGCAA AAAGCTAACT TGTTTATTGC



AGCTTATAAT


9421
GGTTACAAAT AAAGCAATAG CATCACAAAT TTCACAAATA AAGCATTTTT



TTCACTGCAT


9481
TCTAGTTGTG GTTTGTCCAA ACTCATCAAT GTATCTTATC ATGTCTGTCC



GCTTCCTCGC


9541
TCACTGACTC GCTGCGCTCG GTCGTTCGGC TGCGGCGAGC GGTATCAGCT



CACTCAAAGG


9601
CGGTAATACG GTTATCCACA GAATCAGGGG ATAACGCAGG AAAGAACATG



TGAGCAAAAG


9661
GCCAGCAAAA GGCCAGGAAC CGTAAAAAGG CCGCGTTGCT GGCGTTTTTC



CATAGGCTCC


9721
GCCCCCCTGA CGAGCATCAC AAAAATCGAC GCTCAAGTCA GAGGTGGCGA



AACCCGACAG


9781
GACTATAAAG ATACCAGGCG TTTCCCCCTG GAAGCTCCCT CGTGCGCTCT



CCTGTTCCGA


9841
CCCTGCCGCT TACCGGATAC CTGTCCGCCT TTCTCCCTTC GGGAAGCGTG



GCGCTTTCTC


9901
ATAGCTCACG CTGTAGGTAT CTCAGTTCGG TGTAGGTCGT TCGCTCCAAG



CTGGGCTGTG


9961
TGCACGAACC CCCCGTTCAG CCCGACCGCT GCGCCTTATC CGGTAACTAT



CGTCTTGAGT


10021
CCAACCCGGT AAGACACGAC TTATCGCCAC TGGCAGCAGC CACTGGTAAC



AGGATTAGCA


10081
GAGCGAGGTA TGTAGGCGGT GCTACAGAGT TCTTGAAGTG GTGGCCTAAC



TACGGCTACA


10141
CTAGAAGAAC AGTATTTGGT ATCTGCGCTC TGCTGAAGCC AGTTACCTTC



GGAAAAAGAG


10201
TTGGTAGCTC TTGATCCGGC AAACAAACCA CCGCTGGTAG CGGTGGTTTT



TTTGTTTGCA


10261
AGCAGCAGAT TACGCGCAGA AAAAAAGGAT CTCAAGAAGA TCCTTTGATC



TTTTCTACGG


10321
GGTCTGACGC TCAGTGGAAC GAAAACTCAC GTTAAGGGAT TTTGGTCATG



AGATTATCAA


10381
AAAGGATCTT CACCTAGATC CTTTTAAATT AAAAATGAAG TTTTAAATCA



ATCTAAAGTA


10441
TATATGAGTA AACTTGGTCT GACAGTTAGA AAAACTCATC GAGCATCAAA



TGAAACTGCA


10501
ATTTATTCAT ATCAGGATTA TCAATACCAT ATTTTTGAAA AAGCCGTTTC



TGTAATGAAG


10561
GAGAAAACTC ACCGAGGCAG TTCCATAGGA TGGCAAGATC CTGGTATCGG



TCTGCGATTC


10621
CGACTCGTCC AACATCAATA CAACCTATTA ATTTCCCCTC GTCAAAAATA



AGGTTATCAA


10681
GTGAGAAATC ACCATGAGTG ACGACTGAAT CCGGTGAGAA TGGCAACAGC



TTATGCATTT


10741
CTTTCCAGAC TTGTTCAACA GGCCAGCCAT TACGCTCGTC ATCAAAATCA



CTCGCATCAA


10801
CCAAACCGTT ATTCATTCGT GATTGCGCCT GAGCGAGACG AAATACGCGA



TCGCTGTTAA


10861
AAGGACAATT ACAAACAGGA ATCGAATGCA ACCGGCGCAG GAACACTGCC



AGCGCATCAA


10921
CAATATTTTC ACCTGAATCA GGATATTCTT CTAATACCTG GAATGCTGTT



TTTCCGGGGA


10981
TCGCAGTGGT GAGTAACCAT GCATCATCAG GAGTACGGAT AAAATGCTTG



ATGGTCGGAA


11041
GAGGCATAAA TTCCGTCAGC CAGTTTAGTC TGACCATCTC ATCTGTAACA



TCATTGGCAA


11101
CGCTACCTTT GCCATGTTTC AGAAACAACT CTGGCGCATC GGGCTTCCCA



TACAATCGAT


11161
AGATTGTCGC ACCTGATTGC CCGACATTAT CGCGAGCCCA TTTATACCCA



TATAAATCAG


11221
CATCCATGTT GGAATTTAAT CGCGGCCTAG AGCAAGACGT TTCCCGTTGA



ATATGGCTCA


11281
TAACACCCCT TGTATTACTG TTTATGTAAG CAGACAGTTT TATTGTTCAT



GATGATATAT


11341
TTTTATCTTG TGCAATGTAA CATCAGAGAT TTTGAGACAC AACAATTGGT



CGACGGATCC










SEQ ID NO: 14








1
GGTACCTCAA TATTGGCCAT TAGCCATATT ATTCATTGGT TATATAGCAT



AAATCAATAT


61
TGGCTATTGG CCATTGCATA CGTTGTATCT ATATCATAAT ATGTACATTT



ATATTGGCTC


121
ATGTCCAATA TGACCGCCAT GTTGGCATTG ATTATTGACT AGTTATTAAT



AGTAATCAAT


181
TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC



TTACGGTAAA


241
TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA



TGACGTATGT


301
TCCCATAGTA ACGCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT



ATTTACGGTA


361
AACTGCCCAC TTGGCAGTAC ATCAAGTGTA TCATATGCCA AGTCCGCCCC



CTATTGACGT


421
CAATGACGGT AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAC



GGGACTTTCC


481
TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC



GGTTTTGGCA


541
GTACACCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC



TCCACCCCAT


601
TGACGTCAAT GGGAGTTTGT TTTGGCACCA AAATCAACGG GACTTTCCAA



AATGTCGTAA


661
CAACTGCGAT CGCCCGCCCC GTTGACGCAA ATGGGCGGTA GGCGTGTACG



GTGGGAGGTC


721
TATATAAGCA GAGCTCGCTG GCTTGTAACT CAGTCTCTTA CTAGGAGACC



AGCTTGAGCC


781
TGGGTGTTCG CTGGTTAGCC TAACCTGGTT GGCCACCAGG GGTAAGGACT



CCTTGGCTTA


841
GAAAGCTAAT AAACTTGCCT GCATTAGAGC TTATCTGAGT CAAGTGTCCT



CATTGACGCC


901
TCACTCTCTT GAACGGGAAT CTTCCTTACT GGGTTCTCTC TCTGACCCAG



GCGAGAGAAA


961
CTCCAGCAGT GGCGCCCGAA CAGGGACTTG AGTGAGAGTG TAGGCACGTA



CAGCTGAGAA


1021
GGCGTCGGAC GCGAAGGAAG CGCGGGGTGC GACGCGACCA AGAAGGAGAC



TTGGTGAGTA


1081
GGCTTCTCGA GTGCCGGGAA AAAGCTCGAG CCTAGTTAGA GGACTAGGAG



AGGCCGTAGC


1141
CGTAACTACT CTTGGGCAAG TAGGGCAGGC GGTGGGTACG CAATGGGGGC



GGCTACCTCA


1201
GCACTAAATA GGAGACAATT AGACCAATTT GAGAAAATAC GACTTCGCCC



GAACGGAAAG


1261
AAAAAGTACC AAATTAAACA TTTAATATGG GCAGGCAAGG AGATGGAGCG



CTTCGGCCTC


1321
CATGAGAGGT TGTTGGAGAC AGAGGAGGGG TGTAAAAGAA TCATAGAAGT



CCTCTACCCC


1381
CTAGAACCAA CAGGATCGGA GGGCTTAAAA AGTCTGTTCA ATCTTGTGTG



CGTGCTATAT


1441
TGCTTGCACA AGGAACAGAA AGTGAAAGAC ACAGAGGAAG CAGTAGCAAC



AGTAAGACAA


1501
CACTGCCATC TAGTGGAAAA AGAAAAAAGT GCAACAGAGA CATCTAGTGG



ACAAAAGAAA


1561
AATGACAAGG GAATAGCAGC GCCACCTGGT GGCAGTCAGA ATTTTCCAGC



GCAACAACAA


1621
GGAAATGCCT GGGTACATGT ACCCTTGTCA CCGCGCACCT TAAATGCGTG



GGTAAAAGCA


1681
GTAGAGGAGA AAAAATTTGG AGCAGAAATA GTACCCATGT TTCAAGCCCT



ATCGAATTCC


1741
CGTTTGTGCT AGGGTTCTTA GGCTTCTTGG GGGCTGCTGG AACTGCAATG



GGAGCAGCGG


1801
CGACAGCCCT GACGGTCCAG TCTCAGCATT TGCTTGCTGG GATACTGCAG



CAGCAGAAGA


1861
ATCTGCTGGC GGCTGTGGAG GCTCAACAGC AGATGTTGAA GCTGACCATT



TGGGGTGTTA


1921
AAAACCTCAA TGCCCGCGTC ACAGCCCTTG AGAAGTACCT AGAGGATCAG



GCACGACTAA


1981
ACTCCTGGGG GTGCGCATGG AAACAAGTAT GTCATACCAC AGTGGAGTGG



CCCTGGACAA


2041
ATCGGACTCC GGATTGGCAA AATATGACTT GGTTGGAGTG GGAAAGACAA



ATAGCTGATT


2101
TGGAAAGCAA CATTACGAGA CAATTAGTGA AGGCTAGAGA ACAAGAGGAA



AAGAATCTAG


2161
ATGCCTATCA GAAGTTAACT AGTTGGTCAG ATTTCTGGTC TTGGTTCGAT



TTCTCAAAAT


2221
GGCTTAACAT TTTAAAAATG GGATTTTTAG TAATAGTAGG AATAATAGGG



TTAAGATTAC


2281
TTTACACAGT ATATGGATGT ATAGTGAGGG TTAGGCAGGG ATATGTTCCT



CTATCTCCAC


2341
AGATCCATAT CCGCGGCAAT TTTAAAAGAA AGGGAGGAAT AGGGGGACAG



ACTTCAGCAG


2401
AGAGACTAAT TAATATAATA ACAACACAAT TAGAAATACA ACATTTACAA



ACCAAAATTC


2461
AAAAAATTTT AAATTTTAGA GCCGCGGAGA TCTGTTACAT AACTTATGGT



AAATGGCCTG


2521
CCTGGCTGAC TGCCCAATGA CCCCTGCCCA ATGATGTCAA TAATGATGTA



TGTTCCCATG


2581
TAATGCCAAT AGGGACTTTC CATTGATGTC AATGGGTGGA GTATTTATGG



TAACTGCCCA


2641
CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTATGCCC CCTATTGATG



TCAATGATGG


2701
TAAATGGCCT GCCTGGCATT ATGCCCAGTA CATGACCTTA TGGGACTTTC



CTACTTGGCA


2761
GTACATCTAT GTATTAGTCA TTGCTATTAC CATGGGAATT CACTAGTGGA



GAAGAGCATG


2821
CTTGAGGGCT GAGTGCCCCT CAGTGGGCAG AGAGCACATG GCCCACAGTC



CCTGAGAAGT


2881
TGGGGGGAGG GGTGGGCAAT TGAACTGGTG CCTAGAGAAG GTGGGGCTTG



GGTAAACTGG


2941
GAAAGTGATG TGGTGTACTG GCTCCACCTT TTTCCCCAGG GTGGGGGAGA



ACCATATATA


3001
AGTGCAGTAG TCTCTGTGAA CATTCAAGCT TCTGCCTTCT CCCTCCTGTG



AGTTTGCTAG


3061
CCACCAATGC AGATTGAGCT GAGCACCTGC TTCTTCCTGT GCCTGCTGAG



GTTCTGCTTC


3121
TCTGCCACCA GGAGATACTA CCTGGGGGCT GTGGAGCTGA GCTGGGACTA



CATGCAGTCT


3181
GACCTGGGGG AGCTGCCTGT GGATGCCAGG TTCCCCCCCA GAGTGCCCAA



GAGCTTCCCC


3241
TTCAACACCT CTGTGGTGTA CAAGAAGACC CTGTTTGTGG AGTTCACTGA



CCACCTGTTC


3301
AACATTGCCA AGCCCAGGCC CCCCTGGATG GGCCTGCTGG GCCCCACCAT



CCAGGCTGAG


3361
GTGTATGACA CTGTGGTGAT CACCCTGAAG AACATGGCCA GCCACCCTGT



GAGCCTGCAT


3421
GCTGTGGGGG TGAGCTACTG GAAGGCCTCT GAGGGGGCTG AGTATGATGA



CCAGACCAGC


3481
CAGAGGGAGA AGGAGGATGA CAAGGTGTTC CCTGGGGGCA GCCACACCTA



TGTGTGGCAG


3541
GTGCTGAAGG AGAATGGCCC CATGGCCTCT GACCCCCTGT GCCTGACCTA



CAGCTACCTG


3601
AGCCATGTGG ACCTGGTGAA GGACCTGAAC TCTGGCCTGA TTGGGGCCCT



GCTGGTGTGC


3661
AGGGAGGGCA GCCTGGCCAA GGAGAAGACC CAGACCCTGC ACAAGTTCAT



CCTGCTGTTT


3721
GCTGTGTTTG ATGAGGGCAA GAGCTGGCAC TCTGAAACCA AGAACAGCCT



GATGCAGGAC


3781
AGGGATGCTG CCTCTGCCAG GGCCTGGCCC AAGATGCACA CTGTGAATGG



CTATGTGAAC


3841
AGGAGCCTGC CTGGCCTGAT TGGCTGCCAC AGGAAGTCTG TGTACTGGCA



TGTGATTGGC


3901
ATGGGCACCA CCCCTGAGGT GCACAGCATC TTCCTGGAGG GCCACACCTT



CCTGGTCAGG


3961
AACCACAGGC AGGCCAGCCT GGAGATCAGC CCCATCACCT TCCTGACTGC



CCAGACCCTG


4021
CTGATGGACC TGGGCCAGTT CCTGCTGTTC TGCCACATCA GCAGCCACCA



GCATGATGGC


4081
ATGGAGGCCT ATGTGAAGGT GGACAGCTGC CCTGAGGAGC CCCAGCTGAG



GATGAAGAAC


4141
AATGAGGAGG CTGAGGACTA TGATGATGAC CTGACTGACT CTGAGATGGA



TGTGGTGAGG


4201
TTTGATGATG ACAACAGCCC CAGCTTCATC CAGATCAGGT CTGTGGCCAA



GAAGCACCCC


4261
AAGACCTGGG TGCACTACAT TGCTGCTGAG GAGGAGGACT GGGACTATGC



CCCCCTGGTG


4321
CTGGCCCCTG ATGACAGGAG CTACAAGAGC CAGTACCTGA ACAATGGCCC



CCAGAGGATT


4381
GGCAGGAAGT ACAAGAAGGT CAGGTTCATG GCCTACACTG ATGAAACCTT



CAAGACCAGG


4441
GAGGCCATCC AGCATGAGTC TGGCATCCTG GGCCCCCTGC TGTATGGGGA



GGTGGGGGAC


4501
ACCCTGCTGA TCATCTTCAA GAACCAGGCC AGCAGGCCCT ACAACATCTA



CCCCCATGGC


4561
ATCACTGATG TGAGGCCCCT GTACAGCAGG AGGCTGCCCA AGGGGGTGAA



GCACCTGAAG


4621
GACTTCCCCA TCCTGCCTGG GGAGATCTTC AAGTACAAGT GGACTGTGAC



TGTGGAGGAT


4681
GGCCCCACCA AGTCTGACCC CAGGTGCCTG ACCAGATACT ACAGCAGCTT



TGTGAACATG


4741
GAGAGGGACC TGGCCTCTGG CCTGATTGGC CCCCTGCTGA TCTGCTACAA



GGAGTCTGTG


4801
GACCAGAGGG GCAACCAGAT CATGTCTGAC AAGAGGAATG TGATCCTGTT



CTCTGTGTTT


4861
GATGAGAACA GGAGCTGGTA CCTGACTGAG AACATCCAGA GGTTCCTGCC



CAACCCTGCT


4921
GGGGTGCAGC TGGAGGACCC TGAGTTCCAG GCCAGCAACA TCATGCACAG



CATCAATGGC


4981
TATGTGTTTG ACAGCCTGCA GCTGTCTGTG TGCCTGCATG AGGTGGCCTA



CTGGTACATC


5041
CTGAGCATTG GGGCCCAGAC TGACTTCCTG TCTGTGTTCT TCTCTGGCTA



CACCTTCAAG


5101
CACAAGATGG TGTATGAGGA CACCCTGACC CTGTTCCCCT TCTCTGGGGA



GACTGTGTTC


5161
ATGAGCATGG AGAACCCTGG CCTGTGGATT CTGGGCTGCC ACAACTCTGA



CTTCAGGAAC


5221
AGGGGCATGA CTGCCCTGCT GAAAGTCTCC AGCTGTGACA AGAACACTGG



GGACTACTAT


5281
GAGGACAGCT ATGAGGACAT CTCTGCCTAC CTGCTGAGCA AGAACAATGC



CATTGAGCCC


5341
AGGAGCTTCA GCCAGAACAG CAGGCACCCC AGCACCAGGC AGAAGCAGTT



CAATGCCACC


5401
ACCATCCCTG AGAATGACAT AGAGAAGACA GACCCATGGT TTGCCCACCG



GACCCCCATG


5461
CCCAAGATCC AGAATGTGAG CAGCTCTGAC CTGCTGATGC TGCTGAGGCA



GAGCCCCACC


5521
CCCCATGGCC TGAGCCTGTC TGACCTGCAG GAGGCCAAGT ATGAAACCTT



CTCTGATGAC


5581
CCCAGCCCTG GGGCCATTGA CAGCAACAAC AGCCTGTCTG AGATGACCCA



CTTCAGGCCC


5641
CAGCTGCACC ACTCTGGGGA CATGGTGTTC ACCCCTGAGT CTGGCCTGCA



GCTGAGGCTG


5701
AATGAGAAGC TGGGCACCAC TGCTGCCACT GAGCTGAAGA AGCTGGACTT



CAAAGTCTCC


5761
AGCACCAGCA ACAACCTGAT CAGCACCATC CCCTCTGACA ACCTGGCTGC



TGGCACTGAC


5821
AACACCAGCA GCCTGGGCCC CCCCAGCATG CCTGTGCACT ATGACAGCCA



GCTGGACACC


5881
ACCCTGTTTG GCAAGAAGAG CAGCCCCCTG ACTGAGTCTG GGGGCCCCCT



GAGCCTGTCT


5941
GAGGAGAACA ATGACAGCAA GCTGCTGGAG TCTGGCCTGA TGAACAGCCA



GGAGAGCAGC


6001
TGGGGCAAGA ATGTGAGCAG CAGGGAGATC ACCAGGACCA CCCTGCAGTC



TGACCAGGAG


6061
GAGATTGACT ATGATGACAC CATCTCTGTG GAGATGAAGA AGGAGGACTT



TGACATCTAC


6121
GACGAGGACG AGAACCAGAG CCCCAGGAGC TTCCAGAAGA AGACCAGGCA



CTACTTCATT


6181
GCTGCTGTGG AGAGGCTGTG GGACTATGGC ATGAGCAGCA GCCCCCATGT



GCTGAGGAAC


6241
AGGGCCCAGT CTGGCTCTGT GCCCCAGTTC AAGAAGGTGG TGTTCCAGGA



GTTCACTGAT


6301
GGCAGCTTCA CCCAGCCCCT GTACAGAGGG GAGCTGAATG AGCACCTGGG



CCTGCTGGGC


6361
CCCTACATCA GGGCTGAGGT GGAGGACAAC ATCATGGTGA CCTTCAGGAA



CCAGGCCAGC


6421
AGGCCCTACA GCTTCTACAG CAGCCTGATC AGCTATGAGG AGGACCAGAG



GCAGGGGGCT


6481
GAGCCCAGGA AGAACTTTGT GAAGCCCAAT GAAACCAAGA CCTACTTCTG



GAAGGTGCAG


6541
CACCACATGG CCCCCACCAA GGATGAGTTT GACTGCAAGG CCTGGGCCTA



CTTCTCTGAT


6601
GTGGACCTGG AGAAGGATGT GCACTCTGGC CTGATTGGCC CCCTGCTGGT



GTGCCACACC


6661
AACACCCTGA ACCCTGCCCA TGGCAGGCAG GTGACTGTGC AGGAGTTTGC



CCTGTTCTTC


6721
ACCATCTTTG ATGAAACCAA GAGCTGGTAC TTCACTGAGA ACATGGAGAG



GAACTGCAGG


6781
GCCCCCTGCA ACATCCAGAT GGAGGACCCC ACCTTCAAGG AGAACTACAG



GTTCCATGCC


6841
ATCAATGGCT ACATCATGGA CACCCTGCCT GGCCTGGTGA TGGCCCAGGA



CCAGAGGATC


6901
AGGTGGTACC TGCTGAGCAT GGGCAGCAAT GAGAACATCC ACAGCATCCA



CTTCTCTGGC


6961
CATGTGTTCA CTGTGAGGAA GAAGGAGGAG TACAAGATGG CCCTGTACAA



CCTGTACCCT


7021
GGGGTGTTTG AGACTGTGGA GATGCTGCCC AGCAAGGCTG GCATCTGGAG



GGTGGAGTGC


7081
CTGATTGGGG AGCACCTGCA TGCTGGCATG AGCACCCTGT TCCTGGTGTA



CAGCAACAAG


7141
TGCCAGACCC CCCTGGGCAT GGCCTCTGGC CACATCAGGG ACTTCCAGAT



CACTGCCTCT


7201
GGCCAGTATG GCCAGTGGGC CCCCAAGCTG GCCAGGCTGC ACTACTCTGG



CAGCATCAAT


7261
GCCTGGAGCA CCAAGGAGCC CTTCAGCTGG ATCAAGGTGG ACCTGCTGGC



CCCCATGATC


7321
ATCCATGGCA TCAAGACCCA GGGGGCCAGG CAGAAGTTCA GCAGCCTGTA



CATCAGCCAG


7381
TTCATCATCA TGTACAGCCT GGATGGCAAG AAGTGGCAGA CCTACAGGGG



CAACAGCACT


7441
GGCACCCTGA TGGTGTTCTT TGGCAATGTG GACAGCTCTG GCATCAAGCA



CAACATCTTC


7501
AACCCCCCCA TCATTGCCAG ATACATCAGG CTGCACCCCA CCCACTACAG



CATCAGGAGC


7561
ACCCTGAGGA TGGAGCTGAT GGGCTGTGAC CTGAACAGCT GCAGCATGCC



CCTGGGCATG


7621
GAGAGCAAGG CCATCTCTGA TGCCCAGATC ACTGCCAGCA GCTACTTCAC



CAACATGTTT


7681
GCCACCTGGA GCCCCAGCAA GGCCAGGCTG CACCTGCAGG GCAGGAGCAA



TGCCTGGAGG


7741
CCCCAGGTCA ACAACCCCAA GGAGTGGCTG CAGGTGGACT TCCAGAAGAC



CATGAAGGTG


7801
ACTGGGGTGA CCACCCAGGG GGTGAAGAGC CTGCTGACCA GCATGTATGT



GAAGGAGTTC


7861
CTGATCAGCA GCAGCCAGGA TGGCCACCAG TGGACCCTGT TCTTCCAGAA



TGGCAAGGTG


7921
AAGGTGTTCC AGGGCAACCA GGACAGCTTC ACCCCTGTGG TGAACAGCCT



GGACCCCCCC


7981
CTGCTGACCA GATACCTGAG GATTCACCCC CAGAGCTGGG TGCACCAGAT



TGCCCTGAGG


8041
ATGGAGGTGC TGGGCTGTGA GGCCCAGGAC CTGTACTGAG CGGCCGCGGG



CCCAATCAAC


8101
CTCTGGATTA CAAAATTTGT GAAAGATTGA CTGGTATTCT TAACTATGTT



GCTCCTTTTA


8161
CGCTATGTGG ATACGCTGCT TTAATGCCTT TGTATCATGC TATTGCTTCC



CGTATGGCTT


8221
TCATTTTCTC CTCCTTGTAT AAATCCTGGT TGCTGTCTCT TTATGAGGAG



TTGTGGCCCG


8281
TTGTCAGGCA ACGTGGCGTG GTGTGCACTG TGTTTGCTGA CGCAACCCCC



ACTGGTTGGG


8341
GCATTGCCAC CACCTGTCAG CTCCTTTCCG GGACTTTCGC TTTCCCCCTC



CCTATTGCCA


8401
CGGCGGAACT CATCGCCGCC TGCCTTGCCC GCTGCTGGAC AGGGGCTCGG



CTGTTGGGCA


8461
CTGACAATTC CGTGGTGTTG TCGGGGAAAT CATCGTCCTT TCCTTGGCTG



CTCGCCTGTG


8521
TTGCCACCTG GATTCTGCGC GGGACGTCCT TCTGCTACGT CCCTTCGGCC



CTCAATCCAG


8581
CGGACCTTCC TTCCCGCGGC CTGCTGCCGG CTCTGCGGCC TCTTCCGCGT



CTTCGCCTTC


8641
GCCCTCAGAC GAGTCGGATC TCCCTTTGGG CCGCCTCCCC GCAAGCTTCG



CACTTTTTAA


8701
AAGAAAAGGG AGGACTGGAT GGGATTTATT ACTCCGATAG GACGCTGGCT



TGTAACTCAG


8761
TCTCTTACTA GGAGACCAGC TTGAGCCTGG GTGTTCGCTG GTTAGCCTAA



CCTGGTTGGC


8821
CACCAGGGGT AAGGACTCCT TGGCTTAGAA AGCTAATAAA CTTGCCTGCA



TTAGAGCTCT


8881
TACGCGTCCC GGGCTCGAGA TCCGCATCTC AATTAGTCAG CAACCATAGT



CCCGCCCCTA


8941
ACTCCGCCCA TCCCGCCCCT AACTCCGCCC AGTTCCGCCC ATTCTCCGCC



CCATGGCTGA


9001
CTAATTTTTT TTATTTATGC AGAGGCCGAG GCCGCCTCGG CCTCTGAGCT



ATTCCAGAAG


9061
TAGTGAGGAG GCTTTTTTGG AGGCCTAGGC TTTTGCAAAA AGCTAACTTG



TTTATTGCAG


9121
CTTATAATGG TTACAAATAA AGCAATAGCA TCACAAATTT CACAAATAAA



GCATTTTTTT


9181
CACTGCATTC TAGTTGTGGT TTGTCCAAAC TCATCAATGT ATCTTATCAT



GTCTGTCCGC


9241
TTCCTCGCTC ACTGACTCGC TGCGCTCGGT CGTTCGGCTG CGGCGAGCGG



TATCAGCTCA


9301
CTCAAAGGCG GTAATACGGT TATCCACAGA ATCAGGGGAT AACGCAGGAA



AGAACATGTG


9361
AGCAAAAGGC CAGCAAAAGG CCAGGAACCG TAAAAAGGCC GCGTTGCTGG



CGTTTTTCCA


9421
TAGGCTCCGC CCCCCTGACG AGCATCACAA AAATCGACGC TCAAGTCAGA



GGTGGCGAAA


9481
CCCGACAGGA CTATAAAGAT ACCAGGCGTT TCCCCCTGGA AGCTCCCTCG



TGCGCTCTCC


9541
TGTTCCGACC CTGCCGCTTA CCGGATACCT GTCCGCCTTT CTCCCTTCGG



GAAGCGTGGC


9601
GCTTTCTCAT AGCTCACGCT GTAGGTATCT CAGTTCGGTG TAGGTCGTTC



GCTCCAAGCT


9661
GGGCTGTGTG CACGAACCCC CCGTTCAGCC CGACCGCTGC GCCTTATCCG



GTAACTATCG


9721
TCTTGAGTCC AACCCGGTAA GACACGACTT ATCGCCACTG GCAGCAGCCA



CTGGTAACAG


9781
GATTAGCAGA GCGAGGTATG TAGGCGGTGC TACAGAGTTC TTGAAGTGGT



GGCCTAACTA


9841
CGGCTACACT AGAAGAACAG TATTTGGTAT CTGCGCTCTG CTGAAGCCAG



TTACCTTCGG


9901
AAAAAGAGTT GGTAGCTCTT GATCCGGCAA ACAAACCACC GCTGGTAGCG



GTGGTTTTTT


9961
TGTTTGCAAG CAGCAGATTA CGCGCAGAAA AAAAGGATCT CAAGAAGATC



CTTTGATCTT


10021
TTCTACGGGG TCTGACGCTC AGTGGAACGA AAACTCACGT TAAGGGATTT



TGGTCATGAG


10081
ATTATCAAAA AGGATCTTCA CCTAGATCCT TTTAAATTAA AAATGAAGTT



TTAAATCAAT


10141
CTAAAGTATA TATGAGTAAA CTTGGTCTGA CAGTTAGAAA AACTCATCGA



GCATCAAATG


10201
AAACTGCAAT TTATTCATAT CAGGATTATC AATACCATAT TTTTGAAAAA



GCCGTTTCTG


10261
TAATGAAGGA GAAAACTCAC CGAGGCAGTT CCATAGGATG GCAAGATCCT



GGTATCGGTC


10321
TGCGATTCCG ACTCGTCCAA CATCAATACA ACCTATTAAT TTCCCCTCGT



CAAAAATAAG


10381
GTTATCAAGT GAGAAATCAC CATGAGTGAC GACTGAATCC GGTGAGAATG



GCAACAGCTT


10441
ATGCATTTCT TTCCAGACTT GTTCAACAGG CCAGCCATTA CGCTCGTCAT



CAAAATCACT


10501
CGCATCAACC AAACCGTTAT TCATTCGTGA TTGCGCCTGA GCGAGACGAA



ATACGCGATC


10561
GCTGTTAAAA GGACAATTAC AAACAGGAAT CGAATGCAAC CGGCGCAGGA



ACACTGCCAG


10621
CGCATCAACA ATATTTTCAC CTGAATCAGG ATATTCTTCT AATACCTGGA



ATGCTGTTTT


10681
TCCGGGGATC GCAGTGGTGA GTAACCATGC ATCATCAGGA GTACGGATAA



AATGCTTGAT


10741
GGTCGGAAGA GGCATAAATT CCGTCAGCCA GTTTAGTCTG ACCATCTCAT



CTGTAACATC


10801
ATTGGCAACG CTACCTTTGC CATGTTTCAG AAACAACTCT GGCGCATCGG



GCTTCCCATA


10861
CAATCGATAG ATTGTCGCAC CTGATTGCCC GACATTATCG CGAGCCCATT



TATACCCATA


10921
TAAATCAGCA TCCATGTTGG AATTTAATCG CGGCCTAGAG CAAGACGTTT



CCCGTTGAAT


10981
ATGGCTCATA ACACCCCTTG TATTACTGTT TATGTAAGCA GACAGTTTTA



TTGTTCATGA


11041
TGATATATTT TTATCTTGTG CAATGTAACA TCAGAGATTT TGAGACACAA



CAATTGGTCG


11101
ACGGATCC










SEQ ID NO: 15


ATGCCCAGCTCTGTGTCCTGGGGCATTCTGCTGCTGGCTGGCCTGTGCTGTCTGGTGCCTGTGTCCCTGG


CTGAGGACCCTCAGGGGGATGCTGCCCAGAAAACAGACACCTCCCACCATGACCAGGACCACCCCACCTT


CAACAAGATCACCCCCAACCTGGCAGAGTTTGCCTTCAGCCTGTACAGACAGCTGGCCCACCAGAGCAAC


AGCACCAACATCTTTTTCAGCCCTGTGTCCATTGCCACAGCCTTTGCCATGCTGAGCCTGGGCACCAAGG


CTGACACCCATGATGAGATCCTGGAAGGCCTGAACTTCAACCTGACAGAGATCCCTGAGGCCCAGATCCA


TGAGGGCTTCCAGGAACTGCTGAGAACCCTGAACCAGCCAGACAGCCAGCTGCAGCTGACAACAGGCAAT


GGGCTGTTCCTGTCTGAGGGCCTGAAGCTGGTGGACAAGTTTCTGGAAGATGTGAAGAAGCTGTACCACT


CTGAGGCCTTCACAGTGAACTTTGGGGACACAGAAGAGGCCAAGAAACAGATCAATGACTATGTGGAAAA


GGGCACCCAGGGCAAGATTGTGGACCTTGTGAAAGAGCTGGACAGGGACACTGTGTTTGCCCTTGTGAAC


TACATCTTCTTCAAGGGCAAGTGGGAGAGGCCCTTTGAAGTGAAGGACACTGAGGAAGAGGACTTCCATG


TGGACCAAGTGACCACAGTGAAGGTGCCAATGATGAAGAGACTGGGGATGTTCAATATCCAGCACTGCAA


GAAACTGAGCAGCTGGGTGCTGCTGATGAAGTACCTGGGCAATGCTACAGCCATATTCTTTCTGCCTGAT


GAGGGCAAGCTGCAGCACCTGGAAAATGAGCTGACCCATGACATCATCACCAAATTTCTGGAAAATGAGG


ACAGAAGATCTGCCAGCCTGCATCTGCCCAAGCTGAGCATCACAGGCACATATGACCTGAAGTCTGTGCT


GGGACAGCTGGGAATCACCAAGGTGTTCAGCAATGGGGCAGACCTGAGTGGAGTGACAGAGGAAGCCCCT


CTGAAGCTGTCCAAGGCTGTGCACAAGGCAGTGCTGACCATTGATGAGAAGGGCACAGAGGCTGCTGGGG


CCATGTTTCTGGAAGCCATCCCCATGTCCATCCCCCCAGAAGTGAAGTTCAACAAGCCCTTTGTGTTCCT


GATGATTGAGCAGAACACCAAGAGCCCCCTGTTCATGGGCAAGGTTGTGAACCCCACCCAGAAATGA





SEQ ID NO: 16


ATGCAGATTGAGCTGAGCACCTGCTTCTTCCTGTGCCTGCTGAGGTTCTGCTTCTCTGCCACCAGGAGAT


ACTACCTGGGGGCTGTGGAGCTGAGCTGGGACTACATGCAGTCTGACCTGGGGGAGCTGCCTGTGGATGC


CAGGTTCCCCCCCAGAGTGCCCAAGAGCTTCCCCTTCAACACCTCTGTGGTGTACAAGAAGACCCTGTTT


GTGGAGTTCACTGACCACCTGTTCAACATTGCCAAGCCCAGGCCCCCCTGGATGGGCCTGCTGGGCCCCA


CCATCCAGGCTGAGGTGTATGACACTGTGGTGATCACCCTGAAGAACATGGCCAGCCACCCTGTGAGCCT


GCATGCTGTGGGGGTGAGCTACTGGAAGGCCTCTGAGGGGGCTGAGTATGATGACCAGACCAGCCAGAGG


GAGAAGGAGGATGACAAGGTGTTCCCTGGGGGCAGCCACACCTATGTGTGGCAGGTGCTGAAGGAGAATG


GCCCCATGGCCTCTGACCCCCTGTGCCTGACCTACAGCTACCTGAGCCATGTGGACCTGGTGAAGGACCT


GAACTCTGGCCTGATTGGGGCCCTGCTGGTGTGCAGGGAGGGCAGCCTGGCCAAGGAGAAGACCCAGACC


CTGCACAAGTTCATCCTGCTGTTTGCTGTGTTTGATGAGGGCAAGAGCTGGCACTCTGAAACCAAGAACA


GCCTGATGCAGGACAGGGATGCTGCCTCTGCCAGGGCCTGGCCCAAGATGCACACTGTGAATGGCTATGT


GAACAGGAGCCTGCCTGGCCTGATTGGCTGCCACAGGAAGTCTGTGTACTGGCATGTGATTGGCATGGGC


ACCACCCCTGAGGTGCACAGCATCTTCCTGGAGGGCCACACCTTCCTGGTCAGGAACCACAGGCAGGCCA


GCCTGGAGATCAGCCCCATCACCTTCCTGACTGCCCAGACCCTGCTGATGGACCTGGGCCAGTTCCTGCT


GTTCTGCCACATCAGCAGCCACCAGCATGATGGCATGGAGGCCTATGTGAAGGTGGACAGCTGCCCTGAG


GAGCCCCAGCTGAGGATGAAGAACAATGAGGAGGCTGAGGACTATGATGATGACCTGACTGACTCTGAGA


TGGATGTGGTGAGGTTTGATGATGACAACAGCCCCAGCTTCATCCAGATCAGGTCTGTGGCCAAGAAGCA


CCCCAAGACCTGGGTGCACTACATTGCTGCTGAGGAGGAGGACTGGGACTATGCCCCCCTGGTGCTGGCC


CCTGATGACAGGAGCTACAAGAGCCAGTACCTGAACAATGGCCCCCAGAGGATTGGCAGGAAGTACAAGA


AGGTCAGGTTCATGGCCTACACTGATGAAACCTTCAAGACCAGGGAGGCCATCCAGCATGAGTCTGGCAT


CCTGGGCCCCCTGCTGTATGGGGAGGTGGGGGACACCCTGCTGATCATCTTCAAGAACCAGGCCAGCAGG


CCCTACAACATCTACCCCCATGGCATCACTGATGTGAGGCCCCTGTACAGCAGGAGGCTGCCCAAGGGGG


TGAAGCACCTGAAGGACTTCCCCATCCTGCCTGGGGAGATCTTCAAGTACAAGTGGACTGTGACTGTGGA


GGATGGCCCCACCAAGTCTGACCCCAGGTGCCTGACCAGATACTACAGCAGCTTTGTGAACATGGAGAGG


GACCTGGCCTCTGGCCTGATTGGCCCCCTGCTGATCTGCTACAAGGAGTCTGTGGACCAGAGGGGCAACC


AGATCATGTCTGACAAGAGGAATGTGATCCTGTTCTCTGTGTTTGATGAGAACAGGAGCTGGTACCTGAC


TGAGAACATCCAGAGGTTCCTGCCCAACCCTGCTGGGGTGCAGCTGGAGGACCCTGAGTTCCAGGCCAGC


AACATCATGCACAGCATCAATGGCTATGTGTTTGACAGCCTGCAGCTGTCTGTGTGCCTGCATGAGGTGG


CCTACTGGTACATCCTGAGCATTGGGGCCCAGACTGACTTCCTGTCTGTGTTCTTCTCTGGCTACACCTT


CAAGCACAAGATGGTGTATGAGGACACCCTGACCCTGTTCCCCTTCTCTGGGGAGACTGTGTTCATGAGC


ATGGAGAACCCTGGCCTGTGGATTCTGGGCTGCCACAACTCTGACTTCAGGAACAGGGGCATGACTGCCC


TGCTGAAAGTCTCCAGCTGTGACAAGAACACTGGGGACTACTATGAGGACAGCTATGAGGACATCTCTGC


CTACCTGCTGAGCAAGAACAATGCCATTGAGCCCAGGAGCTTCAGCCAGAACAGCAGGCACCCCAGCACC


AGGCAGAAGCAGTTCAATGCCACCACCATCCCTGAGAATGACATAGAGAAGACAGACCCATGGTTTGCCC


ACCGGACCCCCATGCCCAAGATCCAGAATGTGAGCAGCTCTGACCTGCTGATGCTGCTGAGGCAGAGCCC


CACCCCCCATGGCCTGAGCCTGTCTGACCTGCAGGAGGCCAAGTATGAAACCTTCTCTGATGACCCCAGC


CCTGGGGCCATTGACAGCAACAACAGCCTGTCTGAGATGACCCACTTCAGGCCCCAGCTGCACCACTCTG


GGGACATGGTGTTCACCCCTGAGTCTGGCCTGCAGCTGAGGCTGAATGAGAAGCTGGGCACCACTGCTGC


CACTGAGCTGAAGAAGCTGGACTTCAAAGTCTCCAGCACCAGCAACAACCTGATCAGCACCATCCCCTCT


GACAACCTGGCTGCTGGCACTGACAACACCAGCAGCCTGGGCCCCCCCAGCATGCCTGTGCACTATGACA


GCCAGCTGGACACCACCCTGTTTGGCAAGAAGAGCAGCCCCCTGACTGAGTCTGGGGGCCCCCTGAGCCT


GTCTGAGGAGAACAATGACAGCAAGCTGCTGGAGTCTGGCCTGATGAACAGCCAGGAGAGCAGCTGGGGC


AAGAATGTGAGCAGCAGGGAGATCACCAGGACCACCCTGCAGTCTGACCAGGAGGAGATTGACTATGATG


ACACCATCTCTGTGGAGATGAAGAAGGAGGACTTTGACATCTACGACGAGGACGAGAACCAGAGCCCCAG


GAGCTTCCAGAAGAAGACCAGGCACTACTTCATTGCTGCTGTGGAGAGGCTGTGGGACTATGGCATGAGC


AGCAGCCCCCATGTGCTGAGGAACAGGGCCCAGTCTGGCTCTGTGCCCCAGTTCAAGAAGGTGGTGTTCC


AGGAGTTCACTGATGGCAGCTTCACCCAGCCCCTGTACAGAGGGGAGCTGAATGAGCACCTGGGCCTGCT


GGGCCCCTACATCAGGGCTGAGGTGGAGGACAACATCATGGTGACCTTCAGGAACCAGGCCAGCAGGCCC


TACAGCTTCTACAGCAGCCTGATCAGCTATGAGGAGGACCAGAGGCAGGGGGCTGAGCCCAGGAAGAACT


TTGTGAAGCCCAATGAAACCAAGACCTACTTCTGGAAGGTGCAGCACCACATGGCCCCCACCAAGGATGA


GTTTGACTGCAAGGCCTGGGCCTACTTCTCTGATGTGGACCTGGAGAAGGATGTGCACTCTGGCCTGATT


GGCCCCCTGCTGGTGTGCCACACCAACACCCTGAACCCTGCCCATGGCAGGCAGGTGACTGTGCAGGAGT


TTGCCCTGTTCTTCACCATCTTTGATGAAACCAAGAGCTGGTACTTCACTGAGAACATGGAGAGGAACTG


CAGGGCCCCCTGCAACATCCAGATGGAGGACCCCACCTTCAAGGAGAACTACAGGTTCCATGCCATCAAT


GGCTACATCATGGACACCCTGCCTGGCCTGGTGATGGCCCAGGACCAGAGGATCAGGTGGTACCTGCTGA


GCATGGGCAGCAATGAGAACATCCACAGCATCCACTTCTCTGGCCATGTGTTCACTGTGAGGAAGAAGGA


GGAGTACAAGATGGCCCTGTACAACCTGTACCCTGGGGTGTTTGAGACTGTGGAGATGCTGCCCAGCAAG


GCTGGCATCTGGAGGGTGGAGTGCCTGATTGGGGAGCACCTGCATGCTGGCATGAGCACCCTGTTCCTGG


TGTACAGCAACAAGTGCCAGACCCCCCTGGGCATGGCCTCTGGCCACATCAGGGACTTCCAGATCACTGC


CTCTGGCCAGTATGGCCAGTGGGCCCCCAAGCTGGCCAGGCTGCACTACTCTGGCAGCATCAATGCCTGG


AGCACCAAGGAGCCCTTCAGCTGGATCAAGGTGGACCTGCTGGCCCCCATGATCATCCATGGCATCAAGA


CCCAGGGGGCCAGGCAGAAGTTCAGCAGCCTGTACATCAGCCAGTTCATCATCATGTACAGCCTGGATGG


CAAGAAGTGGCAGACCTACAGGGGCAACAGCACTGGCACCCTGATGGTGTTCTTTGGCAATGTGGACAGC


TCTGGCATCAAGCACAACATCTTCAACCCCCCCATCATTGCCAGATACATCAGGCTGCACCCCACCCACT


ACAGCATCAGGAGCACCCTGAGGATGGAGCTGATGGGCTGTGACCTGAACAGCTGCAGCATGCCCCTGGG


CATGGAGAGCAAGGCCATCTCTGATGCCCAGATCACTGCCAGCAGCTACTTCACCAACATGTTTGCCACC


TGGAGCCCCAGCAAGGCCAGGCTGCACCTGCAGGGCAGGAGCAATGCCTGGAGGCCCCAGGTCAACAACC


CCAAGGAGTGGCTGCAGGTGGACTTCCAGAAGACCATGAAGGTGACTGGGGTGACCACCCAGGGGGTGAA


GAGCCTGCTGACCAGCATGTATGTGAAGGAGTTCCTGATCAGCAGCAGCCAGGATGGCCACCAGTGGACC


CTGTTCTTCCAGAATGGCAAGGTGAAGGTGTTCCAGGGCAACCAGGACAGCTTCACCCCTGTGGTGAACA


GCCTGGACCCCCCCCTGCTGACCAGATACCTGAGGATTCACCCCCAGAGCTGGGTGCACCAGATTGCCCT


GAGGATGGAGGTGCTGGGCTGTGAGGCCCAGGACCTGTACTGA





SEQ ID NO: 17


CCGCGGAGATCTCAATATTGGCCATTAGCCATATTATTCATTGGTTATATAGCATAAATCAATATTGGCT


ATTGGCCATTGCATACGTTGTATCTATATCATAATATGTACATTTATATTGGCTCATGTCCAATATGACC


GCCATGTTGGCATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCA


TATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCC


CATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGT


GGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTCCGCCCCCTATT


GACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTACGGGACTTTCCTACTT


GGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACACCAATGGGCG


TGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGG


CACCAAAATCAACGGGACTTTCCAAAATGTCGTAATAACCCCGCCCCGTTGACGCAAATGGGCGGTAGGC


GTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCACTAGAAGCTTTATTGC


GGTAGTTTATCACAGTTAAATTGCTAACGCAGTCAGTGCTTCTGACACAACAGTCTCGAACTTAAGCTGC


AGAAGTTGGTCGTGAGGCACTGGGCAGGCTAGC





SEQ ID NO: 18


TCGAGATGTGGTCTGAGTTAAAAATCAGGAGCAACGACGGAGGTGAAGGACCAGACGCCAACGACCC





SEQ ID NO: 19


CCGGGGGTCGTTGGCGTCTGGTCCTTCACCTCCGTCGTTGCTCCTGATTTTTAACTCAGACCACATC





SEQ ID NO: 20


CCGGGGAAAGGGGGTGCAACACATCCATATCCAGCCATCTCTACCTGTTTATGGACA





SEQ ID NO: 21


ACCCTCTGTCCATAAACAGGTAGAGATGGCTGGATATGGATGTGTTGCACCCCTTTCC





SEQ ID NO: 22


GGGTTAGGTGGTTGCTGATTCTCTCATTCACCCAGTGGG





SEQ ID NO: 23


GATCCCCACTGGGTGAATGAGAGAATCAGCAACCACCTA





SEQ ID NO: 24


GAGACTCGAGATGTGGTCTGAGTTAAAAATCAGG





SEQ ID NO: 25


AGAGGTAGACCAGTACGAGTCACGTTTGCCCCTATCACCATCCCTAACCCTCTGTCATAAAC





SEQ ID NO: 26


TACGGGTCGAGACACAGGACCCCGTAAGACGACGACCGACCGGACACGACAGACCACGGACACAGGGACC


GACTCCTGGGAGTCCCCCTACGACGGGTCTTTTGTCTGTGGAGGGTGGTACTGGTCCTGGTGGGGTGGAA


GTTGTTCTAGTGGGGGTTGGACCGTCTCAAACGGAAGTCGGACATGTCTGTCGACCGGGTGGTCTCGTTG


TCGTGGTTGTAGAAAAAGTCGGGACACAGGTAACGGTGTCGGAAACGGTACGACTCGGACCCGTGGTTCC


GACTGTGGGTACTACTCTAGGACCTTCCGGACTTGAAGTTGGACTGTCTCTAGGGACTCCGGGTCTAGGT


ACTCCCGAAGGTCCTTGACGACTCTTGGGACTTGGTCGGTCTGTCGGTCGACGTCGACTGTTGTCCGTTA


CCCGACAAGGACAGACTCCCGGACTTCGACCACCTGTTCAAAGACCTTCTACACTTCTTCGACATGGTGA


GACTCCGGAAGTGTCACTTGAAACCCCTGTGTCTTCTCCGGTTCTTTGTCTAGTTACTGATACACCTTTT


CCCGTGGGTCCCGTTCTAACACCTGGAACACTTTCTCGACCTGTCCCTGTGACACAAACGGGAACACTTG


ATGTAGAAGAAGTTCCCGTTCACCCTCTCCGGGAAACTTCACTTCCTGTGACTCCTTCTCCTGAAGGTAC


ACCTGGTTCACTGGTGTCACTTCCACGGTTACTACTTCTCTGACCCCTACAAGTTATAGGTCGTGACGTT


CTTTGACTCGTCGACCCACGACGACTACTTCATGGACCCGTTACGATGTCGGTATAAGAAAGACGGACTA


CTCCCGTTCGACGTCGTGGACCTTTTACTCGACTGGGTACTGTAGTAGTGGTTTAAAGACCTTTTACTCC


TGTCTTCTAGACGGTCGGACGTAGACGGGTTCGACTCGTAGTGTCCGTGTATACTGGACTTCAGACACGA


CCCTGTCGACCCTTAGTGGTTCCACAAGTCGTTACCCCGTCTGGACTCACCTCACTGTCTCCTTCGGGGA


GACTTCGACAGGTTCCGACACGTGTTCCGTCACGACTGGTAACTACTCTTCCCGTGTCTCCGACGACCCC


GGTACAAAGACCTTCGGTAGGGGTACAGGTAGGGGGGTCTTCACTTCAAGTTGTTCGGGAAACACAAGGA


CTACTAACTCGTCTTGTGGTTCTCGGGGGACAAGTACCCGTTCCAACACTTGGGGTGGGTCTTTACT





SEQ ID NO: 27


AEDPQGDAAQKTDTSHHDQDHPTFAEDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQLAHQSN


STNIFFSPVSIATAFAMLSLGTKADTHDEILEGLNFNLTEIPEAQIHEGFQELLRTLNQPDSQLQLTTGNG


LFLSEGLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFALVNYI


FFKGKWERPFEVKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKYLGNATAIFFLPDEGK


LQHLENELTHDIITKFLENEDRRSASLHLPKLSITGTYDLKSVLGQLGITKVFSNGADLSGVTEEAPLKLS


KAVHKAVLTIDEKGTEAAGAMFLEAIPMSIPPEVKFNKPFVFLMIEQNTKSPLFMGKVVNPTQK





SEQ ID NO: 28


TACGTCTAACTCGACTCGTGGACGAAGAAGGACACGGACGACTCCAAGACGAAGAGACGGTGGTCCTCTA


TGATGGACCCCCGACACCTCGACTCGACCCTGATGTACGTCAGACTGGACCCCCTCGACGGACACCTACG


GTCCAAGGGGGGGTCTCACGGGTTCTCGAAGGGGAAGTTGTGGAGACACCACATGTTCTTCTGGGACAAA


CACCTCAAGTGACTGGTGGACAAGTTGTAACGGTTCGGGTCCGGGGGGACCTACCCGGACGACCCGGGGT


GGTAGGTCCGACTCCACATACTGTGACACCACTAGTGGGACTTCTTGTACCGGTCGGTGGGACACTCGGA


CGTACGACACCCCCACTCGATGACCTTCCGGAGACTCCCCCGACTCATACTACTGGTCTGGTCGGTCTCC


CTCTTCCTCCTACTGTTCCACAAGGGACCCCCGTCGGTGTGGATACACACCGTCCACGACTTCCTCTTAC


CGGGGTACCGGAGACTGGGGGACACGGACTGGATGTCGATGGACTCGGTACACCTGGACCACTTCCTGGA


CTTGAGACCGGACTAACCCCGGGACGACCACACGTCCCTCCCGTCGGACCGGTTCCTCTTCTGGGTCTGG


GACGTGTTCAAGTAGGACGACAAACGACACAAACTACTCCCGTTCTCGACCGTGAGACTTTGGTTCTTGT


CGGACTACGTCCTGTCCCTACGACGGAGACGGTCCCGGACCGGGTTCTACGTGTGACACTTACCGATACA


CTTGTCCTCGGACGGACCGGACTAACCGACGGTGTCCTTCAGACACATGACCGTACACTAACCGTACCCG


TGGTGGGGACTCCACGTGTCGTAGAAGGACCTCCCGGTGTGGAAGGACCAGTCCTTGGTGTCCGTCCGGT


CGGACCTCTAGTCGGGGTAGTGGAAGGACTGACGGGTCTGGGACGACTACCTGGACCCGGTCAAGGACGA


CAAGACGGTGTAGTCGTCGGTGGTCGTACTACCGTACCTCCGGATACACTTCCACCTGTCGACGGGACTC


CTCGGGGTCGACTCCTACTTCTTGTTACTCCTCCGACTCCTGATACTACTACTGGACTGACTGAGACTCT


ACCTACACCACTCCAAACTACTACTGTTGTCGGGGTCGAAGTAGGTCTAGTCCAGACACCGGTTCTTCGT


GGGGTTCTGGACCCACGTGATGTAACGACGACTCCTCCTCCTGACCCTGATACGGGGGGACCACGACCGG


GGACTACTGTCCTCGATGTTCTCGGTCATGGACTTGTTACCGGGGGTCTCCTAACCGTCCTTCATGTTCT


TCCAGTCCAAGTACCGGATGTGACTACTTTGGAAGTTCTGGTCCCTCCGGTAGGTCGTACTCAGACCGTA


GGACCCGGGGGACGACATACCCCTCCACCCCCTGTGGGACGACTAGTAGAAGTTCTTGGTCCGGTCGTCC


GGGATGTTGTAGATGGGGGTACCGTAGTGACTACACTCCGGGGACATGTCGTCCTCCGACGGGTTCCCCC


ACTTCGTGGACTTCCTGAAGGGGTAGGACGGACCCCTCTAGAAGTTCATGTTCACCTGACACTGACACCT


CCTACCGGGGTGGTTCAGACTGGGGTCCACGGACTGGTCTATGATGTCGTCGAAACACTTGTACCTCTCC


CTGGACCGGAGACCGGACTAACCGGGGGACGACTAGACGATGTTCCTCAGACACCTGGTCTCCCCGTTGG


TCTAGTACAGACTGTTCTCCTTACACTAGGACAAGAGACACAAACTACTCTTGTCCTCGACCATGGACTG


ACTCTTGTAGGTCTCCAAGGACGGGTTGGGACGACCCCACGTCGACCTCCTGGGACTCAAGGTCCGGTCG


TTGTAGTACGTGTCGTAGTTACCGATACACAAACTGTCGGACGTCGACAGACACACGGACGTACTCCACC


GGATGACCATGTAGGACTCGTAACCCCGGGTCTGACTGAAGGACAGACACAAGAAGAGACCGATGTGGAA


GTTCGTGTTCTACCACATACTCCTGTGGGACTGGGACAAGGGGAAGAGACCCCTCTGACACAAGTACTCG


TACCTCTTGGGACCGGACACCTAAGACCCGACGGTGTTGAGACTGAAGTCCTTGTCCCCGTACTGACGGG


ACGACTTTCAGAGGTCGACACTGTTCTTGTGACCCCTGATGATACTCCTGTCGATACTCCTGTAGAGACG


GATGGACGACTCGTTCTTGTTACGGTAACTCGGGTCCTCGAAGTCGGTCTTGTCGTCCGTGGGGTCGTGG


TCCGTCTTCGTCAAGTTACGGTGGTGGTAGGGACTCTTACTGTATCTCTTCTGTCTGGGTACCAAACGGG


TGGCCTGGGGGTACGGGTTCTAGGTCTTACACTCGTCGAGACTGGACGACTACGACGACTCCGTCTCGGG


GTGGGGGGTACCGGACTCGGACAGACTGGACGTCCTCCGGTTCATACTTTGGAAGAGACTACTGGGGTCG


GGACCCCGGTAACTGTCGTTGTTGTCGGACAGACTCTACTGGGTGAAGTCCGGGGTCGACGTGGTGAGAC


CCCTGTACCACAAGTGGGGACTCAGACCGGACGTCGACTCCGACTTACTCTTCGACCCGTGGTGACGACG


GTGACTCGACTTCTTCGACCTGAAGTTTCAGAGGTCGTGGTCGTTGTTGGACTAGTCGTGGTAGGGGAGA


CTGTTGGACCGACGACCGTGACTGTTGTGGTCGTCGGACCCGGGGGGGTCGTACGGACACGTGATACTGT


CGGTCGACCTGTGGTGGGACAAACCGTTCTTCTCGTCGGGGGACTGACTCAGACCCCCGGGGGACTCGGA


CAGACTCCTCTTGTTACTGTCGTTCGACGACCTCAGACCGGACTACTTGTCGGTCCTCTCGTCGACCCCG


TTCTTACACTCGTCGTCCCTCTAGTGGTCCTGGTGGGACGTCAGACTGGTCCTCCTCTAACTGATACTAC


TGTGGTAGAGACACCTCTACTTCTTCCTCCTGAAACTGTAGATGCTGCTCCTGCTCTTGGTCTCGGGGTC


CTCGAAGGTCTTCTTCTGGTCCGTGATGAAGTAACGACGACACCTCTCCGACACCCTGATACCGTACTCG


TCGTCGGGGGTACACGACTCCTTGTCCCGGGTCAGACCGAGACACGGGGTCAAGTTCTTCCACCACAAGG


TCCTCAAGTGACTACCGTCGAAGTGGGTCGGGGACATGTCTCCCCTCGACTTACTCGTGGACCCGGACGA


CCCGGGGATGTAGTCCCGACTCCACCTCCTGTTGTAGTACCACTGGAAGTCCTTGGTCCGGTCGTCCGGG


ATGTCGAAGATGTCGTCGGACTAGTCGATACTCCTCCTGGTCTCCGTCCCCCGACTCGGGTCCTTCTTGA


AACACTTCGGGTTACTTTGGTTCTGGATGAAGACCTTCCACGTCGTGGTGTACCGGGGGTGGTTCCTACT


CAAACTGACGTTCCGGACCCGGATGAAGAGACTACACCTGGACCTCTTCCTACACGTGAGACCGGACTAA


CCGGGGGACGACCACACGGTGTGGTTGTGGGACTTGGGACGGGTACCGTCCGTCCACTGACACGTCCTCA


AACGGGACAAGAAGTGGTAGAAACTACTTTGGTTCTCGACCATGAAGTGACTCTTGTACCTCTCCTTGAC


GTCCCGGGGGACGTTGTAGGTCTACCTCCTGGGGTGGAAGTTCCTCTTGATGTCCAAGGTACGGTAGTTA


CCGATGTAGTACCTGTGGGACGGACCGGACCACTACCGGGTCCTGGTCTCCTAGTCCACCATGGACGACT


CGTACCCGTCGTTACTCTTGTAGGTGTCGTAGGTGAAGAGACCGGTACACAAGTGACACTCCTTCTTCCT


CCTCATGTTCTACCGGGACATGTTGGACATGGGACCCCACAAACTCTGACACCTCTACGACGGGTCGTTC


CGACCGTAGACCTCCCACCTCACGGACTAACCCCTCGTGGACGTACGACCGTACTCGTGGGACAAGGACC


ACATGTCGTTGTTCACGGTCTGGGGGGACCCGTACCGGAGACCGGTGTAGTCCCTGAAGGTCTAGTGACG


GAGACCGGTCATACCGGTCACCCGGGGGTTCGACCGGTCCGACGTGATGAGACCGTCGTAGTTACGGACC


TCGTGGTTCCTCGGGAAGTCGACCTAGTTCCACCTGGACGACCGGGGGTACTAGTAGGTACCGTAGTTCT


GGGTCCCCCGGTCCGTCTTCAAGTCGTCGGACATGTAGTCGGTCAAGTAGTAGTACATGTCGGACCTACC


GTTCTTCACCGTCTGGATGTCCCCGTTGTCGTGACCGTGGGACTACCACAAGAAACCGTTACACCTGTCG


AGACCGTAGTTCGTGTTGTAGAAGTTGGGGGGGTAGTAACGGTCTATGTAGTCCGACGTGGGGTGGGTGA


TGTCGTAGTCCTCGTGGGACTCCTACCTCGACTACCCGACACTGGACTTGTCGACGTCGTACGGGGACCC


GTACCTCTCGTTCCGGTAGAGACTACGGGTCTAGTGACGGTCGTCGATGAAGTGGTTGTACAAACGGTGG


ACCTCGGGGTCGTTCCGGTCCGACGTGGACGTCCCGTCCTCGTTACGGACCTCCGGGGTCCAGTTGTTGG


GGTTCCTCACCGACGTCCACCTGAAGGTCTTCTGGTACTTCCACTGACCCCACTGGTGGGTCCCCCACTT


CTCGGACGACTGGTCGTACATACACTTCCTCAAGGACTAGTCGTCGTCGGTCCTACCGGTGGTCACCTGG


GACAAGAAGGTCTTACCGTTCCACTTCCACAAGGTCCCGTTGGTCCTGTCGAAGTGGGGACACCACTTGT


CGGACCTGGGGGGGGACGACTGGTCTATGGACTCCTAAGTGGGGGTCTCGACCCACGTGGTCTAACGGGA


CTCCTACCTCCACGACCCGACACTCCGGGTCCTGGACATGACT





SEQ ID NO: 29


MQIELSTCFFLCLLRFCFSATRRYYLGAVELSWDYMQSDLGELPVDARFPPRVPKSFPFNTSVVYKKTLFV


EFTDHLFNIAKPRPPWMGLLGPTIQAEVYDTVVITLKNMASHPVSLHAVGVSYWKASEGAEYDDQTSQREK


EDDKVFPGGSHTYVWQVLKENGPMASDPLCLTYSYLSHVDLVKDLNSGLIGALLVCREGSLAKEKTQTLHK


FILLFAVFDEGKSWHSETKNSLMQDRDAASARAWPKMHTVNGYVNRSLPGLIGCHRKSVYWHVIGMGTTPE


VHSIFLEGHTFLVRNHRQASLEISPITFLTAQTLLMDLGQFLLFCHISSHQHDGMEAYVKVDSCPEEPQLR


MKNNEEAEDYDDDLTDSEMDVVRFDDDNSPSFIQIRSVAKKHPKTWVHYIAAEEEDWDYAPLVLAPDDRSY


KSQYLNNGPQRIGRKYKKVRFMAYTDETFKTREAIQHESGILGPLLYGEVGDTLLIIFKNQASRPYNIYPH


GITDVRPLYSRRLPKGVKHLKDFPILPGEIFKYKWTVTVEDGPTKSDPRCLTRYYSSFVNMERDLASGLIG


PLLICYKESVDQRGNQIMSDKRNVILFSVFDENRSWYLTENIQRFLPNPAGVQLEDPEFQASNIMHSINGY


VFDSLQLSVCLHEVAYWYILSIGAQTDFLSVFFSGYTFKHKMVYEDTLTLFPFSGETVFMSMENPGLWILG


CHNSDFRNRGMTALLKVSSCDKNTGDYYEDSYEDISAYLLSKNNAIEPRSFSQNSRHPSTRQKQFNATTIP


ENDIEKTDPWFAHRTPMPKIQNVSSSDLLMLLRQSPTPHGLSLSDLQEAKYETFSDDPSPGAIDSNNSLSE


MTHFRPQLHHSGDMVFTPESGLQLRLNEKLGTTAATELKKLDFKVSSTSNNLISTIPSDNLAAGTDNTSSL


GPPSMPVHYDSQLDTTLFGKKSSPLTESGGPLSLSEENNDSKLLESGLMNSQESSWGKNVSSREITRTTLQ


SDQEEIDYDDTISVEMKKEDFDIYDEDENQSPRSFQKKTRHYFIAAVERLWDYGMSSSPHVLRNRAQSGSV


PQFKKVVFQEFTDGSFTQPLYRGELNEHLGLLGPYIRAEVEDNIMVTFRNQASRPYSFYSSLISYEEDQRQ


GAEPRKNFVKPNETKTYFWKVQHHMAPTKDEFDCKAWAYFSDVDLEKDVHSGLIGPLLVCHTNTLNPAHGR


QVTVQEFALFFTIFDETKSWYFTENMERNCRAPCNIQMEDPTFKENYRFHAINGYIMDTLPGLVMAQDQRI


RWYLLSMGSNENIHSIHFSGHVFTVRKKEEYKMALYNLYPGVFETVEMLPSKAGIWRVECLIGEHLHAGMS


TLFLVYSNKCQTPLGMASGHIRDFQITASGQYGQWAPKLARLHYSGSINAWSTKEPFSWIKVDLLAPMIIH


GIKTQGARQKFSSLYISQFIIMYSLDGKKWQTYRGNSTGTLMVFFGNVDSSGIKHNIFNPPIIARYIRLHP


THYSIRSTLRMELMGCDLNSCSMPLGMESKAISDAQITASSYFTNMFATWSPSKARLHLQGRSNAWRPQVN


NPKEWLQVDFQKTMKVTGVTTQGVKSLLTSMYVKEFLISSSQDGHQWTLFFQNGKVKVFQGNQDSFTPVVN


SLDPPLLTRYLRIHPQSWVHQIALRMEVLGCEAQDLY





SEQ ID NO: 30


ATGCAGATTGAGCTGAGCACCTGCTTCTTCCTGTGCCTGCTGAGGTTCTGCTTCTCTGCCACCAGGAGAT


ACTACCTGGGGGCTGTGGAGCTGAGCTGGGACTACATGCAGTCTGACCTGGGGGAGCTGCCTGTGGATGC


CAGGTTCCCCCCCAGAGTGCCCAAGAGCTTCCCCTTCAACACCTCTGTGGTGTACAAGAAGACCCTGTTT


GTGGAGTTCACTGACCACCTGTTCAACATTGCCAAGCCCAGGCCCCCCTGGATGGGCCTGCTGGGCCCCA


CCATCCAGGCTGAGGTGTATGACACTGTGGTGATCACCCTGAAGAACATGGCCAGCCACCCTGTGAGCCT


GCATGCTGTGGGGGTGAGCTACTGGAAGGCCTCTGAGGGGGCTGAGTATGATGACCAGACCAGCCAGAGG


GAGAAGGAGGATGACAAGGTGTTCCCTGGGGGCAGCCACACCTATGTGTGGCAGGTGCTGAAGGAGAATG


GCCCCATGGCCTCTGACCCCCTGTGCCTGACCTACAGCTACCTGAGCCATGTGGACCTGGTGAAGGACCT


GAACTCTGGCCTGATTGGGGCCCTGCTGGTGTGCAGGGAGGGCAGCCTGGCCAAGGAGAAGACCCAGACC


CTGCACAAGTTCATCCTGCTGTTTGCTGTGTTTGATGAGGGCAAGAGCTGGCACTCTGAAACCAAGAACA


GCCTGATGCAGGACAGGGATGCTGCCTCTGCCAGGGCCTGGCCCAAGATGCACACTGTGAATGGCTATGT


GAACAGGAGCCTGCCTGGCCTGATTGGCTGCCACAGGAAGTCTGTGTACTGGCATGTGATTGGCATGGGC


ACCACCCCTGAGGTGCACAGCATCTTCCTGGAGGGCCACACCTTCCTGGTCAGGAACCACAGGCAGGCCA


GCCTGGAGATCAGCCCCATCACCTTCCTGACTGCCCAGACCCTGCTGATGGACCTGGGCCAGTTCCTGCT


GTTCTGCCACATCAGCAGCCACCAGCATGATGGCATGGAGGCCTATGTGAAGGTGGACAGCTGCCCTGAG


GAGCCCCAGCTGAGGATGAAGAACAATGAGGAGGCTGAGGACTATGATGATGACCTGACTGACTCTGAGA


TGGATGTGGTGAGGTTTGATGATGACAACAGCCCCAGCTTCATCCAGATCAGGTCTGTGGCCAAGAAGCA


CCCCAAGACCTGGGTGCACTACATTGCTGCTGAGGAGGAGGACTGGGACTATGCCCCCCTGGTGCTGGCC


CCTGATGACAGGAGCTACAAGAGCCAGTACCTGAACAATGGCCCCCAGAGGATTGGCAGGAAGTACAAGA


AGGTCAGGTTCATGGCCTACACTGATGAAACCTTCAAGACCAGGGAGGCCATCCAGCATGAGTCTGGCAT


CCTGGGCCCCCTGCTGTATGGGGAGGTGGGGGACACCCTGCTGATCATCTTCAAGAACCAGGCCAGCAGG


CCCTACAACATCTACCCCCATGGCATCACTGATGTGAGGCCCCTGTACAGCAGGAGGCTGCCCAAGGGGG


TGAAGCACCTGAAGGACTTCCCCATCCTGCCTGGGGAGATCTTCAAGTACAAGTGGACTGTGACTGTGGA


GGATGGCCCCACCAAGTCTGACCCCAGGTGCCTGACCAGATACTACAGCAGCTTTGTGAACATGGAGAGG


GACCTGGCCTCTGGCCTGATTGGCCCCCTGCTGATCTGCTACAAGGAGTCTGTGGACCAGAGGGGCAACC


AGATCATGTCTGACAAGAGGAATGTGATCCTGTTCTCTGTGTTTGATGAGAACAGGAGCTGGTACCTGAC


TGAGAACATCCAGAGGTTCCTGCCCAACCCTGCTGGGGTGCAGCTGGAGGACCCTGAGTTCCAGGCCAGC


AACATCATGCACAGCATCAATGGCTATGTGTTTGACAGCCTGCAGCTGTCTGTGTGCCTGCATGAGGTGG


CCTACTGGTACATCCTGAGCATTGGGGCCCAGACTGACTTCCTGTCTGTGTTCTTCTCTGGCTACACCTT


CAAGCACAAGATGGTGTATGAGGACACCCTGACCCTGTTCCCCTTCTCTGGGGAGACTGTGTTCATGAGC


ATGGAGAACCCTGGCCTGTGGATTCTGGGCTGCCACAACTCTGACTTCAGGAACAGGGGCATGACTGCCC


TGCTGAAAGTCTCCAGCTGTGACAAGAACACTGGGGACTACTATGAGGACAGCTATGAGGACATCTCTGC


CTACCTGCTGAGCAAGAACAATGCCATTGAGCCCAGGAGCTTCAGCCAGAATGCCACTAATGTGTCTAAC


AACAGCAACACCAGCAATGACAGCAATGTGTCTCCCCCAGTGCTGAAGAGGCACCAGAGGGAGATCACCA


GGACCACCCTGCAGTCTGACCAGGAGGAGATTGACTATGATGACACCATCTCTGTGGAGATGAAGAAGGA


GGACTTTGACATCTACGACGAGGACGAGAACCAGAGCCCCAGGAGCTTCCAGAAGAAGACCAGGCACTAC


TTCATTGCTGCTGTGGAGAGGCTGTGGGACTATGGCATGAGCAGCAGCCCCCATGTGCTGAGGAACAGGG


CCCAGTCTGGCTCTGTGCCCCAGTTCAAGAAGGTGGTGTTCCAGGAGTTCACTGATGGCAGCTTCACCCA


GCCCCTGTACAGAGGGGAGCTGAATGAGCACCTGGGCCTGCTGGGCCCCTACATCAGGGCTGAGGTGGAG


GACAACATCATGGTGACCTTCAGGAACCAGGCCAGCAGGCCCTACAGCTTCTACAGCAGCCTGATCAGCT


ATGAGGAGGACCAGAGGCAGGGGGCTGAGCCCAGGAAGAACTTTGTGAAGCCCAATGAAACCAAGACCTA


CTTCTGGAAGGTGCAGCACCACATGGCCCCCACCAAGGATGAGTTTGACTGCAAGGCCTGGGCCTACTTC


TCTGATGTGGACCTGGAGAAGGATGTGCACTCTGGCCTGATTGGCCCCCTGCTGGTGTGCCACACCAACA


CCCTGAACCCTGCCCATGGCAGGCAGGTGACTGTGCAGGAGTTTGCCCTGTTCTTCACCATCTTTGATGA


AACCAAGAGCTGGTACTTCACTGAGAACATGGAGAGGAACTGCAGGGCCCCCTGCAACATCCAGATGGAG


GACCCCACCTTCAAGGAGAACTACAGGTTCCATGCCATCAATGGCTACATCATGGACACCCTGCCTGGCC


TGGTGATGGCCCAGGACCAGAGGATCAGGTGGTACCTGCTGAGCATGGGCAGCAATGAGAACATCCACAG


CATCCACTTCTCTGGCCATGTGTTCACTGTGAGGAAGAAGGAGGAGTACAAGATGGCCCTGTACAACCTG


TACCCTGGGGTGTTTGAGACTGTGGAGATGCTGCCCAGCAAGGCTGGCATCTGGAGGGTGGAGTGCCTGA


TTGGGGAGCACCTGCATGCTGGCATGAGCACCCTGTTCCTGGTGTACAGCAACAAGTGCCAGACCCCCCT


GGGCATGGCCTCTGGCCACATCAGGGACTTCCAGATCACTGCCTCTGGCCAGTATGGCCAGTGGGCCCCC


AAGCTGGCCAGGCTGCACTACTCTGGCAGCATCAATGCCTGGAGCACCAAGGAGCCCTTCAGCTGGATCA


AGGTGGACCTGCTGGCCCCCATGATCATCCATGGCATCAAGACCCAGGGGGCCAGGCAGAAGTTCAGCAG


CCTGTACATCAGCCAGTTCATCATCATGTACAGCCTGGATGGCAAGAAGTGGCAGACCTACAGGGGCAAC


AGCACTGGCACCCTGATGGTGTTCTTTGGCAATGTGGACAGCTCTGGCATCAAGCACAACATCTTCAACC


CCCCCATCATTGCCAGATACATCAGGCTGCACCCCACCCACTACAGCATCAGGAGCACCCTGAGGATGGA


GCTGATGGGCTGTGACCTGAACAGCTGCAGCATGCCCCTGGGCATGGAGAGCAAGGCCATCTCTGATGCC


CAGATCACTGCCAGCAGCTACTTCACCAACATGTTTGCCACCTGGAGCCCCAGCAAGGCCAGGCTGCACC


TGCAGGGCAGGAGCAATGCCTGGAGGCCCCAGGTCAACAACCCCAAGGAGTGGCTGCAGGTGGACTTCCA


GAAGACCATGAAGGTGACTGGGGTGACCACCCAGGGGGTGAAGAGCCTGCTGACCAGCATGTATGTGAAG


GAGTTCCTGATCAGCAGCAGCCAGGATGGCCACCAGTGGACCCTGTTCTTCCAGAATGGCAAGGTGAAGG


TGTTCCAGGGCAACCAGGACAGCTTCACCCCTGTGGTGAACAGCCTGGACCCCCCCCTGCTGACCAGATA


CCTGAGGATTCACCCCCAGAGCTGGGTGCACCAGATTGCCCTGAGGATGGAGGTGCTGGGCTGTGAGGCC


CAGGACCTGTACTGA





SEQ ID NO: 31


TACGTCTAACTCGACTCGTGGACGAAGAAGGACACGGACGACTCCAAGACGAAGAGACGGTGGTCCTCTA


TGATGGACCCCCGACACCTCGACTCGACCCTGATGTACGTCAGACTGGACCCCCTCGACGGACACCTACG


GTCCAAGGGGGGGTCTCACGGGTTCTCGAAGGGGAAGTTGTGGAGACACCACATGTTCTTCTGGGACAAA


CACCTCAAGTGACTGGTGGACAAGTTGTAACGGTTCGGGTCCGGGGGGACCTACCCGGACGACCCGGGGT


GGTAGGTCCGACTCCACATACTGTGACACCACTAGTGGGACTTCTTGTACCGGTCGGTGGGACACTCGGA


CGTACGACACCCCCACTCGATGACCTTCCGGAGACTCCCCCGACTCATACTACTGGTCTGGTCGGTCTCC


CTCTTCCTCCTACTGTTCCACAAGGGACCCCCGTCGGTGTGGATACACACCGTCCACGACTTCCTCTTAC


CGGGGTACCGGAGACTGGGGGACACGGACTGGATGTCGATGGACTCGGTACACCTGGACCACTTCCTGGA


CTTGAGACCGGACTAACCCCGGGACGACCACACGTCCCTCCCGTCGGACCGGTTCCTCTTCTGGGTCTGG


GACGTGTTCAAGTAGGACGACAAACGACACAAACTACTCCCGTTCTCGACCGTGAGACTTTGGTTCTTGT


CGGACTACGTCCTGTCCCTACGACGGAGACGGTCCCGGACCGGGTTCTACGTGTGACACTTACCGATACA


CTTGTCCTCGGACGGACCGGACTAACCGACGGTGTCCTTCAGACACATGACCGTACACTAACCGTACCCG


TGGTGGGGACTCCACGTGTCGTAGAAGGACCTCCCGGTGTGGAAGGACCAGTCCTTGGTGTCCGTCCGGT


CGGACCTCTAGTCGGGGTAGTGGAAGGACTGACGGGTCTGGGACGACTACCTGGACCCGGTCAAGGACGA


CAAGACGGTGTAGTCGTCGGTGGTCGTACTACCGTACCTCCGGATACACTTCCACCTGTCGACGGGACTC


CTCGGGGTCGACTCCTACTTCTTGTTACTCCTCCGACTCCTGATACTACTACTGGACTGACTGAGACTCT


ACCTACACCACTCCAAACTACTACTGTTGTCGGGGTCGAAGTAGGTCTAGTCCAGACACCGGTTCTTCGT


GGGGTTCTGGACCCACGTGATGTAACGACGACTCCTCCTCCTGACCCTGATACGGGGGGACCACGACCGG


GGACTACTGTCCTCGATGTTCTCGGTCATGGACTTGTTACCGGGGGTCTCCTAACCGTCCTTCATGTTCT


TCCAGTCCAAGTACCGGATGTGACTACTTTGGAAGTTCTGGTCCCTCCGGTAGGTCGTACTCAGACCGTA


GGACCCGGGGGACGACATACCCCTCCACCCCCTGTGGGACGACTAGTAGAAGTTCTTGGTCCGGTCGTCC


GGGATGTTGTAGATGGGGGTACCGTAGTGACTACACTCCGGGGACATGTCGTCCTCCGACGGGTTCCCCC


ACTTCGTGGACTTCCTGAAGGGGTAGGACGGACCCCTCTAGAAGTTCATGTTCACCTGACACTGACACCT


CCTACCGGGGTGGTTCAGACTGGGGTCCACGGACTGGTCTATGATGTCGTCGAAACACTTGTACCTCTCC


CTGGACCGGAGACCGGACTAACCGGGGGACGACTAGACGATGTTCCTCAGACACCTGGTCTCCCCGTTGG


TCTAGTACAGACTGTTCTCCTTACACTAGGACAAGAGACACAAACTACTCTTGTCCTCGACCATGGACTG


ACTCTTGTAGGTCTCCAAGGACGGGTTGGGACGACCCCACGTCGACCTCCTGGGACTCAAGGTCCGGTCG


TTGTAGTACGTGTCGTAGTTACCGATACACAAACTGTCGGACGTCGACAGACACACGGACGTACTCCACC


GGATGACCATGTAGGACTCGTAACCCCGGGTCTGACTGAAGGACAGACACAAGAAGAGACCGATGTGGAA


GTTCGTGTTCTACCACATACTCCTGTGGGACTGGGACAAGGGGAAGAGACCCCTCTGACACAAGTACTCG


TACCTCTTGGGACCGGACACCTAAGACCCGACGGTGTTGAGACTGAAGTCCTTGTCCCCGTACTGACGGG


ACGACTTTCAGAGGTCGACACTGTTCTTGTGACCCCTGATGATACTCCTGTCGATACTCCTGTAGAGACG


GATGGACGACTCGTTCTTGTTACGGTAACTCGGGTCCTCGAAGTCGGTCTTACGGTGATTACACAGATTG


TTGTCGTTGTGGTCGTTACTGTCGTTACACAGAGGGGGTCACGACTTCTCCGTGGTCTCCCTCTAGTGGT


CCTGGTGGGACGTCAGACTGGTCCTCCTCTAACTGATACTACTGTGGTAGAGACACCTCTACTTCTTCCT


CCTGAAACTGTAGATGCTGCTCCTGCTCTTGGTCTCGGGGTCCTCGAAGGTCTTCTTCTGGTCCGTGATG


AAGTAACGACGACACCTCTCCGACACCCTGATACCGTACTCGTCGTCGGGGGTACACGACTCCTTGTCCC


GGGTCAGACCGAGACACGGGGTCAAGTTCTTCCACCACAAGGTCCTCAAGTGACTACCGTCGAAGTGGGT


CGGGGACATGTCTCCCCTCGACTTACTCGTGGACCCGGACGACCCGGGGATGTAGTCCCGACTCCACCTC


CTGTTGTAGTACCACTGGAAGTCCTTGGTCCGGTCGTCCGGGATGTCGAAGATGTCGTCGGACTAGTCGA


TACTCCTCCTGGTCTCCGTCCCCCGACTCGGGTCCTTCTTGAAACACTTCGGGTTACTTTGGTTCTGGAT


GAAGACCTTCCACGTCGTGGTGTACCGGGGGTGGTTCCTACTCAAACTGACGTTCCGGACCCGGATGAAG


AGACTACACCTGGACCTCTTCCTACACGTGAGACCGGACTAACCGGGGGACGACCACACGGTGTGGTTGT


GGGACTTGGGACGGGTACCGTCCGTCCACTGACACGTCCTCAAACGGGACAAGAAGTGGTAGAAACTACT


TTGGTTCTCGACCATGAAGTGACTCTTGTACCTCTCCTTGACGTCCCGGGGGACGTTGTAGGTCTACCTC


CTGGGGTGGAAGTTCCTCTTGATGTCCAAGGTACGGTAGTTACCGATGTAGTACCTGTGGGACGGACCGG


ACCACTACCGGGTCCTGGTCTCCTAGTCCACCATGGACGACTCGTACCCGTCGTTACTCTTGTAGGTGTC


GTAGGTGAAGAGACCGGTACACAAGTGACACTCCTTCTTCCTCCTCATGTTCTACCGGGACATGTTGGAC


ATGGGACCCCACAAACTCTGACACCTCTACGACGGGTCGTTCCGACCGTAGACCTCCCACCTCACGGACT


AACCCCTCGTGGACGTACGACCGTACTCGTGGGACAAGGACCACATGTCGTTGTTCACGGTCTGGGGGGA


CCCGTACCGGAGACCGGTGTAGTCCCTGAAGGTCTAGTGACGGAGACCGGTCATACCGGTCACCCGGGGG


TTCGACCGGTCCGACGTGATGAGACCGTCGTAGTTACGGACCTCGTGGTTCCTCGGGAAGTCGACCTAGT


TCCACCTGGACGACCGGGGGTACTAGTAGGTACCGTAGTTCTGGGTCCCCCGGTCCGTCTTCAAGTCGTC


GGACATGTAGTCGGTCAAGTAGTAGTACATGTCGGACCTACCGTTCTTCACCGTCTGGATGTCCCCGTTG


TCGTGACCGTGGGACTACCACAAGAAACCGTTACACCTGTCGAGACCGTAGTTCGTGTTGTAGAAGTTGG


GGGGGTAGTAACGGTCTATGTAGTCCGACGTGGGGTGGGTGATGTCGTAGTCCTCGTGGGACTCCTACCT


CGACTACCCGACACTGGACTTGTCGACGTCGTACGGGGACCCGTACCTCTCGTTCCGGTAGAGACTACGG


GTCTAGTGACGGTCGTCGATGAAGTGGTTGTACAAACGGTGGACCTCGGGGTCGTTCCGGTCCGACGTGG


ACGTCCCGTCCTCGTTACGGACCTCCGGGGTCCAGTTGTTGGGGTTCCTCACCGACGTCCACCTGAAGGT


CTTCTGGTACTTCCACTGACCCCACTGGTGGGTCCCCCACTTCTCGGACGACTGGTCGTACATACACTTC


CTCAAGGACTAGTCGTCGTCGGTCCTACCGGTGGTCACCTGGGACAAGAAGGTCTTACCGTTCCACTTCC


ACAAGGTCCCGTTGGTCCTGTCGAAGTGGGGACACCACTTGTCGGACCTGGGGGGGGACGACTGGTCTAT


GGACTCCTAAGTGGGGGTCTCGACCCACGTGGTCTAACGGGACTCCTACCTCCACGACCCGACACTCCGG


GTCCTGGACATGACT





SEQ ID NO: 32


MQIELSTCFFLCLLRFCFSATRRYYLGAVELSWDYMQSDLGELPVDARFPPRVPKSFPFNTSVVYKKTLF


VEFTDHLFNIAKPRPPWMGLLGPTIQAEVYDTVVITLKNMASHPVSLHAVGVSYWKASEGAEYDDQTSQR


EKEDDKVFPGGSHTYVWQVLKENGPMASDPLCLTYSYLSHVDLVKDLNSGLIGALLVCREGSLAKEKTQT


LHKFILLFAVFDEGKSWHSETKNSLMQDRDAASARAWPKMHTVNGYVNRSLPGLIGCHRKSVYWHVIGMG


TTPEVHSIFLEGHTFLVRNHRQASLEISPITFLTAQTLLMDLGQFLLFCHISSHQHDGMEAYVKVDSCPE


EPQLRMKNNEEAEDYDDDLTDSEMDVVRFDDDNSPSFIQIRSVAKKHPKTWVHYIAAEEEDWDYAPLVLA


PDDRSYKSQYLNNGPQRIGRKYKKVRFMAYTDETFKTREAIQHESGILGPLLYGEVGDTLLIIFKNQASR


PYNIYPHGITDVRPLYSRRLPKGVKHLKDFPILPGEIFKYKWTVTVEDGPTKSDPRCLTRYYSSFVNMER


DLASGLIGPLLICYKESVDQRGNQIMSDKRNVILFSVFDENRSWYLTENIQRFLPNPAGVQLEDPEFQAS


NIMHSINGYVFDSLQLSVCLHEVAYWYILSIGAQTDFLSVFFSGYTFKHKMVYEDTLTLFPFSGETVFMS


MENPGLWILGCHNSDFRNRGMTALLKVSSCDKNTGDYYEDSYEDISAYLLSKNNAIEPRSFSQNATNVSN


NSNTSNDSNVSPPVLKRHQREITRTTLQSDQEEIDYDDTISVEMKKEDFDIYDEDENQSPRSFQKKTRHY


FIAAVERLWDYGMSSSPHVLRNRAQSGSVPQFKKVVFQEFTDGSFTQPLYRGELNEHLGLLGPYIRAEVE


DNIMVTFRNQASRPYSFYSSLISYEEDQRQGAEPRKNFVKPNETKTYFWKVQHHMAPTKDEFDCKAWAYF


SDVDLEKDVHSGLIGPLLVCHTNTLNPAHGRQVTVQEFALFFTIFDETKSWYFTENMERNCRAPCNIQME


DPTFKENYRFHAINGYIMDTLPGLVMAQDQRIRWYLLSMGSNENIHSIHFSGHVFTVRKKEEYKMALYNL


YPGVFETVEMLPSKAGIWRVECLIGEHLHAGMSTLFLVYSNKCQTPLGMASGHIRDFQITASGQYGQWAP


KLARLHYSGSINAWSTKEPFSWIKVDLLAPMIIHGIKTQGARQKFSSLYISQFIIMYSLDGKKWQTYRGN


STGTLMVFFGNVDSSGIKHNIFNPPIIARYIRLHPTHYSIRSTLRMELMGCDLNSCSMPLGMESKAISDA


QITASSYFTNMFATWSPSKARLHLQGRSNAWRPQVNNPKEWLQVDFQKTMKVTGVTTQGVKSLLTSMYVK


EFLISSSQDGHQWTLFFQNGKVKVFQGNQDSFTPVVNSLDPPLLTRYLRIHPQSWVHQIALRMEVLGCEA


QDLY





SEQ ID NO: 33


GGCGCCTCTAGAGTTATAACCGGTAATCGGTATAATAAGTAACCAATATATCGTATTTAGTTATAACCGA


TAACCGGTAACGTATGCAACATAGATATAGTATTATACATGTAAATATAACCGAGTACAGGTTATACTGG


CGGTACAACCGTAACTAATAACTGATCAATAATTATCATTAGTTAATGCCCCAGTAATCAAGTATCGGGT


ATATACCTCAAGGCGCAATGTATTGAATGCCATTTACCGGGCGGACCGACTGGCGGGTTGCTGGGGGCGG


GTAACTGCAGTTATTACTGCATACAAGGGTATCATTGCGGTTATCCCTGAAAGGTAACTGCAGTTACCCA


CCTCATAAATGCCATTTGACGGGTGAACCGTCATGTAGTTCACATAGTATACGGTTCAGGCGGGGGATAA


CTGCAGTTACTGCCATTTACCGGGCGGACCGTAATACGGGTCATGTACTGGAATGCCCTGAAAGGATGAA


CCGTCATGTAGATGCATAATCAGTAGCGATAATGGTACCACTACGCCAAAACCGTCATGTGGTTACCCGC


ACCTATCGCCAAACTGAGTGCCCCTAAAGGTTCAGAGGTGGGGTAACTGCAGTTACCCTCAAACAAAACC


GTGGTTTTAGTTGCCCTGAAAGGTTTTACAGCATTATTGGGGCGGGGCAACTGCGTTTACCCGCCATCCG


CACATGCCACCCTCCAGATATATTCGTCTCGAGCAAATCACTTGGCAGTCTAGTGATCTTCGAAATAACG


CCATCAAATAGTGTCAATTTAACGATTGCGTCAGTCACGAAGACTGTGTTGTCAGAGCTTGAATTCGACG


TCTTCAACCAGCACTCCGTGACCCGTCCGATCG








Claims
  • 1. A lentiviral vector pseudotyped with hemagglutinin-neuraminidase (HN) and fusion (F) proteins from a respiratory paramyxovirus, wherein said lentiviral vector comprises a hybrid human CMV enhancer/EF1a (hCEF) promoter and a transgene, and wherein the lentiviral vector lacks an intron positioned between said promoter and said transgene.
  • 2. The lentiviral vector according to claim 1, wherein the lentiviral vector is selected from the group consisting of a Human immunodeficiency virus (HIV) vector, a Simian immunodeficiency virus (SIV) vector, a Feline immunodeficiency virus (FIV) vector, an Equine infectious anaemia virus (EIAV) vector, and a Visna/maedi virus vector.
  • 3. The lentiviral vector according to claim 1, wherein lentiviral vector is a SIV vector.
  • 4. The lentiviral vector according claim 1, wherein the respiratory paramyxovirus is a Sendai virus.
  • 5. The lentiviral vector according to claim 1, wherein the transgene: (a) encodes a secreted therapeutic protein selected from Alpha-1 Antitrypsin (A1 AT), Surfactant Protein B (SFTPB), Factor VII, Factor VIII, Factor IX, Factor X, Factor XI, von Willebrand Factor or Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF)(b) encodes a monoclonal antibody against an infectious agent; or(c) is selected from the group consisting of CFTR, DNAH5, DNAH11, DNAI1, and DNAI2.
  • 6. A method of treating a disease, the method comprising administering a lentiviral vector of claim 1 to a subject.
  • 7. The method according to claim 6, wherein the disease is a lung disease selected from: cystic fibrosis (CF); Primary Ciliary Dyskinesia (PCD); Surfactant Protein B (SP-B) deficiency; Alpha 1-antitrypsin Deficiency (A1AD); Pulmonary Alveolar Proteinosis (PAP); and Chronic obstructive pulmonary disease (COPD).
  • 8. The method according to claim 6, wherein the transgene is Factor VIII and the disease is Haemophilia.
  • 9. A host cell comprising the vector according to claim 1.
  • 10. A composition comprising a vector according to claim 1, and a pharmaceutically-acceptable carrier.
  • 11. The lentiviral vector according to claim 1, wherein the transgene encodes cystic fibrosis transmembrane conductance regulator (CFTR).
  • 12. The lentiviral vector according to claim 1, wherein the transgene encodes A1AT.
  • 13. The lentiviral vector according to claim 1, wherein the transgene encodes Factor VIII.
Priority Claims (1)
Number Date Country Kind
1409089.8 May 2014 GB national
PCT Information
Filing Document Filing Date Country Kind
PCT/GB2015/051201 4/23/2015 WO 00
Publishing Document Publishing Date Country Kind
WO2015/177501 11/26/2015 WO A
US Referenced Citations (1)
Number Name Date Kind
20090162320 Mitomo et al. Jun 2009 A1
Foreign Referenced Citations (8)
Number Date Country
1 291 419 Mar 2003 EP
1 950 307 Jul 2008 EP
1950303 Jul 2008 EP
0039302 Jul 2000 WO
03029274 Apr 2003 WO
2003029412 Apr 2003 WO
2007110628 Oct 2007 WO
2008124724 Oct 2008 WO
Non-Patent Literature Citations (24)
Entry
Zou et al., Blood. 2011;117(21):5561-5572 (Year: 2011).
Hyde, Nat Biotechnol. May 2008;26(5):549-51 (Year: 2008).
Chuah et al., “Gene therapy for hemophilia,” The Journal of Gene Medicine 3:3-20 (2001).
Cronin et al., “Altering the Tropism of Lentiviral Vectors through Pseudotyping,” Curr Gene Ther. 5(4):387-398 (Aug. 2005).
Engelhardt, “The lung as a metabolic factory for gene therapy,” J. Clin. Invest. 110:429-432 (2002).
Mitomo et al., “Toward Gene Therapy for Cystic Fibrosis Using a Lentivirus Pseudotyped With Sendai Virus Envelopes,” Molecular Therapy 18(6):1173-1182 (Jun. 2010).
Nakajima et al., “Development of Novel Simian Immunodeficiency Virus Vectors Carrying a Dual Gene Expression System,” Human Gene Therapy 11:1863-1874 (Sep. 1, 2000).
Witting et al., “Efficient Large Volume Lentiviral Vector Production Using Flow Electroporation,” Human Gene Therapy 23:243-249 (Feb. 2012).
Zychlinski et al., “Physiological Promoters Reduce the Genotoxic Risk of Integrating Gene Vectors,” www.moleculartherapy.org 16(4):718-725 (Apr. 2008).
Japanese Office Action, dated Mar. 28, 2019, for Japanese Application No. 2016-567082, 9 pages (with English machine translation).
Tolmachov et al., “Designing Lentiviral Gene Vectors,” Viral Gene Therapy, 24 pages, 2011.
Bartholomae et al.: Lentiviral vector integration profiles differ in rodent postmitotic tissues. Mol Ther. 19(4): 703-710 (2011).
Borthwick et al.: Evidence for stem-cell niches in the tracheal epithelium. Am J Respir Cell Mol Biol. 24(6): 662-670 (2001).
Dekkers et al.: Afunctional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med. 19(7): 939-945 (2013).
Derand et al.: Comparative pharmacology of the activity of wild-type and G551D mutated CFTR chloride channel: effect of the benzimidazolone derivative NS004. J Membr Biol. 194(2): 109-117 (2003).
Griesenbach et al.: Assessment of CFTR function after gene transfer in vitro and in vivo. Methods Mol Biol. 433: 229-242 (2008).
Kobayashi et al.: Pseudotyped lentivirus vectors derived from simian immunodeficiency virus SlVagm with envelope glycoproteins from paramyxovirus. J Virol. 77(4): 2607-2614 (2003).
Limberis et al.: Recovery of airway cystic fibrosis transmembrane conductance regulator function in mice with cystic fibrosis after single-dose lentivirus-mediated gene transfer. Hum Gene Ther. 13(16): 1961-1970 (2002).
McIntosh et al., Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant, Blood, 121(17): 3335-3344 (2013).
Moreno et al.: Pharmacology of airways and vessels in lung slices in situ: role of endogenous dilator hormones. Respir Res. 7: 111 (2006).
Pringle et al.: Rapid identification of novel functional promoters for gene therapy. J Mol Med (Berl). 90(12): 1487-1496 (2012).
Rennard et al.: Estimation of vol. of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol (1985). 1986 Feb; 60(2): 532-538.
Ukrainian Patent Application No. a 2016 12986 Office Action dated Aug. 6, 2019 with English Translation.
Xenariou et al.: Use of ultrasound to enhance nonviral lung gene transfer in vivo. Gene Ther. 14(9): 768-774 (2007).
Related Publications (1)
Number Date Country
20170096684 A1 Apr 2017 US