Generally, railroad tracks include a pair of parallel rails coupled to a series of laterally extending ties (or sleepers). Ties may be made from concrete or wood. Each tie is coupled to the rails by metal tie plates and/or spring clips. The ties are disposed on a ballast bed. The ballast may be a hard particulate material, such as gravel. The ballast filled space between the ties is called a crib.
Although appearing rigid, rails are flexible members that can bend and distort, for example under the load of trains passing over. The ballast acts like a cushion absorbing some of the shock. Ballast can also help keep the rail level and allow moisture and rain water to drain away.
During installation and maintenance, ballast may be “tamped” to maintain proper position of the ties. Tamping involves agitating the ballast to allow the particles to re-position, and compact it under the tie. Tampers may also include track stabilizer workheads for applying pressure to a track structure. Additional maintenance procedures may also require actuation of workheads extending from the rail vehicle.
Rail maintenance devices, such as a tamping device, include one or more workheads mounted on a motorized vehicle that travels on the rails. A workhead may include a pair of elongated, vertically extending tools structured to move together vertically and horizontally. In the tamping context, such workheads cooperate to move together in a pincer-like motion. The workhead may have two sets of tools spaced so that each tool may be disposed on opposite lateral sides of a rail. The workhead may further include a vibration device configured to rapidly vibrate the tools.
The vibration device is generally a hydraulic actuator, which may require many components to drive such as hoses, hydraulic circuit pumps, tanks and filters. Moving parts in the hydraulic systems may wear and fail. The hydraulic systems may also leak requiring work stoppage for maintenance. A linear actuator vibrator that achieves a linear actuator-vibrator function, thus achieving both linear motion and vibration motion with high acceleration, velocity and force would be advantageous.
In an embodiment, a rail maintenance vehicle includes a frame, a workhead, and a vibration unit. The frame includes wheels that travel along rails. The vibration unit takes the form of a linear actuator vibrator that includes a rod member having a coil assembly coupled thereto, and a core assembly. The core assembly includes a plurality of magnet members. The rod member is adapted for insertion into the core assembly, such that the coil assembly cooperates with the magnet members to achieve vibratory motion.
In another embodiment, a vibration unit or linear actuator vibrator for use with a rail vehicle or other machinery includes a rod member having a coil assembly coupled thereto, a core assembly and a controller. The core assembly includes a plurality of magnet members. The rod member is adapted for insertion into the core assembly, such that the coil assembly cooperates with the magnet members to achieve vibratory motion. The controller is operable to pulse current flow to cause the rod member to move linearly and thus produce vibratory motion.
Embodiments of a linear actuator vibrator and related methods for applying linear actuation and vibration to a work head in a rail vehicle are described. It is to be understood, however, that the following explanation is merely exemplary in describing the devices and methods of the present disclosure. Accordingly, any number of reasonable and foreseeable modifications, changes, and/or substitutions are contemplated without departing from the spirit and scope of the present disclosure.
In an embodiment, the linear actuator vibrator according to the present disclosure is employed in a tamping machine rail vehicle, as illustrated in
Frame assembly 102 includes a plurality of rigid frame members and a plurality of wheels 109 that are configured to travel on the pair of rails 101. Tamping vehicle 100 travels across a pair of rails 101, disposed over a series of rail ties 103. The rails 101 and series of ties 103 are disposed over a bed of ballast. The propulsion system 104 is configured to move tamping vehicle 100. The tamping device 106 is configured to tamp rail ties 103.
The tamping device 106 may include multiple workheads. In the side view of
Referring to
Referring again to
With reference to
The core assembly 134 includes a cover plate 144, which functions as a guide bearing to guide the rod assembly 132 into the core assembly. The distal end of the core assembly 134 includes a coupling 146, such as a clevis device, for adhering the core assembly to the rail vehicle. In this regard, the clevis device 146 includes one or more locking devices 148, such as lock nuts for coupling the core assembly to the rail vehicle.
Referring more specifically to
With specific reference to
With reference to
In practice, the linear actuator vibrator 130 may be actuated to achieve both linear motion and vibration simultaneously. For example, the controller 124 (
Such linear motion and vibration may be used to actuate tools, such as the paddles 110 described with reference to
It will be appreciated that this disclosure is not limited to rail vehicles that perform tamping operations. For example, any rail operation that can benefit from linear thrust and vibration can also realize advantages of the present disclosure. It will further be appreciated that this disclosure is not limited to rail vehicles and the disclosed linear actuator vibrator may be used in any application requiring thrust and vibration. For example, non-rail applications are contemplated, such as construction equipment like gravel packers, jack hammers, and so forth.
The breadth and scope of the present disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents. Moreover, the above advantages and features are provided in described embodiments, but shall not limit the application of the claims to processes and structures accomplishing any or all of the above advantages.
Additionally, the section headings herein are provided for consistency with the suggestions under 37 CFR 1.77 or otherwise to provide organizational cues. These headings shall not limit or characterize the invention(s) set out in any claims that may issue from this disclosure. Further, a description of a technology in the “Background” is not to be construed as an admission that technology is prior art to any invention(s) in this disclosure. Neither is the “Brief Summary” to be considered as a characterization of the invention(s) set forth in the claims found herein. Furthermore, any reference in this disclosure to “invention” in the singular should not be used to argue that there is only a single point of novelty claimed in this disclosure. Multiple inventions may be set forth according to the limitations of the multiple claims associated with this disclosure, and the claims accordingly define the invention(s), and their equivalents, that are protected thereby. In all instances, the scope of the claims shall be considered on their own merits in light of the specification, but should not be constrained by the headings set forth herein.
This application claims priority to U.S. Provisional App. Ser. No. 62/486,845 filed on Apr. 18, 2017, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5440183 | Denne | Aug 1995 | A |
20070023244 | Carlson | Feb 2007 | A1 |
20170019012 | Sami | Jan 2017 | A1 |
20180235000 | Damnjanovic | Aug 2018 | A1 |
20180298563 | Sami | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
08-060601 | Mar 1996 | JP |
2007-506539 | Mar 2007 | JP |
Entry |
---|
International Search Report and Written Opinion in connection with PCT/US2018/027996 dated Aug. 8, 2018. |
Number | Date | Country | |
---|---|---|---|
20180298563 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
62486845 | Apr 2017 | US |