Luminescent ceramic for a light emitting device

Information

  • Patent Grant
  • 10290775
  • Patent Number
    10,290,775
  • Date Filed
    Tuesday, July 11, 2017
    6 years ago
  • Date Issued
    Tuesday, May 14, 2019
    5 years ago
Abstract
A semiconductor light emitting device comprising a light emitting layer disposed between an n-type region and a p-type region is combined with a ceramic layer which is disposed in a path of light emitted by the light emitting layer. The ceramic layer is composed of or includes a wavelength converting material such as a phosphor. Luminescent ceramic layers according to embodiments of the invention may be more robust and less sensitive to temperature than prior art phosphor layers. In addition, luminescent ceramics may exhibit less scattering and may therefore increase the conversion efficiency over prior art phosphor layers.
Description
BACKGROUND
Field of Invention

The present invention relates to wavelength converted semiconductor light emitting devices.


Description of Related Art

Light emitting diodes (LEDs) are well-known solid state devices that can generate light having a peak wavelength in a specific region of the light spectrum. LEDs are typically used as illuminators, indicators and displays. Traditionally, the most efficient LEDs emit light having a peak wavelength in the red region of the light spectrum, i.e., red light. However, III-nitride LEDs have been developed that can efficiently emit light having a peak wavelength in the UV to green region of the spectrum. III-nitride LEDs can provide significantly brighter output light than traditional LEDs.


In addition, since light from III-nitride devices generally has a shorter wavelength than red light, the light generated by the III-nitride LEDs can be readily converted to produce light having a longer wavelength. It is well known in the art that light having a first peak wavelength (the “primary light”) can be converted into light having a longer peak wavelength (the “secondary light”) using a process known as luminescence/fluorescence. The fluorescent process involves absorbing the primary light by a wavelength-converting material such as a phosphor, exciting the luminescent centers of the phosphor material, which emit the secondary light. The peak wavelength of the secondary light will depend on the phosphor material. The type of phosphor material can be chosen to yield secondary light having a particular peak wavelength.


With reference to FIG. 1, a prior art phosphor LED 10 described in U.S. Pat. No. 6,351,069 is shown. The LED 10 includes a III-nitride die 12 that generates blue primary light when activated. The III-nitride die 12 is positioned on a reflector cup lead frame 14 and is electrically coupled to leads 16 and 18. The leads 16 and 18 conduct electrical power to the III-nitride die 12. The III-nitride die 12 is covered by a layer 20, often a transparent resin, that includes wavelength-converting material 22. The type of wavelength-converting material utilized to form the layer 20 can vary, depending upon the desired spectral distribution of the secondary light that will be generated by the fluorescent material 22. The III-nitride die 12 and the fluorescent layer 20 are encapsulated by a lens 24. The lens 24 is typically made of a transparent epoxy or silicone.


In operation, electrical power is supplied to the III-nitride die 12 to activate the die. When activated, die 12 emits the primary light away from the top surface of the die. A portion of the emitted primary light is absorbed by the wavelength-converting material 22 in the layer 20. The wavelength-converting material 22 then emits secondary light, i.e., the converted light having a longer peak wavelength, in response to absorption of the primary light. The remaining unabsorbed portion of the emitted primary light is transmitted through the wavelength-converting layer, along with the secondary light. The lens 24 directs the unabsorbed primary light and the secondary light in a general direction indicated by arrow 26 as output light. Thus, the output light is a composite light that is composed of the primary light emitted from die 12 and the secondary light emitted from the wavelength-converting layer 20. The wavelength-converting material may also be configured such that very little or none of the primary light escapes the device, as in the case of a die that emits UV primary light combined with one or more wavelength-converting materials that emit visible secondary light.


As III-nitride LEDs are operated at higher power and higher temperature, the transparency of the organic encapsulants used in layer 20 tend to degrade, undesirably reducing the light extraction efficiency of the device and potentially undesirably altering the appearance of the light emitted from the device. Several alternative configurations of wavelength-converting materials have been proposed, such as growth of LED devices on single crystal luminescent substrates as described in U.S. Pat. No. 6,630,691, thin film phosphor layers as described in U.S. Pat. No. 6,696,703, and conformal layers deposited by electrophoretic deposition as described in U.S. Pat. No. 6,576,488 or stenciling as described in U.S. Pat. No. 6,650,044. However, one major disadvantage of prior solutions is the optical heterogeneity of the phosphor/encapsulant system, which leads to scattering, potentially causing losses in conversion efficiency.


SUMMARY

In accordance with embodiments of the invention, a semiconductor light emitting device comprising a light emitting layer disposed between an n-type region and a p-type region is combined with a ceramic layer which is disposed in a path of light emitted by the light emitting layer. The ceramic layer is composed of or includes a wavelength converting material such as a phosphor. Luminescent ceramic layers according to embodiments of the invention may be more robust and less sensitive to temperature than prior art phosphor layers. In addition, luminescent ceramics may exhibit less scattering and may therefore increase the conversion efficiency over prior art phosphor layers.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a prior art phosphor-converted semiconductor light emitting device.



FIG. 2 illustrates a flip chip semiconductor light emitting device including a ceramic phosphor layer.



FIG. 3 illustrates a semiconductor light emitting device including a bonded host substrate and a ceramic phosphor layer.



FIG. 4 illustrates an example of a doping profile in a ceramic phosphor layer.



FIG. 5 illustrates a semiconductor light emitting device including multiple ceramic layers.



FIG. 6 illustrates a semiconductor light emitting device including a shaped ceramic phosphor layer.



FIG. 7 illustrates a semiconductor light emitting device including a ceramic phosphor layer wider than the epitaxial layers in the device.



FIG. 8 illustrates a semiconductor light emitting device including a ceramic phosphor layer and a heat extraction structure.





DETAILED DESCRIPTION

The above-mentioned devices with thin film or conformal phosphor layers can be difficult to handle because the phosphor layers tend to be fragile. In accordance with embodiments of the invention, wavelength converting materials such as phosphors are formed into ceramic slabs, referred to herein as “luminescent ceramics.” The ceramic slabs are generally self-supporting layers formed separately from the semiconductor device, then attached to the finished semiconductor device or used as a growth substrate for the semiconductor device. The ceramic layers may be translucent or transparent, which may reduce the scattering loss associated with non-transparent wavelength converting layers such as conformal layers. Luminescent ceramic layers may be more robust than thin film or conformal phosphor layers. In addition, since luminescent ceramic layers are solid, it may be easier to make optical contact to additional optical elements such as lenses and secondary optics, which are also solid.


Examples of phosphors that may be formed into luminescent ceramic layers include aluminum garnet phosphors with the general formula (Lu1-x-y-a-bYxGdy)3(Al1-zGaz)5O12:CeaPrb wherein 0<x<1, 0<y<1, 0<z≤0.1, 0<a≤0.2 and 0<b≤0.1, such as Lu3Al5O12:Ce3+ and Y3Al5O12:Ce3+ which emit light in the yellow-green range; and (Sr1-x-yBaxCay)2-zSi5-aAlaN8-aOa:Euz2+ wherein 0≤a<5, 0<x≤1, 0≤y≤1, and 0<z≤1 such as Sr2Si5N8:Eu2+, which emit light in the red range. Suitable Y3Al5O12:Ce3+ ceramic slabs may be purchased from Baikowski International Corporation of Charlotte, N.C. Other green, yellow, and red emitting phosphors may also be suitable, including (Sr1-a-bCabBac)SixNyOz:Eua2+ (a=0.002-0.2, b=0.0-0.25, c=0.0-0.25, x=1.5-2.5, y=1.5-2.5, z=1.5-2.5) including, for example, SrSi2N2O2:Eu2+; (Sr1-u-v-xMguCavBax)(Ga2-y-zAlyInzS4):Eu2+ including, for example, SrGa2S4:Eu2+; Sr1-xBaxSiO4Eu2+; and (Ca1-xSrx)S:Eu2+ wherein 0<x≤1 including, for example, CaS:Eu2+ and SrS:Eu2+.


A luminescent ceramic may be formed by heating a powder phosphor at high pressure until the surface of the phosphor particles begin to soften and melt. The partially melted particles stick together to form a rigid agglomerate of particles. Unlike a thin film, which optically behaves as a single, large phosphor particle with no optical discontinuities, a luminescent ceramic behaves as tightly packed individual phosphor particles, such that there are small optical discontinuities at the interface between different phosphor particles. Thus, luminescent ceramics are optically almost homogenous and have the same refractive index as the phosphor material forming the luminescent ceramic. Unlike a conformal phosphor layer or a phosphor layer disposed in a transparent material such as a resin, a luminescent ceramic generally requires no binder material (such as an organic resin or epoxy) other than the phosphor itself, such that there is very little space or material of a different refractive index between the individual phosphor particles. As a result, a luminescent ceramic is transparent or translucent, unlike a conformal phosphor layer.


Luminescent ceramic layers may be attached to light emitting devices by, for example, wafer bonding, sintering, gluing with thin layers of known organic adhesives such as epoxy or silicone, gluing with high index inorganic adhesives, and gluing with sol-gel glasses.


Examples of high index adhesives include high index optical glasses such Schott glass SF59, Schott glass LaSF 3, Schott glass LaSF N18, and mixtures thereof. These glasses often have an index of refraction greater than 1.8 and are available from Schott Glass Technologies Incorporated, of Duryea, Pa. Examples of other high index adhesives include high index chalcogenide glass, such as (Ge,Sb,Ga)(S,Se) chalcogenide glasses, III-V semiconductors including but not limited to GaP, InGaP, GaAs, and GaN, II-VI semiconductors including but not limited to ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe, group IV semiconductors and compounds including but not limited to Si and Ge, organic semiconductors, metal oxides including but not limited to tungsten oxide, titanium oxide, nickel oxide, zirconium oxide, indium tin oxide, and chromium oxide, metal fluorides including but not limited to magnesium fluoride and calcium fluoride, metals including but not limited to Zn, In, Mg, and Sn, yttrium aluminum garnet (YAG), phosphide compounds, arsenide compounds, antimonide compounds, nitride compounds, high index organic compounds, and mixtures or alloys thereof. Gluing with high index inorganic adhesives is described in more detail in application Ser. No. 09/660,317, filed Sep. 12, 2000, and Ser. No. 09/880,204, filed Jun. 12, 2001, both of which are incorporated herein by reference.


Gluing with sol-gel glasses is described in more detail in U.S. Pat. No. 6,642,618, which is incorporated herein by reference. In embodiments where the luminescent ceramic is attached to the device by a sol-gel glass, one or more materials such as oxides of titanium, cerium, lead, gallium, bismuth, cadmium, zinc, barium, or aluminum may be included in the SiO2 sol-gel glass to increase the index of refraction of the glass in order to more closely match the index of the glass with the indices of the luminescent ceramic and the light emitting device. For example, a Y3Al5O12:Ce3+ ceramic layer may have an index of refraction of between about 1.75 and 1.8, and may be attached to a sapphire growth substrate of a semiconductor light emitting device, which sapphire substrate has an index of refraction of about 1.8. It is desirable to match the refractive index of the adhesive to the refractive indices of the Y3Al5O12:Ce3+ ceramic layer and the sapphire growth substrate.


In some embodiments, a luminescent ceramic serves as a growth substrate for the semiconductor light emitting device. This is especially plausible with III-nitride light emitting layers such as InGaN, which are able to be grown on a lattice-mismatched substrate (e.g., sapphire or SiC), resulting in high dislocation densities, but still exhibit high external quantum efficiency in LEDs. Thus, a semiconductor light emitting device may be grown on a luminescent ceramic in a similar manner. For example, using metal-organic chemical vapor-phase epitaxy or another epitaxial technique, a III-nitride nucleation layer is deposited, typically at low temperature (˜550° C.), directly on the luminescent ceramic substrate. Then, a thicker layer of GaN (‘buffer’ layer) is deposited, typically at higher temperature, on the III-nitride nucleation layer and coalesced into a single crystal film. Increasing the thickness of the buffer layer can reduce the total dislocation density and improve the layer quality. Finally, n-type and p-type layers are deposited, between which light emitting III-nitride active layers are included. The ability to withstand the III-nitride growth environment (e.g., temperatures greater than 1,000° C. and an NH3 environment) will govern the choice of luminescent ceramic as a growth substrate. Because the ceramics are poly-crystalline, and the resulting III-nitride layers should be single crystal, special additional growth considerations may apply. For example, for the situation described above, it may be necessary to insert multiple low-temperature interlayers within the GaN buffer layer to ‘reset’ the GaN growth and avoid ceramic grain orientation effects from propagating into the III-nitride device layers. These and other techniques are known in the art for growing on lattice-mismatched substrates. Suitable growth techniques are described in, for example, U.S. Pat. No. 6,630,692 to Goetz et al., which is assigned to the assignee of the present application and incorporated herein by reference.


Though the examples below refer to III-nitride light emitting diodes, it is to be understood that embodiments of the invention may extend to other light emitting devices, including devices of other materials systems such as III-phosphide and III-arsenide, and other structures such as resonant cavity LEDs, laser diodes, and vertical cavity surface emitting lasers.



FIGS. 2 and 3 illustrate III-nitride devices including luminescent ceramic layers. In the device of FIG. 2, an n-type region 42 is grown over a suitable growth substrate 40, followed by active region 43 and p-type region 44. Growth substrate 40 may be, for example, sapphire, SiC, GaN, or any other suitable growth substrate. Each of n-type region 42, active region 43, and p-type region 44 may include multiple layers of different composition, thickness, and dopant concentration. For example, n-type region 42 and p-type region 44 may include contact layers optimized for ohmic contact and cladding layers optimized to contain carriers within active region 43. Active region 43 may include a single light emitting layer, or may include multiple quantum well light emitting layers separated by barrier layers.


In the device illustrated in FIG. 2, a portion of p-type region 44 and active region 43 are etched away to reveal a portion of n-type region 42. A p-contact 45 is formed on the remaining portion of p-type region 44 and an n-contact 46 is formed on the exposed portion of n-contact 46. In the embodiment illustrated in FIG. 2, contacts 45 and 46 are reflective such that light is extracted from the device through the back side of substrate 40. Alternatively, contacts 45 and 46 may be transparent or formed in such a way that a large portion of the surfaces of p-type region 44 and n-type region 42 are left uncovered by contacts. In such devices, light may be extracted from the device through the top surface of the epitaxial structure, the surface on which contacts 45 and 46 are formed.


In the device illustrated in FIG. 3, the epitaxial layers are bonded to a host substrate 49 through p-contact 45. Additional layers to facilitate bonding (not shown) may be included between p-type region 44 and host 49. After the epitaxial layers are bonded to host 49, the growth substrate may be removed to expose a surface of n-type region 42. Contact to the p-side of the active region is provided through host 49. An n-contact 46 is formed on a portion of the exposed surface of n-type region 42. Light is extracted from the device through the top surface of n-type region 42. Growth substrate removal is described in more detail in application Ser. No. 10/804,810, filed Mar. 19, 2004, titled “Photonic Crystal Light Emitting Device,” assigned to the assignee of the present invention, and incorporated herein by reference.


In the devices illustrated in FIGS. 2 and 3, a luminescent ceramic layer 50 such as the ceramic layers described above, is attached (e.g., by a glass layer 51) to the surface of the device from which light is extracted; the back of substrate 40 in FIG. 2 and the top of n-type region 42 in FIG. 3. Ceramic layer 50 may be formed on or attached to any surface from which light is extracted from the device. For example, ceramic layer 50 may extend over the sides of the device illustrated in FIG. 2. FIG. 3 illustrates an optional filter 30, which allows light from active region 43 to pass into ceramic layer 50, but reflects light emitted by ceramic layer 50, such that light emitted by ceramic layer 50 is inhibited from entering device 52, where it is likely to be absorbed and lost. Examples of suitable filters include dichroic filters available from Unaxis Balzers Ltd. of Liechtenstein or Optical Coating Laboratory, Inc. of Santa Rosa, Calif.


Luminescent ceramic layer 50 may include a single phosphor or multiple phosphors mixed together. In some embodiments, the amount of activating dopant in the ceramic layer is graded. FIG. 4 illustrates an example of a graded doping profile in a luminescent ceramic layer. The dashed line in FIG. 4 represents the surface of the device. The phosphor in the portion of the ceramic layer closest to the device surface has the highest dopant concentration. As the distance from the device surface increases, the dopant concentration in the phosphor decreases. Though a linear dopant profile with a region of constant dopant concentration is shown in FIG. 4, it is to be understood that the grading profile may take any shape including, for example, a step-graded profile or a power law profile, and may include multiple or no regions of constant dopant concentration. In addition, in some embodiments it may be advantageous to reverse the grading profile, such that the region closest to the device surface has a small dopant concentration that increases as the distance from the device surface increases. In some embodiments, the portion of the ceramic layer furthest from the device surface may not contain any phosphor or any dopant, and may be shaped (as shown below) for light extraction.


In some embodiments, devices include multiple ceramic layers, as in the device illustrated in FIG. 5. Ceramic layer 50a is attached (e.g., by glass layer 51) to device 52, which may be, for example, either of the devices illustrated in FIGS. 2 and 3. Ceramic layer 50b is attached to ceramic layer 50a. In some embodiments, one of the two ceramic layers 50a and 50b contains all the wavelength converting materials used in the device, and the other of the two ceramic layers is transparent and used as a spacer layer, if it is the ceramic layer adjacent to device 52, or as a light extraction layer, if it is the ceramic layer furthest from device 52. In some embodiments, each of ceramic layers 50a and 50b may contain a different phosphor or phosphors. Though two ceramic layers are illustrated in FIG. 5, it is to be understood that devices including more than two ceramic layers and/or more than two phosphors are within the scope of the invention. The arrangement of the different phosphors in ceramic layers 50a and 50b or ceramic layers 50a and 50b themselves may be chosen to control the interaction between the multiple phosphors in a device, as described in application Ser. No. 10/785,616 filed Feb. 23, 2004 and incorporated herein by reference. Though ceramic layers 50a and 50b are shown stacked over device 52 in FIG. 5, other arrangements are possible and within the scope of the invention. In some embodiments, a device including one or more ceramic layers may be combined with other wavelength converting layers, such as the wavelength converting material shown in FIG. 1, or the thin films, conformal layers, and luminescent substrates described in the background section. Transparent ceramic layers that are not luminescent may be, for example, the same host material as the luminescent ceramic layer, without the activating dopant.


An advantage of luminescent ceramic layers is the ability to mold, grind, machine, hot stamp or polish the ceramic layers into shapes that are desirable, for example, for increased light extraction. Luminescent ceramic layers generally have high refractive indices, for example 1.75 to 1.8 for a Y3Al5O12:Ce3+ ceramic layer. In order to avoid total internal reflection at the interface between the high index ceramic layer and low index air, the ceramic layer may be shaped as illustrated in FIGS. 6 and 7. In the device illustrated in FIG. 6, the luminescent ceramic layer 54 is shaped into a lens such as a dome lens. Light extraction from the device may be further improved by texturing the top of the ceramic layer, either randomly or in, for example, a Fresnel lens shape, as illustrated in FIG. 7. In some embodiments the top of the ceramic layer may be textured with a photonic crystal structure, such as a periodic lattice of holes formed in the ceramic. The shaped ceramic layer may be smaller than or the same size as face of device 52 to which it is attached (e.g., by glass layer 51) or it may be larger than the face of device 52 to which it is attached, as illustrated in FIGS. 6 and 7. In devices such as FIG. 7, favorable light extraction is expected for shaped ceramic layers having a bottom length at least twice the length of the face of device 52 on which the ceramic layer is mounted. In some embodiments, the wavelength converting material is confined to the portion of the ceramic layer closest to the device 52. In other embodiments, as illustrated in FIG. 7, the wavelength converting material is provided in a first ceramic layer 50a, then attached to a second, shaped, transparent ceramic layer 50b.


In some embodiments, the surface of the top ceramic layer is roughened to increase scattering necessary to mix the light, for example, in a device where light from the light emitting device and one or more wavelength converting layers mixes to form white light. In other embodiments, sufficient mixing may be accomplished by secondary optics such as a lens or light guide, as is known in the art.


A further advantage of luminescent ceramic layers is the favorable thermal properties of ceramics. A device including a luminescent ceramic layer and a heat extraction structure is illustrated in FIG. 8. As in FIG. 7, FIG. 8 includes a transparent or luminescent ceramic layer 50b that is shaped for light extraction. An optional additional transparent or luminescent ceramic layer 50a is disposed between layer 50b and device 52. Device 52 is mounted on a submount 58, for example as a flip chip as illustrated in FIG. 2. Submount 58 and host substrate 49 of FIG. 3, may be, for example, metals such as Cu foil, Mo, Cu/Mo, and Cu/W; semiconductors with metal contacts, such as Si with ohmic contacts and GaAs with ohmic contacts including, for example, one or more of Pd, Ge, Ti, Au, Ni, Ag; and ceramics such as compressed diamond. Layers 56 are thermally conductive materials that connect ceramic layer 50b to submount 58, potentially reducing the temperature of luminescent ceramic layer 50a and/or 50b, and thereby increasing light output. Material suitable for layers 56 include the submount material described above. The arrangement illustrated in FIG. 8 is particularly useful to extract heat from flip chip devices with conductive substrates, such as SiC.


EXAMPLE

An example of a cerium-doped yttrium aluminum garnet ceramic slab diffusion-bonded to a sapphire substrate is given below.


Diffusion-bonded YAG-sapphire composites are advantageous because of their high mechanical strength and excellent optical quality. According to the phase diagram yttria-alumina within the composition range Al2O3 and 3 Y2O3 5 Al2O3, no other phase exists except an eutecticum with 33% Al. Therefore, a sinterbonded YAG-sapphire composite has an average refractive index at the (eutectoidic) interface between YAG ceramic (ni=1.84) and sapphire substrate (ni=1.76) and thus a high quality optical contact can be obtained. In addition, because of the similar expansion coefficients of YAG and sapphire (YAG: 6.9×10−6 K−1, Al2O3: 8.6×10−6 K−1), sinterbonded wafers with low mechanical stress can be produced.


A diffusion-bonded YAG:Ce ceramic-sapphire wafer may be formed as follows:


a) Production of YAG:Ce ceramic: 40 g Y2O3 (99.998%), 32 g Al2O3 (99.999%), and 3.44 g CeO2 are milled with 1.5 kg high purity alumina balls (2 mm diameter) in isopropanol on a roller bench for 12 hrs. The dried precursor powder is then calcined at 1300° C. for two hours under CO atmosphere. The YAG powder obtained is then deagglomerated with a planet ball mill (agate balls) under ethanol. The ceramic slurry is then slip casted to obtain a ceramic green body after drying. The green bodies are then sintered between graphite plates at 1700° C. for two hours.


b) Diffusion-bonding of a sapphire wafer and a YAG:Ce ceramic: The ground and polished sapphire and YAG wafers are diffusion bonded in a uniaxial hot pressing apparatus (HUP). For this purpose, sapphire and YAG wafers are stacked between tungsten foils (0.5 mm thickness) and placed in a graphite pressing die. To increase the speed of processing several sapphire/YAG:Ce ceramic/tungsten foil stacks can be stacked and processed simultaneously.


After evacuation of the HUP apparatus the temperature is first increased to 1700° C. within 4 hrs without applying external pressure. Then a uniaxial pressure of 300 bar is applied and kept constant for 2 hrs. After the dwell time the temperature is lowered to 1300° C. within 2 hrs by keeping the pressure constant. Finally, the system is cooled down to room temperature within 6 hrs after releasing the pressure.


c) Post processing of sinterbonded sapphire-YAG:Ce wafers: After grinding and polishing of the surfaces of the sinterbonded wafers, the samples are annealed for 2 hrs at 1300° C. in air (heating rate: 300 K/hr), then cooled down to room temperature within 12 hrs.


Having described the invention in detail, those skilled in the art will appreciate that, given the present disclosure, modifications may be made to the invention without departing from the spirit of the inventive concept described herein. Therefore, it is not intended that the scope of the invention be limited to the specific embodiments illustrated and described.

Claims
  • 1. A device comprising: a semiconductor light emitting device;a ceramic layer comprising a first wavelength converting material disposed over the semiconductor light emitting device;a glass layer disposed directly on and contacting the semiconductor light emitting device; anda second wavelength converting material disposed over the semiconductor light emitting device.
  • 2. The device of claim 1 wherein the glass layer attaches the ceramic layer to the semiconductor light emitting device.
  • 3. The device of claim 1 wherein the glass layer is disposed between the ceramic layer and the semiconductor light emitting device.
  • 4. The device of claim 1 wherein the glass layer has an index of refraction greater than 1.8.
  • 5. The device of claim 1 wherein the second wavelength converting material is disposed in a transparent material.
  • 6. The device of claim 1 wherein the second wavelength converting material is a conformal layer.
  • 7. The device of claim 1 wherein the ceramic layer is disposed between the semiconductor light emitting device and the second wavelength converting material.
  • 8. The device of claim 1 wherein the ceramic layer is a solid agglomerate of phosphor particles substantially free of hinder material.
  • 9. The device of claim 1 wherein the glass layer is selected from the group consisting of high index optical glass, Schott glass SF59, Schott glass LaSF 3, Schott glass LaSF N18, and mixtures thereof.
  • 10. The device of claim 1 wherein the glass layer is sol-gel glass.
  • 11. The device of claim 10 wherein the sol-gel glass comprises one or more materials selected from the group consisting of oxides of titanium, cerium, lead, gallium, bismuth, cadmium, zinc, barium, and aluminum.
  • 12. The device of claim 1 wherein the semiconductor light emitting device is a III-nitride light emitting diode and the ceramic layer comprises Y3Al5O12:Ce3+.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/149,454, filed May 9, 2016, and titled “Luminescent Ceramic for a Light Emitting Device”, which is a division of U.S. patent application Ser. No. 12/034,588, filed Feb. 20, 2008, now issued as U.S. Pat. No. 9,359,260 on Jun. 7, 2016, and which is a division of U.S. patent application Ser. No. 10/861,172, filed on Jun. 3, 2004, now issued as U.S. Pat. No. 7,361,938 on Apr. 22, 2008. U.S. patent application Ser. Nos. 15/149,454, 12/034,588, and 10/861,172 are incorporated herein.

US Referenced Citations (67)
Number Name Date Kind
3103607 Rulon Sep 1963 A
3153166 Thornton et al. Oct 1964 A
3932881 Mita et al. Jan 1976 A
3959658 Ziemer et al. May 1976 A
5676891 Boedinger Oct 1997 A
5744815 Gurevich et al. Apr 1998 A
6153010 Kiyoku et al. Nov 2000 A
6320547 Fathy et al. Nov 2001 B1
6335548 Roberts et al. Jan 2002 B1
6351069 Lowery et al. Feb 2002 B1
6409938 Comanzo Jun 2002 B1
6486499 Krames et al. Nov 2002 B1
6501100 Srivastava et al. Dec 2002 B1
6504156 Takahara Jan 2003 B1
6576488 Collins, III et al. Jun 2003 B2
6630691 Mueller-Mach et al. Oct 2003 B1
6630692 Goetz et al. Oct 2003 B2
6642618 Yagi et al. Nov 2003 B2
6642652 Collins et al. Nov 2003 B2
6650044 Lowery Nov 2003 B1
6696703 Mueller-Mach et al. Feb 2004 B2
6791259 Stokes Sep 2004 B1
6800500 Coman et al. Oct 2004 B2
6828596 Steigerwald et al. Dec 2004 B2
6876008 Bhat et al. Apr 2005 B2
6878973 Lowery et al. Apr 2005 B2
6956246 Epler et al. Oct 2005 B1
7053419 Camras et al. May 2006 B1
7064355 Camras et al. Jun 2006 B2
7211831 Erchak May 2007 B2
7250715 Mueller et al. Jul 2007 B2
7361938 Mueller et al. Apr 2008 B2
7554258 Rossner et al. Jun 2009 B2
20020001873 Kang Jan 2002 A1
20020030444 Mueller-Mach et al. Mar 2002 A1
20020170019 Tamai Nov 2002 A1
20020175621 Song et al. Nov 2002 A1
20020190641 Sommers Dec 2002 A1
20030025449 Rossner Feb 2003 A1
20030067264 Takekuma Apr 2003 A1
20030141507 Krames et al. Jul 2003 A1
20030189829 Shimizu et al. Oct 2003 A1
20030214233 Takahashi et al. Nov 2003 A1
20040007961 Srivastava et al. Jan 2004 A1
20040012027 Keller et al. Jan 2004 A1
20040027062 Shiang Feb 2004 A1
20040041222 Loh Mar 2004 A1
20040061433 Izuno Apr 2004 A1
20040065886 Eliashevich et al. Apr 2004 A1
20040116033 Ouderkirk Jun 2004 A1
20040124429 Stokes et al. Jul 2004 A1
20040145289 Ouderkirk et al. Jul 2004 A1
20040145308 Rossner Jul 2004 A1
20040164311 Uemura Aug 2004 A1
20040179277 Stallard et al. Sep 2004 A1
20050040413 Takahashi et al. Feb 2005 A1
20050194601 Suenaga Sep 2005 A1
20050200588 Wierer, Jr. et al. Sep 2005 A1
20050224826 Keuper et al. Oct 2005 A1
20050269582 Mueller et al. Dec 2005 A1
20060076883 Himaki et al. Apr 2006 A1
20060091409 Epler et al. May 2006 A1
20060152150 Boerner Jul 2006 A1
20060281203 Epler et al. Dec 2006 A1
20070126017 Krames et al. Jun 2007 A1
20090286342 Takahashi et al. Nov 2009 A1
20110156056 Krames et al. Jun 2011 A1
Foreign Referenced Citations (13)
Number Date Country
1111603 Nov 1995 CN
10027199 Jan 2001 DE
10349038 May 2004 DE
10041546 Feb 1998 JP
10229218 Aug 1998 JP
200031531 Jan 2000 JP
2000022222 Jan 2000 JP
2001166717 Jun 2001 JP
2002504058 Feb 2002 JP
2003124503 Apr 2003 JP
2003168726 Jun 2003 JP
2004146835 May 2004 JP
20020089219 Nov 2002 WO
Non-Patent Literature Citations (29)
Entry
Office Action for Application No. TW094117905 dated Nov. 3, 2011.
Office Action for Application No. KR10-2007-7000010, dated Oct. 10, 2011.
Office Action for Application No. KR10-2007-7000010, dated May 29, 2012.
Office Action for Application No. JP2007-514277 dated Aug. 23, 2011
Office Action for Application No. CN201110090653.X dated Feb. 16, 2013.
Office Action for Application No. CN201110090653.X dated Aug. 13, 2013.
Office Action for Application No. JP2011-279089 dated May 28, 2013.
Office Action for Application No. JP2011-279089 dated Nov. 26, 2013.
Extended European Search Report for Application No. EP14168580.0 dated Nov. 12, 2014.
International Search Report for Application No. PCT/IB2005/051702 dated Oct. 31, 2005.
Reexamination Decision dated Dec. 10, 2015 for Chinese Application No. 201110090653.X, 25 pages.
Decision of Rejection dated Apr. 24, 2014 for China Application No. 201110090653.X, 20 pages.
Decision of Rejection dated Jun. 6, 2012 for Taiwan Application No. 094117905, 5 pages.
Decision on Rejection dated Apr. 3, 2009 for China Application No. 200580017783.3, 12 pages.
First Office Action dated May 3, 2012 for China Application No. 201110090653.X, 16 pages.
First Office Action dated Dec. 28, 2007 for China Application No. 200580017783.3, 21 pages.
Notice of Reexamination dated Jun. 29, 2015 for China Application No. 201110090653.X, 14 pages.
Office Action dated Mar. 8, 2011 for Japan Application No. 2007-514277, 6 pages.
Second Office Action dated Oct. 24, 2008 for China application No. 200580017783.3, 13 pages.
Article 94(3) EPC dated Oct. 26, 2009, European Patent Application No. 05740465.9, 2 pages.
Oral Proceedings Summons dated Aug. 20, 2013, European Patent Application No. 05740465.9, 4 pages.
Result of Consultation dated Nov. 4, 2013, European Patent Application No. 05740465.9, 2 pages.
Result of Consultation dated Dec. 6, 2013, European Patent Application No. 05740465.9, 3 pages.
Oral Proceedings Results dated Dec. 18, 2013, European Patent Application No. 05740465.9, 3 pages.
Refusal dated Dec. 27, 2013, European Patent Application No. 05740465.9, 7 pages.
Summons to oral proceedings dated Apr. 3, 2018, European Patent Application No. 05740465.9, 13 pages.
Article 94(3) EPC dated Oct. 9, 2018, European Patent Application No. 14168580.0, 4 pages.
EP Board of Appeals Decision received Dec. 14, 2018, European Patent Application No. 05740465.9, 15 pages.
EP Oral Proceedings Minutes received Dec. 6, 2018, European Patent Application No. 05740465.9, 5 pages.
Related Publications (1)
Number Date Country
20170309791 A1 Oct 2017 US
Divisions (2)
Number Date Country
Parent 12034588 Feb 2008 US
Child 15149454 US
Parent 10861172 Jun 2004 US
Child 12034588 US
Continuations (1)
Number Date Country
Parent 15149454 May 2016 US
Child 15647092 US