The invention relates generally to a carriage system for a probe for the diagnosis and monitoring of the operation of an electrical apparatus.
In the field of generating electricity on a commercial scale it is important that elements of the power generating system remain fully functional over their expected working life so that unexpected downtimes and/or catastrophic failures can be avoided. To avoid such problems it is important that elements such as the large stators, which form part of the above-mentioned generating systems are carefully inspected and tested before being sold, after installation at customer site, and during regular periodic maintenance.
The stator core 30 of electric machines (such as schematically depicted in
Shorting of the laminations 32 can be caused by manufacturing defects, damage during assembly/inspection/rewind, stator-rotor contact, vibration of loose coil wedges/laminations, foreign magnetic material, etc. If the laminations 32 are shorted for any reason, a larger circulating current is induced in the fault loop that consists of fault-laminations-key bar (see
Various tests have been developed in order to detect imperfections in the stator core 30. The “ring test” relies upon the detection of the eddy current heating caused by the short circuit currents. The stator core 30 is wound with a number of turns (typically less than 10) of electrical cable to form toroidal shaped excitation windings 31 in the manner schematically depicted in
However, short circuits that are located below the surface of the stator teeth 37 and slots are difficult to find, since thermal diffusion causes the surface temperature rise to be diffuse/spread out. Because of the high power levels used in the ring test, personnel cannot enter the bore of the stator core 30 during testing. Further, cables used in the test must be appropriately sized for the required MVA level, which leads to long setup and removal times.
The high flux used in the ring test is a concern because: the high currents (e.g., hundreds of amperes and several thousand volts) needed require a test supply capable of several MVA. Also, the high current and voltage levels require care in the selection and installation of the excitation winding on the generator core because they can obscure parts of the core. Furthermore, because the heating test is run on a core that is deprived of its normal cooling system, excessive heating can lead to core damage. The high current and voltage levels impact operator safety, and as mentioned above, personnel are not allowed to enter the core interior when a ring test is running.
To overcome the shortcomings of the ring test, the “EL CID” (Electromagnetic Core Imperfection Detection) test was developed. This test relies upon detection of the magnetic field caused by the short circuit currents that flow due to inter-lamination short circuits. As in the ring test, the generator core is wound with a number of turns in the manner of a toroid. The current level in the windings is chosen such that the core operates at approximately 4% of the normal operating flux. This corresponds to about a 5 volt/meter electric field induced along the core surface. The current requirement is in the 10–30 ampere range, so that a smaller power supply of several kVA can be used. A magnetic potentiometer, referred to as a Chattock coil 38 after its inventor, is used to sense the magnetic fields produced between two adjacent teeth by the short circuit currents that are induced in the inter-lamination insulation faults.
The Chattock coil 38 (also known as the Maxwell worm or magnetic potentiometer) is used to sense the phase quadrature component of the magnetic field produced by any induced inter-laminar currents. Chattock coil voltages equivalent to those produced by a 100 mA or larger test current are used as the indicator for a severe inter-laminar short for the 4% flux excitation level.
The Chattock coil 38 typically spans the width of two adjacent teeth 37 in the manner shown in
A fully digital EL CID system has been developed. This system exhibits improved noise suppression over the previous analog arrangements. Nevertheless, there are a number of anomalies and distortions, which can arise when performing the EL CID test, and these must be interpreted using knowledge and experience of core construction.
The EL CID test involves exciting the core in a manner similar to that of the ring test, but uses much lower voltage and current levels. A flux of 4–5% is normal. The EL CID test procedure exhibits the following characteristics. The current required for this flux can be obtained from a variable transformer that is supplied from a standard electrical outlet. The induced voltage from this low flux is kept to about 5 volts/meter, so personnel can enter the core during the EL CID test to make observations. The induced currents at this flux are low enough not to cause excessive heating, so additional core damage due to testing is not a concern.
The EL CID test is better able to find inter-laminar faults, which are located below the surface. This is a significant advantage over the ring test that relies upon thermal diffusion from the interior hot spot in order to provide detection. However, the EL CID test can exhibit high noise levels, especially when scanning in the end step region 35 (see
Thus, it is desirable to develop a probe that is not subject to breakage due to handling and which will also not require flipping in the end step region 35.
Exemplary embodiments of the invention include a probe support carriage for use during probing an electrical device. The probe support carriage includes a body, means for supporting and positioning the body, a plurality of flux sensors and a position sensor. The body has a first end and a second end. The plurality of flux sensors are operatively connected to the body. Each flux sensor includes a probe having a core and a coil. The core includes a material having high initial permeability and high resistivity characteristics. The probe is adapted to being supported so that a sensing portion of the core is maintained in a contact-free spaced relationship between a predetermined surface of the electrical device and the sensing portion of the core. The position sensor is adapted to determine position along a longitudinal axis of the electrical device.
Further exemplary embodiments of the invention include a method of detecting an electrical fault in an electrical device. The method includes supporting a plurality of probes on a trolley, maintaining a sensing portion of the solid core in a contact-free, spaced relationship between opposed surfaces of members of the electrical device through which a leakage flux passes, inducing energization of the electrical device to a predetermined level, detecting the leakage flux using each probe at a first position, moving the trolley to a second position with respect to the opposed surfaces and detecting the leakage flux, monitoring a fluctuation in output of each probe and detecting the fault in response to an abnormal leakage flux, and determining an axial position of said trolley within the electrical device. Each probe has a solid core and a coil disposed with the solid core. The predetermined level is lower than a normal operating level.
The above, and other objects, features and advantages of the present invention will become apparent from the following description read in conjunction with the accompanying drawings, in which like reference numerals designate the same elements.
In brief, a disclosed embodiment of the invention comprises a probe that includes a core and a sense coil surrounding the core. The core is disposed in a contact-free, spaced relationship between opposed surfaces 42 of the device being probed. The opposed surfaces 42 are, for example, the sidewalls of adjacent lamination teeth 37 of a stator core 30. Small air gaps are carefully maintained between the ends of the core and the opposed surfaces 42. The effects of probe position are minimized since the net gap is constant. The probe is supported on a carriage arrangement and moved along between the teeth 37. Variations in a leakage flux 29 produced with the stator energized are monitored. The stator is energized with an energization winding to a few percent of a normal energization level. Detection of an abnormal leakage flux indicates the presence of a fault.
This probe arrangement provides enhanced versatility and reliability with which faults can be detected, reduces scan time, and is easy to handle. The basic principle of low level stator core excitation is similar to that of the above-mentioned EL CID, but an iron core probe is used for sensing the signals between the opposed surfaces 42 of the device being probed.
The use of a probe 100 having a core formed of a magnetic material results in a significant increase in the signal level since the probe 100 provides a low magnetic reluctance path for the magnetic flux. The measured probe voltage is 2–3 orders of magnitude higher than that of an air core probe, such as a Chattock coil 38, due to the high flux concentration in the probe, resulting in improved signal to noise ratio of the voltage measurement. The probe is disposed between the opposed surfaces 42 with a total air gap of up to about 0.5 cm on either side of the probe 100. Maintaining these air gaps is important to minimize noise being introduced into the output of the probe 100.
Excitation System
The stator core 30 is, as shown in
A software program run in a personal computer (PC), which forms part of the circuit arrangement 106, calculates and displays the number of excitation winding turns (2–7) and the excitation voltage that produces a desirable magnetic flux in the core. In order to conduct an example examination, the excitation flux 28 can, for example, be controlled to about 0.075 T (3–4% of rated flux) and the excitation frequency can be controlled to be about 50/60 Hz. However, this embodiment of the invention is not limited to these parameters and various others can be used without departing from the scope of the invention.
In accordance with this embodiment of the invention, the calculation of the excitation voltage and number of excitation winding turns is based on the dimensions of the generator stator core 30. The parameters for calculation of the voltage and number of turns, examples of which are listed below, are those required for calculating the effective area for the circulating flux.
All of the parameters can be obtained from the generator design sheets or easily measured. The effective core length can be assumed to be approximately 10–90% of the core length unless otherwise specified since the inside space block and insulation must be taken into account.
It has been observed in field testing that scanning in a slot near the excitation winding 31 or when internal lighting is used, the noise distorts the signals obtained from the probe due to interference. Therefore, it is recommended that all of the lighting (or the like type of electrical equipment) should be removed, and that the excitation winding 31 should be moved to the opposite side of the stator core 30 from the side being scanned at least once during scanning, as shown in
Probe Carriage System
In order to facilitate scanning, the probe 100 is supported on a carriage system. An example of a carriage system is shown in
Selecting a proper width of the probe 100 is a trade off between signal level and ease of scanning. Increasing the probe 100 width (viz., decreasing the air gaps 108 and 109) increases the signal level, but also increases the chance of contact between the probe core 102 and teeth 37 between which it is disposed. Contact, of course, causes the signal to be noisy. The probe width, which has been experimentally shown to ensure good signal measurement and ease of scanning (no contact), is approximately the slot width minus about 0.38 cm to about 0.5 cm. For example, if the slot thickness is 3.266 cm, an appropriately sized probe 100 would be anywhere between about 2.8 cm to about 2.9 cm wide.
The width and angle of trolley wheels 213 can, as shown in
Once the probe 100 is attached to the probe extension 216, the probe 100 is located between the opposed surfaces 42 of the device as shown in
Data Acquisition System
The two measurements which are taken in accordance with this embodiment of the invention are probe voltage and excitation current. These parameters can be measured using commercially available hardware, such as a Wavebook® 516 portable data acquisition (DAQ) system marketed by IOTECH®.
The software program controls the settings of the data acquisition system and also processes, displays, and stores the data acquired from the scanning of each slot. The software provides a parameter input screen and a main program screen. The parameter input screen allows an operator to enter information including test parameters and generator dimensions. The number of excitation winding 31 turns and excitation voltage are calculated and displayed based on the information entered into the software. The main program screen displays the measured and processed signals.
Interpretation of Results
A phasor diagram is used to indicate the status of the inter-laminar core fault system. Examples of such a phasor diagrams are shown in
The software displays the magnitude of the measured probe voltage in RMS, Vs, and the phase angle between the probe voltage and the derivative of the excitation current, θ. Both signals are calculated based on the measured probe voltage and current, and both signals are taken into account to determine the existence, severity, and location of the fault. For healthy laminations, the ideal measured signals and flux distribution are shown in
When a fault is present inside the slot, the flux distribution changes since the voltage induced in the fault, Vf, causes a fault current flow, If, which induces an additional fault flux component, φf, which changes the flux going through the probe 100. The phasor diagram under a sub-wedge fault condition is shown in
The measured probe voltage Vs can be assumed as a phasor sum of the voltage component induced due to the excitation flux 28 and the fault flux, as shown in
The phasor diagram under a surface fault condition (e.g., fault on a tooth tip) is shown in
As will be appreciated from the above examples, the existence of a fault can be determined by any deviation from a healthy signature. The location of the fault can be determined based on the magnitude and phase angle signatures. It has been observed that both the magnitude and phase angle change increase with the severity of faults.
As an alternative to the disclosed probe trolley arrangement it is possible to arrange a trolley or a small robotic vehicle to run along the top of the slot wedge 41 in the manner schematically depicted in
This trolley arrangement can be rendered to be totally robotic and provided with its own independent power source (e.g., batteries) and with a transmitter to relay sensed flux data to a remote station. By transmitting in a suitable frequency range, the data can be transmitted to the remote station without being affected by noise or the like.
Probe extension pieces 254 and 258 each include a probe bracket 274 and an adjusting screw 218 for adjusting probe 100 in a vertical direction 278. Iron core 102 is positioned into a slot in bracket 274 and is secured to bracket 274 using an epoxy, for example. Positioning the iron core 102 in this way allows the probe 100 to be securely attached to the probe extension pieces 254 and 258, which helps to avoid tilting that causes inconsistent measurement data. The slot is a fixed size and the sense core 102 can vary in length from about 1 cm to about 7.6 cm. A length of the sense core 102 is chosen depending on characteristics of a device being probed. While the trolley 200 only requires one probe 100 for operation, this trolley 200 includes two probes 100 so that the trolley 200 does not have to be flipped or maneuvered to cover the end step region 35 (see
Trolley 200 includes trolley wheels 213 that can be adjusted by rotating the corresponding adjustment screw 210 so that trolley guidance plates 214 fit flush and snug against the inboard sides of the teeth 37 between which the probe 100 is suspended to prevent tilting of the trolley 200. Trolley wheels 213 are disposed in pairs on a width-adjusting member 284. Width-adjusting member 284 is disposed substantially perpendicular to a longitudinal axis of the trolley 200 and extends from opposite sides of the body 250 in a direction substantially parallel to a top surface of the teeth 37 on which the trolley 200 is supported. Trolley wheels 213 are disposed at the width-adjusting member 284 such that a wheel of each pair of wheels is located on opposite sides of the body 250. Adjustment screw 210 is rotated to allow trolley wheels 213 to be positioned apart from one another at a predetermined width corresponding to a distance between selected teeth 37. When adjustment screw 210 is tightened, trolley wheels 213 are secured in place by notches 286 disposed on an upper surface of the width-adjusting member 284. Although trolley wheels 213 are used to move the trolley 200 in an exemplary embodiment, one skilled in the art will recognize that other means of transporting and supporting the trolley 200 may be employed, such as, for example, bearings, rollers, tracks, etc.
Trolley 200 also includes an inductive sensor 288. An exemplary embodiment of an inductive sensor 288 is an eddy current type sensor though use of other suitable sensors is envisioned. Inductive sensor 288 is capable of distinguishing between air and metal, thus inductive sensor 288 senses a ventilation space 290 (see
Once each probe 100 is attached to the corresponding probe extension pieces 254 and 258, the probe 100 is located between the opposed surfaces 42 of the device as shown in
The probe 100 is not limited to structures that are totally enclosed by the sidewalls of the teeth 37. The coil 104 and other parts of the probe 100 can be configured as desired and located above the level of the teeth 37 while suitable extensions of the sense core 102 project down into the space defined between the sidewalls of the teeth 37 and thus establish the air gaps 108 and 109.
The sense core 102 of the probe, which is solid, is different from an air core such as used in the EL CID sensor arrangement. The sense core 102 is preferably made of a material which is easy to work with, such that it is neither too hard, nor too soft, nor difficult to shape, and which exhibits high initial permeability under low flux along with high resistivity characteristics. The sense core 102 can be made of a composite material, a suitable single material such as a metal, or formed of laminations that are secured together. For example, a suitable steel can be used and plates of this type of material (or a mixture of plates of different materials) can be bonded together in order to achieve both the desired shape and durability as well as the above mentioned high initial permeability under low flux and high resistivity characteristics. The sense core 102 can be configured into any suitable configuration and is not limited to the illustrated shape that has been depicted as being essentially cylindrical for illustrative simplicity.
The probe 100 is not limited to the use of a single core or a single coil and multiple cores and coils can be used. All cores need not pass through a coil and the arrangement which enables the required sensitivity of the flux in the air gaps 108 and 109 is within the purview of the invention. The coils per se of the probe need not be disposed between the teeth 37 and the core can be configured to extend sensing portions thereof into the space between adjacent teeth 37 and establish the necessary sensing portion-air gap relationship.
It should be noted that the air gaps 108 and 109 need not be equal and that a limited amount of movement of the probe 100 with respect to the sides of the teeth 37 is therefore possible. Given that the total of the air gaps 108 and 109 remains constant and no direct contact between the ends of the core and the teeth 37 occurs, accurate flux detection results are possible.
In addition, while the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another.
This application is a continuation-in-part of U.S. application Ser. No. 10/270,326, filed Oct. 15, 2002, now U.S. Pat. No. 6,847,224, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3475682 | Bateman et al. | Oct 1969 | A |
3525041 | Velsink | Aug 1970 | A |
4803563 | Dailey et al. | Feb 1989 | A |
4970890 | Jaafar et al. | Nov 1990 | A |
4996486 | Posedel | Feb 1991 | A |
5252927 | Bruhlmeier et al. | Oct 1993 | A |
5295388 | Fischer et al. | Mar 1994 | A |
5341095 | Shelton et al. | Aug 1994 | A |
5446379 | Machi | Aug 1995 | A |
5446382 | Flora | Aug 1995 | A |
5473247 | You et al. | Dec 1995 | A |
5491409 | Flora et al. | Feb 1996 | A |
5557216 | Dailey et al. | Sep 1996 | A |
5701073 | Baker | Dec 1997 | A |
5990688 | Bourgeois et al. | Nov 1999 | A |
5992241 | Posgay et al. | Nov 1999 | A |
6469504 | Kliman et al. | Oct 2002 | B1 |
6489781 | Kliman et al. | Dec 2002 | B1 |
6756788 | Kliman et al. | Jun 2004 | B2 |
6847224 | Lee et al. | Jan 2005 | B2 |
6873152 | Kliman et al. | Mar 2005 | B2 |
20030117144 | Sutton | Jun 2003 | A1 |
20040070404 | Lee et al. | Apr 2004 | A1 |
Number | Date | Country |
---|---|---|
1 318 411 | Nov 2003 | EP |
2395281 | May 2004 | GB |
2082274 | Jun 1997 | RU |
Number | Date | Country | |
---|---|---|---|
20050093536 A1 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10270326 | Oct 2002 | US |
Child | 10905709 | US |