This disclosure relates to biophotonics or biomedical optics, and more particularly to characterization of the superficial layer of tissue using low coherence enhanced backscattering of light.
Histopathological examination of tissue has been an essential component of pathology. Current knowledge about carcinogenesis, cancer diagnostics and prognostication is predominantly based on histological study on tissue, cells and nuclei. Morphometric information, especially nuclear morphometry, has been shown to have great potential in assisting cancer screening, diagnosis, grading and classification, prognosis, analysis of angiogenesis, and evaluating the efficacy of therapy.
Traditional histopathological examination has several limitations, including: (1) it can only acquire the two dimensional information from the cells or nuclei of interest; (2) it is qualitative or semi-quantitative; (3) it requires tissue excision and processing for examination; and (4) it is frequently subject to the inter- and intra-personal variability in interpretation, thus with a relatively low reproducibility. Digital morphometric techniques were introduced to overcome these problems. Digital morphometry helps improve the reproducibility of histological examination, but its clinical utility is yet to be proven. Better segmentation (the delimitation of boundaries between two compartments) and comprehensive examination of the entire cell has been found to be crucial for yielding reproducible and convincing results. Three-dimensional (3D) stereological methods have recently been introduced in clinical diagnostics and are proving to be beneficial.
The majority of human cancers (nearly 90%) arise from the epithelial cells that line many organs. In dysplastic epithelial tissue, dysplastic epithelial cells differ from normal ones in their shapes and the size of their nuclei. A variety of optical spectroscopic and imaging methods can be used to detect abnormal changes in light scattering and absorption properties of tissue to detect carcinogenesis. However, to detect cancer in its earliest stage (precancer) it is crucial to depth-selectively probe the specific areas that are initially involved in neoplastic transformations (e.g. the base of the crypt for colon carcinogenesis). It therefore is highly desirable to reliably and accurately image epithelial cells and their nuclei at various depths.
Current approaches such as diffuse optical tomography (DOT) suffer from poor spatial resolution (5-10 millimeters) due to light diffusion. Other approaches such as Optical Coherence Tomography (OCT) have yielded micrometer resolution and cross-sectional imaging. This permits the imaging of tissue microstructure in situ, yielding micron-scale resolution image with use of low temporal coherence light. However, it is difficult for OCT to image structures such as nuclei for various technical reasons.
It is desirable to combine the advantages of both techniques: (1) the sensitivity to nuclear morphology and cellular structure of light scattering, and (2) the high spatial resolution offered by low coherence light, to perform high resolution imaging of the structure and composition of tissue. This would provide a 3D image of the nuclear morphology and cellular structure for tissue in real time, with no tissue excision or processing required.
The present disclosure describes a method for depth-selective sensing of the superficial layer of tissue. In accordance with the disclosure, a 3D tomographic tool images the microarchitecture and molecular conformation of the superficial layer of tissue. The method, referred to herein as low coherence enhanced backscattering tomography (LEBT), combines the high resolution advantage of low coherence light and the high sensitivity advantage of light scattering to tissue structure and composition, and furthermore offers the following advantages:
Intact tissue can be examined without the need of excision or processing.
It can be applied in in situ measurements.
It is capable of generating 3D images of the nuclear morphology and cellular structure for the superficial layer of the tissue. This is particularly useful in detecting cancer and precancer at the earliest stage of carcinogenesis.
According to embodiments of the disclosure, a method for noninvasive imaging of a tissue sample includes the steps of illuminating a location on a surface of the sample using an incident beam of partially spatially coherent light characterized by a variable spatial coherence length Lc; detecting low coherence enhanced backscattered (LEBS) light characterized by a scattering angle θ; obtaining LEBS spectra characterized by light intensity versus light wavelength λ for a given scattering angle 0 and a given coherence length Lc; recording two-dimensional (2D) images, each based on spectra corresponding to a different coherence length Lc; scanning the incident beam across the surface to record a plurality of 2D images; forming a data set of the recorded 2D images; and constructing a three-dimensional (3D) image of the sample from the data set.
The foregoing has outlined, rather broadly, the preferred features of the present disclosure so that those skilled in the art may better understand the detailed description of the disclosure that follows. Additional features of the disclosure will be described hereinafter that form the subject of the claims of the disclosure. Those skilled in the art should appreciate that they can readily use the disclosed conception and specific embodiment as a basis for designing or modifying other structures for carrying out the same purposes of the present disclosure and that such other structures do not depart from the spirit and scope of the disclosure in its broadest form.
LEBT and Biomedical Imaging
A LEBT technique according to the disclosure can image intact biological tissues at the microscopic scale ex vivo and in vivo based on optical contrast, extending LEBS to a three dimensional (3D) tomographic imaging modality. By detecting only low-order backscattering light via spatial coherence gating, LEBT solves the low spatial resolution problem due to light diffusion and achieves excellent depth selection. At the same time, low-order scattering light is sensitive to the microarchitecture and the molecular conformation of biological tissues, relating to physiological states such as the morphological alteration due to carcinogenesis and the oxygenation of hemoglobin.
Epithelial tissues have a multi-layered structure composed of a superficial cellular layer (epithelium) with a characteristic thickness of ˜100 μm. The main characteristics of light propagation in a turbid medium can be summarized by a set of length scales: the scattering mean free path, Is=I/μs, the mean distance between consecutive scattering events; the transport mean free path, It=Is/(I-g), the characteristic distance over which the memory of the initial propagation direction gets lost; and the absorption length, Ia=I/μa, the characteristic length for light absorption. Here μs, μa are the scattering and absorption coefficients, respectively, and g is the mean cosine of light scattering angles (the anisotropy factor). Typical values for tissues scattering light in the visible and near-infrared wavelength range satisfy Ia>>It>>Is and g≧0.9.
Light Scattering By Cells and Tissue
The penetration depth of backscattered light is determined by the phase function of light scattering in the medium, the polarization and coherence state of the incident beam, and the collection condition of the detector. To detect cancer at the earliest stage, it is crucial to depth selectively probe the superficial layer of tissue, the mucous layer about 100 μm below the surface, where most cancer initiates by controlling the penetration depth of light.
Low coherence enhanced backscattering (LEBS) achieves depth selection through spatial coherence gating. Enhanced backscattering is a reported phenomenon of multiple scattering light where the backscattered light is found to enhance around the exact backscattering direction. This enhancement of light intensity results from constructive interference between two amplitudes of a coherent wave propagating through a scattering medium along the same path but with one in reverse order of the other.
As shown in
The behavior of the propagation of light in highly scattering media such as tissue is determined by the phase function p(θ) of light scattering in the medium. After a sufficient number of scattering events, light migration approaches diffusion that can be simply characterized by one parameter: the transport mean free path, It, which depends only on the first moment of the phase function. The situation is very different for low-order scattered photons; all the moments of the phase function will affect the behavior of low-order scattered photons. Monte Carlo simulations have repeatedly observed the significant influence of higher order moments of the phase function on the profile of backscattered light close to the incident beam exactly where low-order scattered photons dominate. This suggests that the accurate model of single scattering property of the scatterers is crucial for imaging with low-order scattered photons.
Scattering structures of a wide size distribution inside a cell, including nuclei, mitochondria and organelles, contribute to light scattering by a cell. The finite difference time domain (FDTD) method has been used to compute light scattering by a cell taking into full account of its complex internal structure. The FDTD method is, however, time prohibitive for routine applications in characterizing biological cells and tissues from light scattering measurements. The Mie model remains the most popular choice due to its simplicity, although the deficiency of the Mie model has been manifested by many recent studies. It has been found that the size of scattering centers obtained using the Mie model alone is too small to account for either the cell or the nucleus.
Both nuclear Mie scattering and background fractal scattering are important to describe correctly light scattering by biological cells inside tissue. The nuclear Mie scattering component alone underestimates the probability of large angle light scattering by two orders of magnitude. Light scattering by biological cells (scattering coefficient μs and phase function p(θ)) in tissue contains both nuclear Mie and background fractal components. An expression for μsp(θ) is shown in
Analysis of Low Coherence Enhanced Backscattering
The LEBS signal can be found from the Fourier transform of the radial profile I(ρ) of incoherent backscattered light and is given by the expression in
The incoherent backscattered light remitted at the distance p <Is from the point of incidence is dominated by double scattered photons which experience exactly one small angle scattering and one large angle scattering. Photons which experience multiple small angle scattering and exactly one large angle scattering are important in the case of Lc<Is.
Referring to the two scattering events shown in
Light scattering by cells in tissue contains both nuclear Mie scattering and background fractal scattering by the subcellular structures of small sizes. Fitting the LEBS spectra to the equation of
LEBT Apparatus
An experimental arrangement for imaging a tissue sample by LEBT is shown in
The galvanometer mirror GM scans the incident beam across the surface of the sample (this scan is referred to below as B-scan). At each scanning position, the CCD records a series of 2D images, I(λ,θ;Lc) (that is, light intensity I versus wavelength λ and scattering angle 0), for enhanced backscattered light of varying penetration depth into the sample by controlling the spatial coherence length Lc of the incident beam through adjusting the aperture size of A1 (this scan is referred to below as A-scan).
The arrangement of
The recorded 2D image I(λ,θ;Lc) is normalized according to [I(λ,θ;Lc)-Ibase (λ)]/Iref (λ) where Ibase (λ) is the baseline scattering intensity measured at large scattering angles {θ>5°) and Iref (λ) is the reference intensity collected from a reflectance standard. This normalization procedure compensates for the nonuniform spectrum of the xenon lamp illumination and the spectral response of the detector. The resulting LEBS signal will be denoted as a 2D array Ĩ (λi, θj; Lc) where λ=λi and θ=θj for i=1,2,3, . . . , Nλ and j=1,2,3, . . . , Nθ where Nλ and Nθ are the number of the wavelengths and the scattering angles sampled, respectively. The number of spatial coherence lengths for the source used in one A-scan is NLc.
A 3D image of the superficial layer of the sample is reconstructed from the recorded data set.
LEBT Model For Imaging Homogeneous and Stratified Media
The LEBS signal ICBS relates to the Fourier transform of the radial profile I(ρ) of incoherent backscattered light and is determined by the portion of the radial profile I(ρ) within ρ<3Lc under illumination of partially spatially coherent light. Thus, LEBS photons must turn around 180° in total through a series of scattering events inside the medium and emerge at the very proximity of the point of incidence (ρ<3Lc<Is in typical LEBS applications).
Regarding epithelial and other biological cell light scattering, it has been observed that (1) light scattering contains both nuclear Mie and background fractal components; (2) the phase function p(θ) decays exponentially away from the exact forward direction at small scattering angles θ, then decays more slowly at larger scattering angles, and increases slightly as the scattering angle approaches 180°; and (3) the probability of forward scattering is ˜106 times greater than the probability of scattering into 80°-180°. From these observations, it may be inferred that the dominant contribution to the low coherence enhanced backscattering light inside biological materials comes from the photons which have been scattered exactly once with a large scattering angle ˜180° and have experienced one or more small angle scattering events. Enhanced backscattering photons thus experience at least double scattering, with one large-angle event; the exact sequence of scattering events is irrelevant. Photons experiencing only small angle scattering escape the medium at >>Is away from the point of incidence and will not contribute to LEBS.
A derivation of an expression for I(ρ) for a uniform medium, where ρ is the scattering vector (see
It has also been shown that the nuclear Mie component phase function may be approximated as pMie(θ) ˜4J12(θx)/θ2 where x=kα is a size parameter and α is the mean radius of the nucleus.
The detected LEBS spectral intensity ICBS(λ, q⊥), under illumination of partially spatially coherent light of wavelength λ and a spatial coherence length Lc, is a superposition of signals from layers at different depths z; an expression for this intensity is shown in
Imaging Homogeneous and Stratified Media: Reconstruction Procedures
According to an embodiment of the disclosure, a procedure for reconstructing a 3D image of the superficial layer of a tissue sample from the recorded data set of 2D images is detailed below.
The nuclear structure and cellular environment is represented by the mean nuclear radius a, the scattering power of the background refractive index fluctuation b, the nuclear number density NMie, and the nuclear-cellular (N/C) scattering ratio c=NMie πα2/A, where A is a constant relating to the strength of the refractive index fluctuation. The reconstruction is first performed for the depth profile of a, b, NMie, and c at the illuminated point (A-scan), and the complete 3D image of the sample is obtained by scanning the incident beam across the surface of the sample (B-scan).
For one A-scan, a set of LEBS spectra Ĩ(λi, θj; Lc) at the scattering angle θj under illumination of partially spatially coherent source of wavelength λi and of varying spatial coherence length Lc is be measured. The wavelength λi (i=1,2,3, . . . , Nλ) covers the visible spectral range, the scattering angle θj(j=1,2,3, . . . , Nθ) is from ˜−5° to ˜5° with a step size of 0.1°, and a series of total NLc spatial coherence lengths Lc are from ˜20 μm to ˜200 μm with a step size ˜20 μm.
In an embodiment, a reconstruction procedure 500 for one A-scan is shown in the flowchart of
In another embodiment, the LEBS light absorption by blood 510 is no longer treated as negligible. The error function therefore has as additional arguments cHb and CHbOb, the concentrations of deoxy- and oxy- hemoglobin respectively. These concentrations are fitted in addition to the above-mentioned parameters in the error minimizing procedure.
According to a further embodiment, the sample is assumed to be stratified, and the LEBS signal is written as a summation of multiple discrete layers. If there are a total of Nz layers with depth (n-1)Δz ≦z≦nΔz for n=1,2,3, . . . , Nz and Δz is the thickness of one layer, the LEBS signal for the stratified medium is given by the expression in
In procedure 600, the solution fitting the LEBT reconstruction and depth profile is given by a vector x that minimizes the error function F(x) as shown in
In step 601, an initial value for x is assigned, either as a guess from previously available information or a result from procedure 500. In step 602, a residual vector y is computed; elements of y are given by the expression in
If this result for F(x) is less than the predefined error threshold (step 604), then the current x is the desired solution. Otherwise, the Jacobian J is computed, and the linearized equation J Δx=y is solved for Δx (step 605). The test solution x is then updated (step 606) to x+Δx, and the procedure is repeated at step 602 with computation of a new residual vector. Once a solution x below the error threshold is found, an A-scan of LEBT for the stratified sample is generated (step 607) which in turn (step 608) gives the depth profile.
The lateral resolution of LEBT is determined by the spot size of the beam incident on the sample. As the spot size is reduced to ˜Lc, the speckle becomes appreciable; the lateral resolution of LEBT is thus limited by a tradeoff between resolution enhancement and speckle suppression. The optimal value for the spot size has been found to be approximately 3Lc. The axial resolution of LEBT with procedure 600 depends on the layer thickness Δz; Δz may be set at ≦10 μm.
A 3D LEBT image of the sample is obtained by combining imaging from the A-scan (that is, 2D images at the point of illumination for varying penetration depths) with the B-scan (scanning of the incident beam across the surface of the sample). This 3D image has both morphometric (nuclear size, nuclear number density, cellular scattering power, nuclear/cellular scattering ratio) and oxygenation (concentrations of deoxy- and oxy-hemoglobin) components. An axial resolution of ˜10 μm may be obtained. Since the typical thickness of the epithelium is ˜100 μm, LEBT as described above is effective to image the epithelium or the epithelium plus the underlying vascularized stroma, which are most diagnostic of tissue health.
Alternative LEBT Model For Imaging Stratified Media
As noted above, the LEBS signal ICBS relates to the Fourier transform of the radial profile I(ρ) of incoherent backscattered light and is determined by the portion of the radial profile I(ρ) within ρ<3Lc under illumination of partially spatially coherent light. Thus,
LEBS photons must turn around 180° in total through a series of scattering events inside the medium and emerge proximate to the point of incidence. In this model, the coherence length L, is in the range given by ρ<3Lc<Is; the profile I(ρ) depends critically on the details of the phase function p(θ). Tissue contains scatterers of various sizes: smaller than, comparable with, and larger than the wavelength of visible light. Light scattering in tissue is predominantly in the forward direction. The scattering function of tissue may be viewed as having two components: the first within the forward scattering angles and originating from light interaction with large scatterers such as nuclei, and the second for large scattering angles due to light scattering by smaller structures. Assuming that the small-angle scattering function takes a Gaussian form and the large-angle scattering is isotropic, the phase function may be written as in
In this LEBS model, the tissue is treated as having multiple discrete layers, and the intensity of the LEBS signal due to scattering at a radial distance ρ at depth z is written as I(ρ;z). The backscattering intensity is thus I(ρ)=∫0∞ dz I(ρ;z) , where the contribution from depth z to the backscattered light at the radial distance ρ is given by the expression in
The expression of
The intensity of the LEBS signal, ICBS(q⊥;z), is a superposition of signals from layers at different depths. Referring to
The detected LEBS spectra ICBS(q⊥) under illumination of partially spatially coherent light of wavelength λ and a spatial coherence length Lc is a superposition of signals from the layers at different depth z. The penetration depth of the LEBS light is given by the expression in
Reconstruction Procedure For a Stratified Sample
According to a further embodiment, the sample is assumed to be stratified, and the LEBS signal is written as a summation of multiple discrete layers. If there are a total of Nz layers with depth (n-1)Δz ≦z≦nΔz for n=1,2,3, . . . , Nz and Δz is the thickness of one layer, the LEBS signal for the stratified medium is given by the expression in
A procedure to reconstruct the depth-resolved profile of μs, pb, <θ2>, and μa at one probing wavelength λ, in accordance with this embodiment, is shown in the flowchart of
At a given probing wavelength λ, an initial value for x is assigned, based on previously available information (step 701). In step 702, a residual vector y is computed; elements of y are given by the expression in
It will be appreciated that the above-described technique may be integrated into endoscopes and used in real time to examine the interior surfaces of an organ without tissue excision. Such a minimally invasive procedure is suited for risk stratification and early detection of cancer. Guided by this technique, suspicious sites may be removed for further evaluation or therapeutic operations can be taken.
The technique is also compatible with other imaging modalities such as fluorescence microscopy. The integration with fluorescence microscopy is potentially rewarding as the combination of morphometry and tumor molecular genetics may provide more accurate diagnoses and more clinically relevant, tumor-specific diagnoses and prognoses.
Data Measurements: Clinical Example
Measured LEBT data for a cancerous tissue site are shown in
8A and 9A are spectral graphs for the enhanced backscattering signal.
A direct comparison of the enhancement factor results for the cancerous tissue site (graph 101) and the normal tissue site (graph 102), as a function of wavelength, is shown in
While the disclosure has been described in terms of specific embodiments, it is evident in view of the foregoing description that numerous alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, the disclosure is intended to encompass all such alternatives, modifications and variations which fall within the scope and spirit of the disclosure and the following claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US11/36744 | 5/17/2011 | WO | 00 | 11/16/2012 |
Number | Date | Country | |
---|---|---|---|
61347663 | May 2010 | US |