The disclosure relates to a manufacturing method of a silicon carbide wafer and a semiconductor structure.
At present, silicon wafers have been widely applied in the semiconductor industry. Many electronic devices contain silicon chips made from silicon wafers. However, in order to improve the chip performance, many manufacturers are currently making attempts to employ silicon carbide wafers as materials for producing silicon carbide chips. The silicon carbide chip has high temperature resistance and high stability.
In a common semiconductor manufacturing process, it is often required to set an alignment mark on a surface of the wafer, and capture a position of the alignment mark with an optical imaging module (e.g., a CCD camera), then confirming a position of the wafer. By the setting of the alignment mark, deviation in the semiconductor manufacturing process may be reduced. However, it is common that the silicon carbide wafer is in a dark brown color, and a transparency thereof is not great. Therefore, during confirmation of the position of the silicon carbide wafer by utilizing the alignment mark, since the transparency of the silicon carbide wafer may be overly low, the position of the silicon carbide wafer is likely to be deviated, which further leads to an insufficient process yield in the semiconductor manufacturing process.
The disclosure provides a manufacturing method of a silicon carbide wafer, in which insufficient visible light transmittance of the silicon carbide wafer may be improved.
At least one embodiment of the disclosure provides a manufacturing method of a silicon carbide wafer, including the following. A raw material containing carbon and silicon and a seed located above the raw material are provided in a reactor. A nitrogen content in the reactor is reduced, which includes the following. An argon gas is passed into the reactor, where a flow rate of passing the argon gas into the reactor is 1,000 sccm to 5,000 sccm, and a time of passing the argon gas into the reactor is 2 hours to 48 hours. The reactor and the raw material are heated to form a silicon carbide material on the seed. The reactor and the raw material are cooled to obtain a silicon carbide ingot. The silicon carbide ingot is cut to obtain a plurality of silicon carbide wafers.
At least one embodiment of the disclosure provides a semiconductor structure. The semiconductor structure includes a silicon carbide wafer. A resistivity of the silicon carbide wafer is 0.1 ohm/cm to 10 ohms/cm, and a visible light transmittance of the silicon carbide wafer is greater than 50%.
To make the aforementioned more comprehensible, several embodiments accompanied with drawings are described in detail as follows.
The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments of the disclosure and, together with the description, serve to explain the principles of the disclosure.
With reference to
A raw material 300 and a seed 200 located above the raw material 300 are provided in the reactor 100. The raw material 300 and the seed 200 are spaced apart by a vertical distance V1.
The raw material 300 is disposed in the graphite crucible 106. The raw material 300 contains carbon and silicon, and the raw material 300 is, for example, silicon carbide powder. The seed 200 is disposed on the seed support member 108. In some embodiments, the seed 200 is fixed on the seed support member 108 by an adhesive layer (not shown). The material of the seed 200 includes silicon carbide. For example, the seed 200 is 6H-silicon carbide or 4H-silicon carbide.
In some embodiment, a first surface 202 of the seed 200 has a surface roughness (Ra) less than 2 nm, preferably a surface roughness (Ra) less than 0.5 nm, and more preferably a surface roughness (Ra) less than 0.3 nm. In some embodiment, the seed 200 has a total thickness variation (TTV) of less than 2 μm, a warp less than 30 μm, and a bow less than ±20 μm. In some embodiments, the first surface 202 of the seed 200 is the basal plane (0001) of silicon carbide.
In this embodiment, when the raw material 300 and the seed 200 are disposed in the reactor 100, air from the outside will enter the reactor 100 together, such that oxygen, nitrogen, and other gases are contained in the reactor 100.
With reference to
With reference to
With reference to
With reference to
In
With reference to
In this embodiment, when the raw material 300 at the bottom of the graphite crucible 106 is heated to a high temperature (higher than 1900° C., for example) by the induction coil 102, the raw material 300 is sublimated, and, under the drive of a temperature gradient, is transmitted to the first surface 202 of the seed 200 and form the silicon carbide material 210 on the seed 200, to form a growth body GB containing the seed 200 and the silicon carbide material 210. The growth body GB grows along a growth direction GD perpendicular to the first surface 202 of the seed 200.
In some embodiments, the silicon carbide material 210 is not only formed on the first surface 202 of the seed 200, but also formed on the sidewall of the seed 200. In other words, the growth body GB may also grow along the radial direction of the seed 200.
With reference to
The silicon carbide ingot GB′ is taken out of the reactor 100. In some embodiments, a nitrogen content of the silicon carbide ingot GB′ is 1016 atoms/cm3 to 1017 atoms/cm3. In some embodiments, a resistivity of the silicon carbide ingot is 0.1 ohm/cm to 10 ohms/cm. In some embodiments, a thickness of the silicon carbide ingot is 5 millimeters (mm) to 80 mm, for example, 5 mm to 50 mm or 5 mm to 30 mm.
With reference to
In some embodiments, a nitrogen content of each silicon carbide wafer W is 1016 atoms/cm3 to 1017 atoms/cm3. A resistivity of each silicon carbide wafer W is 0.1 ohm/cm to 10 ohms/cm. Since the resistivity of the silicon carbide wafer W is lower than 10 ohms/cm, in the subsequent semiconductor manufacturing process, the silicon carbide wafer W may be moved by electrostatic adsorption.
In this embodiment, a visible light transmittance of the silicon wafer carbide W obtained based on the above manufacturing process is greater than 50%, preferably greater than 70%, and more preferably greater than 80%. The visible light is defined as light with a wavelength of 380 nanometers to 750 nanometers. In some embodiments, the silicon carbide wafer W is approximately transparent. In this embodiment, silicon carbide in the silicon carbide wafer W has a c-axis with a deflection angle of less than 0.5 degrees. Accordingly, polarization caused by the silicon carbide wafer W may be improved.
In some embodiments, after the silicon carbide wafer W is completed, an alignment mark (not shown) is formed on the silicon carbide wafer W. The alignment mark may be adapted for confirming a position of the silicon carbide wafer W. Since the silicon carbide wafer W has a great visible light transmittance, the position of the silicon carbide wafer W may be more accurately confirmed by the alignment mark, thereby improving the manufacturing yield in the subsequent semiconductor manufacturing process. For example, in some embodiments, when a back side via process is performed on the silicon carbide wafer W, the alignment mark may be configured to confirm the position of the silicon carbide wafer W, thereby preventing a position of the obtained via from deviation.
With reference to
In step S202, a first vacuum process is performed on the reactor.
In step S203, an argon gas is passed into the reactor.
In step S204, the reactor and the raw material are heated to form a silicon carbide material on the seed.
In step S205, the reactor and the raw material are cooled to obtain a silicon carbide ingot.
In step S206, the silicon carbide ingot is cut to obtain a plurality of silicon carbide wafers.
Several experiments are provided as follows to verify the effects of the disclosure, but the content of the experiments are not intended to limit the scope of the disclosure.
A silicon carbide wafer was manufactured by utilizing physical vapor transport. For the manufacturing method thereof, reference may be made to
In <Preparation example 1>, a flow rate of the argon gas in the gas transport process F2 (shown in
A nitrogen content of the silicon carbide wafer obtained from <Preparation example 1> was 1×1016 atoms/cm3 to 9×1017 atoms/cm3, and a resistivity of the silicon carbide wafer was 0.03 ohm/cm to 50 ohms/cm.
A silicon carbide wafer was manufactured by utilizing physical vapor transport. For the manufacturing method thereof, reference may be made to
In <Preparation example 2>, a flow rate of the argon gas in the gas transport process F2 (shown in
A nitrogen content of the silicon carbide wafer obtained from <Preparation example 2> was 2×1016 atoms/cm3 to 7×1017 atoms/cm3, and a resistivity of the silicon carbide wafer was 0.05 ohm/cm to 30 ohms/cm.
A silicon carbide wafer was manufactured by utilizing physical vapor transport. For the manufacturing method thereof, reference may be made to
In <Preparation example 3>, a flow rate of the argon gas in the gas transport process F2 (shown in
A nitrogen content of the silicon carbide wafer obtained from <Preparation example 3> was 3×1016 atoms/cm3 to 6×1017 atoms/cm3, and a resistivity of the silicon carbide wafer was 0.1 ohm/cm to 10 ohms/cm.
A silicon carbide wafer was manufactured by utilizing physical vapor transport. For the manufacturing method thereof, reference may be made to
In <Preparation example 4>, a flow rate of the argon gas in the gas transport process F2 (shown in
A nitrogen content of the silicon carbide wafer obtained from <Preparation example 4> was 4×1016 atoms/cm3 to 5×1017 atoms/cm3, and a resistivity of the silicon carbide wafer was 1 ohm/cm to 5 ohms/cm.
For the relevant parameters in <Preparation example 1> to <Preparation example 4>, see Table 1 below.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed embodiments without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the disclosure covers modifications and variations provided that they fall within the scope of the following claims and their equivalents.
This application claims the priority benefit of U.S. provisional application Ser. No. 63/056,732, filed on Jul. 27, 2020. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
Number | Name | Date | Kind |
---|---|---|---|
7972704 | Ohtani et al. | Jul 2011 | B2 |
8858709 | Zwieback | Oct 2014 | B1 |
9017629 | Zwieback et al. | Apr 2015 | B2 |
20050126471 | Jenny | Jun 2005 | A1 |
20050247259 | Yoon | Nov 2005 | A1 |
20060091402 | Shiomi | May 2006 | A1 |
20070102692 | Asahara | May 2007 | A1 |
20080038531 | Sawamura | Feb 2008 | A1 |
20090169459 | Zwieback | Jul 2009 | A1 |
20110024650 | Kolodzey et al. | Feb 2011 | A1 |
20110030611 | Santailler | Feb 2011 | A1 |
20120025153 | Hirose | Feb 2012 | A1 |
20120275984 | Nishiguchi | Nov 2012 | A1 |
20120308758 | Hori | Dec 2012 | A1 |
20130153836 | Miyamoto | Jun 2013 | A1 |
20140295171 | Hori | Oct 2014 | A1 |
20150191849 | Shirai | Jul 2015 | A1 |
20150225873 | Fujiwara | Aug 2015 | A1 |
20150259829 | Seki | Sep 2015 | A1 |
20170137963 | Loboda | May 2017 | A1 |
20180044186 | Lynch | Feb 2018 | A1 |
20180187332 | Powell | Jul 2018 | A1 |
20190252504 | Eto | Aug 2019 | A1 |
20190362972 | Schulze et al. | Nov 2019 | A1 |
20210115592 | Park | Apr 2021 | A1 |
20210225645 | Gendron-Hansen | Jul 2021 | A1 |
20210242319 | Sheridan | Aug 2021 | A1 |
20210273117 | Hoshi | Sep 2021 | A1 |
20220002905 | Yabuki | Jan 2022 | A1 |
Number | Date | Country |
---|---|---|
102701208 | Oct 2012 | CN |
108118394 | Jun 2018 | CN |
109628999 | Apr 2019 | CN |
109676437 | Apr 2019 | CN |
111063730 | Apr 2020 | CN |
2003104798 | Apr 2003 | JP |
2013100217 | May 2013 | JP |
0039371 | Jul 2000 | WO |
2020059810 | Mar 2020 | WO |
Entry |
---|
“Office Action of Taiwan Counterpart Application”, dated Dec. 17, 2021, pp. 1-8. |
Feng, Bin et al., “A Fine Processing Technology of Silicon Carbide”, Equipment for Electronic Products Manufacturing, May 20, 2013, with English abstract, pp. 23-26,64, vol. 42, No. 5. |
“Office Action of China Counterpart Application”, issued on Jan. 16, 2024, p. 1-p. 9. |
Number | Date | Country | |
---|---|---|---|
20220025547 A1 | Jan 2022 | US |
Number | Date | Country | |
---|---|---|---|
63056732 | Jul 2020 | US |