1. Field of the Invention
The present invention relates to a manufacturing method of a semiconductor device including a circuit including a transistor and a test method of the semiconductor device. The present invention relates to an electronic device equipped with a display device using an active element which is, for example, an active element including an oxide semiconductor, as a semiconductor element.
In this specification, a semiconductor device generally means any device which can function by utilizing semiconductor characteristics; an electrooptic device, a semiconductor circuit, and an electronic device are all included in the category of the semiconductor device.
2. Description of the Related Art
Although transistors using amorphous silicon have been used for conventional display devices typified by liquid crystal televisions, an oxide semiconductor has attracted attention as a material which replaces a silicon semiconductor. For example, an active matrix display device in which an amorphous oxide including In, Ga, and Zn is used for an active layer of a transistor and the electron carrier concentration of the amorphous oxide is lower than 1018/cm3 is disclosed (see Patent Document 1).
However, there have been some problems in such a transistor using an oxide semiconductor. One of the problems is the stability of the characteristics; it has been pointed out that the electric characteristics of the transistor are changed by irradiation with visible light or ultraviolet light.
End-product reliability of an electronic device using a plurality of transistors has not been assured in some cases where at least one of the transistors does not meet the certain standard on the shift amount of the threshold voltage by voltage stress.
One of test methods for examining reliability of a transistor is a bias-temperature stress test (hereinafter, referred to as a BT test). The BT test is a kind of accelerated test, and can evaluate a change in characteristics caused by long-term usage of a transistor. The amount of shift of the threshold voltage of a transistor through the BT test is particularly an important benchmark for the reliability. The smaller the amount of shift of the threshold voltage of a transistor through the BT test is, the higher the reliability of a product including the transistor is.
Specifically, the temperature of a substrate provided with the transistor (substrate temperature) is kept at a fixed temperature, a source and a drain of the transistor are set at the same potential as each other, and a gate of the transistor is applied with a potential different from those of the source and the drain for a certain period, for example, for 1 hour. The BT test in which the potential applied to the gate is higher than the potential of the source or the drain is referred to as a +BT test and the BT test in which the potential applied to the gate is lower than the potential of the source or the drain is referred to as a −BT test.
The BT test is performed on a transistor which has been never subjected to a BT test. For example, if a −BT test is performed on a transistor which has been once subjected to a +BT test, the results of the −BT test cannot be evaluated correctly due to influence of the previous +BT test. The same applies to the case where a +BT test is performed on a transistor which has been once subjected to a +BT test. Therefore, the BT test involves many samples and takes time.
Further, since the BT test is an accelerated test, a transistor suffers stress damage by the BT test and the transistor after being subjected to the BT test cannot be used in an end product. Therefore, it has been demanded that a Good/Not-Good test is conducted on a transistor and then, an end product is manufactured using the tested transistor; that is, a test method for evaluating and judging the reliability of a transistor, in a manufacturing process of a semiconductor device has been demanded.
One object of one embodiment of the present invention is to provide a test method by which a transistor whose reliability is low can be detected with low stress and high accuracy in a shorter period of time than a BT test.
One object of one embodiment of the present invention is to detect a transistor whose reliability is high in a shorter period of time than a BT test and manufacture an electronic device with high reliability efficiently.
One embodiment of the present invention is a test method for evaluating the reliability of a transistor. The method is also a test method of a semiconductor device, in which hysteresis characteristics of Id-Vg characteristics of a transistor, which are obtained by measuring the current (Id) between a drain electrode and a source electrode of the transistor while irradiating the transistor with light and changing the voltage (Vg) between a gate electrode of the transistor and the source electrode are analyzed.
Such hysteresis characteristics revealed in the result of the Vg-Id measurement with light irradiation to the transistor correlate with the result of a BT test; whether the reliability of the transistor is Good or Not-Good can be judged.
It is ideal that in the Vg-Id measurement with light irradiation to the transistor, a Vg-Id curve at a sweep of the gate voltage by a certain voltage from negative voltage to positive voltage be substantially coincide with a Vg-Id curve at a sweep of the gate voltage by the certain voltage from positive voltage to negative voltage.
The test for evaluating the reliability with the measurement of the electrical characteristics of a transistor with light irradiation can be applied as one step of a manufacturing process of a semiconductor device. According to a manufacturing method of a semiconductor device in that case, transistors are manufactured, Good/Not-Good judgment is conducted using Id-Vg curves of each of the transistors obtained by measuring the drain-source current (Id) of the transistor while irradiating the transistor with light and changing the gate-source voltage (Vg) of the transistor, and then, the semiconductor device is manufactured using the transistor(s) which is/are judged to be Good.
In particular, it has been confirmed that in the case where an oxide semiconductor material is used for a semiconductor layer of a transistor, a −BT test, i.e., application of a negative gate stress, with light irradiation accelerates the degradation of the transistor to make the transistor be in the normally-ON state. This degradation is also called negative-bias temperature stress photodegradation.
A transistor exhibiting large negative-bias temperature stress photodegradation shows a large difference between a Vg-Id curve at a sweep of the gate voltage from negative voltage to positive voltage by a certain voltage (e.g., 0.25 V) and a Vg-Id curve at a sweep of the gate voltage from positive voltage to negative voltage by the certain voltage.
On the other hand, a transistor exhibiting small negative-bias temperature stress photodegradation tends to show a small difference between a Vg-Id curve at a sweep of the gate voltage from negative voltage to positive voltage by a certain voltage and a Vg-Id curve at a sweep of the gate voltage from positive voltage to negative voltage by the certain voltage.
In this specification, an oxide semiconductor material means a four-component metal oxide such as an In—Sn—Ga—Zn—O-based oxide semiconductor; a three-component metal oxide such as an In—Ga—Zn—O-based oxide semiconductor, an In—Sn—Zn—O-based oxide semiconductor, an In—Al—Zn—O-based oxide semiconductor, a Sn—Ga—Zn—O-based oxide semiconductor, an Al—Ga—Zn—O-based oxide semiconductor, or a Sn—Al—Zn—O-based oxide semiconductor; a two-component metal oxide such as an In—Zn—O-based oxide semiconductor, a Sn—Zn—O-based oxide semiconductor, an Al—Zn—O-based oxide semiconductor, a Zn—Mg—O-based oxide semiconductor, a Sn—Mg—O-based oxide semiconductor, an In—Mg—O-based oxide semiconductor, or an In—Ga—O-based oxide semiconductor; an In—O-based oxide semiconductor, a Sn—O-based oxide semiconductor, or a Zn—O-based oxide semiconductor; or the like. Further, SiO2 may be contained in the above oxide semiconductor. Here, for example, an In—Ga—Zn—O-based oxide semiconductor means an oxide containing indium (In), gallium (Ga), and zinc (Zn), and there is no particular limitation on the composition ratio thereof. The In—Ga—Zn—O-based oxide semiconductor may contain an element other than In, Ga, and Zn.
In the case where an In—Zn—O-based material is used as an oxide semiconductor, a target therefore has a composition ratio of In:Zn=50:1 to 1:2 in atomic ratio (In2O3:ZnO=25:1 to 1:4 in molar ratio), preferably In:Zn=20:1 to 1:1 in atomic ratio (In2O3:ZnO=10:1 to 1:2 in molar ratio), further preferably In:Zn=15:1 to 1.5:1 in atomic ratio (In2O3:ZnO=15:2 to 3:4 in molar ratio). For example, in a target used for formation of an In—Zn—O-based oxide semiconductor which has an atomic ratio of In:Zn:O=X:Y:Z, the relation of Z>1.5X+Y is satisfied.
According to one embodiment of the present invention, a test method by which a transistor whose reliability is low can be detected with low stress and high accuracy in a shorter period of time than a BT test can be provided.
According to one embodiment of the present invention, a transistor whose reliability is high can be detected in a shorter period of time than a BT test and an electronic device with high reliability can be manufactured efficiently.
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the description below, and it is easily understood by those skilled in the art that modes and details disclosed herein can be modified in various ways without departing from the spirit and the scope of the present invention. Therefore, the present invention is not construed as being limited to description of the embodiments.
Described in Embodiment 1 is a relation between degradation with light irradiation to a transistor using an In—Ga—Zn—O-based oxide semiconductor which is a ternary metal oxide and hysteresis characteristics of the transistor.
First, results of a −BT test on a transistor (L/W=3 μm/50 μm) using an In—Ga—Zn—O-based oxide semiconductor are shown in
Further, results of the −BT test with light irradiation using an LED light source (white light with 36000 lux) are shown in
The photoresponse characteristics of the transistor using an In—Ga—Zn—O-based oxide semiconductor are shown in
The transistor using the In—Ga—Zn—O-based oxide semiconductor exhibited hysteresis characteristics in Vg-Id characteristics measured at room temperature with irradiation with light (λ=350 nm). The results are shown in
A cross-sectional structure of a transistor which is one embodiment of the transistor using the In—Ga—Zn—O-based oxide semiconductor, which was measured with irradiation with light (λ=350 nm) from a light source 430 is shown in
The transistor 410 includes, over a substrate 400 having an insulating surface, an insulating layer 420 including an insulating material, a gate electrode 401, a gate insulating layer 402 including an insulating material, an oxide semiconductor layer 403, a source electrode 405a, and a drain electrode 405b. Further, a buffer layer 407 including an insulating material, which covers the transistor 410 and is in contact with the oxide semiconductor layer 403 is provided.
In the Vg-Id measurement whose results are shown in
The results of the Vg-Id measurement with no light irradiation are also shown in
In each of
In the Vg-Id characteristics with light irradiation in each of
The following mechanism was assumed as a cause of the hysteresis characteristics.
A combination of light irradiation and application of a negative gate voltage induces a hole in the In—Ga—Zn—O-based oxide semiconductor (particularly in a vicinity of the interface with the gate insulating film). If a trap for capturing a hole exists in the bandgap, the hole is captured and remains in the vicinity of the interface with the gate insulating film as a positive charge, which causes a shift of the Vg-Id curve in the negative direction.
The sweep from −20 V to +20 V shifts the curve in the negative direction with a captured hole remaining in the vicinity of the interface due to the negative gate voltage. On the other hand, the sweep from +20 V to −20 V does not shift the curve in the negative direction because a hole is excluded by the positive gate voltage. The difference in the hysteresis characteristics depending on the sweep speed between FIGS. 1A and 1B is affected by the reaction speed of a hole and a trap. In an oxide semiconductor, the reaction speed between a hole and a trap is very slow; a hole generated by light irradiation takes a long time to be captured, and once captured, the hole also takes a long time to be released.
To confirm the above-described assumed mechanism, verification using device simulation was conducted. For the simulation, a device simulator “Atlas” produced by Silvaco, Inc. was used.
Main parameters adopted in the simulation are listed in Table 2.
Further, formulae of a recombination model adopted in the simulation are shown in Formula 1 and Formula 2.
For the simulation, a transistor whose structure is the same as that of the above-described measured transistor was hypothesized and traps as shown in
Further, as a cause of the difference in the hysteresis characteristics depending on the sweep speed in the measurement results, the following mechanism can be given: the reaction speed between a hole and a trap is very slow, and a hole generated by light irradiation takes a long time to be captured, and once captured, the hole also takes a long time to be released. In the simulation of this embodiment, τn and τp in the Formula 2 were set to high values. In this manner, the tendency of the measurement results reappeared.
Finally, a donor level is considered below. An oxygen defect is given as an example of a defect level of a layer of an oxide semiconductor typified by an In—Ga—Zn—O-based oxide semiconductor. It is considered that electrons are localized in the case where vacancy owing to an oxygen defect is left. The state density of an oxygen-deficient state with oxygen vacancy left in an In—Ga—Zn—O-based oxide semiconductor is shown in
Good/Not-Good judgment using hysteresis characteristics with the Id-Vg measurement is efficient in a shorter period of measurement than a BT test.
In Embodiment 2, an example of the case where a test using hysteresis characteristics is performed in a manufacturing process of a semiconductor device will be described.
An example of the manufacturing method of the transistor 410 is described using
First, the insulating layer 420 serving as a base insulating layer is formed over the substrate 400. As the insulating layer 420, an insulating film including an inorganic insulating material is formed by a sputtering method, a PCVD method, or the like. Typically, an inorganic insulating film such as a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, or a gallium oxide film can be used as the insulating layer 420.
Although there is no particular limitation on a material and the like of the substrate 400, it is necessary that the substrate have heat resistance high enough to withstand at least a heat treatment performed later. For example, a glass substrate, a ceramic substrate, a quartz substrate, a sapphire substrate, or the like can be used as the substrate 400. Alternatively, a single crystal semiconductor substrate or a polycrystalline semiconductor substrate of silicon, carbon silicon, or the like; a compound semiconductor substrate of silicon germanium or the like; an SOI substrate; or the like can be used. Any of these substrates over which a semiconductor element is provided may be used as the substrate 400.
A flexible substrate may be used as the substrate 400. In the case where a transistor is provided over the flexible substrate, the transistor may be formed directly on the flexible substrate, or the transistor may be formed over a different substrate and then separated to be transferred to the flexible substrate. In order to separate the transistor to transfer to the flexible substrate, a separation layer is preferably formed between the different substrate and the transistor.
Next, the gate electrode 401 is formed over the insulating layer 420. The gate electrode 401 can be formed to have a single-layer structure or a multi-layer structure using a metal material such as Mo, Ti, Cr, Ta, W, Al, Cu, Nd or Sc, and/or an alloy material containing the above metal material as its main component.
Then, the gate insulating layer 402 covering the gate electrode 401 is formed. The thickness of the gate insulating layer 402 is greater than or equal to 100 nm and less than or equal to 500 nm; for example, a first gate insulating layer having a thickness greater than or equal to 50 nm and less than or equal to 200 nm and a second gate insulating layer having a thickness greater than or equal to 5 nm and less than or equal to 300 nm are stacked in this order.
As the gate insulating layer 402, an insulating film including an inorganic insulating material is formed by a sputtering method, a PCVD method, or the like. Typically, an inorganic insulating film such as a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, or a gallium oxide film can be used as the gate insulating layer 402. In this embodiment, a 30-nm-thick silicon oxynitride film is formed.
Then, an oxide semiconductor film is formed to a thickness greater than or equal to 5 nm and less than or equal to 200 nm over the gate insulating layer 402. In this embodiment, the oxide semiconductor film is formed using a target for deposition of an oxide semiconductor, which contains In, Ga, and Zn (In2O3:Ga2O3:ZnO is 1:1:2 in molar ratio) under conditions where the distance between the substrate and the target is 100 mm, the pressure is 0.6 Pa, the direct current (DC) power is 5 kW, the atmosphere is an oxygen atmosphere (the proportion of the oxygen flow is 50%), and the substrate temperature is 200° C.
Next, the oxide semiconductor film is processed into the island-shaped oxide semiconductor layer 403 by a photolithography process.
Next, the oxide semiconductor layer 403 is dehydrated or dehydrogenated. First heat treatment for dehydration or dehydrogenation is performed at a temperature higher than or equal to 400° C. and lower than a strain point of the substrate, preferably higher than or equal to 425° C. In this embodiment, heat treatment is performed at 650° C. for 6 minutes, and then, heat treatment is performed at 450° C. for 1 hour in an atmosphere in which nitrogen and oxygen are mixed.
The heat treatment for dehydration or dehydrogenation of the oxide semiconductor layer may be performed on the oxide semiconductor film which has not been processed into the island-shaped oxide semiconductor layer. In that case, the substrate is taken out of the heat treatment apparatus after the heat treatment; then, a photolithography process is performed thereon.
Next, a conductive film is formed over the gate insulating layer 402 and the oxide insulating layer 403. Then, a resist mask is formed by a photolithography process, and selective etching is performed thereon to form the source electrode 405a and the drain electrode 405b. The source electrode 405a and the drain electrode 405b each can be formed to have a single-layer structure or a multi-layer structure using a metal material such as Mo, Ti, Cr, Ta, W, Al, Cu, Nd or Sc, and/or an alloy material containing the above metal material as its main component.
In this embodiment, two transistors are manufactured: Sample A in which a 200-nm-thick titanium (Ti) film is used as each of the source electrode 405a and the drain electrode 405b; Sample B in which a 200-nm-thick tungsten (W) film is used as each of the source electrode 405a and the drain electrode 405b.
Next, the resist mask is removed, and then, heat treatment is performed thereon at 300° C. for 1 hour in a nitrogen atmosphere.
Next, the buffer layer 407 covering the transistor 410 is formed. The buffer layer 407 is formed to have a single-layer structure or a multi-layer structure of an insulating film using an inorganic insulting material, an insulating film using an organic insulting material, or the like by a sputtering method, a PCVD method, or the like. As the buffer layer 407, an inorganic insulating film such as a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, or a gallium oxide film, and/or an organic insulating film of an acrylic resin, a polyimid resin, or the like can be used. In this embodiment, a multi layer of a 300-nm-thick silicon oxide film formed by a sputtering method and a 1.5-μm-thick acrylic resin film is used as the buffer layer 407.
Next, though not shown in
Next, with light irradiation at 36000 1× with a white LED (manufactured by Moritex Corporation, a direct-below-type backlight MDBL-CW100), Vg-Id measurement is performed using as terminals the connection electrodes connected to the source electrode 405a and the drain electrode 405b. The light irradiation to the transistor 410 is performed as illustrated in
The Vg-Id measurement was performed while irradiating the two transistors which are different in the materials of the source electrode 405a and the drain electrode 405b, with light, and the Vg-Id curve at a sweep from −6 V to +6 V by 0.25 V was compared to the Vg-Id curve at a sweep from +6 V to −6 V by 0.25 V.
As for the measurement of Sample A in which the Ti film is used as the material of the source electrode 405a and the drain electrode 405b, results of the measurement in which the integration time for one step (0.25 V) was set short to change the gate voltage fast (Fast Sweep) are shown in
As for the measurement of Sample B in which the W film is used as the material of the source electrode 405a and the drain electrode 405b, results of the measurement in which the integration time for one step (0.25 V) was set short to change the gate voltage fast (Fast Sweep) are shown in
The size of the transistor 410 is L/W=3 μm/50 μm.
Comparing Sample A to Sample B, the Vg-Id curve of Sample A using the Ti film was further shifted in a negative direction.
Further, results of a −BT test on Samples A and B are shown in
In this manner, the Vg-Id characteristics of a transistor are measured while irradiating the transistor with light and a Good/Not-Good test is performed on the transistor, and then, the tested transistor can be included in an end-product such as a liquid crystal display device or a semiconductor chip. Without performing a BT test, a Good/Not-Good test can be performed on a transistor in a short period of time, and the transistor can be included in an end-product; accordingly, an electronic device with high reliability can be manufactured efficiently.
This application is based on Japanese Patent Application serial No. 2010-145410 filed with Japan Patent Office on Jun. 25, 2010, the entire content of which is hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2010-145410 | Jun 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5731856 | Kim et al. | Mar 1998 | A |
5744864 | Cillessen et al. | Apr 1998 | A |
6218219 | Yamazaki et al. | Apr 2001 | B1 |
6294274 | Kawazoe et al. | Sep 2001 | B1 |
6441414 | Lim et al. | Aug 2002 | B1 |
6563174 | Kawasaki et al. | May 2003 | B2 |
6727522 | Kawasaki et al. | Apr 2004 | B1 |
7049190 | Takeda et al. | May 2006 | B2 |
7061014 | Hosono et al. | Jun 2006 | B2 |
7064346 | Kawasaki et al. | Jun 2006 | B2 |
7105868 | Nause et al. | Sep 2006 | B2 |
7211825 | Shih et al | May 2007 | B2 |
7282782 | Hoffman et al. | Oct 2007 | B2 |
7297977 | Hoffman et al. | Nov 2007 | B2 |
7323356 | Hosono et al. | Jan 2008 | B2 |
7385224 | Ishii et al. | Jun 2008 | B2 |
7402506 | Levy et al. | Jul 2008 | B2 |
7411209 | Endo et al. | Aug 2008 | B2 |
7453065 | Saito et al. | Nov 2008 | B2 |
7453087 | Iwasaki | Nov 2008 | B2 |
7462862 | Hoffman et al. | Dec 2008 | B2 |
7468304 | Kaji et al. | Dec 2008 | B2 |
7501293 | Ito et al. | Mar 2009 | B2 |
7601984 | Sano et al. | Oct 2009 | B2 |
7674650 | Akimoto et al. | Mar 2010 | B2 |
7732819 | Akimoto et al. | Jun 2010 | B2 |
7791072 | Kumomi et al. | Sep 2010 | B2 |
20010046027 | Tai et al. | Nov 2001 | A1 |
20020056838 | Ogawa | May 2002 | A1 |
20020132454 | Ohtsu et al. | Sep 2002 | A1 |
20030189401 | Kido et al. | Oct 2003 | A1 |
20030218222 | Wager et al. | Nov 2003 | A1 |
20040038446 | Takeda et al. | Feb 2004 | A1 |
20040127038 | Carcia et al. | Jul 2004 | A1 |
20050017302 | Hoffman | Jan 2005 | A1 |
20050199959 | Chiang et al. | Sep 2005 | A1 |
20060035452 | Carcia et al. | Feb 2006 | A1 |
20060043377 | Hoffman et al. | Mar 2006 | A1 |
20060091793 | Baude et al. | May 2006 | A1 |
20060108529 | Saito et al. | May 2006 | A1 |
20060108636 | Sano et al. | May 2006 | A1 |
20060110867 | Yabuta et al. | May 2006 | A1 |
20060113536 | Kumomi et al. | Jun 2006 | A1 |
20060113539 | Sano et al. | Jun 2006 | A1 |
20060113549 | Den et al. | Jun 2006 | A1 |
20060113565 | Abe et al. | Jun 2006 | A1 |
20060169973 | Isa et al. | Aug 2006 | A1 |
20060170111 | Isa et al. | Aug 2006 | A1 |
20060197092 | Hoffman et al. | Sep 2006 | A1 |
20060208977 | Kimura | Sep 2006 | A1 |
20060228974 | Thelss et al. | Oct 2006 | A1 |
20060231882 | Kim et al. | Oct 2006 | A1 |
20060238135 | Kimura | Oct 2006 | A1 |
20060244107 | Sugihara et al. | Nov 2006 | A1 |
20060284171 | Levy et al. | Dec 2006 | A1 |
20060284172 | Ishii | Dec 2006 | A1 |
20060292777 | Dunbar | Dec 2006 | A1 |
20070024187 | Shin et al. | Feb 2007 | A1 |
20070046191 | Saito | Mar 2007 | A1 |
20070052025 | Yabuta | Mar 2007 | A1 |
20070054507 | Kaji et al. | Mar 2007 | A1 |
20070090365 | Hayashi et al. | Apr 2007 | A1 |
20070108446 | Akimoto | May 2007 | A1 |
20070152217 | Lai et al. | Jul 2007 | A1 |
20070172591 | Seo et al. | Jul 2007 | A1 |
20070187678 | Hirao et al. | Aug 2007 | A1 |
20070187760 | Furuta et al. | Aug 2007 | A1 |
20070194379 | Hosono et al. | Aug 2007 | A1 |
20070252928 | Ito et al. | Nov 2007 | A1 |
20070272922 | Kim et al. | Nov 2007 | A1 |
20070287296 | Chang | Dec 2007 | A1 |
20080006877 | Mardilovich et al. | Jan 2008 | A1 |
20080038882 | Takechi et al. | Feb 2008 | A1 |
20080038929 | Chang | Feb 2008 | A1 |
20080050595 | Nakagawara et al. | Feb 2008 | A1 |
20080073653 | Iwasaki | Mar 2008 | A1 |
20080083950 | Pan et al. | Apr 2008 | A1 |
20080106191 | Kawase | May 2008 | A1 |
20080128689 | Lee et al. | Jun 2008 | A1 |
20080129195 | Ishizaki et al. | Jun 2008 | A1 |
20080166834 | Kim et al. | Jul 2008 | A1 |
20080182358 | Cowdery-Corvan et al. | Jul 2008 | A1 |
20080224133 | Park et al. | Sep 2008 | A1 |
20080254569 | Hoffman et al. | Oct 2008 | A1 |
20080258139 | Ito et al. | Oct 2008 | A1 |
20080258140 | Lee et al. | Oct 2008 | A1 |
20080258141 | Park et al. | Oct 2008 | A1 |
20080258143 | Kim et al. | Oct 2008 | A1 |
20080296568 | Ryu et al. | Dec 2008 | A1 |
20090068773 | Lai et al. | Mar 2009 | A1 |
20090073325 | Kuwabara et al. | Mar 2009 | A1 |
20090114910 | Chang | May 2009 | A1 |
20090134399 | Sakakura et al. | May 2009 | A1 |
20090152506 | Umeda et al. | Jun 2009 | A1 |
20090152541 | Maekawa et al. | Jun 2009 | A1 |
20090278122 | Hosono et al. | Nov 2009 | A1 |
20090280600 | Hosono et al. | Nov 2009 | A1 |
20100065844 | Tokunaga | Mar 2010 | A1 |
20100092800 | Itagaki et al. | Apr 2010 | A1 |
20100109002 | Itagaki et al. | May 2010 | A1 |
20100276683 | Kim et al. | Nov 2010 | A1 |
20100295041 | Kumomi et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
1737044 | Dec 2006 | EP |
2226847 | Sep 2010 | EP |
60-198861 | Oct 1985 | JP |
63-210022 | Aug 1988 | JP |
63-210023 | Aug 1988 | JP |
63-210024 | Aug 1988 | JP |
63-215519 | Sep 1988 | JP |
63-239117 | Oct 1988 | JP |
63-265818 | Nov 1988 | JP |
05-251705 | Sep 1993 | JP |
08-264794 | Oct 1996 | JP |
11-505377 | May 1999 | JP |
2000-044236 | Feb 2000 | JP |
2000-150900 | May 2000 | JP |
2001-274210 | Oct 2001 | JP |
2002-076356 | Mar 2002 | JP |
2002-289859 | Oct 2002 | JP |
2003-086000 | Mar 2003 | JP |
2003-086808 | Mar 2003 | JP |
2004-103957 | Apr 2004 | JP |
2004-273614 | Sep 2004 | JP |
2004-273732 | Sep 2004 | JP |
2006-165527 | Jun 2006 | JP |
2006-165528 | Jun 2006 | JP |
2006-165529 | Jun 2006 | JP |
WO-2004114391 | Dec 2004 | WO |
Entry |
---|
Coates.D et al., “Optical Studies of the Amorphous Liquid-Cholesteric Liquid Crystal Transition:The “Blue Phase””, Physics Letters, Sep. 10, 1973, vol. 45A, No. 2, pp. 115-116. |
Meiboom.S et al., “Theory of the Blue Phase of Cholesteric Liquid Crystals”, Phys. Rev. Lett. (Physical Review letters), May 4, 1961, vol. 48, No. 18, pp. 1216-1219. |
Costello.M et al., “Electron Microscopy of a Cholesteric Liquid Crystal and Its Blue Phase”, Phys. Rev. A (Physical Review. A), May 1, 1984, vol. 29, No. 5, pp. 2957-2959. |
Kimizuka.N. et al., “Spinel,YbFe2O4, and Yb2Fe3O7 Types of Structures for Compounds in the In2O3 and Sc2O3—A2O3—BO Systems [A; Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn] at Temperatures Over 1000° C.”, Journal of Solid State Chemistry, 1985, vol. 60, pp. 382-384. |
Nakamura.M at al., “The phase relations in the In2O3—Ga2ZnO4—ZnO system at 1350°C.”, Journal of Solid State Chemistry, Aug. 1, 1991, vol. 93, No. 2, pp. 298-315. |
Kitzerow.H et al., “Observation of Blue Phases in Chiral Networks”, Liquid Crystals, 1993, vol. 14, No. 3, pp. 911-916. |
Kimizuka.N. et al., “Syntheses and Single-Crystal Data of Homologous Compounds, In2O3(ZnO)m (m=3, 4, and 5), InGaO3(ZnO)3, and Ga2O3(ZnO)m (M=7, 8, 9, and 16) in the In2O3—ZnGa2O4—ZnO System”, Journal of Solid State Chemistry, Apr. 1, 1995, vol. 116, No. 1, pp. 170-178. |
Chern.H et al., “An Analytical Model for the Above-Threshold Characteristics of Polysilicon Thin-Film Transistors”, IEEE Transactions on Electron Devices, Jul. 1, 1995, vol. 42, No. 7, pp. 1240-1246. |
Prins.M et al., “A Ferroelectric Transparent Thin-Film Transistor”, Appl. Phys. Lett. (Applied Physics Letters) , Jun. 17, 1996, vol. 68, No. 25, pp. 3650-3652. |
Li.C et al., “Modulated Structures of Homologous Compounds InMO3(ZnO)m (M=In,Ga; m=Integer) Described by Four-Dimensional Superspace Group”, Journal of Solid State Chemistry, 1998, vol. 139, pp. 347-355. |
Kikuchi.H et al., “Polymer-Stabilized Liquid Crystal Blue Phases”, Nature Materials, Sep. 2, 2002, vol. 1, pp. 64-68. |
Tsuda.K et al., “Ultra Low Power Consumption Technologies for Mobile TFT-LCDs ”, IDW '02 : Proceedings of the 9th International Display Workshops, Dec. 4, 2002, pp. 295-298. |
Nomura.K et al., “Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor”, Science, May 23, 2003, vol. 300, No. 5623, pp. 1269-1272. |
Ikeda.T et al., “Full-Functional System Liquid Crystal Display Using Cg-Silicon Technology”, SID Digest '04 : SID International Symposium Digest of Technical Papers, 2004, vol. 35, pp. 860-863. |
Nomura.K et al., “Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors”, Nature, Nov. 25, 2004, vol. 432, pp. 488-492. |
Dembo.H et al., “RFCPUS on Glass and Plastic Substrates Fabricated by TFT Transfer Technology”, IEDM 05: Technical Digest of International Electron Devices Meeting, Dec. 5, 2005, pp. 1067-1069. |
Kanno.H et al., “White Stacked Electrophosphorecent Organic Light-Emitting Devices Employing MOO3 as a Charge-Generation Layer”, Adv. Mater. (Advanced Materials), 2006, vol. 18, No. 3, pp. 339-342. |
Lee.H et al., “Current Status of, Challenges to, and Perspective View of AM-OLED”, IDW'06 : Proceedings of the 13th International Display Workshops, Dec. 7, 2006, pp. 663-668. |
Hosono.H, “68.3:Invited Paper:Transparent Amorphous Oxide Semiconductors for High Performance TFT”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1830-1833. |
Hirao.T et al., “Novel Top-Gate Zinc Oxide Thin-Film Transistors (ZnO TFTs) for AMLCDS”, Journal of the SID, 2007, vol. 15, No. 1, pp. 17-22. |
Park.S et al., “Challenge to Future Displays: Transparent AM-OLED Driven by PEALD Grown ZnO TFT”, IMID '07 Digest, 2007, pp. 1249-1252. |
Kikuchi.H et al., “62.2:Invited Paper:Fast Electro-Optical Switching in Polymer-Stabilized Liquid Crystalline Blue Phases for Display Application”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1737-1740. |
Miyasaka.M, “SUFTLA Flexible Microelectronics on Their Way to Business”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1673-1676. |
Kurokawa.Y et al., “UHF RFCPUS on Flexible and Glass Substrates for Secure RFID Systems”, Journal of Solid-State Circuits , 2008, vol. 43, No. 1, pp. 292-299. |
Jeong,J et al., “3.1: Distinguished Paper: 12.1-Inch WXGA AMOLED Display Driven by Indium—Gallium—Zinc Oxide TFTs Array”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, No. 1, pp. 1-4. |
Lee.J et al., “World'S Largest (15-Inch) XGA AMLCD Panel Using IGZO Oxide TFT”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 625-628. |
Park.J et al., “Amorphous Indium—Gallium—Zinc Oxide TFTs and Their Application for Large Size AMOLED”, AM-FPD '08 Digest of Technical Papers, Jul. 2, 2008, pp. 275-278. |
Takahashi.M et al., “Theoretical Analysis of IGZO Transparent Amorphous Oxide Semiconductor”, IDW '08 : Proceedings of the 15th International Display Workshops, Dec. 3, 2008, pp. 1637-1640. |
Sakata.J et al., “Development of 4.0-In. AMOLED Display With Driver Circuit Using Amorphous In—Ga—Zn—Oxide TFTs”, IDW '09 : Proceedings of the 16th International Display Workshops, 2009, pp. 689-692. |
Asaoka.Y et al., “29.1:Polarizer-Free Reflective LCD Combined With Ultra Low-Power Driving Technology”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 395-398. |
Nowatari.H et al., “60.2: Intermediate Connector With Suppressed Voltage Loss for White Tandem OLEDs”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, vol. 40, pp. 899-902. |
Jin.D et al., “65.2:Distinguished Paper:World-Largest (6.5″) Flexible Full Color Top Emission AMOLED Display on Plastic Film and its Bending Properties”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 983-985. |
Lee.M et al., “15.4:Excellent Performance of Indium—Oxide-Based Thin-Film Transistors by DC Sputtering”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 191-193. |
Cho.D et al., “21.2: Al and Sn-Doped Zinc Indium Oxide Thin Film Transistors for AMOLED Back-Plane”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 280-283. |
Kikuchi.H et al., “39.1:Invited Paper:Optically Isotropic Nano-Structured Liquid Crystal Composites for Display Applications”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 578-581. |
Osada.T et al., “15.2: Development of Driver-Integrated Panel using Amorphous In—Ga—Zn—Oxide TFT”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 184-187. |
Ohara.H et al., “21.3:4.0 In. QVGA AMOLED Display Using In—Ga—Zn—Oxide TFTs With a Novel Passivation Layer”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 284-287. |
Godo.H et al., “P-9:Numerical Analysis on Temperature Dependence of Characteristics of Amorphous In—Ga—Zn—Oxide TFT”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 1110-1112. |
Osada.T at al., “Development of Driver-Integrated Panel Using Amorphous In—Ga—Zn—Oxide TFT”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 33-36. |
Godo.H at al., “Temperature Dependence of Characteristics and Electronic Structure for Amorphous In—Ga—Zn—Oxide TFT”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 41-44. |
Ohara.H et al., “Amorphous In—Ga—Zn—Oxide TFTs with Suppressed Variation for 4.0 inch QVGA AMOLED Display”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 227-230, The Japan Society of Applied Physics. |
Park.J et al., “High performance amorphous oxide thin film transistors with self-aligned top-gate structure”, IEDM 09: Technical Digest of International Electron Devices Meeting, Dec. 7, 2009, pp. 191-194. |
Nakamura.M, “Synthesis of Homologous Compound with New Long-Period Structure”, NIRIM Newsletter, Mar. 1, 1995, vol. 150, pp. 1-4. |
Hosono.H et al., “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples”, J. Non-Cryst. Solids (Journal of Non-Crystalline Solids), 1996, vol. 198-200, pp. 165-169. |
Orita.M et al., “Mechanism of Electrical Conductivity of Transparent InGaZnO4”, Phys. Rev. B (Physical Review. B), Jan. 15, 2000, vol. 61, No. 3, pp. 1811-1816. |
Van de Walle.C, “Hydrogen as a Cause of Doping in Zinc Oxide”, Phys. Rev. Lett. (Physical Review Letters), Jul. 31, 2000, vol. 85, No. 5, pp. 1012-1015. |
Orita.M et al., “Amorphous transparent conductive oxide InGaO3(ZnO)m (m <4):a Zn4s conductor”, Philosophical Magazine, 2001, vol. 81, No. 5, pp. 501-515. |
Janotti.A at al., “Oxygen Vacancies in ZnO”, Appl. Phys. Lett. (Applied Physics Letters) , 2005, vol. 87, pp. 122102-1-122102-3. |
Clark.S et al., “First Principles Methods Using CASTEP”, Zeitschrift fur Kristallographie, 2005, vol. 220, pp. 567-570. |
Nomura.K et al., “Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors”, Jpn. J. Appl. Phys. (Japanese Journal of Applied Physics) , 2006, vol. 45, No. 5B, pp. 4303-4308. |
Janotti.A at al., “Native Point Defects in ZnO”, Phys. Rev. B (Physical Review. B), Oct. 4, 2007, vol. 76, No. 16, pp. 165202-1-165202-22. |
Lany.S et al., “Dopability, Intrinsic Conductivity, and Nonstoichiometry of Transparent Conducting Oxides”, Phys. Rev. Lett. (Physical Review Letters), Jan. 26, 2007, vol. 98, pp. 045501-1-045501-4. |
Park.J at al., “Improvements in the Device Characteristics of Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors by Ar Plasma Treatment”, Appl. Phys. Lett. (Applied Physics Letters) , Jun. 26, 2007, vol. 90, No. 26, pp. 262106-1-262106-3. |
Park.J at al., “Electronic Transport Properties of Amorphous Indium-Gallium-Zinc Oxide Semiconductor Upon Exposure to Water”, Appl. Phys. Lett. (Applied Physics Letters) , 2008, vol. 92, pp. 072104-1-072104-3. |
Hsieh.H at al., “P-29:Modeling of Amorphous Oxide Semiconductor Thin Film Transistors and Subgap Density of States”, SID Digest '08 : SID International Symposium Digest of Technical Papers, 2008, vol. 39, pp. 1277-1280. |
Oba.F at al., “Defect energetics in ZnO: A hybrid Hartree-Fock density functional study”, Phys. Rev. B (Physical Review. B), 2008, vol. 77, pp. 245202-1-245202-6. |
Kim.S et al., “High-Performance oxide thin film transistors passivated by various gas plasmas”, 214th ECS Meeting, 2008, No. 2317, ECS. |
Hayashi.R et al., “42.1: Invited Paper: Improved Amorphous In—Ga—Zn—O TFTs”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 621-624. |
Son.K at al., “42.4L: Late-News Paper: 4 Inch QVGA AMOLED Driven by the Threshold Voltage Controlled Amorphous GIZO (Ga2O3—In2O3—ZnO) TFT”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 633-636. |
Park.Sang-Hee et al., “42.3: Transparent ZnO Thin Film Transistor for the Application of High Aperture Ratio Bottom Emission AM-OLED Display”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 629-632. |
Fung.T et al., “2-D Numerical Simulation of High Performance Amorphous In—Ga—Zn—O TFTs for Flat Panel Displays”, AM-FPD '08 Digest of Technical Papers, Jul. 2, 008, pp. 251-252, The Japan Society of Applied Physics. |
Mo.Y et al., “Amorphous Oxide TFT Backplanes for Large Size AMOLED Displays”, IDW '08 : Proceedings of the 6th International Display Workshops, Dec. 3, 2008, pp. 581-584. |
Asakuma.N et al., “Crystallization and Reduction of Sol-Gel-Derived Zinc Oxide Films by Irradiation with Ultraviolent Lamp”, Journal of Sol-Gel Science and Technology, 2003, vol. 26, pp. 181-184. |
Fortunato.E et al., “Wide-Bandgap High-Mobility ZnO Thin-Film Transistors Produced at Room Temperature”, Appl. Phys. Lett. (Applied Physics Letters) , Sep. 27, 2004, vol. 85, No. 13, pp. 2541-2543. |
Masuda.S et al., “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties”, J. Appl. Phys. (Journal of Applied Physics) , Feb. 1, 2003; vol. 93, No. 3, pp. 1624-1630. |
Oh.M et al., “Improving the Gate Stability of ZnO Thin-Film Transistors with Aluminum Oxide Dielectric Layers”, J. Electrochem. Soc. (Journal of the Electrochemical Society), 2008. vol. 155, No. 12, pp. H1009-H1014. |
Park.J et al., “Dry etching of ZnO films and plasma-induced damage to optical properties”, J. Vac. Sci. Technol. B (Journal of Vacuum Science & Technology B), Mar. 1, 2003, vol. 21, No. 2, pp. 800-803. |
Ueno.K et al., “Field-Effect Transistor on SrTiO3 with Sputtered Al2O3 Gate Insulator”, Appl. Phys. Lett. (Applied Physics Letters) , Sep. 1, 2003, vol. 83, No. 9, pp. 1755-1757. |
Nomura.K et al., “Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystallin InGaO3(ZnO)5 films”, Appl. Phys. Lett. (Applied Physics Letters) , Sep. 13, 2004, vol. 85, No. 11, pp. 1993-1995. |
Number | Date | Country | |
---|---|---|---|
20110318851 A1 | Dec 2011 | US |