1. Technical Field
The present disclosure relates to locking structures and, more particularly, relates to a locking structure with a threaded nut, a method for manufacturing the locking structure and a heat dissipation device using the locking structure.
2. Description of Related Art
Generally, various components of numerous kinds of products are assembled together using locking structures such as bolts. For example, a typical heat dissipation device for dissipating heat generated by an electronic device (e.g. a central processing unit) includes components such as a heat sink, a clip, and a heat pipe. Bolts are of used to assemble these various components together.
With the development of electronics technology, electronic devices used in electronic apparatuses are being made to have more and more powerful operating capacity. An example is a central processing unit (CPU) used in a notebook computer. Nowadays, a CPU can have huge processing capacity. Yet modern electronic apparatuses are being made smaller and thinner. The heat dissipation device, including the components and the bolts securing the components, needs to also be made thin to suit the configuration of the electronic apparatus. However, the components of the heat dissipation device secured by the bolts may be so thin as to make the use of the bolts problematic. In particular, when a bolt is screwed into a component, the bolt is prone to be stripped or loosen from the component due to the limited surface areas available for threaded and frictional engagement. That is, conventional locking structures do not necessarily meet the needs of contemporary electronic apparatuses.
What are needed, therefore, are a locking structure which can overcome the limitations described above, a method for manufacturing such locking structure, and a heat dissipation device using the locking structure.
Many aspects of the present embodiments can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present embodiments. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Referring to
Referring to also
Each nut 16 comprises a chassis 160 and a sleeve 162 extending from the chassis 160. In this embodiment, the chassis 160 is circular in shape. The chassis 160 forms a plurality of first teeth 161 along a circumferential periphery thereof. The base 10 forms a plurality of second teeth (not shown) in the corresponding engaging hole 14. The second teeth are complementary with the first teeth 161 of the chassis 160, such that the first teeth 161 of the chassis 160 can joggle with the second teeth of the base 10. Thus, the nut 16 can be locked and prevented from rotating in the engaging hole 14. The sleeve 162 is hollow and has a shape of a cylinder (or column) The chassis 160 and the sleeve 162 are coaxial. The sleeve 162 has an external diameter less than that of the chassis 160. In this embodiment, the external diameter of the sleeve 162 is substantially equal to the diameter of the engaging hole 14, such that the sleeve 162 can be snugly received in the engaging hole 14. The combined chassis 160 and sleeve 162 form a screw thread in an interior surface thereof. The sleeve 162 defines an annular groove 1620 in an external periphery thereof adjacent to the chassis 160. The base 10 forms an annular protrusion 19 extending inwardly from an inner wall of the engaging hole 14 and engaging in the groove 1620 of the sleeve 160 after the nut 16 is secured to the base 10, such that the nut 16 can be locked and prevented from moving along an axial direction of the engaging hole 14. The nut 16 is made from material which is more rigid than that of the base 10, such as cast iron, steel, copper, or any suitable alloy including any of the foregoing.
The heat absorbing plate 20 is substantially rectangular, and is integrally made from a piece of material with good heat conductivity, such as copper or aluminum. The heat absorbing plate 20 comprises a main body, and a plurality of spaced posts 22 extending upwardly from the main body. The main body of the heat absorbing plate 20 has a first face and a second face opposite to the first face. The first face is for contacting an electronic device mounted on the printed circuit board and absorbing heat from the electronic device. The posts 22 extend perpendicularly from the second face of the main body of the heat absorbing plate 20.
The securing member 30 is flexible. In this embodiment, the securing member 30 is in the form of a bent metal sheet. The securing member 30 comprises a frame 32, and two elastic arms 34 respectively extending from two opposite sides of the frame 32. The frame 32 defines a window in a central portion thereof, and comprises two opposite clamping portions 320 and two opposite pressing portions 322 around the window. Each pressing portion 322 defines two spaced positioning apertures 3220 in two end parts thereof, respectively. The pressing portions 322 can span over and press two opposite lateral portions of the second face the main body of the heat absorbing plate 20. The two elastic arms 34 each comprise a first portion extending outwardly and upwardly from a central part of the corresponding pressing portion 322, and a second portion extending outwardly and horizontally from a distal end of the first portion. A distal end of the second portion of each elastic arm 34 defines a though hole 340 therein, for extension of a bolt 18 therethrough. The bolt 18 comprises a threaded portion capable of extending through the though hole 340 and screwing into the sleeve 162 of the nut 16 to fasten the securing member 30 to the base 10.
Referring to
The heat pipe 40 is flattened and has a portion thereof positioned on and contacting the second face of the heat absorbing plate 20, for transferring heat absorbed by the heat absorbing plate 20 to another location (not shown).
It is believed that the embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the disclosure or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
200910312435.9 | Dec 2009 | CN | national |