This U.S. non-provisional patent application claims priority under 35 U.S.C. § 119 to Korean Patent Application No. 10-2017-0148212, filed on Nov. 8, 2017, in the Korean Intellectual Property Office, the disclosure of which is hereby incorporated by reference in its entirety.
The present disclosure relates to memory devices and, more particularly, to magnetic memory devices. High-speed and low-voltage memory devices have been demanded to realize high-speed and low-power electronic devices including memory devices. A magnetic memory device has been studied as a memory device satisfying these demands. The magnetic memory device has been spotlighted as a next-generation memory device because of its high-speed operation characteristic and/or non-volatile characteristic.
A magnetic memory device may use a magnetic tunnel junction (MTJ). The magnetic tunnel junction may include two magnetic layers and a tunnel barrier layer disposed between the two magnetic layers, and a resistance of the magnetic tunnel junction may be changed according to magnetization directions of the two magnetic layers. In detail, the magnetic tunnel junction may have a high resistance when the magnetization directions of the two magnetic layers are anti-parallel to each other. On the contrary, the magnetic tunnel junction may have a low resistance when the magnetization directions of the two magnetic layers are parallel to each other. The magnetic memory device may write/sense data by using a difference between the resistances of the magnetic tunnel junction.
In particular, a spin transfer torque magnetic random access memory (STT-MRAM) device has been spotlighted as a highly integrated memory device because of its property that the amount of the writing current decreases as a size of a magnetic cell decreases. Operation of a magnetic memory device may be degraded, however, if an electrical short is formed between two magnetic layers of a magnetic tunnel junction of the magnetic memory device.
Embodiments of the inventive concepts may provide a magnetic memory device with improved electrical characteristics.
In some embodiments, a magnetic memory device may include a bottom electrode on a substrate, a magnetic tunnel junction pattern including a first magnetic layer, a tunnel barrier layer, and a second magnetic layer, which are sequentially stacked on the bottom electrode, and a top electrode on the magnetic tunnel junction pattern. The bottom electrode may include a first material and the top electrode may include a second material. A first surface binding energy of the first material with respect to the magnetic tunnel junction pattern may be lower than a second surface binding energy of the second material with respect to the magnetic tunnel junction pattern.
In some embodiments, a magnetic memory device may include a first electrode on a substrate, a magnetic tunnel junction pattern including a first magnetic layer, a tunnel barrier layer, and a second magnetic layer, which are sequentially stacked on the first electrode, and a second electrode on the magnetic tunnel junction pattern. The first electrode may be between the second electrode and the substrate. At least one of the first electrode or the second electrode may include a low-energy electrode material. A first surface binding energy of the low-energy electrode material with respect to the magnetic tunnel junction pattern may be lower than a second surface binding energy of tungsten with respect to the magnetic tunnel junction pattern.
In some embodiments, a magnetic memory device may include a first electrode on a substrate, a magnetic tunnel junction pattern including a first magnetic layer, a tunnel barrier layer, and a second magnetic layer, which are sequentially stacked on the first electrode, and a second electrode on the magnetic tunnel junction pattern. The first electrode may be between the second electrode and the substrate. The first electrode may include a first material and a second material, and the second electrode may include the second material. A first surface binding energy of the first material with respect to the tunnel barrier layer of the magnetic tunnel junction pattern may be lower than a second surface binding energy of the second material with respect to the tunnel barrier layer of the magnetic tunnel junction pattern.
The inventive concepts will become more apparent in view of the attached drawings and accompanying detailed description.
Referring to
The selection element SE may selectively control a flow of charges passing through the magnetic tunnel junction pattern MTJP. For example, the selection element SE may be a diode, a PNP bipolar transistor, an NPN bipolar transistor, an NMOS field effect transistor, or a PMOS field effect transistor. When the selection element SE is a three-terminal element (e.g., the bipolar transistor or the MOS field effect transistor), an additional interconnection line may be connected to the selection element SE. The magnetic tunnel junction pattern MTJP may include a first magnetic pattern MS1, a second magnetic pattern MS2, and a tunnel barrier pattern TBP between the first and second magnetic patterns MS1 and MS2. Each of the first and second magnetic patterns MS1 and MS2 may include at least one magnetic layer.
A magnetization direction of one of the first and second magnetic patterns MS1 and MS2 may be fixed regardless of an external magnetic field in a general use environment. In the present specification, a magnetic layer having the fixed magnetization property (i.e., the fixed magnetization direction) is defined as a reference layer. The reference layer may include a pinning layer and a pinned layer. A magnetization direction of the other of the first and second magnetic patterns MS1 and MS2 may be switched by an external magnetic field applied thereto or spin torque of electrons of a program current applied thereto. In the present specification, a magnetic layer having the switchable or changeable magnetization property (i.e., the switchable or changeable magnetization direction) is defined as a free layer. An electrical resistance of the magnetic tunnel junction pattern MTJP may be dependent on the magnetization directions of the free layer and the reference layer. For example, an electrical resistance of the magnetic tunnel junction pattern MTJP when the magnetization directions of the free and reference layers are anti-parallel to each other may be much higher than that of the magnetic tunnel junction pattern MTJP when the magnetization directions of the free and reference layers are parallel to each other. As a result, the electrical resistance of the magnetic tunnel junction pattern MTJP may be adjusted by changing the magnetization direction of the free layer. This principle may be used as a principle of storing data in the magnetic memory device according to some embodiments of the inventive concepts. The first and second magnetic patterns MS1 and MS2 and the tunnel barrier pattern TBP will be described later in more detail with reference to
Referring to
A contact plug CT connected to the selection element SE may be provided. The contact plug CT may penetrate a first interlayer insulating layer 120 disposed on the substrate 110 and may be connected to one terminal of the selection element SE. The contact plug CT may include at least one of a doped semiconductor material (e.g., doped silicon), a metal (e.g., tungsten, titanium, or tantalum), a conductive metal nitride (e.g., titanium nitride, tantalum nitride, or tungsten nitride), or a metal-semiconductor compound (e.g., a metal silicide). A bottom electrode BE, a magnetic tunnel junction pattern MTJP and a top electrode TE may be sequentially provided on the contact plug CT.
The magnetic tunnel junction pattern MTJP may include a first magnetic pattern MS1, a second magnetic pattern MS2, and a tunnel barrier pattern TBP between the first and second magnetic patterns MS1 and MS2. The bottom electrode BE, the magnetic tunnel junction pattern MTJP and the top electrode TE may be provided in a second interlayer insulating layer 124. For example, each of the first and second interlayer insulating layers 120 and 124 may include at least one of a silicon oxide layer, a silicon nitride layer, or a silicon oxynitride layer.
At least one of the bottom electrode BE or the top electrode TE may include a low-energy electrode material. For example, in some embodiments, the bottom electrode BE may include the low-energy electrode material and the top electrode TE may be free of (i.e., may omit) the low-energy electrode material. A surface binding energy of the low-energy electrode material with respect to the tunnel barrier pattern TBP may be less (i.e., lower) than a surface binding energy of tungsten with respect to the tunnel barrier pattern TBP. In the present specification, the surface binding energy means an energy required to remove or separate one atom of a corresponding material from a surface of an the tunnel barrier pattern TBP (i.e., a surface of attached component), unless otherwise indicated. For example, the low-energy electrode material may be copper (Cu), aluminum (Al), germanium (Ge), carbon (C), scandium (Sc), titanium (Ti), tantalum (Ta), or vanadium (V). For example, the low-energy electrode material may have an atomic weight/mass less (i.e., lower) than that of tungsten. The surface binding energies of the low-energy electrode materials are shown in the following table 1 and are less (i.e., lower) than 2.72 eV, which is the surface binding energy of tungsten (W).
The surface binding energies of the low-energy electrode materials were measured based on an energy required to remove or separate one atom of a corresponding material from a surface of a magnesium oxide (MgO) layer used as the tunnel barrier pattern TBP, as described above.
According to some embodiments of the inventive concepts, the low-energy electrode material, the surface binding energy of which is less (i.e., lower) than that of tungsten that is generally used as an electrode material, may be used as the electrode material, and thus it is possible to inhibit or prevent a short phenomenon between the first and second magnetic patterns MS1 and MS2 which may be caused by re-deposition of the electrode material on a sidewall of the tunnel barrier pattern TBP in a patterning process of forming the electrode. In other words, when the low-energy electrode material is used as the electrode material, it is possible to inhibit or prevent a conductive residue from being formed on the sidewall of the tunnel barrier pattern TBP.
According to some embodiments of the inventive concepts, the bottom electrode BE may include a conductive layer including the low-energy electrode material. For example, the bottom electrode BE may include a copper layer, an aluminum layer, a germanium layer, a carbon layer, a scandium layer, a titanium layer, a tantalum layer, or a vanadium layer. The germanium layer may be doped with a group III element or a group V element. The carbon layer may have a conductive crystal structure such as graphene.
According to some embodiments of the inventive concepts, the bottom electrode BE may include a conductive metal nitride layer of the low-energy electrode material. For example, the bottom electrode BE may include an aluminum nitride layer, a titanium nitride layer, a tantalum nitride layer, or a vanadium nitride layer. In some embodiments, the bottom electrode BE may include a layer of the low-energy electrode material and the conductive metal nitride layer of the low-energy electrode material.
According to some embodiments of the inventive concepts, the top electrode TE may include a conductive layer including the low-energy electrode material. For example, the top electrode TE may include a copper layer, an aluminum layer, a germanium layer, a carbon layer, a scandium layer, a titanium layer, a tantalum layer, or a vanadium layer. The germanium layer may be doped with a group III element or a group V element. The carbon layer may have a conductive crystal structure such as graphene.
According to some embodiments of the inventive concepts, the top electrode TE may include a conductive metal nitride layer of the low-energy electrode material. For example, the top electrode TE may include an aluminum nitride layer, a titanium nitride layer, a tantalum nitride layer, or a vanadium nitride layer. In some embodiments, the top electrode TE may include a layer of the low-energy electrode material and the conductive metal nitride layer of the low-energy electrode material. In some embodiments, the top electrode TE may be formed of the same material as the bottom electrode BE. Alternatively, the top electrode TE may be formed of a material different from that of the bottom electrode BE.
According to some embodiments of the inventive concepts, the bottom electrode BE may include a first material and the top electrode TE may include a second material. A surface binding energy of the first material with respect to the tunnel barrier pattern TBP may be less (i.e., lower) than a surface binding energy of the second material with respect to the tunnel barrier pattern TBP. Since the top electrode TE is used as a mask for forming the magnetic tunnel junction pattern MTJP, an etch resistance of the second material to an etching process (e.g., to an ion beam of an etching process) may be greater (i.e., higher) than an etch resistance of the first material to the etching process (e.g., to the ion beam of the etching process). As a result, the re-deposition phenomenon may be inhibited, minimized, or prevented without increasing a thickness of the magnetic tunnel junction pattern MTJP.
In some embodiments, the first material may be one of the low-energy electrode materials shown in the table 1. In other words, the first material may be copper (Cu), aluminum (Al), germanium (Ge), carbon (C), scandium (Sc), titanium (Ti), tantalum (Ta), or vanadium (V). The second material may be tungsten. The bottom electrode BE may include a layer of the first material and/or a conductive nitride layer of the first material. The top electrode TE may include a tungsten layer and/or a tungsten nitride layer.
In some embodiments, a group number of the first material in a periodic table may be greater (i.e., higher) than a group number of the second material in the periodic table. For example, the first material may be a material of International Union of Pure and Applied Chemistry (IUPAC) groups 11 to 14, and the second material may be a material of IUPAC groups 3 to 6. The first material may be selected from a first material group of the following table 2, and the second material may be selected from a second material group of the following table 2. In other words, the first material may be copper (Cu), aluminum (Al), germanium (Ge), or carbon (C), and the second material may be scandium (Sc), titanium (Ti), tantalum (Ta), vanadium (V), or tungsten (W). The bottom electrode BE may include a layer of the first material and/or a conductive nitride layer of the first material. The top electrode TE may include a layer of the second material and/or a conductive nitride layer of the second material.
In some embodiments, the bottom electrode BE may include a first material and a second material, and the top electrode TE may include the second material. A surface binding energy of the first material with respect to the tunnel barrier pattern TBP may be less (i.e., lower) than a surface binding energy of the second material with respect to the tunnel barrier pattern TBP. For example, when the second material is tungsten (W), the bottom electrode BE may include a compound of tungsten (W) and at least one of copper (Cu), aluminum (Al), germanium (Ge), carbon (C), scandium (Sc), titanium (Ti), tantalum (Ta), or vanadium (V). A weight ratio of the first material to the second material in the bottom electrode BE may range from about 1:1 to about 1:20. A ratio of the first material in the bottom electrode BE may range from about 5 wt % to about 50 wt %.
The bottom electrode BE may include a compound layer of the first material and the second material and/or a conductive nitride layer of the first material and the second material. The top electrode TE may include a layer of the second material and/or a conductive nitride layer of the second material.
In some embodiments, each of the bottom and top electrodes BE and TE may include the first material and the second material. In some embodiments, a ratio/concentration of the first material in the bottom electrode BE may be substantially equal to a ratio/concentration of the first material in the top electrode TE. For example, the ratio/concentration of the first material in each of the bottom and top electrodes BE and TE may range from about 5 wt % to about 50 wt %. Alternatively, the ratio/concentration of the first material in the bottom electrode BE may be greater (i.e., higher) than the ratio/concentration of the first material in the top electrode TE. For example, the ratio/concentration of the first material in the bottom electrode BE may range from about 15 wt % to about 50 wt %, and the ratio/concentration of the first material in the top electrode TE may range from about 5 wt % to about 15 wt %. Each of the bottom and top electrodes BE and TE may include a compound layer of the first material and the second material and/or a conductive nitride layer of the first material and the second material.
A thickness T2 of the top electrode TE may be greater (i.e., thicker) than a thickness T1 of the bottom electrode BE. For example, the thickness T2 of the top electrode TE may range from about 2 times to about 10 times the thickness T1 of the bottom electrode BE. For example, the thickness T1 of the bottom electrode BE may range from about 50 Å to about 500 Å.
In some embodiments, the top electrode TE may include a metal nitride pattern 141 and a metal pattern 144 on the metal nitride pattern 141. A bit line BL may be provided on the top electrode TE. The metal nitride pattern 141 may improve adhesion of the metal pattern 144 and the magnetic tunnel junction pattern MTJP. The metal pattern 144 may be thicker than the metal nitride pattern 141. For example, a thickness of the metal pattern 144 may range from about 2 times to about 7 times a thickness of the metal nitride pattern 141. The thickness of the metal pattern 144 may range from about 250 Å to about 500 Å. The magnetic tunnel junction pattern MTJP may be thicker than the metal pattern 144. For example, a thickness of the magnetic tunnel junction pattern MTJP may range from about 1.5 times to about 2 times a thickness of the metal pattern 144. The thickness of the magnetic tunnel junction pattern MTJP may range from about 450 Å to about 800 Å.
A width in a first direction D1 of a structure including the top electrode TE, the magnetic tunnel junction pattern MTJP and the bottom electrode BE may become progressively greater (i.e., wider) from the top electrode TE toward the bottom electrode BE in a third direction D3. Accordingly, the width of the structure (e.g., including the width of the top electrode TE) may be tapered away from the substrate 110. A recess region RS which is recessed relative to a top surface of the contact plug CT may be provided in an upper portion of the first interlayer insulating layer 120.
Referring to
Contact plugs CT may be provided in the first interlayer insulating layer 120. Each of the contact plugs CT may penetrate the first interlayer insulating layer 120 so as to be electrically connected to one terminal of a corresponding (e.g., respective) one of the selection elements SE. Contact holes may be formed in the first interlayer insulating layer 120, and the contact plugs CT may be formed by filling the contact holes with a conductive material. The contact plugs CT may include at least one of a doped semiconductor material (e.g., doped silicon), a metal (e.g., tungsten, titanium, or tantalum), a conductive metal nitride (e.g., titanium nitride, tantalum nitride, or tungsten nitride), or a metal-semiconductor compound (e.g., a metal silicide). In some embodiments, top surfaces of the contact plugs CT may be substantially coplanar with a top surface of the first interlayer insulating layer 120.
A bottom electrode layer 132 may be formed on the contact plugs CT. The bottom electrode layer 132 may be formed to cover a plurality of the contact plugs CT. The bottom electrode layer 132 may be formed of the material of the bottom electrode BE described with reference to
A magnetic tunnel junction layer 160 and a top electrode layer 170 may be sequentially formed on the bottom electrode layer 132. The magnetic tunnel junction layer 160 may include a first magnetic layer 162, a tunnel barrier layer 164 and a second magnetic layer 166 which are sequentially stacked on the bottom electrode layer 132. One of the first and second magnetic layers 162 and 166 may be a reference layer (or a pinned layer) having a magnetization direction fixed in one direction, and the other of the first and second magnetic layers 162 and 166 may be a free layer having a magnetization direction changeable to be parallel or anti-parallel to the fixed magnetization direction of the reference layer.
In some embodiments, the magnetization directions of the reference layer and the free layer may be substantially perpendicular to an interface between the tunnel barrier layer 164 and the second magnetic layer 166. In some embodiments, the magnetization directions of the reference layer and the free layer may be substantially parallel to the interface between the tunnel barrier layer 164 and the second magnetic layer 166. The magnetization directions of the reference layer and the free layer will be described later in more detail with reference to
The top electrode layer 170 may be formed of the material of the top electrode TE described with reference to
Referring to
According to some embodiments of the inventive concepts, the bottom electrode layer 132 and/or the top electrode layer 170 may be formed of a material of which the surface binding energy with respect to the tunnel barrier pattern TBP is relatively low. As a result, it is possible to reduce or minimize a phenomenon that the electrode material is re-deposited on a sidewall of the tunnel barrier pattern TBP during the patterning process.
Referring to
Bit lines BL may be formed on the top electrodes TE. The bit lines BL may be formed of at least one of a metal, a metal nitride, or a doped semiconductor material. For example, the bit lines BL may be formed using a sputtering process.
Referring to
The second magnetic pattern MS2 may include a material having a changeable magnetization direction. The second magnetic pattern MS2 may include a ferromagnetic material. For example, the second magnetic pattern MS2 may include at least one of FeB, Fe, Co, Ni, Gd, Dy, CoFe, NiFe, MnAs, MnBi, MnSb, CrO2, MnOFe2O3, FeOFe2O3, NiOFe2O3, CuOFe2O3, MgOFe2O3, EuO, or Y3Fe5O12.
In some embodiments, the second magnetic pattern MS2 may include a plurality of layers. For example, the second magnetic pattern MS2 may include a plurality of ferromagnetic material layers and a non-magnetic material layer disposed between the ferromagnetic material layers. In this case, the ferromagnetic material layers and the non-magnetic material layer may constitute a synthetic anti-ferromagnetic layer. The synthetic anti-ferromagnetic layer may reduce a critical current density of the magnetic memory device and may improve thermal stability of the magnetic memory device.
The tunnel barrier pattern TBP may include at least one of magnesium oxide (MgO), titanium oxide (TiO), aluminum oxide (AlO), magnesium-zinc oxide (MgZnO), magnesium-boron oxide (MgBO), titanium nitride (TiN), or vanadium nitride (VN). For example, the tunnel barrier pattern TBP may be a single layer formed of magnesium oxide (MgO). Alternatively, the tunnel barrier pattern TBP may include a plurality of layers. The tunnel barrier pattern TBP may be formed using a CVD process.
Referring to
In some embodiments, each of the first and second magnetic patterns MS1 and MS2 may include a material having interface perpendicular magnetic anisotropy. The interface perpendicular magnetic anisotropy means a phenomenon that a magnetic layer having an intrinsic horizontal magnetization property has a perpendicular magnetization direction by an influence of an interface between the magnetic layer and another layer adjacent to the magnetic layer. Here, the intrinsic horizontal magnetization property may mean that a magnetic layer has a magnetization direction parallel to the widest surface of the magnetic layer when an external factor does not exist. For example, when the magnetic layer having the intrinsic horizontal magnetization property is formed on a substrate and an external factor does not exist, the magnetization direction of the magnetic layer may be substantially parallel to a top surface of the substrate.
For example, each of the first and second magnetic patterns MS1 and MS2 may include at least one of cobalt (Co), iron (Fe), or nickel (Ni). In some embodiments, each of the first and second magnetic patterns MS1 and MS2 may further include at least one selected from non-magnetic materials including boron (B), zinc (Zn), aluminum (Al), titanium (Ti), ruthenium (Ru), tantalum (Ta), silicon (Si), silver (Ag), gold (Au), copper (Cu), carbon (C), and nitrogen (N). For example, each of the first and second magnetic patterns MS1 and MS2 may include CoFe or NiFe and may further include boron (B). In addition, to reduce saturation magnetizations of the first and second magnetic patterns MS1 and MS2, the first and second magnetic patterns MS1 and MS2 may further include at least one of titanium (Ti), aluminum (Al), silicon (Si), magnesium (Mg), or tantalum (Ta). Each of the first and second magnetic patterns MS1 and MS2 may be formed using a sputtering process or a CVD process.
According to some embodiments of the inventive concepts, the bottom electrode and/or the top electrode may be formed of a material of which the surface binding energy with respect to the tunnel barrier pattern is relatively low. As a result, it is possible to inhibit or prevent the electrode material from being re-deposited on the sidewall of the tunnel barrier pattern during the patterning process.
According to some embodiments of the inventive concepts, the bottom electrode may be formed of a material having a low surface binding energy with respect to the tunnel barrier pattern, and the top electrode may be formed of a material having a relatively high etch resistance. As a result, the re-deposition phenomenon may be inhibited, minimized, or prevented without increasing the thickness of the magnetic tunnel junction pattern.
The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments, which fall within the true spirit and scope. Thus, to the maximum extent allowed by law, the scope is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.
Number | Date | Country | Kind |
---|---|---|---|
10-2017-0148212 | Nov 2017 | KR | national |