This application relates in general to semiconductor devices and fabrication processes and more particularly to a low power semiconductor transistor structure and method of fabrication thereof.
For some time the semiconductor industry has been using bulk CMOS technology to make circuits in chips. Bulk CMOS technology has proven to be particularly “scalable,” meaning that bulk CMOS transistors can be made smaller and smaller while optimizing and reusing existing manufacturing processes and equipment in order to maintain acceptable production costs. Historically, as the size of a bulk CMOS transistor decreased, so did its power consumption, helping the industry provide increased transistor density and lower operating power. Thus, the semiconductor industry has been able to scale the power consumption of bulk CMOS transistors with their size, reducing the cost of operating transistors and the systems in which they reside.
In recent years, however, decreasing the power consumption of bulk CMOS transistors while reducing their size has become increasingly more difficult. Transistor power consumption directly affects chip power consumption, which, in turn, affects the cost of operating a system and, in some cases, the utility of the system. For example, if the number of transistors in the same chip area doubles while the power consumption per transistor remains the same or increases, the power consumption of the chip will more than double. This is due in part by the need to cool the resulting chip, which also requires more energy. As a result, this would more than double the energy costs charged to the end user for operating the chip. Such increased power consumption could also significantly reduce the usefulness of consumer electronics, for example, by reducing the battery life of mobile devices. It could also have other effects such as increasing heat generation and the need for heat dissipation, potentially decreasing reliability of the system, and negatively impacting the environment.
There has arisen among semiconductor engineers a widespread perception that continued reduction of power consumption of bulk CMOS is not feasible, in part because it is believed that the operating voltage VDD of the transistor can no longer be reduced as transistor size decreases. A CMOS transistor is either on or off. The CMOS transistor's state is determined by the value of a voltage applied to the gate of the transistor relative to a threshold voltage VT of the transistor. While a transistor is switched on, it consumes dynamic power, which can be expressed by the equation:
Pdynamic=CVDD2f
where VDD is the operating voltage supplied to the transistor, C is the load capacitance of the transistor when it is switched on, and f is the frequency at which the transistor is operated. While a transistor is switched off, it consumes static power, which can be expressed by the equation:
Pstatic=IOFFVDD
where IOFF is the leakage current when the transistor is switched off. Historically, the industry has reduced transistor power consumption primarily by reducing the operating voltage VDD, which reduces both dynamic and static power.
The ability to reduce the operating voltage VDD depends in part on being able to accurately set the threshold voltage VT, but that has become increasingly difficult as transistor dimensions decrease. For transistors made using bulk CMOS processes, the primary parameter that sets the threshold voltage VT is the amount of dopants in the channel. Other factors that affect VT are halo implantation, source and drain low doped extensions, and channel thickness. In theory, matching transistor VT can be done precisely, such that the same transistors on the same chip will have the same VT, but in reality the process and statistical variations in dopant concentration and placement mean that threshold voltages can vary significantly. Such mismatched transistors will not all switch on at the same time in response to the same gate voltage, and in extreme cases some may never switch on. Of even more concern, mismatched transistors result in increased leakage losses that waste power even when a transistor is not actively switching.
For transistors having a channel length of 100 nm or less, as few as thirty to fifty dopant atoms may be positioned in a channel at nominal dopant concentration levels. This compares with the thousands, or tens of thousands of atoms that are in positioned in the channel for previous generation transistors that have channel lengths greater than 100 nanometers or so. For nanometer scale transistors, the inherent statistical variation in numbers and placement of such few dopant atoms results in a detectable variation in VT known as random dopant fluctuations (RDF). Along with process and material variations, for nanometer scale bulk CMOS transistors with doped channel, RDF is a major determinant of variations in VT (typically referred to as sigma VT or σVT) and the amount of σVT caused by RDF only increases as channel length decreases.
Processes and designs for novel transistors having greatly reduced σVT are sought by the industry. However, many proposed solutions such as undoped channel FINFET would require substantial changes in transistor process manufacture and layout. This has slowed adoption, since the industry prefers to avoid redesigns that require substantial change in conventional and widely used integrated circuit manufacturing processes and transistor layout. This is particularly true for systems on chip (SoC) or other highly integrated devices that include a wide variety of circuit types, such as analog input and output circuits (I/O), digital circuits, and other types of circuits. Moreover, given the different types of circuits on such highly integrated systems, if one or more types of circuits can be improved, and any necessary legacy circuits remain the same, the overall SoC should still be produced together to avoid extra steps in the manufacturing process. For example, if an improvement to the digital circuits can be accomplished, and the improvement did not apply to analog circuits, it would be desirable to have the circuits to be manufactured together simultaneously without adding further processing steps. The entire integrated circuit can be redesigned to accommodate operation at the reduced voltage power source. As referenced herein, the term “redesign” can include appropriate sizing of transistor gates prior to circuit fabrication. However, difficulties are encountered when redesign attempts are made. Extra process and masking steps, can be complex, costly and technically difficult.
Given the substantial costs and risks associated with transitioning to a new technology, manufacturers of semiconductors and electronic systems have long sought a way to extend the use of bulk CMOS. At least in part due to the inability to easily control σVT variation in groups of transistors as VDD is substantially reduced below one volt, the continued reduction of power consumption in bulk CMOS has increasingly become viewed in the semiconductor industry as an insurmountable problem.
There is substantial advantage in having a low power digital transistor process and structure that permits on-die analog I/O transistors to remain unchanged even when low power transistors replace standard transistors. Thus, it is desirable to have a mix of circuits where some are changed and others are unchanged legacy circuits, but where the process to manufacture them is not substantially changed. And to reduce costs and increase yields, it would be best to not substantially increase the number of manufacturing steps in producing the overall integrated circuit.
Thus, there is a need in the art for improved structures and fabrication methods for complementary metal oxide semiconductor (CMOS) transistors and integrated circuits, and also a transistor fabrication process that is compatible with the fabrication of digital and analog transistors on a single integrated circuit die.
A suite of novel structures and methods is provided to reduce power consumption in a wide array of electronic devices and systems. Some of these structures and methods can be implemented largely by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as the broader electronics industry to avoid a costly and risky switch to alternative technologies. Some of the structures and methods relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced σVT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. There are many ways to configure the DDC to achieve different benefits, and additional structures and methods presented herein can be used alone or in conjunction with the DDC to yield additional benefits.
The disclosure describes various technical advantages over conventional semiconductor fabrication processing. One technical advantage is to provide a semiconductor structure that includes an analog device and a digital device each having an epitaxial channel layer. Another technical advantage is to have a single gate oxidation layer on the epitaxial channel layer of NMOS and PMOS transistor elements of the digital device and one of a double and triple gate oxidation layer on the epitaxial channel layer of NMOS and PMOS transistor elements of the analog device. Yet another technical advantage includes the use of a body bias to provide significant dynamic control of power consumption in DDC transistors. The result is the ability to independently control VT (with a low σVT) and VDD, so that the body bias can be tuned separately from VT for a given device.
Certain embodiments of the present disclosure may enjoy some, all, or none of these advantages. Other technical advantages may be readily apparent to one skilled in the art from the following figures, description, and claims.
For a more complete understanding of the present disclosure, reference is made to the following description taken in conjunction with the accompanying drawings, wherein like reference numerals represent like parts, in which:
Novel structures and methods are disclosed to reduce power consumption in a wide array of electronic devices and systems. Some of these structures and methods can be implemented largely by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as the broader electronics industry to avoid a costly and risky switch to alternative technologies. Different transistor designs, including both analog and digital transistors, can be incorporated into a single integrated circuit or system on a chip (SoC) for improved power saving benefits. Moreover, these new structures can be incorporated into the process flow together with legacy transistor and layout structures, reducing the risk to manufacturers of incorporating new structures in the process flow of an integrated circuit by avoiding extra process steps. As a result, there is little or no substantial increase in expense of production of integrated circuits, such as SoC, that incorporate the novel power saving transistor structures.
Also provided are methods and structures for incorporating and using the innovations described herein in systems, such as in electronic products, to provide substantial benefits over conventional devices as a result of lower power operation. Such benefits include lower power consumption at the system level, improved system performance, improved system cost, improved system manufacturability and/or improved system reliability as a result of cooler low power systems that may be designed and manufactured according to the embodiments described and illustrated herein. As will be demonstrated, the innovations can advantageously be employed in a wide range of electronic systems including consumer devices such as personal computers, mobile phones, televisions, digital music players, set top boxes, laptop and palmtop computing devices, e-book readers, digital cameras, GPS systems, flat panel displays, portable data storage devices and tablets, as well as in a variety of other electronic devices. In some implementations, the transistors and integrated circuits can materially enhance the operation and, accordingly, the commercial suitability, of the electronic system as a whole. In some embodiments, innovative transistors, integrated circuits and systems that contain them as described herein may also enable more environmentally friendly implementations than alternative approaches.
These and other benefits provide an advancement in digital circuits that fulfills many needs of designers, producers, and consumers. These benefits can provide systems composed of novel structures that enable continued and further advancement of integrated circuits, resulting in devices and systems with improved performance. The embodiments and examples will be described herein with reference to transistors, integrated circuits, electronic systems, and related methods, and will highlight the features and benefits that the novel structures and methods provide at various levels of the manufacturing process and the chain of commerce, including to end users of electronic products. The application of concepts inherent in these examples to structures and methods of producing integrated circuits and electronic systems will prove expansive. Accordingly, it will be understood that the spirit and scope of the inventions is not limited to these embodiments and examples, but is only limited by the claims appended herein and also in related and co-assigned applications.
In one embodiment, a novel nanoscale Field Effect Transistor (FET) structure is provided that has precisely controlled threshold voltage in comparison to conventional doped channel devices of the same channel length. In this context, precisely controlled threshold voltage includes the ability to set and possibly tune a VT value that provides significant improvement or reduction of σVT. This structure and methods of making it can allow FET transistors that have a low operating voltage as compared to conventional devices. One embodiment includes a nanoscale FET structure operable to have a depletion zone or region (i.e. deeply depleted channel, DDC) that extends from a gate to a highly doped screening layer set at a depth below the gate greater than one-half the gate length. In one embodiment, a channel region near the gate is substantially undoped as compared to a high concentration screening region located at a distance of at least ½ the gate length below the gate. This provides a substantially undoped channel region or layer (concentration of less than 5×1017 atoms/cm3 and typically formed as an epitaxially grown silicon layer) paired with a highly doped screening region or layer. Together, in operation, these structures act to define a deeply depleted zone or region that terminates electric fields emanating from the gate when a voltage that is approximately equal to or greater than the threshold voltage is applied to the gate.
In certain embodiments the screening layer is positioned to avoid direct contact with the source and the drain. In certain other embodiments, it may be formed as a sheet extending under multiple source/drain/channel regions, while in other embodiments it may be a self aligned implant or layer coextensive with the channel region. The screening region thickness can typically range from 5 to 50 nanometers. The screening region is highly doped relative to the channel, the threshold voltage tuning region (if provided), and the P-well. In practice, the screening region is doped to have a concentration between 1×1018 and 1×1020 atoms/cm3. In certain embodiments, dopant migration resistant layers of carbon, germanium, or the like can be applied above screening region to prevent dopant migration toward the undoped channel and gate.
While threshold voltage is primarily set by the combination of gate work function, body bias, channel thickness, and depth and dopant concentration of the screening layer, small adjustments to threshold voltage are possible by optional provision of a separate epitaxially grown silicon layer adjacent to the screening region. Such a threshold voltage tuning region has a dopant concentration less than the dopant concentration of the screening region. For typical applications the threshold voltage tuning region is doped to have average concentrations ranging from between 5×1017 and 2×1019 atoms/cm3. When present, the threshold tuning region thickness can typically range from 5 to 50 nanometers in thickness. In certain embodiments, dopant migration resistant layers of carbon, germanium, or the like can be applied above and/or below the threshold voltage tuning region to prevent dopant migration into the channel region, or alternatively, from the screening region into the threshold voltage tuning region.
As will be appreciated, DDC depth (Xd) is established by the depth of the screening layer below the gate, and is typically one half of the gate length (i.e. ½ Lg), possibly equal to gate length (i.e. Lg) or to intermediate fractions thereabout (e.g. ¾ Lg). In one example, DDC depth may be set greater than or about equal to one-half the channel length Lg, which in operation allows for precise setting of the threshold voltage even at low operating voltages below one volt. Depending on the requirements of a particular application, different depths may provide different beneficial results. Given this disclosure, it will be understood that different DDC depths are possible in different applications, different device geometries, and various parameters of particular designs. Depending on the parameters of a particular application, different region thicknesses, dopant concentrations, and operating conditions used in forming the DDC transistor may provide different beneficial results.
As will be discussed, some of the structures and methods relate to a DDC design that can be produced together with legacy transistor devices in a monolithic circuit laid out on the same wafer and die. The DDC can permit CMOS devices having reduced σVT compared to conventional bulk CMOS with highly doped channels, allowing for increased variability of VT. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for improved body bias assisted control of transistor voltage threshold setting. There are many ways to configure the DDC to achieve different benefits, and additional structures and methods presented herein can be used alone or in conjunction with the DDC to yield additional benefits.
These structures and the methods of making the structures allow for FET transistors having both a low operating voltage and a low threshold voltage as compared to conventional nanoscale devices. Furthermore, DDC transistors can be configured to allow for the threshold voltage to be statically set with the aid of a voltage body bias generator. In some embodiments the threshold voltage can even be dynamically controlled, allowing the transistor leakage currents to be greatly reduced (by setting the voltage bias to upwardly adjust the VT for low leakage, low speed operation), or increased (by downwardly adjusting the VT for high leakage, high speed operation). Ultimately, these structures and the methods of making structures provide for designing integrated circuits having FET devices that can be dynamically adjusted while the circuit is in operation. Thus, transistors in an integrated circuit can be designed with nominally identical structure, and can be controlled, modulated or programmed to operate at different operating voltages in response to different bias voltages, or to operate in different operating modes in response to different bias voltages and operating voltages. In addition, these can be configured post-fabrication for different applications within a circuit.
Certain embodiments and examples are described herein with reference to transistors and highlight the features and benefits that the novel structures and methods provide transistors. However, the applicability of concepts inherent in these examples to structures and methods of producing integrated circuits is expansive and not limited to transistors or bulk CMOS. Accordingly, it will be understood in the art that the spirit and scope of the inventions is not limited to these embodiments and examples or to the claims appended herein and also in related and co-assigned applications, but may be advantageously applied in other digital circuitry contexts.
In the following description, numerous specific details are given of some of the preferred ways in which the inventions may be implemented. It is readily apparent that the inventions can be practiced without these specific details. In other instances, well known circuits, components, algorithms, and processes have not been shown in detail or have been illustrated in schematic or block diagram form in order not to obscure the inventions in unnecessary detail. Additionally, for the most part, details concerning materials, tooling, process timing, circuit layout, and die design have been omitted inasmuch as such details are not necessary to obtain a complete understanding of the inventions as they are considered to be within the understanding of persons of ordinary skill in the relevant art. Certain terms are used throughout the following description and claims to refer to particular system components. Similarly, it will be appreciated that components may be referred to by different names and the descriptions herein are not intended to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to,” for example.
Various embodiments and examples of the methods and structures mentioned above are described herein. It will be realized that this detailed description is illustrative only and is not intended to be in any way limiting. Other embodiments will readily suggest themselves to persons of ordinary skill in the art having the benefit of this disclosure. Reference will be made in detail to embodiments illustrated in the accompanying drawings. The same reference indicators will be used throughout the drawings and the following detailed description to refer to the same or like parts.
In the interest of clarity, not all of the routine features of the implementations and embodiments described herein are shown and described. It will, of course, be appreciated that in the development of any such actual implementation of the inventions herein, numerous implementation-specific decisions will typically be made in order to achieve the developer's specific goals. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.
Also, concentrations of atoms implanted or otherwise present in a substrate or crystalline layers of a semiconductor to modify physical and electrical characteristics of a semiconductor will be described in terms of physical and functional regions or layers. These may be understood by those skilled in the art as three-dimensional masses of material that have particular averages of concentrations. Or, they may be understood as sub-regions or sub-layers with different or spatially varying concentrations. They may also exist as small groups of dopant atoms, regions of substantially similar dopant atoms or the like, or other physical embodiments. Descriptions of the regions based on these properties are not intended to limit the shape, exact location or orientation. They are also not intended to limit these regions or layers to any particular type or number of process Steps, type or numbers of layers (e.g., composite or unitary), semiconductor deposition, etch techniques, or growth techniques utilized. These processes may include epitaxially formed regions or atomic layer deposition, dopant implant methodologies or particular vertical or lateral dopant profiles, including linear, monotonically increasing, retrograde, or other suitable spatially varying dopant concentration. The embodiments and examples included herein may show specific processing techniques or materials used, such as epitaxial and other processes described below and illustrated in
In one embodiment, a building block for low power circuits can be configured with low power transistors, such as for example a low power field effect transistor as provided herein that is operable at a voltage Vdd of less than 0.9 volts. In one example, the transistor may include a polysilicon gate with a gate length less than 100 nanometers, where the gate includes a polysilicon layer and a dielectric layer. The device further includes a low doped epitaxial channel contacting the dielectric layer of the polysilicon gate. A highly doped screening layer may be positioned in a manner to extend below low doped epitaxial channel and above a transistor body. The screening layer may be treated to reduce dopant diffusion into the low doped epitaxial channel, as discussed in more detail below. The device includes a source and a drain, with a low doped epitaxial channel extending between the source and drain.
In certain embodiments, a body tap may also be included to permit application of a body bias voltage to the transistor body. Body biasing relies on the body effect phenomenon to modulate the VT of a MOSFET, and is commonly quantified as a body effect coefficient. As will be appreciated, forward biasing (FBB) the body with respect to the source reduces VT, increasing transistor speed. However, because of the exponential dependence of leakage on VT, it also leads to a large increase in power usage. Similarly, reverse body bias (RBB) reduces leakage at the cost of reduced speed and increased delay. In certain embodiments, application of a body bias permits increase of threshold voltage VT to a value greater than 0.3 volts for example.
Body taps, schematically illustrated as a connection between a body bias generator and a transistor body, may be applied to individual devices, groups of devices, or entire circuits or sub-circuits on a given integrated circuit depending on the application. According to these embodiments, improved σVT allows for a stronger body bias coefficient, that in turn allows for improved changes in VT. In prior art systems, body bias coefficient was improved by highly doping the channel, which resulted in a wide and undesirable range of σVT. Thus, a high threshold voltage was required for such devices to operate with body bias mediated control. According to the embodiments described herein, devices, systems and methods are provided that allow for greatly improved σVT, and also provide improved and strong body bias coefficient. Thus, a wide range of adjustable VT is possible with a strong body bias, resulting in a better performing device and system that operates at lower power.
The SoC 100 includes at least one or more devices 106 that have DDC cross-section profiles, an example of which is shown here as a variety of both analog and digital transistors 120, 130, 140, 150, all of which can be formed together on substrate 115. The first device 120 is a digital transistor having a gate stack 122 and spacers, source and drain 124/126, a shallow well 127 (or body of the transistor) underneath a deeply depleted channel 128 and screening layer 129 that extends between the shallow trench isolated (STI) structures 117. The significance of this profile is the low power characteristic possible by this and other devices by virtue of the deeply depleted channel and screening layer. Another digital device 130 has a gate stack 132 and spacers, source and drain 134/136 and a shallow well 137 underneath a deeply depleted channel 138. Unlike device 120, this digital device 130 has a screening layer 139 that, along with DDC 138, extends between the source and drain 134/136. Like device 120, the significance of this profile is the low power characteristic possible by this and other devices by virtue of the deeply depleted channel and screening layer.
The third and fourth devices from the left are analog devices that share some of the physical characteristics of the digital devices in their channel regions, providing power saving features for these and other similar analog devices. Analog device 140 is a digital transistor having a gate stack 142 and spacers, source and drain 144/146, a shallow well 147 underneath a deeply depleted channel 148 and screening layer 149 that extends between the STI Structures 117. Like the digital devices described above, the significance of this analog device profile is that the low power characteristic possible by this and other analog devices by virtue of the deeply depleted channel and screening layer. Another analog device 150 has a gate stack 152 and spacers, source and drain 154/156 and a shallow well 157 underneath a deeply depleted channel 158. Unlike device 140, this digital device 150 has a screening layer 159 that, along with DDC 158, extends between the source and drain 154/156. Like device 140, the significance of this profile is the low power characteristic possible by this and other devices by virtue of the deeply depleted channel and screening layer.
In some applications, there may be the desire to apply a bias voltage to the body 127 of the transistor, such as bias voltage source 160 shown in
Referring to
In practice, amorphizing silicon is performed to assisting in the activation and substitutionality of dopants. Since amorphous silicon cannot grow epitaxial layers, it must be returned to a crystalline state. So, in Step 206, low temperature re-crystallization is performed.
In Step 208, an optional Step of diffusion prevention may be performed. It is noted here that steps for preventing diffusion of dopants can be used along with different steps while manufacturing integrated circuits. Since undesired diffusion of dopants may occur at one or a number of steps in a given process flow, a designer may find it useful to perform diffusion prevention steps before, during or after any number of steps during circuit processing.
Epitaxial (EPI) deposition is then performed in Step 210. These Steps together with other Steps that are known in the art of semiconductor processing provide a novel and useful means to produce improved integrated circuits and SoC with improved and low power structures.
Referring to
In practice, designers and manufacturers gather statistical data from mathematical models and sample measurements from actual circuits to determine the variance of threshold voltages of a circuit design. The voltage differential mismatch between transistors, whether derived from manufacturing variations or RDFs, is determined as σVT. In order for the circuit as a whole to operate, the operating voltage VDD must be chosen in view of σVT. Generally the larger the variance, the higher the σVT, such that the operating voltage VDD must be set higher for the transistor to operate properly. With multiple device implemented across a circuit, VDD may need to be set at the highest overall value in order for the circuit to operate properly.
A structure and method of its production are provided that reduces σVT, reducing the range of variance of the threshold voltage of the transistors across the integrated circuit. With reduced σVT, the static value of VT can be set more precisely and can even be varied in response to a changing bias voltage. The threshold voltage for nominally identical devices across a circuit may be more accurately set with decreased σVT, thus allowing the device to operate using a lower operating voltage VDD and, therefore, consume less power. Moreover, with more headroom to vary VT for a given transistor or group of transistors, devices can be operated at different modes corresponding to different bias voltages for particular modes. This may add functionality to many devices and systems and may particularly benefit devices where fine control of device power modes is useful.
Referring to
In Step 408, a diffusion prevention treatment is performed. While dopants can be implanted or co-deposited during epitaxial growth, further high temperature processing can promote dopant diffusion through the silicon lattice. High temperature process steps required to form transistor structures can result in dopant atoms moving from a screening layer into the previously undoped channel, or even migrate into a gate oxide. There are several methods provided herein to address the prevention of dopant diffusion in different process flows, such as for example when thermal annealing procedures are performed in a process.
In one method, carbon can be introduced into the screening via implant or the growth of a silicon carbide (SiC) epitaxial layer. During annealing for example, substitutional carbon traps (via a kick-out mechanism) any mobile carriers such as boron or phosphorus. The addition of carbon helps to prevent diffusion during the high thermal cycles a polysilicon gate transistor typically experiences.
Indium is known to form a cluster with boron which is not mobile. However, this also leads to low dopant activation of boron. Thus, methods to achieve both high activation and low diffusion include the co-implantation of indium and boron. Several examples are included herein, and others are possible given this disclosure, including these examples and other processes used together in different combinations. In one exemplary process, co-implantation of indium and boron can be performed such that their peaks align. Different ratios between the peaks of indium and boron along with anneal options such as Flash and Laser will result in high concentration and sharp profiles. In another example, co-implantation of indium and boron can be performed such that the peak of indium is closer to the surface then boron. Boron diffusing to the surface will be slowed by the indium while the screening and VT layer will achieve high activation. In yet another example, co-implantation of indium and born can be performed such that the peak of the indium is closer to the substrate then the boron. This will prevent indium from diffusing into the substrate allowing high concentration to exist in the screening layer.
While carbon is useful in preventing migration of boron or other dopants, carbon itself may migrate into the undoped channel, increasing scattering and reducing channel mobility. To prevent carbon diffusion, the following procedure can be useful. If carbon and boron are co-implanted into amorphous silicon, a low temperature anneal may be used to re-grow the silicon layer. During this low temperature anneal, carbon re-grows substitutionally. This is because, when a process begins with crystal on silicon, it needs to be made amorphous, or amorphized, for processing so that is no longer in a crystalline state. It must then after be annealed to place it back in the crystalline state, or re-crystallized. Re-growth of crystal on silicon from the amorphous state can then be achieved. With carbon located in interstitial locations in the crystal lattice, carbon will substitute silicon atoms in the lattice. Thus, carbon re-grows substitutionally.
This re-growth results in a large concentration of silicon interstitials. With subsequent anneals, these interstitials diffuse rapidly towards the surface and pull boron from the screening region into the channel region. Additionally, the substitutional Carbon becomes interstitial via a kick-out mechanism which retards the boron diffusion. This interstitial carbon also diffuses towards the surface and would normally cause mobility degradation of the channel and create undesired surface states.
However, in this process embodiment, as the boron, excess interstitials and carbon move to the surface, a high temperature anneal followed by oxidation or a high temperature oxidation acts to consume boron, carbon and interstitial concentration that have moved to the surface. The oxidation process will create additional interstitials, so this oxidation needs to be thin (˜2 nm). The oxide is then stripped and the undoped silicon channel is epitaxially grown on the contamination free surface. The undoped epi has reduced exposure to the mobile carbon and boron which has been removed from the system via the oxide growth and strip. Additionally, a similar oxidation can be used after the EPI growth before the gate oxidation. This additional oxidation can be in addition to the first oxidation or instead of the first oxidation.
During implantation, significant damage is introduced into the silicon. The resulting interstitials assist the Boron in diffusing quickly. According to one embodiment, by removing the implant damage, the interstitials can be eliminated allowing for less diffusion and more abrupt junctions. Two methods of achieving this are plasma implantation and doped spin on glass. In a spin on glass process, a high dose of silicon dioxide is placed on the surface of the silicon. For plasma implantation, a high dose of highly doped plasma is deposited on the surface. Here, there is no penetration or deposition into the substrate, no implantation occurs. When annealed, dopants are drawn in at the solid solubility, where the higher temperature causes a higher solid solubility. Dopants can then be affected by thermally annealing to draw in more dopants without damaging the silicon structure. The result is a higher doping achieved with abrupt junctions, and damage to the silicon is greatly reduced.
In one embodiment, SiGe can be used to slow the diffusion of boron from the screening layer into the channel. SiGe can be deposited on top of the substrate. Dopants can be implanted in the substrate or directly co-deposited during epitaxial growth of the SiGe layer. A Si layer is still deposited as the channel. The SiGe prevents diffusion from these doped layers into the Si channel.
Delta doping of C/N/Ge/Cl/F can be used at the interface between the screening layer and the EPI layer. This layer serves to prevent dopant diffusion across the layer. This layer also minimizes the amount of dopant in the system that could diffuse into the channel of the device or segregate into the gate.
Source/drain and source/drain extensions may incur damage from the formation of the DDC channel area. Due to polysilicon requiring both deep implants and high thermal anneals to prevent poly depletion, damage and dopants introduced to the channel area via lateral straggle can create large diffusion from the DDC channel stack into the channel (via interstitials or co-diffusion effects). As poly depletion effects cannot be sacrificed, there is no way to lower the implant energy/dose or the anneal criteria. Two methods to keep channel doping from getting to the DDC channel stack is the use of RSD and secondary spacers.
A second spacer can be used to increase the lateral distance from the SD implant and the DDC channel dose to prevent damage to silicon when implanting dopants. This spacer may or may not be removed after the SD implant and before salicidation. With increased lateral Si between the Si and the DDC channel, there is a decrease in the effect of lateral straggle.
Referring again to
Next—depending on the type of device—single, double or triple gate oxidation is performed in Step 422. In practice, digital devices require only a thin single gate oxide layer, where analog devices have thicker double or triple gate oxide layers.
In Step 424, a polysilicon (polygate) layer is formed, followed by P-type Lightly Doped Drain (LDD) formed in Step 426, and N-type LDD formed in Step 428. These LDD, or tips, extend under the gate spacers.
Spacers are formed in Step 430. P+ and N+ implants are then performed in Steps 432 and 434. Silicide is then processed in Step 436, followed by contacts formed in Step 438.
Referring to
Next, in Step 512, EPI deposition is performed. In Steps 514 and 516 respectively, P-wells and N-wells are implanted. In Steps 518 and 520 respectively, P-type and N-type VT layers are implanted. In steps 522 and 524, analog P-type and N-type VT layers are implanted. STIs are then formed in Step 526 to separate the different devices from each other down to the shallow wells.
Next—depending on the type of device—single, double or triple gate oxidation is performed in Step 528. In practice, digital devices require only a thin single gate oxide layer, where analog devices have thicker double or triple gate oxide layers. In Step 530, a polygate layer is formed, followed by P-type LDD formed in Step 532, and N-type LDD formed in Step 534. Spacers are formed in Step 536. P+ and N+ implants are then performed in Steps 538 and 540. Silicide is then processed in Step 542, followed by contacts formed in Step 544.
Referring to
Next—depending on the type of device—single, double or triple gate oxidation is performed in Step 620. In practice, digital devices require only a thin single gate oxide layer, where analog devices have thicker double or triple gate oxide layers.
In Step 622, a polysilicon gate (polygate) layer is formed, followed by P-type LDD formed in Step 624, and N-type LDD formed in Step 626. Spacers are formed in Step 628. P+ and N+ implants are then performed in Steps 630 and 632. Silicide is then processed in Step 634, followed by contacts formed in Step 636.
Referring to
There are many different approaches to processing these novel features and structures. Those skilled in the art will understand that, given this disclosure, there are numerous variations on the particular manufacturing process steps and parameters for making such circuits. The following are examples.
In one exemplary process, and oxide layer is formed in a temperature range of 700 to 900° C. over a period of 0 to 60 seconds.
For the PMOS well implants, the N+ implant may be implanted within a range from 10 to 80 keV, and at concentrations from 1×1013 to 8×1013/cm2. As+ may be implanted within a range of 5 to 60 keV, and at concentrations from 1×1013 to 8×1013/cm2.
For NMOS well implants, the boron implant B+implant may be within a range of 0.5 to 5 keV, and within a concentration range of 1×1013 to 8×1013/cm2. A germanium implant Ge+, may be performed within a range of 10 to 60 keV, and at a concentration of 1×1014 to 5×1014/cm2. A carbon implant, C+, may be performed at a range of 0.5 to 5 keV, and at a concentration of 1×1013 to 8×1013/cm2.
A low temperature recrystallization anneal may be performed at a range of 550-600° C., over a period of 30 to 150 seconds.
A high temperature defect elimination anneal may be performed within a range of 900 to 1025° C. over a period of 0 to 10 seconds.
An EPI deposition of intrinsic Si may be performed within a range of 500 to 700° C., and at a thickness of 10 to 75 nm.
A shallow trench isolation, trench patterning, trench etch, sacrificial oxidation, trench fill, trench polish may be performed also.
Standard CMOS processing beyond this point including all standard thermal cycles, such as for example poly-Si deposition/etch, SPCR deposition/etch, multiple spike anneals, and other processes may be performed within a range of 900 to 1025° C.
In another process, where some devices on the wafer are DDC type devices and others are non-DDC type devices, a process may include the same process flow as that described immediately above, where some implants may be selectively masked over certain devices that do not need DDC process.
In yet another process, a process may include the same process flow as that described immediately above, where some implants are selectively performed after an EPI deposition instead of before an EPI deposition in order to form non-DDC configured devices in those regions.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
This application claims the benefit of U.S. Provisional Application No. 61/323,255 filed Apr. 12, 2010 which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3958266 | Athanas | May 1976 | A |
4000504 | Berger | Dec 1976 | A |
4021835 | Etoh et al. | May 1977 | A |
4242691 | Kotani et al. | Dec 1980 | A |
4276095 | Beilstein, Jr. et al. | Jun 1981 | A |
4315781 | Henderson | Feb 1982 | A |
4518926 | Swanson | May 1985 | A |
4559091 | Allen et al. | Dec 1985 | A |
4578128 | Mundt et al. | Mar 1986 | A |
4617066 | Vasudev | Oct 1986 | A |
4662061 | Malhi | May 1987 | A |
4761384 | Neppl et al. | Aug 1988 | A |
4780748 | Cunningham et al. | Oct 1988 | A |
4819043 | Yazawa et al. | Apr 1989 | A |
4885477 | Bird et al. | Dec 1989 | A |
4908681 | Nishida et al. | Mar 1990 | A |
4945254 | Robbins | Jul 1990 | A |
4956311 | Liou et al. | Sep 1990 | A |
5034337 | Mosher et al. | Jul 1991 | A |
5144378 | Hikosaka | Sep 1992 | A |
5156989 | Williams et al. | Oct 1992 | A |
5156990 | Mitchell | Oct 1992 | A |
5166765 | Lee et al. | Nov 1992 | A |
5208473 | Komori et al. | May 1993 | A |
5294821 | Iwamatsu | Mar 1994 | A |
5298763 | Shen et al. | Mar 1994 | A |
5369288 | Usuki | Nov 1994 | A |
5373186 | Schubert et al. | Dec 1994 | A |
5384476 | Nishizawa et al. | Jan 1995 | A |
5426328 | Yilmaz et al. | Jun 1995 | A |
5444008 | Han et al. | Aug 1995 | A |
5552332 | Tseng et al. | Sep 1996 | A |
5559368 | Hu et al. | Sep 1996 | A |
5608253 | Liu et al. | Mar 1997 | A |
5622880 | Burr et al. | Apr 1997 | A |
5624863 | Helm et al. | Apr 1997 | A |
5625568 | Edwards et al. | Apr 1997 | A |
5641980 | Yamaguchi et al. | Jun 1997 | A |
5663583 | Matloubian et al. | Sep 1997 | A |
5712501 | Davies et al. | Jan 1998 | A |
5719422 | Burr et al. | Feb 1998 | A |
5726488 | Watanabe et al. | Mar 1998 | A |
5726562 | Mizuno | Mar 1998 | A |
5731626 | Eaglesham et al. | Mar 1998 | A |
5736419 | Naem | Apr 1998 | A |
5753555 | Hada | May 1998 | A |
5754826 | Gamal et al. | May 1998 | A |
5756365 | Kakumu | May 1998 | A |
5763921 | Okumura et al. | Jun 1998 | A |
5780899 | Hu et al. | Jul 1998 | A |
5847419 | Imai et al. | Dec 1998 | A |
5856003 | Chiu | Jan 1999 | A |
5861334 | Rho | Jan 1999 | A |
5877049 | Liu et al. | Mar 1999 | A |
5885876 | Dennen | Mar 1999 | A |
5889315 | Farrenkopf et al. | Mar 1999 | A |
5895954 | Yasumura et al. | Apr 1999 | A |
5899714 | Farrenkopf et al. | May 1999 | A |
5918129 | Fulford, Jr. et al. | Jun 1999 | A |
5923067 | Voldman | Jul 1999 | A |
5923987 | Burr | Jul 1999 | A |
5936868 | Hall | Aug 1999 | A |
5946214 | Heavlin et al. | Aug 1999 | A |
5985705 | Seliskar | Nov 1999 | A |
5989963 | Luning et al. | Nov 1999 | A |
6001695 | Wu | Dec 1999 | A |
6020227 | Bulucea | Feb 2000 | A |
6043139 | Eaglesham et al. | Mar 2000 | A |
6060345 | Hause et al. | May 2000 | A |
6060364 | Maszara et al. | May 2000 | A |
6066533 | Yu | May 2000 | A |
6072217 | Burr | Jun 2000 | A |
6087210 | Sohn | Jul 2000 | A |
6087691 | Hamamoto | Jul 2000 | A |
6088518 | Hsu | Jul 2000 | A |
6091286 | Blauschild | Jul 2000 | A |
6096611 | Wu | Aug 2000 | A |
6103562 | Son et al. | Aug 2000 | A |
6121153 | Kikkawa | Sep 2000 | A |
6147383 | Kuroda | Nov 2000 | A |
6153920 | Gossmann et al. | Nov 2000 | A |
6157073 | Lehongres | Dec 2000 | A |
6175582 | Naito et al. | Jan 2001 | B1 |
6184112 | Maszara et al. | Feb 2001 | B1 |
6190979 | Radens et al. | Feb 2001 | B1 |
6194259 | Nayak et al. | Feb 2001 | B1 |
6198157 | Ishida et al. | Mar 2001 | B1 |
6218892 | Soumyanath et al. | Apr 2001 | B1 |
6218895 | De et al. | Apr 2001 | B1 |
6221724 | Yu et al. | Apr 2001 | B1 |
6229188 | Aoki et al. | May 2001 | B1 |
6232164 | Tsai et al. | May 2001 | B1 |
6235597 | Miles | May 2001 | B1 |
6245618 | An et al. | Jun 2001 | B1 |
6268640 | Park et al. | Jul 2001 | B1 |
6271070 | Kotani et al. | Aug 2001 | B2 |
6271551 | Schmitz et al. | Aug 2001 | B1 |
6288429 | Iwata et al. | Sep 2001 | B1 |
6297132 | Zhang et al. | Oct 2001 | B1 |
6300177 | Sundaresan et al. | Oct 2001 | B1 |
6313489 | Letavic et al. | Nov 2001 | B1 |
6319799 | Ouyang et al. | Nov 2001 | B1 |
6320222 | Forbes et al. | Nov 2001 | B1 |
6323525 | Noguchi et al. | Nov 2001 | B1 |
6326666 | Bernstein et al. | Dec 2001 | B1 |
6335233 | Cho et al. | Jan 2002 | B1 |
6358806 | Puchner | Mar 2002 | B1 |
6380019 | Yu et al. | Apr 2002 | B1 |
6391752 | Colinge et al. | May 2002 | B1 |
6426260 | Hshieh | Jul 2002 | B1 |
6426279 | Huster et al. | Jul 2002 | B1 |
6432754 | Assaderaghi et al. | Aug 2002 | B1 |
6444550 | Hao et al. | Sep 2002 | B1 |
6444551 | Ku et al. | Sep 2002 | B1 |
6449749 | Stine | Sep 2002 | B1 |
6461920 | Shirahata | Oct 2002 | B1 |
6461928 | Rodder | Oct 2002 | B2 |
6472278 | Marshall et al. | Oct 2002 | B1 |
6482714 | Hieda et al. | Nov 2002 | B1 |
6489224 | Burr | Dec 2002 | B1 |
6492232 | Tang et al. | Dec 2002 | B1 |
6500739 | Wang et al. | Dec 2002 | B1 |
6503801 | Rouse et al. | Jan 2003 | B1 |
6503805 | Wang et al. | Jan 2003 | B2 |
6506640 | Ishida et al. | Jan 2003 | B1 |
6518623 | Oda et al. | Feb 2003 | B1 |
6521470 | Lin et al. | Feb 2003 | B1 |
6534373 | Yu | Mar 2003 | B1 |
6541328 | Whang et al. | Apr 2003 | B2 |
6541829 | Nishinohara et al. | Apr 2003 | B2 |
6548842 | Bulucea et al. | Apr 2003 | B1 |
6551885 | Yu | Apr 2003 | B1 |
6552377 | Yu | Apr 2003 | B1 |
6573129 | Hoke et al. | Jun 2003 | B2 |
6576535 | Drobny et al. | Jun 2003 | B2 |
6600200 | Lustig et al. | Jul 2003 | B1 |
6620671 | Wang et al. | Sep 2003 | B1 |
6624488 | Kim | Sep 2003 | B1 |
6627473 | Oikawa et al. | Sep 2003 | B1 |
6630710 | Augusto | Oct 2003 | B1 |
6660605 | Liu | Dec 2003 | B1 |
6662350 | Fried et al. | Dec 2003 | B2 |
6667200 | Sohn et al. | Dec 2003 | B2 |
6670260 | Yu et al. | Dec 2003 | B1 |
6693333 | Yu | Feb 2004 | B1 |
6730568 | Sohn | May 2004 | B2 |
6737724 | Hieda et al. | May 2004 | B2 |
6743291 | Ang et al. | Jun 2004 | B2 |
6743684 | Liu | Jun 2004 | B2 |
6751519 | Satya et al. | Jun 2004 | B1 |
6753230 | Sohn et al. | Jun 2004 | B2 |
6760900 | Rategh et al. | Jul 2004 | B2 |
6787424 | Yu | Sep 2004 | B1 |
6797553 | Adkisson et al. | Sep 2004 | B2 |
6797602 | Kluth et al. | Sep 2004 | B1 |
6797994 | Hoke et al. | Sep 2004 | B1 |
6808004 | Kamm et al. | Oct 2004 | B2 |
6808994 | Wang | Oct 2004 | B1 |
6813750 | Usami et al. | Nov 2004 | B2 |
6821825 | Todd et al. | Nov 2004 | B2 |
6821852 | Rhodes | Nov 2004 | B2 |
6822297 | Nandakumar et al. | Nov 2004 | B2 |
6831292 | Currie et al. | Dec 2004 | B2 |
6835639 | Rotondaro et al. | Dec 2004 | B2 |
6852602 | Kanzawa et al. | Feb 2005 | B2 |
6852603 | Chakravarthi et al. | Feb 2005 | B2 |
6881641 | Wieczorek et al. | Apr 2005 | B2 |
6881987 | Sohn | Apr 2005 | B2 |
6891439 | Jachne et al. | May 2005 | B2 |
6893947 | Martinez et al. | May 2005 | B2 |
6900519 | Cantell et al. | May 2005 | B2 |
6901564 | Stine et al. | May 2005 | B2 |
6916698 | Mocuta et al. | Jul 2005 | B2 |
6917237 | Tschanz et al. | Jul 2005 | B1 |
6927463 | Iwata et al. | Aug 2005 | B2 |
6928128 | Sidiropoulos | Aug 2005 | B1 |
6930007 | Bu et al. | Aug 2005 | B2 |
6930360 | Yamauchi et al. | Aug 2005 | B2 |
6957163 | Ando | Oct 2005 | B2 |
6963090 | Passlack et al. | Nov 2005 | B2 |
6995397 | Yamashita et al. | Feb 2006 | B2 |
7002214 | Boyd et al. | Feb 2006 | B1 |
7008836 | Algotsson et al. | Mar 2006 | B2 |
7013359 | Li | Mar 2006 | B1 |
7015546 | Herr et al. | Mar 2006 | B2 |
7015741 | Tschanz et al. | Mar 2006 | B2 |
7022559 | Barnak et al. | Apr 2006 | B2 |
7036098 | Eleyan et al. | Apr 2006 | B2 |
7038258 | Liu et al. | May 2006 | B2 |
7039881 | Regan | May 2006 | B2 |
7045456 | Murto et al. | May 2006 | B2 |
7061058 | Chakravarthi et al. | Jun 2006 | B2 |
7064039 | Liu | Jun 2006 | B2 |
7064399 | Babcock et al. | Jun 2006 | B2 |
7071103 | Chan et al. | Jul 2006 | B2 |
7078325 | Curello et al. | Jul 2006 | B2 |
7078776 | Nishinohara et al. | Jul 2006 | B2 |
7089513 | Bard et al. | Aug 2006 | B2 |
7089515 | Hanafi et al. | Aug 2006 | B2 |
7091093 | Noda et al. | Aug 2006 | B1 |
7105399 | Dakshina-Murthy et al. | Sep 2006 | B1 |
7109099 | Tan et al. | Sep 2006 | B2 |
7119381 | Passlack | Oct 2006 | B2 |
7122411 | Mouli | Oct 2006 | B2 |
7127687 | Signore | Oct 2006 | B1 |
7132323 | Haensch et al. | Nov 2006 | B2 |
7169675 | Tan et al. | Jan 2007 | B2 |
7170120 | Datta et al. | Jan 2007 | B2 |
7176137 | Perug et al. | Feb 2007 | B2 |
7186598 | Yamauchi et al. | Mar 2007 | B2 |
7189627 | Wu et al. | Mar 2007 | B2 |
7199430 | Babcock et al. | Apr 2007 | B2 |
7202517 | Dixit et al. | Apr 2007 | B2 |
7208354 | Bauer | Apr 2007 | B2 |
7211871 | Cho | May 2007 | B2 |
7221021 | Wu et al. | May 2007 | B2 |
7223646 | Miyashita et al. | May 2007 | B2 |
7226833 | White et al. | Jun 2007 | B2 |
7226843 | Weber et al. | Jun 2007 | B2 |
7230680 | Fujisawa et al. | Jun 2007 | B2 |
7235822 | Li | Jun 2007 | B2 |
7256639 | Koniaris et al. | Aug 2007 | B1 |
7259428 | Inaba | Aug 2007 | B2 |
7260562 | Czajkowski et al. | Aug 2007 | B2 |
7297994 | Wieczorek et al. | Nov 2007 | B2 |
7301208 | Handa et al. | Nov 2007 | B2 |
7304350 | Misaki | Dec 2007 | B2 |
7307471 | Gammie et al. | Dec 2007 | B2 |
7312500 | Miyashita et al. | Dec 2007 | B2 |
7323754 | Ema et al. | Jan 2008 | B2 |
7332439 | Lindert et al. | Feb 2008 | B2 |
7348629 | Chu et al. | Mar 2008 | B2 |
7354833 | Liaw | Apr 2008 | B2 |
7380225 | Joshi et al. | May 2008 | B2 |
7398497 | Sato et al. | Jul 2008 | B2 |
7402207 | Besser et al. | Jul 2008 | B1 |
7402872 | Murthy et al. | Jul 2008 | B2 |
7416605 | Zollner et al. | Aug 2008 | B2 |
7442971 | Wirbeleit et al. | Oct 2008 | B2 |
7449733 | Inaba et al. | Nov 2008 | B2 |
7469164 | Du-Nour | Dec 2008 | B2 |
7470593 | Rouh et al. | Dec 2008 | B2 |
7485536 | Jin et al. | Feb 2009 | B2 |
7487474 | Ciplickas et al. | Feb 2009 | B2 |
7491988 | Tolchinsky et al. | Feb 2009 | B2 |
7494861 | Chu et al. | Feb 2009 | B2 |
7496862 | Chang et al. | Feb 2009 | B2 |
7496867 | Turner et al. | Feb 2009 | B2 |
7501324 | Babcock et al. | Mar 2009 | B2 |
7503020 | Allen et al. | Mar 2009 | B2 |
7507999 | Kusumoto et al. | Mar 2009 | B2 |
7514766 | Yoshida | Apr 2009 | B2 |
7521323 | Surdeanu et al. | Apr 2009 | B2 |
7531836 | Liu et al. | May 2009 | B2 |
7538364 | Twynam | May 2009 | B2 |
7538412 | Schulze et al. | May 2009 | B2 |
7562233 | Sheng et al. | Jul 2009 | B1 |
7564105 | Chi et al. | Jul 2009 | B2 |
7566600 | Mouli | Jul 2009 | B2 |
7569456 | Ko et al. | Aug 2009 | B2 |
7586322 | Xu et al. | Sep 2009 | B1 |
7595243 | Bulucea et al. | Sep 2009 | B1 |
7598142 | Ranade et al. | Oct 2009 | B2 |
7605041 | Ema et al. | Oct 2009 | B2 |
7605060 | Meunier-Beillard et al. | Oct 2009 | B2 |
7605429 | Bernstein et al. | Oct 2009 | B2 |
7608496 | Chu | Oct 2009 | B2 |
7615802 | Elpelt et al. | Nov 2009 | B2 |
7622341 | Chudzik et al. | Nov 2009 | B2 |
7638380 | Pearce | Dec 2009 | B2 |
7642140 | Bae et al. | Jan 2010 | B2 |
7644377 | Saxe et al. | Jan 2010 | B1 |
7645665 | Kubo et al. | Jan 2010 | B2 |
7655523 | Babcock et al. | Feb 2010 | B2 |
7673273 | Madurawe et al. | Mar 2010 | B2 |
7675126 | Cho | Mar 2010 | B2 |
7675317 | Perisetty | Mar 2010 | B2 |
7678638 | Chu et al. | Mar 2010 | B2 |
7682887 | Dokumaci et al. | Mar 2010 | B2 |
7683442 | Burr et al. | Mar 2010 | B1 |
7696000 | Liu et al. | Apr 2010 | B2 |
7704822 | Jeong | Apr 2010 | B2 |
7704844 | Zhu et al. | Apr 2010 | B2 |
7709828 | Braithwaite et al. | May 2010 | B2 |
7723750 | Zhu et al. | May 2010 | B2 |
7737472 | Kondo et al. | Jun 2010 | B2 |
7741138 | Cho | Jun 2010 | B2 |
7741200 | Cho et al. | Jun 2010 | B2 |
7745270 | Shah et al. | Jun 2010 | B2 |
7750374 | Capasso et al. | Jul 2010 | B2 |
7750381 | Hokazono et al. | Jul 2010 | B2 |
7750405 | Nowak | Jul 2010 | B2 |
7750682 | Bernstein et al. | Jul 2010 | B2 |
7755144 | Li et al. | Jul 2010 | B2 |
7755146 | Helm et al. | Jul 2010 | B2 |
7759206 | Luo et al. | Jul 2010 | B2 |
7761820 | Berger et al. | Jul 2010 | B2 |
7808045 | Kawahara et al. | Oct 2010 | B2 |
7808410 | Kim et al. | Oct 2010 | B2 |
7811873 | Mochizuki | Oct 2010 | B2 |
7811881 | Cheng et al. | Oct 2010 | B2 |
7821066 | Lebby et al. | Oct 2010 | B2 |
7829402 | Matocha et al. | Nov 2010 | B2 |
7831873 | Trimberger et al. | Nov 2010 | B1 |
7846822 | Seebauer et al. | Dec 2010 | B2 |
7855118 | Hoentschel et al. | Dec 2010 | B2 |
7859013 | Chen et al. | Dec 2010 | B2 |
7863163 | Bauer | Jan 2011 | B2 |
7867835 | Lee et al. | Jan 2011 | B2 |
7883977 | Babcock et al. | Feb 2011 | B2 |
7888205 | Herner et al. | Feb 2011 | B2 |
7888747 | Hokazono | Feb 2011 | B2 |
7895546 | Lahner et al. | Feb 2011 | B2 |
7897495 | Ye et al. | Mar 2011 | B2 |
7906413 | Cardone et al. | Mar 2011 | B2 |
7910419 | Fenouillet-Beranger et al. | Mar 2011 | B2 |
7919791 | Flynn et al. | Apr 2011 | B2 |
7926018 | Moroz et al. | Apr 2011 | B2 |
7935984 | Nakano | May 2011 | B2 |
7941776 | Majumder et al. | May 2011 | B2 |
7945800 | Gomm et al. | May 2011 | B2 |
7948008 | Liu et al. | May 2011 | B2 |
7952147 | Ueno et al. | May 2011 | B2 |
7960232 | King et al. | Jun 2011 | B2 |
7960238 | Kohli et al. | Jun 2011 | B2 |
7968400 | Cai | Jun 2011 | B2 |
7968411 | Williford | Jun 2011 | B2 |
7968440 | Seebauer | Jun 2011 | B2 |
7968459 | Bedell et al. | Jun 2011 | B2 |
7989900 | Haensch et al. | Aug 2011 | B2 |
7994573 | Pan | Aug 2011 | B2 |
8012827 | Yu et al. | Sep 2011 | B2 |
8029620 | Kim et al. | Oct 2011 | B2 |
8039332 | Bernard et al. | Oct 2011 | B2 |
8046598 | Lee | Oct 2011 | B2 |
8048791 | Hargrove et al. | Nov 2011 | B2 |
8048810 | Tsai et al. | Nov 2011 | B2 |
8051340 | Cranford, Jr. et al. | Nov 2011 | B2 |
8053340 | Colombeau et al. | Nov 2011 | B2 |
8063466 | Kurita | Nov 2011 | B2 |
8067279 | Sadra et al. | Nov 2011 | B2 |
8067280 | Wang et al. | Nov 2011 | B2 |
8067302 | Li | Nov 2011 | B2 |
8076719 | Zeng et al. | Dec 2011 | B2 |
8097529 | Krull et al. | Jan 2012 | B2 |
8103983 | Agarwal et al. | Jan 2012 | B2 |
8105891 | Yeh et al. | Jan 2012 | B2 |
8106424 | Schruefer | Jan 2012 | B2 |
8106481 | Rao | Jan 2012 | B2 |
8110487 | Griebenow et al. | Feb 2012 | B2 |
8114761 | Mandrekar et al. | Feb 2012 | B2 |
8119482 | Bhalla et al. | Feb 2012 | B2 |
8120069 | Hynecek | Feb 2012 | B2 |
8129246 | Babcock et al. | Mar 2012 | B2 |
8129797 | Chen et al. | Mar 2012 | B2 |
8134159 | Hokazono | Mar 2012 | B2 |
8143120 | Kerr et al. | Mar 2012 | B2 |
8143678 | Kim et al. | Mar 2012 | B2 |
8148774 | Mori et al. | Apr 2012 | B2 |
8163619 | Yang et al. | Apr 2012 | B2 |
8169002 | Chang et al. | May 2012 | B2 |
8170857 | Joshi et al. | May 2012 | B2 |
8173499 | Chung et al. | May 2012 | B2 |
8173502 | Yan et al. | May 2012 | B2 |
8176461 | Trimberger | May 2012 | B1 |
8178430 | Kim et al. | May 2012 | B2 |
8179530 | Levy et al. | May 2012 | B2 |
8183096 | Wirbeleit | May 2012 | B2 |
8183107 | Mathur et al. | May 2012 | B2 |
8185865 | Gupta et al. | May 2012 | B2 |
8187959 | Pawlak et al. | May 2012 | B2 |
8188542 | Yoo et al. | May 2012 | B2 |
8196545 | Kurosawa | Jun 2012 | B2 |
8201122 | Dewey, III et al. | Jun 2012 | B2 |
8214190 | Joshi et al. | Jul 2012 | B2 |
8217423 | Liu et al. | Jul 2012 | B2 |
8225255 | Ouyang et al. | Jul 2012 | B2 |
8227307 | Chen et al. | Jul 2012 | B2 |
8236661 | Dennard et al. | Aug 2012 | B2 |
8239803 | Kobayashi | Aug 2012 | B2 |
8247300 | Babcock et al. | Aug 2012 | B2 |
8255843 | Chen et al. | Aug 2012 | B2 |
8258026 | Bulucea | Sep 2012 | B2 |
8266567 | El Yahyaoui et al. | Sep 2012 | B2 |
8286180 | Foo | Oct 2012 | B2 |
8288798 | Passlack | Oct 2012 | B2 |
8299562 | Li et al. | Oct 2012 | B2 |
8324059 | Guo et al. | Dec 2012 | B2 |
20010014495 | Yu | Aug 2001 | A1 |
20020042184 | Nandakumar et al. | Apr 2002 | A1 |
20030006415 | Yokogawa et al. | Jan 2003 | A1 |
20030047763 | Hieda et al. | Mar 2003 | A1 |
20030122203 | Nishinohara | Jul 2003 | A1 |
20030173626 | Burr | Sep 2003 | A1 |
20030215991 | Sohn et al. | Nov 2003 | A1 |
20030215992 | Sohn et al. | Nov 2003 | A1 |
20040075143 | Bae et al. | Apr 2004 | A1 |
20040084731 | Matsuda et al. | May 2004 | A1 |
20040087090 | Grudowski et al. | May 2004 | A1 |
20040126947 | Sohn | Jul 2004 | A1 |
20040175893 | Vatus et al. | Sep 2004 | A1 |
20040180488 | Lee | Sep 2004 | A1 |
20050056877 | Rueckes et al. | Mar 2005 | A1 |
20050093021 | Ouyang et al. | May 2005 | A1 |
20050106824 | Alberto et al. | May 2005 | A1 |
20050116282 | Pattanayak et al. | Jun 2005 | A1 |
20050250289 | Babcock et al. | Nov 2005 | A1 |
20050276094 | Yamaoka et al. | Dec 2005 | A1 |
20050280075 | Ema et al. | Dec 2005 | A1 |
20060017100 | Bol et al. | Jan 2006 | A1 |
20060049464 | Rao | Mar 2006 | A1 |
20060068586 | Pain | Mar 2006 | A1 |
20060071278 | Takao | Apr 2006 | A1 |
20060091481 | Li et al. | May 2006 | A1 |
20060154428 | Dokumaci | Jul 2006 | A1 |
20060157794 | Doyle et al. | Jul 2006 | A1 |
20060163674 | Cho | Jul 2006 | A1 |
20060197158 | Babcock et al. | Sep 2006 | A1 |
20060203581 | Joshi et al. | Sep 2006 | A1 |
20060220114 | Miyashita et al. | Oct 2006 | A1 |
20060223248 | Venugopal et al. | Oct 2006 | A1 |
20070040222 | Van Camp et al. | Feb 2007 | A1 |
20070117326 | Tan et al. | May 2007 | A1 |
20070158790 | Rao | Jul 2007 | A1 |
20070194383 | Kato | Aug 2007 | A1 |
20070212861 | Chidambarrao et al. | Sep 2007 | A1 |
20070238253 | Tucker | Oct 2007 | A1 |
20070242497 | Joshi et al. | Oct 2007 | A1 |
20080067589 | Ito et al. | Mar 2008 | A1 |
20080108208 | Arevalo et al. | May 2008 | A1 |
20080138953 | Challa et al. | Jun 2008 | A1 |
20080169493 | Lee et al. | Jul 2008 | A1 |
20080169516 | Chung | Jul 2008 | A1 |
20080197439 | Goerlach et al. | Aug 2008 | A1 |
20080203522 | Mandelman et al. | Aug 2008 | A1 |
20080227250 | Ranade et al. | Sep 2008 | A1 |
20080237661 | Ranade et al. | Oct 2008 | A1 |
20080258198 | Bojarczuk et al. | Oct 2008 | A1 |
20080272409 | Sonkusale et al. | Nov 2008 | A1 |
20090003105 | Itoh et al. | Jan 2009 | A1 |
20090004806 | Siprak | Jan 2009 | A1 |
20090057746 | Sugll et al. | Mar 2009 | A1 |
20090057762 | Bangsaruntip et al. | Mar 2009 | A1 |
20090108350 | Cai et al. | Apr 2009 | A1 |
20090121298 | Furukawa et al. | May 2009 | A1 |
20090134468 | Tsuchiya et al. | May 2009 | A1 |
20090224319 | Kohli | Sep 2009 | A1 |
20090302388 | Cai et al. | Dec 2009 | A1 |
20090309140 | Khamankar et al. | Dec 2009 | A1 |
20090311837 | Kapoor | Dec 2009 | A1 |
20100012988 | Yang et al. | Jan 2010 | A1 |
20100100856 | Mittal | Apr 2010 | A1 |
20100148153 | Hudait et al. | Jun 2010 | A1 |
20100149854 | Vora | Jun 2010 | A1 |
20100187641 | Zhu et al. | Jul 2010 | A1 |
20100207182 | Paschal | Aug 2010 | A1 |
20100270600 | Inukai et al. | Oct 2010 | A1 |
20110059588 | Kang | Mar 2011 | A1 |
20110073961 | Dennard et al. | Mar 2011 | A1 |
20110074498 | Thompson et al. | Mar 2011 | A1 |
20110079860 | Verhulst | Apr 2011 | A1 |
20110079861 | Shifren et al. | Apr 2011 | A1 |
20110095811 | Chi et al. | Apr 2011 | A1 |
20110147828 | Murthy et al. | Jun 2011 | A1 |
20110169082 | Zhu et al. | Jul 2011 | A1 |
20110175170 | Wang et al. | Jul 2011 | A1 |
20110180880 | Chudzik et al. | Jul 2011 | A1 |
20110193164 | Zhu | Aug 2011 | A1 |
20110212590 | Wu et al. | Sep 2011 | A1 |
20110230039 | Mowry et al. | Sep 2011 | A1 |
20110242921 | Tran et al. | Oct 2011 | A1 |
20110248352 | Shifren | Oct 2011 | A1 |
20110294278 | Eguchi et al. | Dec 2011 | A1 |
20110309447 | Arghavani et al. | Dec 2011 | A1 |
20120021594 | Gurtej et al. | Jan 2012 | A1 |
20120034745 | Colombeau et al. | Feb 2012 | A1 |
20120056275 | Cai et al. | Mar 2012 | A1 |
20120065920 | Nagumo et al. | Mar 2012 | A1 |
20120108050 | Chen et al. | May 2012 | A1 |
20120132998 | Kwon et al. | May 2012 | A1 |
20120138953 | Cai et al. | Jun 2012 | A1 |
20120146155 | Hoentschel et al. | Jun 2012 | A1 |
20120167025 | Gillespie et al. | Jun 2012 | A1 |
20120187491 | Zhu et al. | Jul 2012 | A1 |
20120190177 | Kim et al. | Jul 2012 | A1 |
20120223363 | Kronholz et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
0274278 | Jul 1988 | EP |
0312237 | Apr 1989 | EP |
0531621 | Mar 1993 | EP |
0683515 | Nov 1995 | EP |
0889502 | Jan 1999 | EP |
1450394 | Aug 2004 | EP |
59193066 | Nov 1984 | JP |
4186774 | Jul 1992 | JP |
8153873 | Jun 1996 | JP |
8288508 | Nov 1996 | JP |
2004087671 | Mar 2004 | JP |
794094 | Jan 2008 | KR |
Entry |
---|
PCT Notice of Transmittal of the International Search Report and the Written Opinion of the International Search Authority, or the Declaration, PCT/US 11/31531; 8 pp. dated Jun. 29, 2011. |
US 7,011,991, 03/2006, Li (withdrawn). |
Noda, K et al., “A 0.1-μm Delta-Doped MOSFET Fabricated with Post-Low-Energy Implanting Selective Epitaxy” IEEE Transactions on Electron Devices, vol. 45, No. 4, pp. 809-814, Apr. 1998. |
Chau, R et al., “A 50nm Depleted-Substrate CMOS Transistor (DST)”, Electron Device Meeting 2001, IEDM Technical Digest, IEEE International, pp. 29.1.1-29.1.4, 2001. |
Abiko, H et al., “A Channel Engineering Combined with Channel Epitaxy Optimization and TED Suppression for 0.15 μm n-n Gate CMOS Technology”, 1995 Symposium on VLSI Technology Digest of Technical Papers, pp. 23-24, 1995. |
Ohguro, T et al., “An 0.18-μm CMOS for Mixed Digital and Analog Aplications with Zero-Volt-Vth Epitaxial-Channel MOSFET's”, IEEE Transactions on Electron Devices, vol. 46, No. 7, pp. 1378-1383, Jul. 1999. |
Wann, C. et al., “Channel Profile Optimization and Device Design for Low-Power High-Performance Dynamic-Threshold MOSFET”, IEDM 96, pp. 113-116, 1996. |
Thompson, S et al., “MOS Scaling: Transistor Challenges for the 21st Century”, Intel Technology Journal Q3′ 1998, pp. 1-19, 1998. |
Kotaki, H., et al., “Novel Bulk Dynamic Threshold Voltage MOSFET (B-DTMOS) with Advanced Isolation (SITOS) and Gate to Shallow-Well Contact (SSS-C) Processes for Ultra Low Power Dual Gate CMOS”, IEDM 96, pp. 459-462, 1996. |
Yan, Ran-Hong et al., “Scaling the Si MOSFET: From Bulk to SOI to Bulk”, IEEE Transactions on Electron Devices, vol. 39, No. 7, Jul. 1992. |
Hokazono, A et al., “Steep Channel & Halo Profiles Utilizing Boron-Diffusion-Barrier Layers (Si:C) for 32 nm Node and Beyond”, 2008 Symposium on VLSI Technology Digest of Technical Papers, pp. 112-113, 2008. |
Hokazono, A et al., “Steep Channel Profiles in n/pMOS Controlled by Boron-Doped Si:C Layers for Continual Bulk-CMOS Scaling”, IEDM09-676 Symposium, pp. 29.1.1-29.1.4, 2009. |
Ernst, T et al., “Nanoscaled MOSFET Transistors on Strained Si, SiGe, Ge Layers: Some Integration and Electrical Properties Features”, ECS Trans. 2006, vol. 3, Issue 7, pp. 947-961, 2006. |
Holland, OW and Thomas, DK “A Method to Improve Activation of Implanted Dopants in SiC”, Oak Ridge National Laboratory, Oak Ridge, TN, 2001. |
Werner, P et al., “Carbon Diffusion in Silicon”, Applied Physics Letters, vol. 73, No. 17, pp. 2465-2467, Oct. 1998. |
Pinacho, R et al., “Carbon in Silicon: Modeling of Diffusion and Clustering Mechanisms”, Journal of Applied Physics, vol. 92, No. 3, pp. 1582-1588, Aug. 2002. |
Scholz, R et al., “Carbon-Induced Undersaturation of Silicon Self-Interstitials”, Appl. Phys. Lett. 72(2), pp. 200-202, Jan. 1998. |
Goesele, U et al., Diffusion Engineering by Carbon in Silicon, Mat. Res. Soc. Symp. vol. 610, 2000. |
Ducroquet, F et al. “Fully Depleted Silicon-On-Insulator nMOSFETs with Tensile Strained High Carbon Content Sil-yCy Channel”, ECS 210th Meeting, Abstract 1033, 2006. |
Lavéant, P. “Incorporation, Diffusion and Agglomeration of Carbon in Silicon”, Solid State Phenomena, vols. 82-84, pp. 189-194, 2002. |
Ernst, T et al., “Integration of SiGe: C Alloys in Advanced CMOS”. |
Stolk, PA et al., “Physical Mechanisms of Transient Enhanced Dopant Diffusion in Ion-Implanted Silicon”, J. Appl. Phys. 81(9), pp. 6031-6050, May 1997. |
Scholz, RF et al., “The Contribution of Vacancies to Carbon Out-Diffusion in Silicon”, Appl. Phys. Lett., vol. 74, No. 3, pp. 392-394, Jan. 1999. |
Robertson, LS et al., “The Effect of Impurities on Diffusion and Activation of Ion Implanted Boron in Silicon”, Mat. Res. Soc. Symp. vol. 610, 2000. |
Komaragiri, R. et al., “Depletion-Free Poly Gate Electrode Architecture for Sub 100 Nanometer CMOS Devices with High-K Gate Dielectrics”, IEEE IEDM Tech Dig., San Francisco CA, 833-836, Dec. 13-15, 2004. |
Samsudin, K et al., “Integrating Intrinsic Parameter Fluctuation Description into BSIMSOI to Forecast sub-15nm UTB SOI based 6T SRAM Operation”, Solid-State Electronics (50), pp. 86-93, 2006. |
Wong, H et al., “Nanoscale CMOS”, Proceedings of the IEEE, Vo. 87, No. 4, pp. 537-570, Apr. 1999. |
Banerjee, et al. “Compensating Non-Optical Effects using Electrically-Driven Optical Proximity Correction”, Proc. of SPIE vol. 7275 7275OE, 2009. |
Cheng, et al. “Extremely Thin SOI (ETSOI) CMOS with Record Low Variability for Low Power System-on-Chip Applications”, Electron Devices Meeting (IEDM), Dec. 2009. |
Cheng, et al. “Fully Depleted Extremely Thin SOI Technology Fabricated by a Novel Integration Scheme Feturing Implant-Free, Zero-Silicon-Loss, and Faceted Raised Source/Drain”, Symposium on VLSI Technology Digest of Technical Papers, pp. 212-213, 2009. |
Drennan, et al. “Implications of Proximity Effects for Analog Design”, Custom Integrated Circuits Conference, pp. 169-176, Sep. 2006. |
Hook, et al. “Lateral Ion Implant Straggle and Mask Proximity Effect”, IEEE Transactions on Electron Devices, vol. 50, No. 9, pp. 1946-1951, Sep. 2003. |
Hori, et al., “A 0.1 μm CMOS with a Step Channel Profile Formed by Ultra High Vacuum CVD and In-Situ Doped Ions”, Proceedsing of the International Electron Devices Meeting, New York, IEEE, US, pp. 909-911, Dec. 5, 1993. |
Matshuashi, et al. “High-Performance Double-Layer Epitaxial-Channel PMOSFET Compatible with a Single Gate CMOSFET”, Symposium on VLSI Technology Digest of Technical Papers, pp. 36-37, 1996. |
Shao, et al., “Boron Diffusion in Silicon: The Anomalies and Control by Point Defect Engineering”, Materials Science and Engineering R: Reports, vol. 42, No. 3-4, pp. 65-114, Nov. 1, 2003. |
Sheu, et al. “Modeling the Well-Edge Proximity Effect in Highly Scaled MOSFETs”, IEEE Transactions on Electron Devices, vol. 53, No. 11, pp. 2792-2798, Nov. 2006. |
Number | Date | Country | |
---|---|---|---|
20110248352 A1 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
61323255 | Apr 2010 | US |