Logic device and method supporting scan test

Information

  • Patent Application
  • 20070300108
  • Publication Number
    20070300108
  • Date Filed
    June 22, 2006
    18 years ago
  • Date Published
    December 27, 2007
    17 years ago
Abstract
A logic device includes a data input, a scan test input, a clock demultiplexer, and a master latch. The clock demultiplexer is responsive to a clock input to selectively provide a first clock output and a second clock output. The master latch is coupled to the data input and to the scan test input and includes an output. The master latch is responsive to the first clock output of the clock demultiplexer and the second clock output of the clock demultiplexer to selectively couple the data input or the scan test input to the output.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The aspects and the attendant advantages of the embodiments described herein will become more readily apparent by reference to the following detailed description when taken in conjunction with the accompanying drawings wherein:



FIG. 1 is a block diagram illustrating a particular embodiment of a device with design for testability (DFT) compatible test logic;



FIG. 2 is a schematic diagram illustrating a particular embodiment of a digital logic circuit with design for testability (DFT) features separated from an operational data path;



FIG. 3 is a flow diagram of a particular embodiment of a method of operation of a digital logic device;



FIG. 4 is a general diagram of a portable communication device incorporating a digital signal processor in which the logic device test features and method of FIGS. 1-3 may be used; and



FIG. 5 is a general diagram of an exemplary cellular telephone incorporating a digital signal processor in which the digital logic device test features and method of FIGS. 1-3 may be used.





DETAILED DESCRIPTION


FIG. 1 is a block diagram of a logic device 100 with design for testability (DFT) compatible test logic. The logic device 100 includes an integrated circuit 102 that includes a master latch 104, a slave latch 106, and a clock demultiplexer 108. The integrated circuit 102 includes a clock input 110, a data input 112, a scan test input 114, and a mode selection input 116. The clock demultiplexer 108 receives the clock input 110 and a mode selection input 116. The clock demultiplexer 108 is responsive to the clock input 108 to selectively provide a first clock output 118 and a second clock output 120. The master latch 104 is coupled to the data input 112 and to the scan test input 114. The master latch 104 also includes an output 122. The master latch 104 is responsive to the first clock output 118 of the clock demultiplexer 108 and the second clock output 120 of the clock demultiplexer 108 to selectively couple the data input 112 or the scan test input 114 to the output 122. In one particular embodiment, the mode selection input 116 is coupled to the clock demultiplexer 108 to selectively activate the first clock input 118 or the second clock input 120 based on the clock input 110.


The slave latch 106 is coupled to the output 122 of the master latch 104 to couple the output 122 of the master latch 104 to the data output 124. A logic gate 126 is coupled to the data output 124 and is responsive to an input, such as the mode selection input 116, to selectively couple the data output 124 to a scan test output 128 or to prevent a scan test output 128 from toggling. In a particular embodiment, the mode selection input 116 includes a test scan mode or an operating mode, and the output 122 of the master latch 104 is coupled through the slave latch 106 to the scan test output 128 when the mode selection input 116 indicates the test scan mode and is coupled through the slave latch 106 to the data output 124 when the mode selection input 116 indicates the operating mode.


In a particular embodiment, the master latch 104 includes a data storage element that is selectively coupled to the data input 112 and to the scan test input 114. The data storage element may include a pair of cross-coupled inverters. In one particular embodiment, the master latch 104 may include a memory element and test scan circuitry to receive the scan test input 114 and to selectively couple the scan test input 114 to the memory element. In another particular embodiment, the master latch 104 includes a memory element and a transmission gate to receive the data input 112 and to selectively couple the data input 112 to the memory element. In still another embodiment, the master latch 104 includes a memory element including a pair of cross-coupled inverters and a write circuit, such as a transmission gate.


In operation, the clock demultiplexer 108 receives the clock input 110 and generates the first clock output 118 or the second clock output 120 according to the mode selection input 116. In one particular embodiment, when the first mode selection is received via the mode selection input 116, the clock demultiplexer 108 produces the first clock output 118, triggering the master latch 104 to provide data from the data input 112 to the output 122. The slave latch 106 provides data on the output 122 to the output 124 responsive to the clock input 110. In another particular embodiment, when the second mode selection is received via the mode selection input, the clock demultiplexer 108 produces the second clock output 120, triggering the master latch 104 to provide scan test data from the scan test input 114 to the output 122. The slave latch 106 provides data on the output 122 to the output 124 responsive to the clock input 110. The logic gate 126 provides the scan test data from the output 124 to the scan test output 128 responsive to the mode selection input 116. In one particular embodiment, when the second mode selection is received via the mode selection input 116, the scan test output 128 is related to the scan test input 114.


In one particular embodiment, a time delay from the data input 112 to the data output 124 during a first mode of operation is less than a time delay from the scan test input 114 to the scan test output 128 during a second mode of operation.


In one particular embodiment, the master latch 104 includes scan test circuitry that is gated in a power off state when the logic device 100 is in a non-test mode of operation. The scan test circuitry does not introduce a delay to a data path responsive to the data input 112.



FIG. 2 is a schematic diagram illustrating a particular illustrative embodiment of a logic circuit 200 with design for testability (DFT) features separated from an operational data path. The logic circuit 200 includes clock demultiplexing logic 202, a master latch 204, a slave latch 206, and scan test output logic 284. The clock demultiplexing logic 202 includes a shift input 208, a clock input 210, and NOR gates 212 and 240. The NOR gate 212 inverts the shift input 208. The NOR gates 212 and 240 operate to demultiplex the clock input 210 responsive to the shift input 208. When the shift input 208 is at a logic low level, the NOR 212 provides a zero output, while the NOR gate 240 proves a clock signal that is inverted relative to the clock input 210. Thus, the NOR gates 212 and 240 provide clock demultiplexing logic 202 that converts a clock input 210 into a first clock signal at output 242 and a second clock signal at node 220.


The inverter 216 inverts the logic level at node 220 and provides an inverted output to node 224. The tri-state inverter 218 includes an input coupled to a scan test input 209, an input coupled to node 220, and an inverted input coupled to the node 224. The shift input 208 controls the tri-state inverter 218 to selectively couple the scan test input 209 to a second state node 228 of the master latch 204. When the shift input 208 is at a logic low, the tri-state inverter 218 is deactivated, thereby isolating the second state node 228 from the scan test input 209. When the shift input 208 is at a logic high level, then the NOR gate 212 receives the shift input 208 as a logic low signal, since the shift input 208 of the NOR gate 212 is inverted, and the output of the NOR gate 212 at node 220 is an inverted version of the clock input 210.


The NOR gate 240 includes the shift input 208 and the clock input 210. When the shift input 208 is at a logic low, the NOR gate 240 outputs an inverted version of the clock input 210 at output 242. The output 242 is coupled to an inverter 244, which is coupled to a node 246.


The master latch 204 includes a data input 250, a scan test input 209, a tri-state inverter 230, a tri-state inverter 236, inverters 252 and 256, and a transmission gate 254. The scan test input 209 is coupled to the tri-state inverter 218 and to node 228. The tri-state inverter 230 includes a scan test clock input 232 coupled to the node 224, an inverted input 234 to receive an activation signal (i0), an input 237 coupled to a first state node 238, and an output coupled to the second state node 228. The tri-state inverter 236 includes an input 235 that is coupled to the second state node 228, a clock input 239 that is coupled to the node 246 to receive an activation signal (i1), and an output coupled to the first state node 238. It should be understood that the arrangement of the tri-state inverters 230 and 236 may be referred to as a storage element or as a cross-coupled inverter, which can be controlled by the logic level of the shift input 208. The master latch 204 also includes the inverter 252 to receive the data input 250 and to provide an inverted version of the data input 250 to the transmission gate 254. The transmission gate 254 may be a write circuit that is controlled by the clock input 210, such as a tristate inverter. The transmission gate 254 includes an input to receive the inverted version of the data input 250, inputs 251 and 257 to provide inverted versions of the clock input to the transmission gate 254, and an output coupled to the first state node 238 via node 258. In general, the storage element of the tri-state inverters 230 and 236 and the transmission gate 254 form a latch means or latch element. It should be apparent to someone skilled in the art that the number of logic gates between the clock and transmission gate 254 can be varied to change the timing characteristics of the circuit. The number of logic gates on the clock path of tristate inverter 226 can also be varied for the same reason.


The slave latch 206 is coupled to the first state node 238 via node 258 and via an inverter 260. The slave latch 206 includes an input 262 that is coupled to an output of the inverter 260. The slave latch 206 also includes a transmission gate 264, inverters 266, 274, and 280, and a tri-state inverter 282. The inverter 266 includes a clock input 210 and provides an output to a node 270. The transmission gate 264 includes an input coupled to the output 262 of the inverter 260, an input 268 coupled to the clock input 210, and an input 267 coupled to the node 270. The transmission gate 264 includes an output coupled to node 272 and to a data output 276 via inverter 274. The inverter 280 includes an input coupled to the node 272 and an output coupled to the node 281. The inverter 282 includes an input coupled to the node 281, a control input coupled to the node 270, and an output coupled to the node 272. The slave latch 206 latches the data from the node 258 to the output 276 of the slave latch 206 on each clock cycle.


The NAND gate 284 includes an input coupled to the shift input 208, an input coupled to the node 281, and a scan test output 286. When the shift input 208 is at a logic low level, the output of the NAND gate 284 is held at a logic high level. When the shift input 208 is at a logic low level, the NAND gate 284 provides an inverted version of the scan test input 209 to the scan test output 286. Thus, when the scan test mode of operation is selected, such as by placing a logic high signal on the shift input 208, the data from the output 276 is gated onto the scan test output 286 by the NAND gate 284. The same gating function can also be implemented using a different type of logic gate, such as a NOR gate.


In one particular embodiment, when in a functional or operating mode, the tri-state inverter 218 that is coupled to the scan test input 209 is disabled when the shift input 208 receives a shift value of zero (or a logic low value, such as a level that is below a threshold voltage level, for example). The output of the NOR gate 240 is inverted by inverter 244 and inverted again at the control inputs 251 and 257 of the transmission gate 254, which is enabled to pass data from the data input 250 to the first state node 258. During an operating mode, the scan circuitry may be gated off to conserve power. The data input 250 is coupled to the data output 276 via the transmission gates 254 and 264 and via inverters 252, 258 and 274 to provide a data output signal on the data output 276 that is related to the data input signal at the data input 250. The scan test logic is not part of this data path.


In a test mode, the shift value is “1” (a logic high, such as a level that is above a threshold voltage level, for example) at the shift input 208, the tri-state inverter 218 is enabled and the scan test input 209 is connected to the second state node 228 via the tri-state inverter 218. Concurrently, the transmission gate 254 is disabled to disconnect the data input 250 from the first state node 258. The scan circuitry 204 becomes the master latch that is coupled to the first state node 258, which provides the input to the slave latch 206. In the test mode, the scan test input 209 is coupled to the scan output 286 via the tri-state inverter 218, the node 228, the cross-coupled inverters 230 and 236, the first state node 258, the inverter 260, the transmission gate 264, the inverter 280, the tri-state inverter 282, the node 281, and the NAND gate 284.


The circuit 200 performs like a multiplexer followed by a flip-flop. However, the scan test circuitry is removed from the data path logic. Instead, the multiplexing is performed using the clock input 210 and the shift input 208 in the clock demultiplexing logic 202 to produce two clocks to the master latch 204 to selectively couple either the scan test input 209 or the data input 250 to the slave latch 206. Additionally, the scan circuitry does not slow down the data flow through the data path logic.


In general, a microprocessor that is designed for mobile applications may include flip-flops, which may account for approximately 29% of the total dynamic power consumption of the microprocessor. A flip-flop circuit that incorporates the scan test logic described in FIGS. 1 and 2, for example, may be approximately 25% faster and may require 27% less power than conventional flip-flops, while occupying the same physical area on the chip. The flip-flop, such as the inverters 280 and 282 in the slave latch 206 and the inverters 234 and 236 of the master latch 204 has its scan logic removed from the data path during normal operation. Additionally, since flip-flops are widely utilized in digital systems, the circuit 200 maintains design for testability (DFT) compatible test logic while removing the DFT scan circuitry from the data path logic to reduce delays relative to conventional scan test logic disposed within the data path. It should be understood that the term “data path logic” as used herein refers to the data path utilized during operating mode, as opposed to the scan test data path utilized during a test mode of operation.



FIG. 3 is an illustrative block diagram of a particular embodiment of a method of operation of a logic device. A mode selection signal is received (block 300). If the mode selection signal is not related to a test mode (block 302), a first clock output is generated from a clock input (block 304). A data input is routed to a first state node of a storage element, where the storage element includes a second state node that is inverted with respect to the first state node (block 306). In the operating mode, a scan test input is isolated from the second state node (block 308).


If the mode selection signal is related to a test mode (block 302), a second clock output is generated from a clock input (block 310). A scan test input is routed to a second state node of the storage element (block 312). In the scan test mode, the data input is isolated from the first state node (block 314). The output may be generated according to the routed input (block 316) (i.e. the data output in the normal operating mode or the scan test output during the scan test mode).


In one particular embodiment, a control input is received to select the test mode of operation. In one embodiment, the test mode of operation is a scan test mode. In one particular embodiment, the scan test input is routed by enabling a tri-state inverter or a transmission gate to couple the scan test input to the second state node, where the tri-state inverter or transmission gate may include a data input coupled to the scan test input, a control input coupled to a control terminal, and an output coupled to the second state node.


In one embodiment, the data input may be isolated from the first state node by disabling a second transmission gate or tri-state element. The second transmission gate or tri-state element may include a data input terminal coupled to the data input, a first control input and a second control input coupled to the control terminal, and an output coupled to the first state node, where the control terminal is inverted with respect to the first control input and the second control input.


In another particular embodiment, the data input is routed to the first state node by enabling a transmission gate to couple the data input to the first state node. In yet another particular embodiment, the scan test input may be isolated by disabling an inverter, where the inverter includes a data input coupled to the scan test input, includes a control input coupled to a control terminal, and includes an output coupled to the second state node.


In one particular embodiment, the scan test input is routed by enabling an inverter (such as the tri-state inverter 218 in FIG. 2) to couple the scan test input to the second state node. The inverter may couple the scan test input to the second state node during a test mode of operation and may isolate the second state node from the scan test input during an operating (non-test) mode. A transmission gate may couple the data input to the first state node during an operating mode and may isolate the data input from the first state node during a test mode.


In another particular embodiment, the data input is routed to the first state node by enabling a transmission gate (such as the transmission gate 254) to couple the data input to the first state node. The transmission gate may include a data input terminal coupled to the data input, a first control input and a second control input coupled to the control terminal, and an output coupled to the first state node (such as input 253, control inputs 251 and 257, and the output coupled to the first state node 258 in FIG. 2). It should be apparent to anyone skilled in the art that input inverter 252 of FIG. 2 could be replaced by another logic gate, or completely removed. It should also be apparent that tristate inverter 234 or tristate inverter 236 can be replaced by another tristate logic gate to implement an asynchronous set or reset function for the master latch. Similarly, an asynchronous set or reset function can be implemented in the slave latch by replacing inverter 280 or tristate inverter 282 by another logic gate, such as a NAND or NORpwd, or tristate logic gate, respectively.


In another particular embodiment, the scan test input may be isolated by disabling an inverter (such as the tri-state inverter 218 in FIG. 2). The inverter may include a data input coupled to the scan test input, a control input coupled to a control terminal, and an output coupled to the second state node.



FIG. 4 illustrates an exemplary, non-limiting embodiment of a portable communication device that is generally designated 400. As illustrated in FIG. 4, the portable communication device includes an on-chip system 422 that includes a digital signal processor 410. In a particular embodiment, the digital signal processor 410 may include scan circuitry 411 (or scan test circuitry) as described with respect to FIGS. 1-3. FIG. 4 also shows a display controller 426 that is coupled to the digital signal processor 410 and to a display 428. Moreover, an input device 430 is coupled to the digital signal processor 410. As shown, a memory 432 is coupled to the digital signal processor 410. Additionally, a coder/decoder (CODEC) 434 can be coupled to the digital signal processor 410. A speaker 436 and a microphone 438 can be coupled to the CODEC 434.



FIG. 4 also indicates that a wireless controller 440 can be coupled to the digital signal processor 410 and a wireless antenna 442. In a particular embodiment, a power supply 444 is coupled to the on-chip system 422. Moreover, in a particular embodiment, as illustrated in FIG. 4, the display 428, the input device 430, the speaker 436, the microphone 438, the wireless antenna 442, and the power supply 444 are external to the on-chip system 422. However, each is coupled to a component of the on-chip system 422.


It should be understood that while the scan circuitry 411 is shown only within the digital signal processor 410, the scan circuitry 411 may be provided in other components, including the display controller 426, the wireless controller 440, the CODEC 434, or any other component that includes a flip-flop for which design for testability (DFT) compatibility is desired. It should be understood that at least one scan test pin and at least one mode selection pin may be provided in each such component to receive scan data and to select between an operating mode and a test mode.


Referring to FIG. 5, an exemplary, non-limiting embodiment of a cellular telephone is shown and is generally designated 500. As shown, the cellular telephone 500 includes an on-chip system 522 that includes a digital baseband processor 524 and an analog baseband processor 526 that are coupled together. The digital baseband processor 524 may include scan circuitry 511, as described with respect to FIGS. 1-3. The analog baseband processor 526 may also include scan circuitry 527, as described with respect to FIGS. 1-3. As illustrated in FIG. 5, a display controller 528 and a touchscreen controller 530 are coupled to the digital baseband processor 524. In turn, a touchscreen display 532 external to the on-chip system 522 is coupled to the display controller 528 and the touchscreen controller 530.



FIG. 5 further indicates that a video encoder 534, e.g., a phase alternating line (PAL) encoder, a sequential couleur a memoire (SECAM) encoder, or a national television system(s) committee (NTSC) encoder, is coupled to the digital baseband processor 524. Further, a video amplifier 536 is coupled to the video encoder 534 and the touchscreen display 532. Also, a video port 538 is coupled to the video amplifier 536. As depicted in FIG. 5, a universal serial bus (USB) controller 540 is coupled to the digital baseband processor 524. Also, a USB port 542 is coupled to the USB controller 540. A memory 544 and a subscriber identity module (SIM) card 546 can also be coupled to the digital baseband processor 524. Further, as shown in FIG. 5, a digital camera 548 can be coupled to the digital baseband processor 524. In an exemplary embodiment, the digital camera 548 is a charge-coupled device (CCD) camera or a complementary metal-oxide semiconductor (CMOS) camera.


As further illustrated in FIG. 5, a stereo audio CODEC 550 can be coupled to the analog baseband processor 526. Moreover, an audio amplifier 552 can coupled to the stereo audio CODEC 550. In an exemplary embodiment, a first stereo speaker 554 and a second stereo speaker 556 are coupled to the audio amplifier 552. FIG. 5 shows that a microphone amplifier 558 can be also coupled to the stereo audio CODEC 550. Additionally, a microphone 560 can be coupled to the microphone amplifier 558. In a particular embodiment, a frequency modulation (FM) radio tuner 562 can be coupled to the stereo audio CODEC 550. Also, an FM antenna 564 is coupled to the FM radio tuner 562. Further, stereo headphones 566 can be coupled to the stereo audio CODEC 550.



FIG. 5 further indicates that a radio frequency (RF) transceiver 568 can be coupled to the analog baseband processor 526. An RF switch 570 can be coupled to the RF transceiver 568 and to an RF antenna 572. As shown in FIG. 5, a keypad 574 can be coupled to the analog baseband processor 526. Also, a mono headset with a microphone 576 can be coupled to the analog baseband processor 526. Further, a vibrator device 578 can be coupled to the analog baseband processor 526. FIG. 5 also shows that a power supply 580 can be coupled to the on-chip system 522. In a particular embodiment, the power supply 580 is a direct current (DC) power supply that provides power to the various components of the cellular telephone 500 that require power. Further, in a particular embodiment, the power supply is a rechargeable DC battery or a DC power supply that is derived from an alternating current (AC) to DC transformer that is connected to an AC power source.


In a particular embodiment, as depicted in FIG. 5, the touchscreen display 532, the video port 538, the USB port 542, the camera 548, the first stereo speaker 554, the second stereo speaker 556, the microphone 560, the FM antenna 564, the stereo headphones 566, the RF switch 570, the RF antenna 572, the keypad 574, the mono headset 576, the vibrator device 578, and the power supply 580 are external to the on-chip system 522.


It should be understood that while the scan circuitry 511 and 527 is shown only within the digital signal processor 524 and within the analog baseband processor 526, scan circuitry, such as that described with respect to FIGS. 1-3, may be provided in other components, including the display controller 528, the touchscreen controller 530, the PAL/SECAM/NTSC encoder 534, or any other component that includes a flip-flop for which design for testability (DFT) compatibility is desired. It should be understood that at least one scan test pin and at least one mode selection pin may be provided in each such component to receive scan data and to select between an operating mode and a test mode.


Those of skill would further appreciate that the various illustrative logical blocks, configurations, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, configurations, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.


The steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, PROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a computing device or a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a computing device or user terminal.


The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the disclosure. Thus, the present disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features as defined by the following claims.

Claims
  • 1. A logic device comprising: a data input;a scan test input;a clock demultiplexer responsive to a clock input to selectively provide a first clock output and a second clock output; anda master latch coupled to the data input and to the scan test input, the master latch including an output, the master latch responsive to the first clock output of the clock demultiplexer and the second clock output of the clock demultiplexer to selectively couple the data input or the scan test input to the output.
  • 2. The logic device of claim 1, further comprising: a slave latch coupled to the output of the master latch to couple the output of the master latch to the data output responsive to the clock input.
  • 3. The logic device of claim 2, further comprising: a logic gate coupled to the data output and responsive to an input to selectively couple the data output to a scan test output.
  • 4. The logic device of claim 3, wherein the input comprises a mode selection input.
  • 5. The logic device of claim 1, wherein the master latch comprises: a data storage element selectively coupled to the data input and to the scan test input.
  • 6. The logic device of claim 5, wherein the data storage element comprises: a pair of inverters or tri-state inverters that are arranged in a cross-coupled configuration, the pair of inverters including a first node and a second node, wherein the second node is inverted with respect to the first node; anda transmission gate or tri-state element coupled to the first node and responsive to the first clock input to selectively couple the data input to the first node.
  • 7. The logic device of claim 5, wherein the master latch further comprises: a scan test circuit coupled to the scan test input and responsive to the second clock input to selectively connect the scan test input to the data storage element.
  • 8. The logic device of claim 1, further comprising: a mode selection input coupled to the clock demultiplexer to selectively activate the first clock input or the second clock input.
  • 9. A method of operation of a digital logic device, the method comprising: receiving a mode selection input to select between a test mode and an operating mode;selectively generating a first clock or a second clock based on the mode selection input;routing a data input to a first state node of a storage element in response to the first clock, the storage element having a second state node that is inverted with respect to the first state node; andselectively isolating a scan test input from the second state node of the data latch element based on the mode selection input.
  • 10. The method of claim 9, further comprising: in a test mode of operation, routing the scan test input to the second state node of the storage element and isolating the data input from the first state node in response to the second clock.
  • 11. The method of claim 10, further comprising receiving a control input to select the test mode of operation.
  • 12. The method of claim 10, wherein the test mode of operation comprises a scan test mode.
  • 13. The method of claim 10, wherein routing the scan test input comprises: enabling a tri-state inverter or a transmission gate to couple the scan test input to the second state node, the tri-state inverter or transmission gate including a data input coupled to the scan test input, a control input coupled to a control terminal, and an output coupled to the second state node; andwherein the data input is isolated from the first state node by disabling a second transmission gate or tri-state element, the second transmission gate or tri-state element including a data input terminal coupled to the data input, a first control input and a second control input coupled to the control terminal, and an output coupled to the first state node, wherein the control terminal is inverted with respect to the first control input and the second control input.
  • 14. The method of claim 9, wherein routing the data input to the first state node comprises enabling a transmission gate to couple the data input to the first state node.
  • 15. The method of claim 9, wherein isolating the scan test input comprises disabling an inverter, the inverter including a data input coupled to the scan test input, a control input coupled to a control terminal, and an output coupled to the second state node.
  • 16. The method of claim 15 wherein the storage element comprises a pair of cross-coupled inverters.
  • 17. A logic device comprising: a clock demultiplexer coupled to a clock input and responsive to a mode selection input to selectively generate a first clock or a second clock;a master latch coupled to a data input and a scan test input and including an output, the master latch responsive to the first clock to couple the data input to the output and responsive to the second clock to couple the scan test input to the output;a slave latch coupled to the output of the master latch, the slave latch responsive to the clock input to selectively couple the output of the master latch to a data output; anda logic gate coupled to the data output and responsive to the mode selection input to selectively couple the data output to a scan test output.
  • 18. The logic device of claim 17 wherein the mode selection input includes one of a test scan mode or an operating mode, and wherein the output of the master latch is coupled to the scan test output when the mode selection input is the test scan mode and is coupled to the data output when the mode selection input is the operating mode.
  • 19. The logic device of claim 17 wherein the master latch comprises: a memory element; andtest scan circuitry to receive the scan test input and to selectively couple the scan test input to the memory element.
  • 20. The logic device of claim 17, wherein the master latch comprises: a memory element; anda transmission gate to receive the data input and to selectively couple the data input to the memory element.
  • 21. The logic device of claim 17, wherein the master latch comprises a memory element including a pair of cross-coupled inverters and a write circuit.
  • 22. The logic device of claim 21, wherein the write circuit comprises a transmission gate.
  • 23. A logic device comprising: a scan test input to receive scan test data;a mode selection input to receive at least one of a first mode selection and a second mode selection;scan logic responsive to the scan test input and to the mode selection input;a data output; anda scan test output;wherein, when the first mode selection is received, the data output is coupled to the data input;wherein, when the second mode selection is received, the scan test output is related to the scan test input; andwherein a time delay from the data input to the data output during a first mode of operation is less than a time delay from the scan test input to the scan test output during a second mode of operation.
  • 24. The logic device of claim 23, wherein the second mode selection comprises a test mode indicator.
  • 25. The logic device of claim 23, wherein the scan test input is coupled to a second node of a data latch that includes a first node that is inverted relative to the second node, and wherein the mode selection input activates the data latch when the second mode selection is received.
  • 26. A logic device comprising: means for routing a data input to a first state node of a data latch element, the data latch element having a second state node that is inverted with respect to the first state node; andmeans for isolating a scan test input from the second state node of the data latch element; andwhen in a second mode of operation: means for routing the scan test input to the second state node of the data latch element; andmeans for isolating the data input from the first state node.
  • 27. A logic device comprising: a data latch including a first state node and a second state node, the second state node inverted with respect to the first state node;a clock demultiplexer to receive a clock input, the clock demultiplexer responsive to a mode selection input to selectively produce one of a first clock output and a second clock output;a transmission gate to receive a data input, the transmission gate responsive to the first clock output to selectively couple the data input to the first state node; andscan test circuitry to receive a scan test input, the scan test circuitry responsive to the second clock output to selectively couple the scan test input to the second state node.
  • 28. The logic device of claim 27, wherein, when in a first mode of operation, the scan test circuitry is gated in a power off state.
  • 29. The logic device of claim 27, wherein, when in a second mode of operation, the scan test circuitry is coupled to the second state node.
  • 30. The logic device of claim 27, wherein the scan test circuitry does not introduce a delay to a data path responsive to the data input.
  • 31. The logic device of claim 27, wherein the data latch comprises a memory element including a pair of cross-coupled inverters.