Magnetic Field Sensors and Methods for Fabricating the Magnetic Field Sensors

Abstract
Magnetic field sensors and associated methods of manufacturing the magnetic field sensors include molded structures to encapsulate a magnetic field sensing element and an associated die attach pad of a lead frame and to also encapsulate or form a magnet or a flux concentrator.
Description
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

Not Applicable.


FIELD OF THE INVENTION

This invention relates generally to magnetic field sensors, and, more particularly, to magnetic field sensors having a magnetic field sensing element die and magnet and also to the assembly and packaging of the magnetic field sensors.


BACKGROUND OF THE INVENTION

Magnetic field sensors in the form of so-called “proximity detectors” that can detect the presence of a ferromagnetic object proximate to the magnetic field sensor are known. Proximity detectors typically include a permanent magnet to generate a magnetic field and also include a magnetic field sensing element, for example, a Hall effect element, to detect changes in the strength of the magnetic field associated with the permanent magnet as a ferromagnetic object moves through the magnetic field.


The output signal of a magnetic field sensing element is dependent upon the strength of a magnetic field that the magnetic field sensing element experiences. Therefore, the magnetic field sensing element can detect a distance between the proximity detector and a ferromagnetic object within the magnetic field generated by a permanent magnet. The range over which the ferromagnetic object can be detected is limited by the flux density, i.e., the strength of the magnetic field.


Where it is desired to determine the speed or rotational position of a rotating object, such as a disk mounted on a shaft, the object can be provided with ferromagnetic surface features, such as teeth, that project toward the proximity detector. The proximity of a tooth to the proximity detector tends to increase the strength of the magnetic field proximate to a proximity detector. Accordingly, by monitoring the output of the proximity detector, the rotational speed of the disk can be determined by correlating the peaks in the output of the proximity detector with the known number of teeth on the circumference of the disk. Similarly, when the teeth are irregularly spaced in a predetermined pattern, the rotational position of the object can be determined by correlating the peak intervals with the known intervals between the teeth on the disk.


One type of proximity detector uses a Hall effect element. The Hall effect element is typically mounted so that is has a maximum response axis directed toward the object to be sensed. The associated magnet is mounted in a position to achieve a magnetic field aligned generally along the maximum response axis of the Hall effect element. The object to be sensed can be a high magnetic permeability component that can have projecting surface features, which increase the strength of the magnet's magnetic field as the distance between the surface of the object and the permanent magnet is reduced. While one form of object can be a gear, another form of object can be a segmented ring magnet. Yet another form of object does not rotate at all, but merely moves closer to or further away from the proximity detector. The object to be sensed moves relative to the stationary Hall effect element within the proximity detector, and in doing so, causes the magnetic flux through the Hall effect element to vary in a manner corresponding to the position of the object. With the change in magnet flux, there occurs the corresponding change in magnet field strength, which increases (or alternatively, decreases) the output signal from the Hall effect element.


It will be understood that, within an integrated proximity detector, a position or spacing of the magnet relative to the magnetic field sensing element, e.g., the Hall effect element, greatly influences the sensitivity of the proximity detector. Therefore, it is desirable that the spacing be close and that spacing be consistent device to device.


With the increasing sophistication of products, proximity detectors have become common in automobile control systems. Examples of automotive proximity detectors include proximity detectors that detect ignition timing from a position of an engine crankshaft and/or camshaft, and the proximity detectors that detect a position or rotation and a speed of rotation of an automobile wheel for anti-lock braking systems and four wheel steering systems.


A common shortcoming of proximity detectors is their dependence upon the distance, known as the air gap, between the object to be sensed and the magnetic field sensing element within the proximity detector. More specifically, as the air gap increases, the output of a Hall effect element within the proximity detector, which is directly proportional to the strength of the magnetic field, decreases, making it more difficult to accurately analyze the output of the Hall effect element.


Conventionally, the air gap is defined as a distance between the object to be sensed and the outer surface of the package containing the proximity detector. However, as used herein, the term “effective air gap” is used to describe a distance between the object to be sensed and the magnetic field sensing element, e.g., Hall effect element, within the packaged proximity detector.


Some forms of proximity detectors that package a magnet and a Hall effect element together are described in U.S. Pat. No. 5,963,028, issued Oct. 5, 1999, and U.S. Pat. No. 6,265,865, issued Jul. 24, 2001, Which are incorporated herein by reference in their entirety.


It is known that a magnet is relatively expensive. The manufacture of conventional forms of proximity detectors does not allow the magnet to be reused or replaced once the molding step is completed. Thus, if a conventional proximity detector fails manufacturing testing after molding, the cost of the magnet is lost in addition to the cost of the semiconductor die and packaging materials.


It would be desirable to provide a packaging scheme for a proximity detector (or magnetic field sensor) that would provide reliable protection from the environment, that would avoid an excessive increase in the effective air gap between the associated magnetic field sensing element and the object to be sensed, that would allow the magnetic field sensing element to be as close as possible to the magnet, and for which a proximity detector that fails testing during manufacture need not result in a loss of the magnet.


Other forms of proximity detectors include a magnet apart from an integrated proximity detector. Other forms of magnetic field sensors employ no magnet at all, but instead sense an external magnetic field experienced by the magnetic field sensor. All of these forms of magnetic field sensors would also benefit from the above characteristics.


SUMMARY OF THE INVENTION

The present invention provides magnetic field sensors and methods to make the magnetic field sensors.


In accordance with one aspect of the present invention, a method of fabricating a magnetic field sensor includes attaching a magnetic field sensor circuit die to a first surface of a die attach pad of a lead frame. The die attach pad has the first surface and a second opposing surface. The method also includes forming a molded capsule enclosing the magnetic field sensor circuit die. The molded capsule includes a cavity having an inner cavity surface. A portion of the inner cavity surface is proximate to the second surface of the die attach pad. The cavity has a shape capable of retaining a liquid. The method also includes placing a magnet into the cavity and proximate to the second opposing surface of the die attach pad and placing a liquid encapsulant into the cavity proximate to the magnet. The method also includes curing the liquid encapsulate to a solid condition to retain the magnet.


In accordance with another aspect of the present invention, a magnetic field sensor includes a lead frame comprising a die attach pad. The die attach pad comprises first and second opposing surfaces. The magnetic field sensor also includes a magnetic field sensor circuit die proximate to the first surface of the die attach pad and a molded capsule enclosing the magnetic field sensor circuit die. The molded capsule includes a cavity having an inner cavity surface. A portion of the inner cavity surface is proximate to the second surface of the die attach pad. The cavity has a shape capable of retaining a liquid. The magnetic field sensor also includes a magnet proximate to the second surface of the die attach pad and disposed within the cavity. The magnetic field sensor also includes a cured liquid encapsulant disposed thin the cavity and configured to retain the magnet within the cavity.


In accordance with another aspect of the present invention, a method of fabricating an integrated sensor includes attaching a magnetic field sensor circuit die to a first surface of a die attach pad of a lead frame. The die attach pad has the first surface and a second opposing surface. The method also includes forming a molded capsule enclosing the magnetic field sensor circuit die. The molded capsule covers the second surface of the die attach pad forming an insulating layer over the second surface of the die attach pad. The method also includes placing a magnet over the insulating layer and forming a molded enclosure surrounding the magnet.


In accordance with another aspect of the present invention, a magnetic field sensor includes a lead frame having a die attach pad. The die attach pad has first and second opposing surfaces. The magnetic field sensor also includes a magnetic field sensor circuit die coupled proximate to the first surface of the die attach pad and a molded capsule enclosing the magnetic field sensor circuit die. The molded capsule covers the second surface of the die attach pad forming an insulating layer over the second surface of the die attach pad. The magnetic field sensor also includes a magnet coupled proximate to the second surface of the die attach pad so that the insulating layer is between the magnet and the second surface of the die attach pad. The magnetic field sensor also includes a molded enclosure surrounding the magnet.


With the above arrangements, a packaging scheme for a magnetic field sensor provides reliable protection from the environment that avoids an excessive increase in an effective air gap between the associated magnetic field sensing element and the object to be sensed, that allows the magnetic field sensing element to be as close as possible to the magnet, and that does not result in loss of a costly magnet if the magnetic field sensor fails during manufacturing testing.


In accordance with another aspect of the present invention, a method of fabricating a magnetic field sensor includes attaching a magnetic field sensor circuit die to a first surface of a die attach pad of a lead frame, the die attach pad having the first surface and a second opposing surface. The method also includes forming a molded capsule enclosing the magnetic field sensor circuit die. The molded capsule includes a cavity having an inner cavity surface. A portion of the inner cavity surface is proximate to the second surface of the die attach pad. The is cavity has a shape capable of retaining a liquid. The method also includes placing a liquid material into the cavity and proximate to the second opposing surface of the die attach pad. The liquid material is filled with ferromagnetic particles to either generate a magnetic field or to concentrate a magnetic field. The method also includes curing the liquid material.


In accordance with another aspect of the present invention, a magnetic field sensor includes a lead frame comprising a die attach pad. The die attach pad has first and second opposing surfaces. The magnetic field sensor also includes a magnetic field sensor circuit die proximate to the first surface of the die attach pad and a molded capsule enclosing the magnetic field sensor circuit die. The molded capsule includes a cavity having an inner cavity surface. A portion of the inner cavity surface is proximate to the second surface of the die attach pad. The cavity has a shape capable of retaining a liquid. The magnetic field sensor also includes a cured liquid material disposed within the cavity. The cured liquid material is filled with ferromagnetic particles to either generate a magnetic field or to concentrate a magnetic field.


In accordance with another aspect of the present invention, a method of fabricating a magnetic field sensor includes attaching a magnetic field sensor circuit die to first surface of a die attach pad of a lead frame. The die attach pad has the first surface and a second opposing surface. The method also includes forming a molded capsule enclosing the magnetic field sensor circuit die. The molded capsule covers the second surface of the die attach pad forming an insulating layer over the second surface of the die attach pad. The method also includes forming a molded structure proximate to the second surface of the die attach pad. The molded structure is filled with ferromagnetic particles to either generate a magnetic field or to concentrate a magnetic field.


In the above arrangements, the ferromagnetic particles can be either hard ferromagnetic particles that can generate a permanent magnetic field, or they can be soft ferromagnetic particles that can concentrate a magnetic field.


In accordance with another aspect of the present invention, a magnetic field sensor includes a lead frame comprising a die attach pad. The die attach pad comprises first and second opposing surfaces. The magnetic field sensor also includes a magnetic field sensor circuit die coupled proximate to the first surface of the die attach pad. The magnetic field sensor also includes a molded capsule enclosing the magnetic field sensor circuit die. The molded capsule covers the second surface of the die attach pad forming an insulating layer over the second surface of the die attach pad. The magnetic field sensor also includes a molded structure proximate to the second surface of the die attach pad. The molded structure is filled with ferromagnetic particles to either generate a magnetic field or to concentrate a magnetic field.


With the above arrangements, a packaging scheme for a magnetic field sensor provides reliable protection from the environment that avoids an excessive increase in an effective air gap between the associated magnetic field sensing element and the object to be sensed, and that does not result in loss of a costly magnet if the magnetic field sensor fails during manufacturing testing.


In other words, the partially packaged magnetic field sensor can be tested in manufacturing in a form for which it is possible to remove the magnet. This may be accomplished, for example, by first testing the magnetic field sensor using a magnet in the testing apparatus that is magnetized and reused for various parts during testing. This allows the actual magnet in the final magnetic field sensor to only be placed into the magnetic field sensor after the testing and only into a known good die assembly.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing features of the invention, as well as the invention itself may be more fully understood from the following detailed description of the drawings, in which:



FIGS. 1-1C are cross sections that show a process flow for fabricating a magnetic field sensor in the form of a proximity detector;



FIGS. 2-2C are cross sections that show another process flow for fabricating another magnetic field sensor in the form of a proximity detector;



FIGS. 3-3C are cross sections that show yet another process flow for fabricating yet another magnetic field sensor in the form of a proximity detector; and



FIG. 4 is a top view showing fabrication steps for fabricating a magnetic field sensor, for example, the magnetic field sensor of FIGS. 3-3C, and including a capacitor encased during one of the molding steps.





DETAILED DESCRIPTION OF THE INVENTION

Before describing the present invention, some introductory concepts and terminology are explained. As used herein, the term “magnetic field sensor ” is used to describe a circuit that includes a “magnetic field sensing element.” Magnetic field sensors are used in a variety of applications, including, but not limited to, a current sensor that senses a magnetic field generated by a current flowing in a current conductor, a magnetic switch or “proximity detector” that senses the proximity of a ferromagnetic object, a proximity detector that senses passing ferromagnetic articles, for example, magnetic domains of a ring magnet or gear teeth, and a magnetic field sensor that senses a magnetic field density of a magnetic field.


While magnetic field sensing elements are shown and described below to be Hall effect elements, in other arrangements, the magnetic field sensing elements can be, but are not limited to, Hall effect elements, magnetoresistance elements, or magnetotransistors. As is known, there are different types of Hall effect elements, for example, a planar Hall element, and a vertical Hall element. As is also known, there are different types of magnetoresistance elements, for example, a semiconductor magnetoresistance element such as Indium Antimonide (InSb), giant magnetoresistance (GMR) element, an anisotropic magnetoresistance element (AMR), a tunneling magnetoresistance (TMR) element, and a magnetic tunnel junction (MTJ).


Referring to FIG. 1, a method of fabricating a magnetic field sensor includes attaching a magnetic field sensor circuit die 10, i.e. a magnetic field sensing element, e.g., a Hall effect element, to a first surface 12ba of a die attach pad 12b of a lead frame 12. The die attach pad 12b has the first surface 12ba and a second opposing surface 12bb. The method can also include coupling the magnetic field sensor circuit die 10 to leads 12a of the lead frame 12 with wire bonds 14 or the like.


Referring now to FIG. 1A, in which like elements of FIG. 1 are shown having like reference designations, the method further includes forming a molded capsule 16 enclosing the magnetic field sensor circuit die 10. The molded capsule 16 can be made of a variety of materials, for example, E670C mold compound from the Sumitomo Corporation, HYSOL® MG52F mold compound from the Henkel Loctite Corporation, or PLASKON® CK-6100 mold compound from Cookson Electronics. In some embodiments, the molded capsule 16 can be formed in a one step molding process. In some embodiments, the molded capsule 16 can be comprised of a single uniform material. The molded capsule 16 can include a cavity 16c having an inner cavity surface 16ca. A portion of the inner cavity surface 16ca can be proximate to or can include the second surface 12bb of the die attach pad 12b. The cavity 16e has a shape capable of retaining a liquid. In other words, the cavity can be surrounded by a rim 16a, 16c and can be open in only one area, which will be more fully understood below from the discussion in conjunction with FIG. 1B.


Referring now to FIG, 1B, in which like elements of FIGS. 1 and 1A are shown having like reference designations, a liquid encapsulant 20 can be deposited into the cavity 16c. The liquid encapsulant 20 can be made of a variety of materials, for example, HYSOL® FP4450 or FP4451 from the Henkel Loctite Corporation, CRP-3400 from the Sumitomo Corporation, or Circalok™ 6009 A/B from the Lord Corporation. The cavity 16c can be open to accept the liquid encapsulant 20, but otherwise enclosed by the rim 16a, 16b to keep the liquid encapsulant 20 from leaving the cavity 16c.


Referring now to FIG. 1C, in which like elements of FIGS. 1-1B are shown having like reference designations, a permanent magnet 22 can be placed into the cavity 16c proximate to the second surface 12bb of the die attach pad 12b, and can be essentially surrounded by the liquid encapsulant 20, since the liquid encapsulant deposited in FIG. 1B will tend to rise around the magnet 22 as it is immersed in the liquid encapsulant 20. Thereafter, the liquid encapsulant 20 can be cured either at room temperature or at elevated temperature.


In some other arrangements, the magnet 22 is placed into the cavity 16c before the liquid encapsulant 20, and thereafter the liquid encapsulant 20 is deposited into the cavity 16c to surround the magnet 22. In some embodiments, an insulating epoxy, for example a die attach epoxy, can be used to attach the magnet to the leadframe prior to application of the liquid encapsulant 20.


In some embodiments, an insulative material 30 can be disposed between the magnet 22 and the lead frame 12, for example a glass filled material, e.g., Dow Corning 7030 Die Attach Adhesive. Application of this material between the magnet 22 and the lead frame 12 can result in an accurate and repeatable separation between the magnet 22 and the lead frame 12, which would tend to result in magnetic field sensors with improved unit-to-unit sensitivity consistency.


In some embodiments, the magnet 22 has a magnetic field oriented approximately perpendicular to the first and second surfaces 12ba, 12bb, respectively, of the die attach pad 12b. In these embodiments, the magnetic field sensor circuit die 10 comprises a magnetic field sensing element, for example, a Hall effect element, having a maximum response axis also approximately perpendicular to the first and second surfaces 12ba, 12bb of the die attach pad 12b.


In some other embodiments, the magnet 22 has a magnetic field oriented approximately parallel to the first and second surfaces 12ba, 12bb respectively, of the die attach pad 12b. In these embodiments, the magnetic field sensor circuit die 10 comprises a magnetic field sensing element, for example, a giant or anisotropic magnetoresistance element, having a maximum response axis also approximately parallel to the first and second surfaces 12ba, 12bb of the die attach pad 12b.


The above-described method results in a magnetic field sensor 24 having the lead frame 12 with the die attach pad 12b, the die attach pad 12b having the first and second opposing surfaces 12ba, 12bb, respectively. The magnetic field sensor circuit die 10 is proximate to the first surface 12ba of the die attach pad 12b. The molded capsule 16 encloses the magnetic field sensor circuit die 10. The magnet 22 is proximate to the second surface 12bb of the die attach pad 12b and disposed within the cavity 16c. The cured liquid encapsulant 20 is disposed within the cavity 16c and configured to retain the magnet 22 within the cavity 16c.


In some alternate embodiments, the magnet 22 is omitted. In these embodiments, the liquid encapsulant 20 can fill the entire cavity 16c and can be filled with magnetic particles to generate a permanent magnetic field in place of the magnet 22. For, example the liquid encapsulant 20 can be an epoxy material filled with strontium ferrite particles. These embodiments can also form a proximity detector.


In still some other alternate embodiments, the magnet 22 is also omitted and the liquid encapsulant 20 is filled with soft magnetic particles to form a magnetic field concentrator, or flux concentrator. For, example the liquid encapsulant 20 can be an epoxy material filled with NiZn or MnZn ferrite particles. These embodiments also form a proximity detector if the object to be sensed generates a magnetic field. However, these embodiments can also form a magnetic field sensor used for other applications.


Referring now to FIGS. 2-2C, in which like elements of FIGS. 1-1C are shown having like reference designations, but wherein a molded capsule 16′ is different than the molded capsule 16 of FIGS. 1-1C, a magnetic field sensor 26 (FIG. 2C) is fabricated in a way similar to the magnetic field sensor 24 of FIG. 1C. The different molded capsule 16′ has a region, which, unlike the molded capsule 16 of FIGS. 1-1C, forms an insulating layer 16d′ proximate to the second opposing surface 12bb of the die attach pad 12b between the magnet 22 and the second opposing surface 12bb of the die attach pad 12b. The insulating layer 16d′ can have a predetermined thickness to separate the magnet 22 from the second surface 12bb of the die attach pad 12b by a predetermined distance.


As shown, in some embodiments, the thickness of the insulating layer 16d′ is selected to be less, e.g., substantially less, than a combined thickness of the die attach pad 12b and the magnetic field sensor circuit die 10.


The lead frame 12 includes leads 12a′, which, unlike the leads 12a of FIG. 1 can have no bend, since the magnet 22 will not contact the leads 12a′, otherwise shorting them to the die attach pad 12b.


As described above in conjunction with FIG. 1C, in some embodiments, the magnet 22 can be omitted and the liquid encapsulant 20 can be filled with magnetic particles to form a permanent magnet or with soft magnetic particles to form a flux concentrator.


Referring now to FIG. 3, in which like elements of FIG. 1 are shown having like reference designations, another method of fabricating a magnetic field sensor includes attaching the magnetic field sensor circuit die 10, i.e., a magnetic field sensing element, to the first surface 12ba of the die attach pad 12b of the lead frame 12. The die attach pad 12b has the first surface 12ba and the second opposing surface 12bb. The method can also include coupling the magnetic field sensor circuit die 10 to the leads 12a of the lead frame 12 with the wire bonds 14 or the like.


Referring now to FIG. 3A, in Which like elements of FIG. 3 are shown having like reference designations, the method further includes forming a molded capsule 50 enclosing the magnetic field sensor circuit die 10. The molded capsule 50 can be made of a variety of materials, for example, E670C mold compound from the Sumitomo Corporation, HYSOL® MG52F mold compound from the Henkel Loctite Corporation, or PLASKON® CK-6100 mold compound from Cookson Electronics. In some embodiments, the molded capsule 50 can be formed in a one step molding process. The molded capsule 50 covers the second surface 12bb of the die attach pad 12b forming an insulating layer 50a over the second surface 12bb of the die attach pad 12b.


Referring now to FIG, 3B, in which like elements of FIGS. 3 and 3A are shown having like reference designations, a magnet 52 can be placed over the insulating layer 50a, In some embodiments, an adhesive layer 54 is disposed between the magnet 52 and the insulating layer 50a. The adhesive layer can be cured after the magnet 52 is disposed thereon. The insulating layer 50a can have a predetermined thickness to separate the magnet 52 from the second surface 12bb of the die attach pad 12b by a predetermined distance.


As shown, in some embodiments, the thickness of the insulating layer 50a is selected to be less, e.g., substantially less, than a combined thickness of the die attach pad 12b and the magnetic field sensor circuit die 10.


Referring now to FIG. 3C, in which like elements of FIGS. 3-3B are shown having like reference designations, a molded enclosure 56 is formed surrounding at least the magnet 52. In some embodiments, the molded enclosure 56 can also surround or partially surround the molded capsule 50.


In some embodiments, the magnet 52 has a magnetic field oriented approximately perpendicular to the first and second surfaces 12ba, 12ab, respectively of the die attach pad 12b. In these embodiments, the magnetic field sensor circuit die 10 comprises a magnetic field sensing element, for example, a Hall effect element, having a maximum response axis also approximately perpendicular to the first and second surfaces 12ba, 12bb of the die attach pad 12b.


In some other embodiments, the magnet 52 has a magnetic field oriented approximately parallel to the first and second surfaces 12ba, 12bb, respectively, of the die attach pad 12b. In these embodiments, the magnetic field sensor circuit die 10 comprises a magnetic field sensing element, for example, an anisotropic or giant magnetoresistance element, having a maximum response axis also approximately parallel to the first and second surfaces 12ba, 12bb of the die attach pad 12b.


The above-described method above results in a magnetic field sensor 58 having the lead frame 12 with the die attach pad 12b, the die attach pad 12b having the first and second opposing surfaces 12ba, 12bb, respectively. The magnetic field sensor circuit die 10 is proximate to the first surface 12ba of the die attach pad 12b. The molded capsule 50 encloses the magnetic field sensor circuit die 10 and forms an insulating layer 50a over the second surface 12bb of the die attach pad 12b. The magnet 52 is proximate to the second surface 12bb of the die attach pad 12b. The molded enclosure 56 surrounds at least the magnet 52.


In some other embodiments, similar to embodiments described above in conjunction with FIG. 1C, the magnet 52 can be omitted. In these embodiments, the material of the molded enclosure 56 can be filled either with magnetic particles to form a permanent magnet or with soft magnetic particles to form a flux concentrator. In these embodiments, it may be advantageous to form the molded enclosure 56 on only one side of the lead frame 12, i.e., a side of the lead frame 12 opposite to the molded capsule 50.


Referring now to FIG. 4, in which like elements of FIGS, 3-3C are shown having like reference designations, a lead frame strip 60 includes a plurality of lead frames 62a-62f, each of which can be cut from the lead frame strip at a later time. Each one of the lead frames 62a-62f can be the same as or similar to the lead frame 12 shown in FIGS. 1-1C, 2-2C and 3-3C. Each one of the lead frames 62a-62f is shown at a different step in a manufacturing process.


The lead frames 62a-62f has the magnetic field sensor circuit die 10, i.e., the magnetic field sensing element, disposed over a first surface a die attach pad (not visible) of the lead frames 62a-62f. In these views, the magnetic field sensor circuit die 10 is over top of the die attach pad.


Regarding the lead frames 62b-62f, the molded capsule 50 encloses the magnetic field sensor circuit die 10 and forms an insulating layer (not visible) on the second surface (not visible) of the die attach pad (not visible). Regarding the lead frames 62c-62f, the magnet 52 is proximate to the second surface (not visible) of the die attach pad (not visible). For the lead is frames 62c- and 62e-62f, the magnet 52 is under the die attach pad. The lead frame 62d is shown upside down from the others to more clearly show the magnet 52 as upward in this view. Regarding the lead frames 62d-62f, a capacitor 64 can be disposed on the same side of the lead frame 62d as the magnet 52, i.e., upward in the view of lead frame 62d. Regarding the lead frames 62e-62f, the molded enclosure 56 surrounds at least the magnet 52 to form the magnetic field sensor 58, but in some embodiments also surrounds the molded capsule 50 and/or the capacitor 64.


All references cited herein are hereby incorporated herein by reference in their entirety.


Having described preferred embodiments of the invention, it will now become apparent to one of ordinary skill in the art that other embodiments incorporating their concepts may be used. It is felt therefore that these embodiments should not be limited to disclosed embodiments, but rather should be limited only by the spirit and scope of the appended claims.

Claims
  • 1-14. (canceled)
  • 15. A method of fabricating an integrated sensor, comprising: attaching a magnetic field sensor circuit die to a first surface of a die attach pad of a lead frame, the die attach pad having the first surface and a second opposing surface;molding a molded capsule comprised of a mold compound enclosing the magnetic field sensor circuit die, wherein the molded capsule covers the second surface of the die attach pad with the mold compound, and wherein the mold compound of the molded capsule forms an insulating layer over the second surface of the die attach pad, wherein a thickness of the insulating layer is less than a combined thickness of the die attach pad and the magnetic field sensor circuit die;placing a magnet over the insulating layer, wherein the magnet is in a non-liquid state before it is placed over the insulating layer, wherein the insulating layer formed from the mold compound is disposed between the magnet and the second surface of the die attach pad; andmolding a molded enclosure comprised of a mold compound after the magnet is placed, the mold compound of the molded enclosure surrounding the magnet as the molded enclosure is molded.
  • 16. The method of claim 15, further comprising placing an adhesive onto the insulting layer;placing the magnet onto the adhesive; andcuring the adhesive.
  • 17. The method of claim 15, wherein the mold compound of the molded enclosure also surrounds the molded capsule as the molded enclosure is molded.
  • 18. The method of claim 17, wherein the molded capsule consists of one uniform material.
  • 19. The method of claim 15, further comprising placing a glass filled epoxy onto the second surface of the die attach pad.
  • 20. The method of claim 15, further comprising attaching a capacitor across at least two leads of the lead frame at a position that results in the capacitor being encased within the molded capsule.
  • 21. The method of claim 15, wherein the magnet has a magnetic field oriented approximately perpendicular to the first and second surfaces of the die attach pad, and wherein the magnetic field sensor circuit die comprises a magnetic field sensing element having a maximum response axis approximately perpendicular to the first and second surfaces of the die attach pad.
  • 22. The method of claim 15, wherein the magnet has a magnetic field oriented approximately parallel to the first and second surfaces of the die attach pad, and wherein the magnetic field sensor circuit die comprises a magnetic field sensing element having a maximum response axis approximately parallel to the first and second surfaces of the die attach pad.
  • 23-32. (canceled)
  • 33. A method of fabricating an integrated sensor, comprising: attaching a magnetic field sensor circuit die to a first surface of a die attach pad of a lead frame, the die attach pad having the first surface and a second opposing surface;molding a molded capsule comprised of a mold compound enclosing the magnetic field sensor circuit die, wherein the molded capsule covers the second surface of the die attach pad and forms an insulating layer over the second surface of the die attach pad;molding a first molded structure disposed proximate to the second surface of the die attach pad, wherein the molding the first molded structure is performed upon the integrated sensor after the molding the molded capsule, wherein the first molded structure comprises a mold compound filled with ferromagnetic particles, wherein the first molded structure is configured to either generate as magnetic field or to concentrate a magnetic field; wherein the insulating layer formed from the mold is disposed between the molded structure filled with ferromagnetic particles and the die attach pad; andmolding a second molded structure enclosing the first molded structure wherein the second molded structure is configured to retain the first molded structure proximate to the die attach pad.
  • 34. (canceled)
  • 35. The method of claim 15, wherein the magnet comprises a solid magnet.
  • 36. The method of claim 15, further comprising: molding the magnet using a mold compound filled with ferromagnetic particles.
  • 37. The method of claim 15, further comprising: molding the magnet over the insulating layer using a mold compound filled with ferromagnetic particles.
  • 38. The method of claim 15, wherein the insulating layer comprises a substantially flat outer surface, forming a substantially flat surface upon which the magnet is placed, and wherein a surface of the magnet proximate to the insulating layer is substantially flat.
  • 39. The method of claim 33, wherein the second molded structure farther encloses at least a portion of the molded capsule.
  • 40. The method of claim 33, wherein a surface between the molded capsule and the first molded structure is substantially flat throughout the surface.
  • 41. The method of claim 33, wherein a thickness of the insulating layer is less than a combined thickness of the die attach pad and the magnetic field sensor circuit die.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a Continuation application of U.S. patent application Ser. No. 12/328,798. filed Dec. 5, 2008, which is incorporated herein by reference in its entirety.

Continuations (1)
Number Date Country
Parent 12328798 Dec 2008 US
Child 13838864 US