This invention relates to the field of integrated circuits. More particularly, this invention relates to error correcting codes, such as those used during the transmission of digital information.
BCH (Bose-Chaudhuri-Hocquenghem) codes are a large class of multiple error-correcting codes. The binary BCH codes were discovered in 1959 by Hocquenghem and independently in 1960 by Bose and Ray-Chaudhuri. Later, Gorenstein and Zierler generalized them to all finite fields. At about the same time Reed and Solomon published their paper on the special case of BCH codes that now bear their names.
In practice, the binary BCH and Reed-Solomon codes are the most commonly used variants of BCH codes. They have applications in a variety of communication systems: space communication links, digital subscriber loops, wireless systems, networking communications, and magnetic and data storage systems. Continual demand for ever higher data rates and storage capacity provide an incentive to devise very high-speed and space-efficient VLSI implementations of BCH decoders. The first decoding algorithm for binary BCH codes was devised by Peterson in 1960. Since then, Peterson's algorithm has been refined by Gorenstein and Zierler, Berlekamp, Massey, Chien, Forney, and many others.
BCH codes are generally developed as follows. GF(q) is defined as a finite field of q elements, q=2s, called the base field, and α is defined as a primitive element of extension field GF(qm), where n|qm−1. The variable t is defined as an error detecting BCH code of length n over GF(q) as the set of all sequences (c0, c1, . . . , cn-1), ciεGF(q) such that polynomial
c(x)=c0+c1x+ . . . +cn-1xn-1εGF(qm)[x]
has roots in points: α1, α2, . . . , α2t. The BCH code with m=1 is called the Reed Solomon code, and the BCH code with s=1 is called the binary BCH code.
First, we calculate the generator polynomial g(x)εGF(q):
g(x)=(x−α)(x−α2) . . . (x−α2t)=LCM{M1(x), M2(x), . . . , M2t(x)},
where LCM is the least common multiplier and Mi(x) is the minimal polynomial for αi. Let (d0, d1, . . . , dk-1) denote k data symbols that are to be transmitted over a communication channel, and d(x)=d0+d1x+ . . . dk-1xk-1εGF(q)[x]. The systematic encoding of vector (d0, d1, . . . , dk-1) into a codeword (c0, c1, . . . , cn-1) is as follows:
c(x)=xn-pd(x)+t(x),
where p=deg g(x) and t(x)=−xn-pd(x)mod g(x), c(x)=c0+c1x+ . . . +Cn-1xn-1.
There are many BCH decoder architectures. A typical BCH decoder works as follows. Let (c0, c1, . . . , Cn-1) be a transmitted codeword and (e0, e1, . . . , en-1) be an error vector in a communication channel, where in r (with r≦t) positions i1, i2, . . . , ir there are non-zero values Y1=ei
The decoder begins by computing 2t syndrome values
S
0
=c(α), S1=c(α2), . . . , S2t-1=c(α2t)
This block is perhaps the most intricate part of BCH decoder. Define the syndrome polynomial S(x), error locator polynomial Λ(x), and error evaluator polynomial Ω(x) as follows:
It is well known that these three polynomials are related with the following key equation:
Λ(x)S(x)=Ω(x)mod x2t
There are two major methods for solving the key equation: first, the Berlekamp-Massey algorithm (BM), and second, the extended Euclidean algorithm (eE). Until recently the architectures based on the eE algorithm were more popular because of its simplicity and regularity. In addition, they had smaller critical path delays then architectures based on the BM algorithm. Lately, however, BM based architectures have gained in popularity, due to a number of modifications in the standard BM algorithm that have made them even faster and more space-efficient than the eE based architectures.
The last block finds the positions of the errors, and corrects the errors using the Forney formula:
What is desired is a scalable architecture for the BM algorithm.
The above and other needs are met by an improvement to a key equation solver block for a BCH decoder, where the key equation solver block having a number of multiplier units specified by X, where:
t*(7*t−1)/(codeword_len−3)≦X<(t+1),
where t is a number of transmission errors for the key equation solver block to correct, and codeword_len is a length of a transmitted codeword to be decoded by the BCH decoder.
Further advantages of the invention are apparent by reference to the detailed description when considered in conjunction with the figures, which are not to scale so as to more clearly show the details, wherein like reference numbers indicate like elements throughout the several views, and wherein:
Multiplication in Galois fields is one of the most expensive operations in terms of the design area that is occupies on integrated circuits. For this reason, reducing the number of multipliers generally leads to a significant decrease in the amount of design area required.
In the embodiments of the key equation solver (KES) block according to the present invention, the number of clock cycles of service of one codeword depends on the number of multipliers, according to the following relationship: N=t*(7*t−1)/mult_num+3, where N is the number of clock cycles of service of one codeword, t is the number of errors to be corrected, and mult_num is the number of multipliers in the KES block. Hence, when the number of multipliers is reduced, the number of clock cycles generally increases.
For a pipeline decoder according to the present invention, the number of clock cycles of service for one codeword by the KES block is preferably no greater than the codeword length. As a result, the formula for the minimal acceptable number of multipliers for the pipeline decoder can be obtained as: min_mult_num=t*(7*t−1)/(codeword_len−3), where min_mult_num is the minimal acceptable number of multipliers for the pipeline decoder, t is the number of errors to correct, and codeword_len is the codeword length.
In a standard KES block, usually 2t or (t+1) multipliers are used. In the KES blocks according to the present invention, any number of multipliers can be used. The architecture of KES blocks according to the present invention preferably has a variable number of multipliers that is dependent, at least in part, on codeword lengths.
The key equation solver block proposed herein is termed an inversionless Berlekamp-Massey algorithm (iBM). The embodiment of the key equation solver block described in this section depends on two parameters. First, parameter t is the number of errors to correct. If the number of errors to correct is more than or equal to t, then the key equation solver block returns a fail code. The second parameter k defines the number of multipliers. The number of multipliers is equal to n=]t/k[. Here ]x[ is a minimal integer number such that ]x[≧x. The inputs of the key equation solver block are 2t syndrome values: S0, S1, . . . , S2t-1. The output of the key equation solver block are t coefficients of the error locator polynomial: Λ0, Λ1, . . . , Λt-1, and t−1 coefficients of the error evaluator polynomial: Ω0, Ω1, . . . , Ωt-2.
If R is a register then RD is the data input to the register, RE is the enable input to the register, and RQ is the output of the register. If for the r clock cycle RD=A and RE=1, then for the r+1 clock cycle RQ=A. If for the r clock cycle RD=A, RQ=B, and RE=0, then for the r+1 clock cycle RQ=B. Denote by | and · sum and multiplication operations in the finite field, respectively.
The key equation solver block according to the embodiment described in this section uses the following registers:
1) SR0, SR1, . . . , SR2t-1 to save syndrome values,
2) Λ0, Λ1, . . . , Λt-1 to save coefficients of the error locator polynomial,
3) L to save the degree of the error locator polynomial,
4) r to save the step index,
5) Ξ0, Ξ1, . . . , Ξt-1,
6) Γ0, Γ1, . . . , Γt-1,
7) Δpr,
8) Δ, and
9) δ
The key equation solver block according to this embodiment is initiated with the following values:
1) SR0.D=S0, SR1.D=S1, . . . , SRt-1.D=St-1;
1) Λ0.D=1, Λ1.D=0, . . . , Λt-1.D=0;
2) Γ0.D=1, Γ1.D=0, . . . , Γt-1.D=0;
3) Δpr=1;
3) L=0; and
4) r=0.
The key equation solver block according to this embodiment consists of two main steps:
1) Computation of the coefficients of the error locator polynomial; and
2) Computation of the coefficients of the error evaluator polynomial.
The computation of the coefficients of the error locator polynomial consists of 2t elementary steps. The qth elementary step consists of 3k clock cycles:
The computation of the coefficients of the error evaluator polynomial consists of t−1 elementary steps.
The qth elementary step consists of k clock cycles:
If R is a register and RE is not assigned, then RE is assumed to be one.
1. S0, S1, S2t-1 are syndrome values.
2. start is a start signal.
1. Λ0, Λ1, Λt-1 are coefficients of the error locator polynomial.
2. Ω0, Ω1, . . . , Ωt-2 are coefficients of the error evaluator polynomial.
3. finish is a finish signal.
4. fail is a fail signal.
1. n=]t/k[.
2. m=3*k.
3l=t mod n.
4. if l=0 then q=], otherwise q=2.
1. SR0, SR1, . . . , SR2t-1 are syndrome registers.
2. Λ0, Λ1, . . . , Λt-1, are registers for the error locator polynomial coefficients.
3. finish is the finish signal register.
4. fail is the fail signal register.
5. L is the register to save the degree of the error locator polynomial.
6. r is a register to save the step index.
7. Ξ0, Ξ1, . . . , Ξt-1.
8. Γ0, Γ1, . . . , Γt-1.
9. T0, T1, . . . , Tm-1 are clock registers for the error locator polynomial calculation.
10. T0′, T1′, Tk-1′ are clock registers for the error evaluator polynomial calculation.
11. M0, M1, . . . , Mn-1 are output registers for the multipliers.
12. Δpr.
13. Δ
14. Δ0.
15. start_omega.
16. calc_omega.
17. Lr.
18. rδ.
19. after_start.
1. A0, A1, . . . , An-1; B0, B1, . . . , Bn-1 are inputs for the multipliers.
2. LL0, LL1, . . . , LLt-1.
3. δ.
4. sum.
5. sum_control.
The outputs of the multiplier units are stored in the registers Mi. The partial results of the calculation of the new value for the error locator polynomial are stored in blocks ACCi (
Block C contains logic that manages the iteration counter r, the error locator polynomial degree L, etc, and calculates the values of the signals Δpr, rδ, finish, fail, start_omega and calc_omega. The schematics for these modules, except for the module C, are depicted in
The foregoing description of preferred embodiments for this invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings. The embodiments are chosen and described in an effort to provide the best illustrations of the principles of the invention and its practical application, and to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.