This application is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2018-019487, filed on Feb. 6, 2018, the entire contents of which are incorporated herein by reference.
This disclosure relates to a loop heat pipe.
A heat pipe is a device that uses phase transition of a working fluid to cool heat-generating components of a semiconductor device (e.g., central processing unit (CPU)) mounted on an electronic device.
Japanese Patent No. 6146484 discloses a loop heat pipe having a loop structure that connects an evaporator, a vapor pipe, a condenser, and a liquid pipe in series and encloses working fluid. The evaporator receives heat from a heat-generating component to change the working fluid from a liquid phase into a gaseous phase. The gaseous working fluid flows through the vapor pipe into the condenser. The condenser removes heat from the gaseous working fluid to condense the working fluid into a liquid phase. The liquid working fluid flows through the liquid pipe into the evaporator.
In a loop heat pipe, the working fluid may accumulate, for example, in the liquid pipe. For example, in a thermal cycle test that repeats solidification and expansion of working fluid in a loop heat pipe in a short time, an accumulation of the working liquid causes deformation (bulge) of the loop heat pipe. Such a deformed loop heat pipe is a defective. Thus, the accumulation of working fluid needs to be limited.
One embodiment of a loop heat pipe includes an evaporator that vaporizes working fluid, a condenser that liquefies the working fluid vaporized by the evaporator, a liquid pipe that connects the condenser to the evaporator and includes a flow passage that sends the working fluid liquefied by the condenser to the evaporator, and a vapor pipe that connects the evaporator to the condenser to send the working fluid vaporized by the evaporator to the condenser. The liquid pipe is formed by a metal layer stack of a plurality of metal layers. The plurality of metal layers include a first metal layer through which a first through hole extends in a thickness-wise direction. The flow passage of the liquid pipe is formed by at least the first through hole and has four walls that define the flow passage. The liquid pipe further includes a plurality of porous bodies form at least two of the four walls of the flow passage.
Another embodiment of a loop heat pipe includes a metal layer stack of two outermost metal layers and a plurality of intermediate metal layers located between the two outermost metal layers. The metal layer stack includes an evaporator, a vapor pipe, a condenser, and a liquid pipe that are connected to form a loop. The liquid pipe includes one or more flow passages and a plurality of porous bodies. Each flow passage is formed as a single communication hole extending from the condenser to the evaporator along the liquid pipe. Each flow passage extends through at least one of the plurality of intermediate metal layers in a thickness-wise direction and has four walls that define the flow passage. The plurality of porous bodies are formed in at least two of the plurality of intermediate metal layers and arranged to form at least two of the four walls of each flow passage.
Other embodiments and advantages thereof will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention, as claimed.
The embodiments, together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
Various embodiments will be described below. Elements in the accompanying drawings may be enlarged for simplicity and clarity and thus have not necessarily been drawn to scale. To facilitate understanding, hatching lines (shadings) drawn in the plan views may not be illustrated in the cross-sectional views. In this specification, the “plan view” refers to a cross-sectional view of an object taken in the vertical direction (for example, vertical direction in
As illustrated in
The loop heat pipe 1 includes an evaporator 11, a vapor pipe 12, a condenser 13, and a liquid pipe 14. The evaporator 11 functions to vaporize a working fluid C and generate a vapor Cv. The condenser 13 functions to liquefy the vapor Cv of the working fluid C. The vapor pipe 12 connects the evaporator 11 to the condenser 13 and sends the working fluid C that is vaporized by the evaporator 11 to the condenser 13. The liquid pipe 14 connects the condenser 13 to the evaporator 11 and sends the working fluid C that is liquefied by the condenser 13 to the evaporator 11. The evaporator 11 and the condenser 13 are connected by the vapor pipe 12 and the liquid pipe 14 to form a loop flow passage through which the working fluid C or the vapor Cv flows. In the present embodiment, the liquid pipe 14 and the vapor pipe 12 have, for example, the same length. However, the liquid pipe 14 and the vapor pipe 12 may have different lengths. For example, the vapor pipe 12 may be shorter than the liquid pipe 14.
The evaporator 11 is configured to be in tight contact with and fixed to a heat-generating component (not illustrated) mounted on the electronic device 2. The evaporator 11 uses heat generated by the heat-generating component to vaporize the working fluid C and generate the vapor Cv. Although not illustrated in the drawings, a thermal interface material (TIM) may be arranged between the evaporator 11 and the heat-generating component. The thermal interface material reduces thermal contact resistance between the heat-generating component and the evaporator 11 and smoothly transfers heat from the heat-generating component to the evaporator 11. The vapor Cv generated by the evaporator 11 is guided through the vapor pipe 12 to the condenser 13.
The condenser 13 includes a heat dissipation plate 13p having a large area for heat dissipation and a flow passage 13r meandering in the heat dissipation plate 13p. The flow passage 13r serves as part of the loop flow passage described above. The condenser 13 liquefies the vapor Cv that is drawn through the vapor pipe 12. The working fluid C liquefied by the condenser 13 is guided through the liquid pipe 14 to the evaporator 11.
The liquid pipe 14 includes two walls 14w located at opposite sides in the width-wise direction (vertical direction in
The loop heat pipe 1 transfers heat generated by the heat-generating component from the evaporator 11 to the condenser 13 and dissipates the heat in the condenser 13. The loop heat pipe 1 cools the heat-generating component through the circulation of the working fluid C.
Preferably, a fluid having a high vapor pressure and a large latent heat of evaporation is used as the working fluid C. The use of such a working fluid C efficiently cools the heat-generating component with the latent heat of vaporization. Examples of the working fluid C include ammonia, water, chlorofluorocarbon, alcohol, and acetone.
The metal layers 41 to 46 are not limited to copper layers and may be, for example, stainless steel layers, aluminum layers, or magnesium alloy layers. One or more of the metal layers 41 to 46 may be formed from a material different from that of the remaining metal layers. The thickness of each of the metal layers 41 to 46 may be, for example, approximately 50 μm to 200 μm. One or more of the metal layers 41 to 46 may differ in thickness from the remaining metal layers. Further, all of the metal layers may differ in thickness from each other.
As illustrated in
As illustrated in
As illustrated in
The intermediate metal layer 43 includes two through holes 43X extending through in the thickness-wise direction, two walls 43w located at an outer side of the through holes 43X, and a porous body 43s located between the two through holes 43X. In the same manner, the intermediate metal layer 44 includes two through holes 44X extending through in the thickness-wise direction, two walls 44w located at an outer side of the through holes 44X, and a porous body 44s located between the two through holes 44X.
The intermediate metal layers 43 and 44 are stacked so that the through holes 43X and 44X overlap with each other in a plan view.
The intermediate metal layer 42 is stacked on the upper surface of the intermediate metal layer 43, and the intermediate metal layer 45 is stacked on the lower surface of the intermediate metal layer 44. The intermediate metal layers 43 and 44, which include the through holes 43X and 44X, and the intermediate metal layers 42 and 45, which are stacked on the intermediate metal layers 43 and 44, define the two flow passages 14r. Each flow passage 14r is surrounded by the walls 43w and 44w, the porous bodies 43s and 44s, and the intermediate metal layers 42 and 45. The walls 43w and 44w define one of the two side walls of each flow passage 14r, and the porous bodies 43s and 44s define the other side wall of the flow passage 14r. The intermediate metal layer 42 defines the upper wall (ceiling) of the flow passage 14r, and the intermediate metal layer 45 defines the lower wall (bottom) of the flow passage 14r.
As illustrated in
As illustrated in
In the same manner as the porous body 43s, the porous body 44s includes bottomed holes 44u recessed from the upper surface of the intermediate metal layer 44 to a central portion of the metal layer 44 in the thickness-wise direction and bottomed holes 44d recessed from the lower surface of the intermediate metal layer 44 to a central portion of the metal layer 44 in the thickness-wise direction. The bottomed holes 44u and 44d may have the same shape as the bottomed holes 43u and 43d of the porous body 43s and may be, for example, circular in a plan view. The bottomed holes 44u and 44d partially overlap with each other in a plan view. The overlapped portions form fine pores 44z connecting the bottomed holes 44u and 44d to each other. The porous body 44s including the bottomed holes 44u and 44d and the fine pores 44z is configured to be part of the porous body 14s. Although not illustrated in
The intermediate metal layer 42 includes porous bodies 42t immediately above the flow passages 14r. The porous bodies 42t extend along the respective flow passages 14r. Each porous body 42t defines the upper wall (ceiling) of the corresponding one of the flow passages 14r. The porous body 42t includes bottomed holes 42u recessed from the upper surface of the intermediate metal layer 42 to a central portion of the metal layer 42 in the thickness-wise direction and bottomed holes 42d recessed from the lower surface of the intermediate metal layer 42 to a central portion of the metal layer 42 in the thickness-wise direction. The bottomed holes 42u and 42d may have the same shape as the bottomed holes 43u and 43d of the porous body 43s and may be, for example, circular in a plan view. The bottomed holes 42u and 42d partially overlap with each other in a plan view. The overlapped portions form fine pores 42z connecting the bottomed holes 42u and 42d to each other. The fine pores 42z may have the same shape as the fine pores 43z of the porous body 43s. The intermediate metal layer 42 includes walls 42w located at an outer side of the porous bodies 42t. The walls 42w are free from holes and grooves. The intermediate metal layer 42 further includes an intermediate portion 42a located between the two porous bodies 42t. The intermediate portion 42a is also free from holes and grooves.
The intermediate metal layer 45 includes porous bodies 45t immediately below the flow passages 14r. The porous bodies 45t extend along the respective flow passages 14r. Each porous body 45t defines the lower wall (bottom) of the corresponding one of the flow passages 14r. The porous body 45t includes bottomed holes 45u recessed from the upper surface of the intermediate metal layer 45 to a central portion of the metal layer 45 in the thickness-wise direction and bottomed holes 45d recessed from the lower surface of the intermediate metal layer 45 to a central portion of the metal layer 45 in the thickness-wise direction. The bottomed holes 45u and 45d may have the same shape as the bottomed holes 43u and 43d of the porous body 43s and may be, for example, circular in a plan view. The bottomed holes 45u and 45d partially overlap with each other. The overlapped portions form fine pores 45z connecting the bottomed holes 45u and 45d to each other. The fine pores 45z may have the same shape as the fine pores 43z of the porous body 43s. The intermediate metal layer 45 includes walls 45w located at an outer side of the porous bodies 45t. The walls 45w are free from holes and grooves. The intermediate metal layer 45 further includes an intermediate portion 45a located between the two porous bodies 45t. The intermediate portion 45a is also free from holes and grooves.
As described above, each of the flow passages 14r in the liquid pipe 14 is surrounded by the porous bodies 14s (43s, 44s), 42t, and 45t and the walls 14w (43w, 44w). In other words, the upper wall, the lower wall, and one of the side walls of each flow passage 14r are respectively defined by the porous bodies 42t, 45t, and 14s (43s, 44s), and the other side wall of the flow passage 14r is defined by the wall 14w.
The porous bodies 42t of the intermediate metal layer 42 are in contact with the flow passages 14r, and the bottomed holes 42d of the intermediate metal layer 42 are in communication with the through holes 43X of the intermediate metal layer 43. The porous bodies 45t of the intermediate metal layer 45 are in contact with the flow passages 14r, and the bottomed holes 45u of the intermediate metal layer 45 are in communication with the through holes 44X of the intermediate metal layer 44. The porous body 43s of the intermediate metal layer 43 is in contact with the flow passages 14r, and each of the through holes 43X is in communication with at least one of the bottomed holes 43u and 43d of the intermediate metal layer 43. The porous body 44s of the intermediate metal layer 44 is in contact with the flow passages 14r, and each of the through holes 44X is in communication with at least one of the bottomed holes 44u and 44d of the intermediate metal layer 44.
In the structure of the liquid pipe 14 illustrated in
As illustrated in
The method for manufacturing the loop heat pipe 1 will now be described.
The metal layers 61 to 63 illustrated in
As illustrated in
As illustrated in
The method for forming the bottomed holes 42u, 42d, 45u, and 45d of the porous bodies 42t and 45t will now be described.
In the step illustrated in
In the step illustrated in
In the step illustrated in
In the step illustrated in
In the step illustrated in
The method for forming the bottomed holes 43u, 43d, 44u, and 44d of the porous body 14s (43s, 44s) and the flow passages 14r (through holes 43X and 44X) will now be described.
In the step illustrated in
In the step illustrated in
In the step illustrated in
In the step illustrated in
In the step illustrated in
The metal layer 61 that is solid and free from holes and grooves (refer to
Then, the uppermost metal layer 41 obtained from the metal layer 61 illustrated in
As the metal layers 61 to 63 are heated at a predetermined temperature (for example, approximately 900° C.), the metal layers 61 to 63 are pressed so that the metal layers 61 to 63 are bonded through diffusion bonding. Subsequently, air is removed from, for example, the liquid pipe 14 using a vacuum pump (not illustrated), the working fluid C (e.g., water) is injected into the liquid pipe 14 from an inlet (not illustrated), and the inlet is closed.
The present embodiment has the advantages described below.
(1) The loop heat pipe 1 includes the evaporator 11 that vaporizes the working fluid C, the condenser 13 that liquefies the vapor Cv, the vapor pipe 12 that sends the vaporized working fluid (vapor Cv) to the condenser 13, and the liquid pipe 14 that sends the liquefied working fluid C to the evaporator 11. The liquid pipe 14 includes the porous bodies 14s, 42t, and 45t and the flow passages 14r. The flow passages 14r are surrounded by the porous bodies 14s, 42t, and 45t and the walls 14w. The capillary force of the porous bodies 14s, 42t, and 45t surrounding each flow passage 14r disperses the working fluid C flowing through the flow passage 14r into the porous bodies 14s, 42t, and 45t. This limits accumulation of the working fluid C in the flow passages 14r.
It should be apparent to those skilled in the art that the foregoing embodiments may be implemented in many other specific forms without departing from the scope of this disclosure. Particularly, it should be understood that the foregoing embodiments may be implemented in the following forms.
In the following modified examples, the same reference characters are given to those components that are the same as the corresponding components of the embodiment and other modified examples. Such components may not be described in detail. Each modified example described below and the embodiment described above (
The flow passages 14r are surrounded by the porous bodies 14s (43s, 44s), 42t, and 45t and the walls 14w (43w, 44w). In other words, the upper wall, the lower wall, and one side wall of each flow passage 14r are respectively defined by the porous bodies 42t, 45t, and 14s (43s, 44s). The other side wall of the flow passage 14r is defined by the wall 14w.
The porous body 14s includes the porous bodies 43s and 44s formed in the intermediate metal layers 43 and 44 of the metal layer stack of the metal layers 41 to 46. The porous bodies 43s and 44s are formed in the same manner as those formed in the liquid pipe 14 of the above embodiment (
Each flow passage 14r includes the through holes 43X and 44X extending through the intermediate metal layers 43 and 44 of the metal layers 41 to 46 in the thickness-wise direction. The through holes 43X and 44X are formed in the same manner as those formed in the liquid pipe 14 of the above embodiment (
The intermediate metal layer 42 includes the porous bodies 42t immediately above the flow passages 14r. The porous bodies 42t include the bottomed holes 42u recessed from the upper surface of the intermediate metal layer 42 to a central portion of the metal layer 42 in the thickness-wise direction and the bottomed holes 42d recessed from the lower surface of the intermediate metal layer 42 to a central portion of the metal layer 42 in the thickness-wise direction.
The porous body 14s is formed in the intermediate metal layers 42 to 45, which exclude the uppermost metal layer 41 and the lowermost metal layer 46. In the example illustrated in
The flow passages 14r are surrounded by the porous bodies 14s (43s, 44s), 42t, and 45t and the walls 14w (43w, 44w). In other words, the upper wall, the lower wall, and one side wall of each flow passage 14r are defined by the porous bodies 42t, 45t, and 14s (43s, 44s). The other side wall of the flow passage 14r is defined by the wall 14w.
The intermediate metal layer 42 includes the two porous bodies 42t immediately above the through holes 43X (flow passages 14r) and the porous body 42s located between the two porous bodies 42t. The porous body 42s is in communication with the porous bodies 42t and the porous body 43s of the intermediate metal layer 43. In the same manner as the porous bodies 42t, the porous body 42s includes the bottomed holes 42u recessed from the upper surface of the intermediate metal layer 42, the bottomed holes 42d recessed from the lower surface of the intermediate metal layer 42, and the fine pores 42z connecting the bottomed holes 42u and 42d. Thus, the intermediate metal layer 42 is entirely formed as a porous body except for the walls 42w located at the two ends. The porous bodies 42t may or may not be distinguished from the porous body 42s.
The intermediate metal layer 45 includes the two porous bodies 45t immediately below the through holes 44X (flow passages 14r) and a porous body 45s located between the two porous bodies 45t. The porous body 45s is in communication with the porous bodies 45t and the porous body 44s of the intermediate metal layer 44. In the same manner as the porous bodies 45t, the porous body 45s includes the bottomed holes 45u recessed from the upper surface of the intermediate metal layer 45, the bottomed holes 45d recessed from the lower surface of the intermediate metal layer 45, and the fine pores 45z connecting the bottomed holes 45u and 45d. Thus, the intermediate metal layer 45 is entirely formed as a porous body except for the walls 45w located at the two ends. The porous bodies 45t may or may not be distinguished from the porous body 45s.
The liquid pipe 14B having the above configuration includes a large amount of pours bodies (14s (42s to 45s), 42t, 45t) contacting or surrounding the flow passages 14r and thus is capable of transferring a large amount of the working fluid C. Also, the large amount of porous bodies (14s (42s to 45s), 42t, 45t) contacting or surrounding the flow passages 14r allows further dispersion of the working fluid C and further limits a liquid accumulation. Thus, deformation and breakage of the liquid pipe 14B are further limited, for example, in a thermal cycle test.
The porous body 14s is formed in the intermediate metal layers 42 to 45, which exclude the uppermost metal layer 41 and the lowermost metal layer 46. In the example illustrated in
Thus, each flow passage 14r (through hole 43X) in the intermediate metal layer 43 is surrounded by the porous bodies 14s (43s), 42t, and 44t and the wall 14w (43w). In other words, the upper wall, the lower wall, and one side wall of the flow passage 14r in the intermediate metal layer 43 are defined by the porous bodies 42t, 44t, and 14s (43s). The other side wall of the flow passage 14r is defined by the wall 14w (43w).
Also, each flow passage 14r (through hole 45X) in the intermediate metal layer 45 is surrounded by the porous bodies 14s (45s) and 44t, the wall 14w (45w), and the upper surface of the lowermost metal layer 46. In other words, the upper wall and one side wall of the flow passage 14r in the intermediate metal layer 45 are defined by the porous bodies 44t and 14s (45s). The other side wall of the flow passage 14r is defined by the wall 14w (45w). The lower wall of the flow passage 14r is defined by the upper surface of the lowermost metal layer 46.
The intermediate metal layer 42 includes the two porous bodies 42t immediately above the through holes 43X (flow passages 14r) and the porous body 42s located between the two porous bodies 42t. The porous body 42s is in communication with the porous bodies 42t and the porous body 43s of the intermediate metal layer 43. The porous bodies 42t are in communication with the through holes 43X (flow passages 14r) of the intermediate metal layer 43. The intermediate metal layer 42 is entirely formed as a porous body except for the walls 42w located at the two ends.
The intermediate metal layer 43 includes the two through holes 43X extending through in the thickness-wise direction, the two walls 43w located at an outer side of the through holes 43X, and the porous body 43s located between the two through holes 43X. Each through hole 43X is in communication with at least one of the bottomed holes 43u and 43d via a portion of the side surface of the porous body 43s adjacent to the through hole 43X.
The intermediate metal layer 44 includes two porous bodies 44t immediately above the through holes 45X (flow passages 14r) and the porous body 44s located between the two porous bodies 44t. In the same manner as the porous bodies 44t, the porous body 44s includes the bottomed holes 44u recessed from the upper surface of the intermediate metal layer 44, the bottomed holes 44d recessed from the lower surface of the intermediate metal layer 44, and the fine pores 44z connecting the bottomed holes 44u and 44d to each other. Thus, the intermediate metal layer 44 is entirely formed as a porous body except for the walls 44w located at the two ends.
The porous body 44s is in communication with the porous bodies 44t and the porous bodies 43s and 45s of the intermediate metal layers 43 and 45. The porous bodies 44t are in communication with the through holes 43X (flow passages 14r) of the intermediate metal layer 43 and the through holes 45X (flow passages 14r) of the intermediate metal layer 45. For example, the bottomed holes 44u of the intermediate metal layer 44 are in communication with the through holes 43X (flow passages 14r) of the intermediate metal layer 43, and the bottomed holes 44d of the intermediate metal layer 44 are in communication with the through holes 45X (flow passages 14r) of the intermediate metal layer 45.
The intermediate metal layer 45 includes the two through holes 45X extending through in the thickness-wise direction, the two walls 45w located at an outer side of the through holes 45X, and the porous body 45s located between the two through holes 45X. Each through hole 45X is in communication with at least one of the bottomed holes 45u and 45d via a portion of the side surface of the porous body 45s adjacent to the through hole 45X.
The liquid pipe 14C having the above configuration includes a large amount of porous bodies (14s (42s to 45s), 42t, 44t) contacting or surrounding the flow passages 14r and thus is capable of transferring a large amount of the working fluid C. Also, the large amount of porous bodies (14s (42s to 45s), 42t, 44t) contacting or surrounding the flow passages 14r allows further dispersion of the working fluid C and limits a liquid accumulation. Thus, deformation and breakage of the liquid pipe 14C are further limited, for example, in a thermal cycle test.
The porous body 14s is formed in the intermediate metal layers 42 to 45, which exclude the uppermost metal layer 41 and the lowermost metal layer 46. In the example illustrated in
The intermediate metal layers 42 and 43 respectively include the porous bodies 42t and 43t in positions overlapping with the through holes 44X and 45X of the intermediate metal layers 44 and 45. The intermediate metal layers 44 and 45 respectively include the porous bodies 44t and 45t in positions overlapping with the through holes 42X and 43X of the intermediate metal layers 42 and 43. The intermediate metal layers 42 to 45 include the porous bodies 42s, 43s, 44s, and 45s at positions overlapping with each other.
In the same manner as the porous body 43t, the porous body 43s of the intermediate metal layer 43 includes the bottomed holes 43u recessed from the upper surface of the intermediate metal layer 43, the bottomed holes 43d recessed from the lower surface of the intermediate metal layer 43, and the fine pores 43z connecting the bottomed holes 43u and 43d to each other.
The flow passage 14r that includes the through holes 42X and 43X is surrounded by the porous bodies 14s (42s, 43s) and 44t, the wall 14w (42w, 43w), and the lower surface of the uppermost metal layer 41. In other words, the lower wall and one side wall of the flow passage 14r including the through holes 42X and 43X are defined by the porous bodies 44t and 14s (42s, 43s). The other side wall of the flow passage 14r is defined by the wall 14w (42w, 43w). The upper wall of the flow passage 14r is defined by the lower surface of the uppermost metal layer 41.
The flow passage 14r that includes the through holes 44X and 45X is surrounded by the porous bodies 14s (44s, 45s) and 43t, the wall 14w (44w, 45w), and the upper surface of the lowermost metal layer 46. In other words, the upper wall and one side wall of the flow passage 14r including the through holes 44X and 45X are defined by the porous bodies 43t and 14s (44s, 45s). The other side wall of the flow passage 14r is defined by the wall 14w (44w, 44w). The lower wall of the flow passage 14r is defined by the upper surface of the lowermost metal layer 46.
The liquid pipe 14D having the above configuration includes a large amount of porous bodies (14s (42s to 45s) and 42t to 45t) contacting and surrounding the flow passages 14r and thus is capable of transferring a large amount of the working fluid C. Also, the large amount of porous bodies (14s (42s to 45s) and 42t to 45t) contacting or surrounding the flow passages 14r allows further dispersion of the working fluid C and further limits a liquid accumulation. Thus, deformation and breakage of the liquid pipe 14D are further limited, for example, in a thermal cycle test.
That is, the porous body 14s includes the porous bodies 42s, 43s, 44s, and 45s formed in the intermediate metal layers 42 to 45, which exclude the uppermost metal layer 41 and the lowermost metal layer 46.
Each flow passage 14r includes the through holes 43X and 44X of the intermediate metal layers 43 and 44. The flow passages 14r are surrounded by the porous bodies 14s (43s, 44s), 42t, and 45t and the walls 14w (43w, 44w). In other words, the upper wall, the lower wall, and one side wall of the flow passages 14r are defined by the porous bodies 42t, 45t, and 14s (43s, 44s). The other side wall of the flow passages 14r is defined by the walls 14w (43w, 44w).
The intermediate metal layer 42 includes the two porous bodies 42t immediately above the through holes 43X (flow passages 14r) and the porous body 42s located between the two porous bodies 42t. In the same manner as in
The intermediate metal layer 43 includes the two through holes 43X and the porous body 43s located between the two through holes 43X. The intermediate metal layer 44 includes the two through holes 44X and the porous body 44s located between the two through holes 44X.
The intermediate metal layer 45 includes the two porous bodies 45t immediately below the through holes 44X (flow passages 14r) and the porous body 45s located between the two porous bodies 45t. In the same manner as in
The liquid pipe 14E having the above configuration includes a large amount of porous bodies (14s (42s to 44s), 42t, 45t) contacting or surrounding the flow passages 14r and thus is capable of transferring a large amount of the working fluid C. Also, the large amount of porous bodies (14s (42s to 44s), 42t, 45t) contacting or surrounding the flow passages 14r allows further dispersion of the working fluid C and limits a liquid accumulation. Thus, deformation and breakage of the liquid pipe 14E are further limited, for example, in a thermal cycle test. Additionally, the bottomed holes 42u and 42d are arranged in rows in the porous bodies 42t immediately above the flow passages 14r, and the bottomed holes 45u and 45d are arranged in rows in the porous bodies 45t immediately below the flow passages 14r. This allows the working fluid C to smoothly move along the flow passages 14r.
The porous body 14s is formed in the intermediate metal layers 42 to 45, which exclude the uppermost metal layer 41 and the lowermost metal layer 46. In the example illustrated in
The flow passages 14r are surrounded by the porous bodies 14s (43s, 44s), 42t, and 45t and the walls 14w (43w, 44w). In other words, the upper wall, the lower wall, and one side wall of the flow passages 14r are defined by the porous bodies 42t, 45t, and 14s (43s, 44s). The other side wall of the flow passages 14r is defined by the walls 14w (43w, 44w).
The intermediate metal layer 42 includes the two porous bodies 42t immediately above the through holes 43X (flow passages 14r) and the porous body 42s located between the two porous bodies 42t. The intermediate metal layer 43 includes the two through holes 43X and the porous body 43s located between the two through holes 43X. The intermediate metal layer 44 includes the two through holes 44X and the porous body 44s located between the through holes 44X. The intermediate metal layer 45 includes the two porous bodies 45t immediately below the through holes 44X (flow passages 14r) and the porous body 45s located between the two porous bodies 45t.
The bottomed holes 42d of the porous body 42s overlap with the bottomed holes 43u of the porous body 43s in a plan view. In this case, the area of contact between the intermediate metal layers 42 and 43 stacked on each other is increased. Thus, the intermediate metal layers 42 and 43 are strongly bonded.
The bottomed holes 43d of the porous body 43s partially overlap with the bottomed holes 44u of the porous body 44s in a plan view. The overlapped portions form fine pores 47z connecting the bottomed holes 43d and 44u to each other. As described above, the metal layers 42 to 45 include the fine pores 42z to 45z, and the interface of two stacked metal layers (e.g., metal layers 43 and 44) includes the fine pores 47z. This increases the total number of fine pores and increases the capillary force generated by the fine pores.
The liquid pipe 14F having the above configuration includes a large amount of porous bodies (14s (42s to 45s), 42t, 45t) contacting or surrounding the flow passages 14r and thus is capable of transferring a large amount of the working fluid C. Also, the large amount of porous bodies (14s (42s to 45s), 42t, 45t) contacting or surrounding the flow passages 14r allows further dispersion of the working fluid C and limits a liquid accumulation. Thus, deformation and breakage of the liquid pipe 14F are further limited, for example, in a thermal cycle test.
The stacking structure of the intermediate metal layers 42 to 45 is not limited to the structure illustrated in
The uppermost metal layer 41 includes bottomed holes 41d recessed from the lower surface to a central portion of the metal layer 41 in the thickness-wise direction. In a plan view, the bottomed holes 41d partially overlap with the bottomed holes 42u of the intermediate metal layer 42 adjacent to the uppermost metal layer 41. Thus, the interface of the uppermost metal layer 41 and the intermediate metal layer 42 includes fine pores 48z connecting the bottomed holes 41d and 42u to each other.
The lowermost metal layer 46 includes bottomed holes 46u recessed from the upper surface to a central portion of the metal layer 46 in the thickness-wise direction. In a plan view, the bottomed holes 46u partially overlap with the bottomed holes 45d of the intermediate metal layer 45 adjacent to the lowermost metal layer 46. Thus, the interface of the lowermost metal layer 46 and the intermediate metal layer 45 includes fine pores 49z connecting the bottomed holes 46u and 45d to each other.
As described above, in the liquid pipe 14G, the uppermost metal layer 41 and the lowermost metal layer 46 respectively include the bottomed holes 41d and 46u. This increases the amount of porous bodies and transfers a large amount of the working fluid C. Additionally, the large amount of porous bodies allows further dispersion of the working fluid C and further limits a liquid accumulation. Thus, deformation and breakage of the liquid pipe 14G are further limited, for example, in a thermal cycle test.
Further modified examples applicable to the above-described embodiment and modified examples will be described below.
The bottomed holes 120u are recessed from the upper surface to a central portion of the metal layer 120 in the thickness-wise direction, and the bottomed holes 120d are recessed from the lower surface to a central portion of the metal layer 120 in the thickness-wise direction. The bottomed holes 120u and 120d are arranged in rows and alternately arranged in each row. The bottomed holes 120u and 120d that are alternately arranged in the direction of the rows (vertical direction in
The grooves 121u are formed in the upper surface of the metal layer 120. Each groove 121u connects two bottomed holes 120u located close to the groove 121u. The grooves 121d are formed in the lower surface of the metal layer 120. Each groove 121d connects two bottomed holes 120d located close to the groove 121d.
The bottomed holes 120u and 120d that are alternately arranged in the direction of the rows (vertical direction in
The grooves 121u (121d) having the above configuration may be formed in the metal layers 42 to 45 of the above-described embodiment and modified examples or in at least one of the uppermost metal layer 41 and the lowermost metal layer 46 of the modified example illustrated in
The shape of the bottomed holes in the above-described embodiment and modified examples may be changed. For example, the side wall of each bottomed hole is not limited to the tapered wall and may be perpendicular to the bottom wall of the bottomed hole. The inner wall of each bottomed hole (for example, each bottomed hole 43u, 43d illustrated in
In the above-described embodiment and modified examples, the depth of an upper bottomed hole may differ from the depth of a lower bottomed hole. Also, referring to
The above-described embodiment and modified examples may be partially or entirely combined with each other.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the principles of the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to an illustration of the superiority and inferiority of the invention. Although embodiments have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the scope of this disclosure.
Number | Date | Country | Kind |
---|---|---|---|
JP2018-019487 | Feb 2018 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6719040 | Sugito | Apr 2004 | B2 |
6863117 | Valenzuela | Mar 2005 | B2 |
6863119 | Sugito | Mar 2005 | B2 |
7051793 | Schulz-Harder | May 2006 | B1 |
8534348 | Ohsawa | Sep 2013 | B2 |
8611089 | Mizuta | Dec 2013 | B2 |
10495386 | Kiso | Dec 2019 | B2 |
20020135979 | Estes | Sep 2002 | A1 |
20050022978 | Duval | Feb 2005 | A1 |
20050230085 | Valenzuela | Oct 2005 | A1 |
20130308272 | Furuta | Nov 2013 | A1 |
20150077929 | Honmura | Mar 2015 | A1 |
20160259383 | Shioga | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
3 299 758 | Mar 2018 | EP |
3 460 375 | Mar 2019 | EP |
2002327993 | Nov 2002 | JP |
6146484 | Jun 2017 | JP |
Entry |
---|
Extended European Search Report for Application No. EP 19154977.3 dated Jul. 12, 2019. |
Number | Date | Country | |
---|---|---|---|
20190242654 A1 | Aug 2019 | US |