Manufacturing structure and process for compliant mechanisms

Information

  • Patent Grant
  • 9182587
  • Patent Number
    9,182,587
  • Date Filed
    Tuesday, October 27, 2009
    15 years ago
  • Date Issued
    Tuesday, November 10, 2015
    9 years ago
Abstract
The invention relates, in various aspects, to systems and methods for MEMS actuated displays that can be driven at high speeds and at low voltages for improved image quality and reduced power consumption.
Description
FIELD OF THE INVENTION

In general, the invention relates to the field of micro-electromechanical systems; in particular, the invention relates to actuation structures for mechanical light modulators.


BACKGROUND OF THE INVENTION

Displays built from mechanical light modulators are an attractive alternative to displays based on liquid crystal technology. Mechanical light modulators are fast enough to display video content with good viewing angles and with a wide range of color and grey scale. Mechanical light modulators have been successful in projection display applications, and have recently been proposed for direct view applications. There is a need in the art for fast, bright, low-powered mechanically actuated displays. Specifically there is a need for mechanically actuated displays that can be driven at high speeds and at low voltages for improved image quality and reduced power consumption.


SUMMARY OF THE INVENTION

Accordingly, in one aspect, the invention relates to a MEMS device comprising a first narrow beam wherein the first narrow beam completely enclose the boundary of a space. In some embodiments the first narrow beam forms a loop. In one aspect the MEMS device includes a mechanical light modulator supported over a substrate by the first narrow beam. In one aspect the MEMS device includes a mechanical light modulator in which the first narrow beam forms a portion of an actuator for moving the mechanical light modulator to modulate light. In certain embodiments, the first narrow beam is compliant beams. In one aspect the MEMS device includes an anchor connecting the first narrow beam to the substrate. In some embodiments, the MEMS device includes a second narrow beam, in which the first and second narrow beam enclose respective, non-intersecting spaces. In certain embodiments the second narrow beam encloses a space that is completely enclosed by the first narrow beam.


In another aspect, the invention relates to a method of manufacturing a MEMS device, comprising forming a first narrow beam coupled to a substrate such that the first narrow beam completely encloses the boundary of a space. In certain embodiments, forming the first narrow beam includes depositing a mold material onto a sacrificial layer, etching a shape into the mold material to form a mold having at least one sidewall and at least one lower horizontal surface, depositing material onto the etched mold such that the deposited material adheres to at least the side walls and the lower horizontal surface of the etched mold, etching away a portion of the deposited material to remove the deposited material from the lower horizontal surface while leaving substantially all of the material deposited on the sidewalls intact, and removing the mold such that material remaining on the sidewalls forms the first narrow beam. In one aspect, the sidewalls include walls of a mesa formed in the mold, and the first narrow beam encloses the mesa.


In another aspect, the sidewalls comprises walls of a recess formed in the mold, and the first narrow beam encloses the recess. In some embodiments, the mold material is deposited on top of a layer of sacrificial material, and the method further includes removing the sacrificial material to release the first narrow beam.


In one aspect, the mold further comprises an upper horizontal surface, the material deposited on the mold adheres to the upper horizontal surface, and the method further comprises applying a mask to the upper horizontal surface prior to etching away the deposited material such that a portion of the material deposited on the upper horizontal surface remains on the upper horizontal surface after the etch to form a mechanical light modulator. In some embodiments, prior to etching the shape into the mold, etching anchor holes into the mold material, in which the material deposited onto the mold fills the anchor holes to form anchors. In one aspect, the formation of the anchors, first narrow beam, and the mechanical light modulator requires the utilization of no more than three photolithographic masks. In certain embodiments, the MEMS device includes a mechanical light modulator and an anchor, and the first narrow beam supports the mechanical light modulator over a substrate and connects the mechanical light to the substrate via the anchor, in which the method comprises utilizing no more than three photolithographic masks.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing discussion will be understood more readily from the following detailed description of the invention with reference to the following drawings:



FIG. 1A is an isometric view of display apparatus, according to an illustrative embodiment of the invention;



FIG. 1B is a block diagram of the display apparatus of FIG. 1A, according to an illustrative embodiment of the invention;



FIG. 2A is a perspective view of an illustrative shutter-based light modulator suitable for incorporation into the MEMS-based display of FIG. 1A, according to an illustrative embodiment of the invention;



FIG. 2B is a cross-sectional view of a roller-shade-based light modulator suitable for incorporation into the MEMS-based display of FIG. 1A, according to an illustrative embodiment of the invention;



FIG. 2C is a cross sectional view of a light-tap-based light modulator suitable for incorporation into an alternative embodiment of the MEMS-based display of FIG. 1A, according to an illustrative embodiment of the invention;



FIG. 3A is a schematic diagram of a control matrix suitable for controlling the light modulators incorporated into the MEMS-based display of FIG. 1A, according to an illustrative embodiment of the invention;



FIG. 3B is a perspective view of an array of shutter-based light modulators connected to the control matrix of FIG. 3A, according to an illustrative embodiment of the invention;



FIGS. 4A and 4B are plan views of a dual-actuated shutter assembly in the open and closed states respectively, according to an illustrative embodiment of the invention.



FIG. 5 is a cross-sectional view of a display apparatus, according to an illustrative embodiment of the invention;



FIGS. 6A-6E are cross sectional views of stages of construction of a composite shutter assembly similar to that shown in FIG. 2A, according to an illustrative embodiment of the invention;



FIGS. 7A-7D are isometric views of stages of construction of an alternate shutter assembly with narrow sidewall beams, according to an illustrative embodiment of the invention;



FIG. 8 is a plan view of a shutter assembly incorporating a looped drive beam, according to an illustrative embodiment of the invention;



FIG. 9 is an isometric view of a shutter assembly built according to a 3-mask process, according to an illustrative embodiment of the invention;



FIG. 10 is an isometric view of the 2d sacrificial material patterned into a mold at an interim point in the fabrication process leading to the shutter assembly of FIG. 9, according to an illustrative embodiment of the invention;



FIG. 11 is an isometric view of a shutter assembly built according to a 3-mask process, according to an illustrative embodiment of the invention;



FIG. 12 is an isometric view of the 2d sacrificial material patterned into a mold at an interim point in the fabrication process leading to the shutter assembly of FIG. 11, according to an illustrative embodiment of the invention;



FIG. 13 is an isometric view of two connected shutter assemblies built according to a 3-mask process, according to an illustrative embodiment of the invention;



FIG. 14 is an isometric view of a shutter assembly built according to a 3-mask process, according to an illustrative embodiment of the invention;



FIG. 15 is an isometric view of a shutter assembly built according to a 3-mask process, according to an illustrative embodiment of the invention; and



FIG. 16 is an isometric view of a shutter assembly built according to a 3-mask process, according to an illustrative embodiment of the invention.





DESCRIPTION OF CERTAIN ILLUSTRATIVE EMBODIMENTS

To provide an overall understanding of the invention, certain illustrative embodiments will now be described, including apparatus and methods for displaying images. However, it will be understood by one of ordinary skill in the art that the systems and methods described herein may be adapted and modified as is appropriate for the application being addressed and that the systems and methods described herein may be employed in other suitable applications, and that such other additions and modifications will not depart from the scope hereof.



FIG. 1A is a schematic diagram of a direct-view MEMS-based display apparatus 100, according to an illustrative embodiment of the invention. The display apparatus 100 includes a plurality of light modulators 102a-102d (generally “light modulators 102”) arranged in rows and columns. In the display apparatus 100, light modulators 102a and 102d are in the open state, allowing light to pass. Light modulators 102b and 102c are in the closed state, obstructing the passage of light. By selectively setting the states of the light modulators 102a-102d, the display apparatus 100 can be utilized to form an image 104 for a backlit display, if illuminated by a lamp or lamps 105. In another implementation, the apparatus 100 may form an image by modulating reflection of ambient light originating from the front of the apparatus. In another implementation, the apparatus 100 may form an image by reflection of light from a lamp or lamps positioned in the front of the display, i.e. by use of a front-light. In another implementation, the apparatus 100 may form an image by modulating both the transmission of light from a source behind the modulating array and simultaneously the reflection of light from a source (lamp or lamps) positioned in the front of the display, called transflective operation. In one of the closed or open states, the light modulators 102 interfere with light in an optical path by, for example, and without limitation, blocking, reflecting, absorbing, filtering, polarizing, diffracting, or otherwise altering a property or path of the light.


In the display apparatus 100, each light modulator 102 corresponds to a pixel 106 in the image 104. In other implementations, the display apparatus 100 may utilize a plurality of light modulators to form a pixel 106 in the image 104. For example, the display apparatus 100 may include three color-specific light modulators 102. By selectively opening one or more of the color-specific light modulators 102 corresponding to a particular pixel 106, the display apparatus 100 can generate a color pixel 106 in the image 104. In another example, the display apparatus 100 includes two or more light modulators 102 per pixel 106 to provide grayscale in an image 104. With respect to an image, a “pixel” corresponds to the smallest picture element defined by the resolution of the image. With respect to structural components of the display apparatus 100, the term “pixel” refers to the combined mechanical and electrical components utilized to modulate the light that forms a single pixel of the image.


Display apparatus 100 is a direct-view display in that it does not require imaging optics. The user sees an image by looking directly at the display apparatus 100. In alternate embodiments the display apparatus 100 is incorporated into a projection display. In such embodiments, the display forms an image by projecting light onto a screen or onto a wall. In projection applications the display apparatus 100 is substantially smaller than the projected image 104.


Direct-view displays may operate in either a transmissive or reflective mode or both simultaneously (defined as transflective). In a transmissive display, the light modulators filter or selectively block light which originates from a lamp or lamps positioned behind the display. The light from the lamps is optionally injected into a light guide or “backlight”. Transmissive direct-view display embodiments are often built onto transparent or glass substrates to facilitate a sandwich assembly arrangement where one substrate, containing the light modulators, is positioned directly on top of the backlight. In some transmissive display embodiments, a color-specific light modulator is created by associating a color filter material with each modulator 102. In other transmissive display embodiments colors can be generated, as described below, using a field sequential color method by alternating illumination of lamps with different primary colors.


Each light modulator 102 includes a shutter 108 and an aperture 109. To illuminate a pixel 106 in the image 104, the shutter 108 is positioned such that it allows light to pass through the aperture 109 towards a viewer. To keep a pixel 106 unlit, the shutter 108 is positioned such that it obstructs the passage of light through the aperture 109. The aperture 109 is defined by an opening patterned through a reflective or light-absorbing material.


The display apparatus also includes a control matrix connected to the substrate and to the light modulators for controlling the movement of the shutters. The control matrix includes a series of electrical interconnects (e.g., interconnects 110, 112, and 114), including at least one write-enable interconnect 110 (also referred to as a “scan-line interconnect”) per row of pixels, one data interconnect 112 for each column of pixels, and one common interconnect 114 providing a common voltage to all pixels, or at least to pixels from both multiple columns and multiples rows in the display apparatus 100. In response to the application of an appropriate voltage (the “write-enabling voltage, Vwe”), the write-enable interconnect 110 for a given row of pixels prepares the pixels in the row to accept new shutter movement instructions. The data interconnects 112 communicate the new movement instructions in the form of data voltage pulses. The data voltage pulses applied to the data interconnects 112, in some implementations, directly contribute to an electrostatic movement of the shutters. In other implementations, the data voltage pulses control switches, e.g., transistors or other non-linear circuit elements that control the application of separate actuation voltages, which are typically higher in magnitude than the data voltages, to the light modulators 102. The application of these actuation voltages then results in the electrostatic driven movement of the shutters 108.



FIG. 1B is a block diagram 150 of the display apparatus 100. Referring to FIGS. 1A and 1B, in addition to the elements of the display apparatus 100 described above, as depicted in the block diagram 150, the display apparatus 100 includes a plurality of scan drivers 152 (also referred to as “write enabling voltage sources”) and a plurality of data drivers 154 (also referred to as “data voltage sources”). The scan drivers 152 apply write enabling voltages to scan-line interconnects 110. The data drivers 154 apply data voltages to the data interconnects 112. In some embodiments of the display apparatus, the data drivers 154 are configured to provide analog data voltages to the light modulators, especially where the gray scale of the image 104 is to be derived in analog fashion. In analog operation the light modulators 102 are designed such that when a range of intermediate voltages is applied through the data interconnects 112 there results a range of intermediate open states in the shutters 108 and therefore a range of intermediate illumination states or gray scales in the image 104.


In other cases the data drivers 154 are configured to apply only a reduced set of 2, 3, or 4 digital voltage levels to the control matrix. These voltage levels are designed to set, in digital fashion, either an open state or a closed state to each of the shutters 108.


The scan drivers 152 and the data drivers 154 are connected to digital controller circuit 156 (also referred to as the “controller 156”). The controller 156 includes an input processing module 158, which processes an incoming image signal 157 into a digital image format appropriate to the spatial addressing and the gray scale capabilities of the display 100. The pixel location and gray scale data of each image is stored in a frame buffer 159 so that the data can be fed out as needed to the data drivers 154. The data is sent to the data drivers 154 in mostly serial fashion, organized in predetermined sequences grouped by rows and by image frames. The data drivers 154 can include series to parallel data converters, level shifting, and for some applications digital to analog voltage converters.


The display 100 apparatus optionally includes a set of common drivers 153, also referred to as common voltage sources. In some embodiments the common drivers 153 provide a DC common potential to all light modulators within the array of light modulators 103, for instance by supplying voltage to a series of common interconnects 114. In other embodiments the common drivers 153, following commands from the controller 156, issue voltage pulses or signals to the array of light modulators 103, for instance global actuation pulses which are capable of driving and/or initiating simultaneous actuation of all or some light modulators in multiple rows and columns of the array 103.


All of the drivers (e.g., scan drivers 152, data drivers 154, and common drivers 153) for different display functions are time-synchronized by a timing-control module 160 in the controller 156. Timing commands from the module 160 coordinate the illumination of red, green and blue and white lamps (162, 164, 166, and 167 respectively) via lamp drivers 168, the write-enabling and sequencing of specific rows within the array of pixels 103, the output of voltages from the data drivers 154, and the output of voltages that provide for light modulator actuation.


The controller 156 determines the sequencing or addressing scheme by which each of the shutters 108 in the array 103 can be re-set to the illumination levels appropriate to a new image 104. Details of suitable addressing, image formation, and gray scale techniques can be found in U.S. patent application Ser. Nos. 11/326,696 and 11/643,042, incorporated herein by reference. New images 104 can be set at periodic intervals. For instance, for video displays, the color images 104 or frames of video are refreshed at frequencies ranging from 10 to 300 Hertz. In some embodiments the setting of an image frame to the array 103 is synchronized with the illumination of the lamps 162, 164, and 166 such that alternate image frames are illuminated with an alternating series of colors, such as red, green, and blue. The image frames for each respective color is referred to as a color sub-frame. In this method, referred to as the field sequential color method, if the color sub-frames are alternated at frequencies in excess of 20 Hz, the human brain will average the alternating frame images into the perception of an image having a broad and continuous range of colors. In alternate implementations, four or more lamps with primary colors can be employed in display apparatus 100, employing primaries other than red, green, and blue.


In some implementations, where the display apparatus 100 is designed for the digital switching of shutters 108 between open and closed states, the controller 156 determines the addressing sequence and/or the time intervals between image frames to produce images 104 with appropriate gray scale. The process of generating varying levels of grayscale by controlling the amount of time a shutter 108 is open in a particular frame is referred to as time division gray scale. In one embodiment of time division gray scale, the controller 156 determines the time period or the fraction of time within each frame that a shutter 108 is allowed to remain in the open state, according to the illumination level or gray scale desired of that pixel. In other implementations, for each image frame, the controller 156 sets a plurality of sub-frame images in multiple rows and columns of the array 103, and the controller alters the duration over which each sub-frame image is illuminated in proportion to a gray scale value or significance value employed within a coded word for gray scale. For instance, the illumination times for a series of sub-frame images can be varied in proportion to the binary coding series 1,2,4,8 . . . The shutters 108 for each pixel in the array 103 are then set to either the open or closed state within a sub-frame image according to the value at a corresponding position within the pixel's binary coded word for gray level. It is also possible to have more than two levels for example a 4 level state for the pixel might involve partially open and partially closed states for additional spatially varied grey levels.


In other implementations, the controller alters the intensity of light from the lamps 162, 164, and 166 in proportion to the gray scale value desired for a particular sub-frame image. A number of hybrid techniques are also available for forming colors and gray scale from an array of shutters 108. For instance, the time division techniques described above can be combined with the use of multiple shutters 108 per pixel, or the gray scale value for a particular sub-frame image can be established through a combination of both sub-frame timing and lamp intensity. Details of these and other embodiments can be found in U.S. patent application Ser. No. 11/643,042, referenced above.


In some implementations the data for an image state 104 is loaded by the controller 156 to the modulator array 103 by a sequential addressing of individual rows, also referred to as scan lines. For each row or scan line in the sequence, the scan driver 152 applies a write-enable voltage to the write enable interconnect 110 for that row of the array 103, and subsequently the data driver 154 supplies data voltages, corresponding to desired shutter states, for each column in the selected row. This process repeats until data has been loaded for all rows in the array. In some implementations the sequence of selected rows for data loading is linear, proceeding from top to bottom in the array. In other implementations the sequence of selected rows is pseudo-randomized, in order to minimize visual artifacts. And in other implementations the sequencing is organized by blocks, where, for a block, the data for only a certain fraction of the image state 104 is loaded to the array, for instance by addressing only every 5th row of the array in sequence.


In some implementations, the process for loading image data to the array 103 is separated in time from the process of actuating the shutters 108. In these implementations, the modulator array 103 may include data memory elements for each pixel in the array 103 and the control matrix may include a global actuation interconnect for carrying trigger signals, from common driver 153, to initiate simultaneous actuation of shutters 108 according to data stored in the memory elements. Various addressing sequences, many of which are described in U.S. patent application Ser. No. 11/643,042, can be coordinated by means of the timing control module 160.


In alternative embodiments, the array of pixels 103 and the control matrix that controls the pixels may be arranged in configurations other than rectangular rows and columns. For example, the pixels can be arranged in hexagonal arrays or curvilinear rows and columns. In general, as used herein, the term scan-line shall refer to any plurality of pixels that share a write-enabling interconnect.


The display 100 is comprised of a plurality of functional blocks including the timing control module 160, the frame buffer 159, scan drivers 152, data drivers 154, and drivers 153 and 168. Each block can be understood to represent either a distinguishable hardware circuit and/or a module of executable code. In some implementations the functional blocks are provided as distinct chips or circuits connected together by means of circuit boards and/or cables. Alternately, many of these circuits can be fabricated along with the pixel array 103 on the same substrate of glass or plastic. In other implementations, multiple circuits, drivers, processors, and/or control functions from block diagram 150 may be integrated together within a single silicon chip, which is then bonded directly to the transparent substrate holding pixel array 103.


The controller 156 includes a programming link 180 by which the addressing, color, and/or gray scale algorithms, which are implemented within controller 156, can be altered according to the needs of particular applications. In some embodiments, the programming link 180 conveys information from environmental sensors, such as ambient light or temperature sensors, so that the controller 156 can adjust imaging modes or backlight power in correspondence with environmental conditions. The controller 156 also comprises a power supply input 182 which provides the power needed for lamps as well as light modulator actuation. Where necessary, the drivers 152153, 154, and/or 168 may include or be associated with DC-DC converters for transforming an input voltage at 182 into various voltages sufficient for the actuation of shutters 108 or illumination of the lamps, such as lamps 162, 164, 166, and 167.


MEMS Light Modulators



FIG. 2A is a perspective view of an illustrative shutter-based light modulator 200 suitable for incorporation into the MEMS-based display apparatus 100 of FIG. 1A, according to an illustrative embodiment of the invention. The shutter-based light modulator 200 (also referred to as shutter assembly 200) includes a shutter 202 coupled to an actuator 204. The actuator 204 is formed from two separate compliant electrode beam actuators 205 (the “actuators 205”), as described in U.S. patent application Ser. No. 11/251,035, filed on Oct. 14, 2005. The shutter 202 couples on one side to the actuators 205. The actuators 205 move the shutter 202 transversely over a surface 203 in a plane of motion which is substantially parallel to the surface 203. The opposite side of the shutter 202 couples to a spring 207 which provides a restoring force opposing the forces exerted by the actuator 204. It is possible to replace the spring 207 by another actuator so that an actuation force rather than a elastic spring force can be used to move the shutter 202 transversely over a surface 203 in the opposite direction from that of actuator 204.


Each actuator 205 includes a compliant load beam 206 connecting the shutter 202 to a load anchor 208. The load anchors 208 along with the compliant load beams 206 serve as mechanical supports, keeping the shutter 202 suspended proximate to the surface 203. The load anchors 208 physically connect the compliant load beams 206 and the shutter 202 to the surface 203 and electrically connect the load beams 206 to a bias voltage, in some instances, ground.


Each actuator 205 also includes a compliant drive beam 216 positioned adjacent to each load beam 206. The drive beams 216 couple at one end to a drive beam anchor 218 shared between the drive beams 216. The other end of each drive beam 216 is free to move. However, there are implementations where the other end of the drive beam 216 is not completely free to move but partially restrained. Each drive beam 216 can be curved such that it is closest to the load beam 206 near the free end of the drive beam 216 and the anchored end of the load beam 206.


The surface 203 includes one or more apertures 211 for admitting the passage of light in the transmissive or transflective embodiments. If the shutter assembly 200 is formed on an opaque substrate, made for example from silicon, then the surface 203 is a surface of the substrate, and the apertures 211 are formed by etching an array of holes through the substrate. If the shutter assembly 200 is formed on a transparent substrate, made for example of glass or plastic, then the surface 203 is a surface of a light blocking layer deposited on the substrate, and the apertures are formed by etching the surface 203 into an array of holes 211. The apertures 211 can be generally circular, elliptical, polygonal, serpentine, or irregular in shape. In reflective or some transflective embodiments the regions 211 can represent areas of higher reflection or lower reflection than the surrounding substrate such that movement of the shutter assembly 200 modulates the total reflected light from the shutter based light modulator 200.


In operation, a display apparatus incorporating the light modulator 200 applies an electric potential to the drive beams 216 via the drive beam anchor 218. A second electric potential may be applied to the load beams 206. The resulting potential difference between the drive beams 216 and the load beams 206 pulls the free ends of the drive beams 216 towards the anchored ends of the load beams 206, and pulls the shutter ends of the load beams 206 toward the anchored ends of the drive beams 216, thereby driving the shutter 202 transversely towards the drive anchor 218. The compliant members 206 act as springs, such that when the voltage across the beams 206 and 216 is removed, the load beams 206 push the shutter 202 back into its initial position, releasing the stress stored in the load beams 206.


The shutter assembly 200, also referred to as an elastic shutter assembly, incorporates a passive restoring force, such as a spring, for returning a shutter to its rest or relaxed position after voltages have been removed. A number of elastic restore mechanisms and various electrostatic couplings can be designed into or in conjunction with electrostatic actuators, the compliant beams illustrated in shutter assembly 200 being just one example. Other examples are described in U.S. patent application Ser. Nos. 11/251,035 and 11/326,696, incorporated herein by reference. For instance, a highly non-linear voltage-displacement response can be provided which favors an abrupt transition between “open” vs. “closed” states of operation, and which, in many cases, provides a bi-stable or hysteretic operating characteristic for the shutter assembly. Other electrostatic actuators can be designed with more incremental voltage-displacement responses and with considerably reduced hysteresis, as may be preferred for analog gray scale operation.


The actuator 205 within the elastic shutter assembly is said to operate between a closed or actuated position and a relaxed position. The designer, however, can choose to place apertures 211 such that shutter assembly 200 is in either the “open” state, i.e. passing light, or in the “closed” state, i.e. blocking light, whenever actuator 205 is in its relaxed position. For illustrative purposes, it is assumed below that elastic shutter assemblies described herein are designed to be open in their relaxed state.


In many cases it is preferable to provide a dual set of “open” and “closed” actuators as part of a shutter assembly so that the control electronics are capable of electrostatically driving the shutters into each of the open and closed states.


Display apparatus 100, in alternative embodiments, includes light modulators other than transverse shutter-based light modulators, such as the shutter assembly 200 described above. For example, FIG. 2B is a cross-sectional view of a rolling actuator shutter-based light modulator 220 suitable for incorporation into an alternative embodiment of the MEMS-based display apparatus 100 of FIG. 1A, according to an illustrative embodiment of the invention. As described further in U.S. Pat. No. 5,233,459, entitled “Electric Display Device,” and U.S. Pat. No. 5,784,189, entitled “Spatial Light Modulator,” the entireties of which are incorporated herein by reference, a rolling actuator-based light modulator includes a moveable electrode disposed opposite a fixed electrode and biased to move in a preferred direction to produce a shutter upon application of an electric field. In one embodiment, the light modulator 220 includes a planar electrode 226 disposed between a substrate 228 and an insulating layer 224 and a moveable electrode 222 having a fixed end 230 attached to the insulating layer 224. In the absence of any applied voltage, a moveable end 232 of the moveable electrode 222 is free to roll towards the fixed end 230 to produce a rolled state. Application of a voltage between the electrodes 222 and 226 causes the moveable electrode 222 to unroll and lie flat against the insulating layer 224, whereby it acts as a shutter that blocks light traveling through the substrate 228. The moveable electrode 222 returns to the rolled state by means of an elastic restoring force after the voltage is removed. The bias towards a rolled state may be achieved by manufacturing the moveable electrode 222 to include an nonuniform initial stress or strain state.



FIG. 2C is a cross-sectional view of an illustrative non shutter-based MEMS light modulator 250. The light tap modulator 250 is suitable for incorporation into an alternative embodiment of the MEMS-based display apparatus 100 of FIG. 1A, according to an illustrative embodiment of the invention. As described further in U.S. Pat. No. 5,771,321, entitled “Micromechanical Optical Switch and Flat Panel Display,” the entirety of which is incorporated herein by reference, a light tap works according to a principle of frustrated total internal reflection. That is, light 252 is introduced into a light guide 254, in which, without interference, light 252 is for the most part unable to escape the light guide 254 through its front or rear surfaces due to total internal reflection. The light tap 250 includes a tap element 256 that has a sufficiently high index of refraction that, in response to the tap element 256 contacting the light guide 254, light 252 impinging on the surface of the light guide 254 adjacent the tap element 256 escapes the light guide 254 through the tap element 256 towards a viewer, thereby contributing to the formation of an image.


In one embodiment, the tap element 256 is formed as part of beam 258 of flexible, transparent material. Electrodes 260 coat portions of one side of the beam 258. Opposing electrodes 260 are disposed on the light guide 254. By applying a voltage across the electrodes 260, the position of the tap element 256 relative to the light guide 254 can be controlled to selectively extract light 252 from the light guide 254.


The roller-based light modulator 220 and light tap 250 are not the only examples of MEMS light modulators suitable for inclusion in various embodiments of the invention. It will be understood that other MEMS light modulators can exist and can be usefully incorporated into the invention.


U.S. patent application Ser. Nos. 11/251,035 and 11/326,696 have described a variety of methods by which an array of shutters can be controlled via a control matrix to produce images, in many cases moving images, with appropriate gray scale. In some cases, control is accomplished by means of a passive matrix array of row and column interconnects connected to driver circuits on the periphery of the display. In other cases it is appropriate to include switching and/or data storage elements within each pixel of the array (the so-called active matrix) to improve either the speed, the gray scale and/or the power dissipation performance of the display.



FIG. 3A is a schematic diagram of a control matrix 300 suitable for controlling the light modulators incorporated into the MEMS-based display apparatus 100 of FIG. 1A, according to an illustrative embodiment of the invention. FIG. 3B is a perspective view of an array 320 of shutter-based light modulators connected to the control matrix 300 of FIG. 3A, according to an illustrative embodiment of the invention. The control matrix 300 may address an array of pixels 320 (the “array 320”). Each pixel 301 includes an elastic shutter assembly 302, such as the shutter assembly 200 of FIG. 2A, controlled by an actuator 303. Each pixel also includes an aperture layer 322 that includes apertures 324. Further electrical and mechanical descriptions of shutter assemblies such as shutter assembly 302, and variations thereon, can be found in U.S. patent application Ser. Nos. 11/251,035 and 11/326,696. Descriptions of alternate control matrices can also be found in U.S. patent application Ser. No. 11/607,715.


The control matrix 300 is fabricated as a diffused or thin-film-deposited electrical circuit on the surface of a substrate 304 on which the shutter assemblies 302 are formed. The control matrix 300 includes a scan-line interconnect 306 for each row of pixels 301 in the control matrix 300 and a data-interconnect 308 for each column of pixels 301 in the control matrix 300. Each scan-line interconnect 306 electrically connects a write-enabling voltage source 307 to the pixels 301 in a corresponding row of pixels 301. Each data interconnect 308 electrically connects a data voltage source, (“Vd source”) 309 to the pixels 301 in a corresponding column of pixels 301. In control matrix 300, the data voltage Vd provides the majority of the energy necessary for actuation of the shutter assemblies 302. Thus, the data voltage source 309 also serves as an actuation voltage source.


Referring to FIGS. 3A and 3B, for each pixel 301 or for each shutter assembly 302 in the array of pixels 320, the control matrix 300 includes a transistor 310 and a capacitor 312. The gate of each transistor 310 is electrically connected to the scan-line interconnect 306 of the row in the array 320 in which the pixel 301 is located. The source of each transistor 310 is electrically connected to its corresponding data interconnect 308. The actuators 303 of each shutter assembly 302 include two electrodes. The drain of each transistor 310 is electrically connected in parallel to one electrode of the corresponding capacitor 312 and to one of the electrodes of the corresponding actuator 303. The other electrode of the capacitor 312 and the other electrode of the actuator 303 in shutter assembly 302 are connected to a common or ground potential. In alternate implementations, the transistors 310 can be replaced with semiconductor diodes and or metal-insulator-metal sandwich type switching elements.


In operation, to form an image, the control matrix 300 write-enables each row in the array 320 in a sequence by applying Vwe to each scan-line interconnect 306 in turn. For a write-enabled row, the application of Vwe to the gates of the transistors 310 of the pixels 301 in the row allows the flow of current through the data interconnects 308 through the transistors 310 to apply a potential to the actuator 303 of the shutter assembly 302. While the row is write-enabled, data voltages Vd are selectively applied to the data interconnects 308. In implementations providing analog gray scale, the data voltage applied to each data interconnect 308 is varied in relation to the desired brightness of the pixel 301 located at the intersection of the write-enabled scan-line interconnect 306 and the data interconnect 308. In implementations providing digital control schemes, the data voltage is selected to be either a relatively low magnitude voltage (i.e., a voltage near ground) or to meet or exceed Vat (the actuation threshold voltage). In response to the application of Vat to a data interconnect 308, the actuator 303 in the corresponding shutter assembly 302 actuates, opening the shutter in that shutter assembly 302. The voltage applied to the data interconnect 308 remains stored in the capacitor 312 of the pixel 301 even after the control matrix 300 ceases to apply Vwe to a row. It is not necessary, therefore, to wait and hold the voltage Vwe on a row for times long enough for the shutter assembly 302 to actuate; such actuation can proceed after the write-enabling voltage has been removed from the row. The capacitors 312 also function as memory elements within the array 320, storing actuation instructions for periods as long as is necessary for the illumination of an image frame.


The pixels 301 as well as the control matrix 300 of the array 320 are formed on a substrate 304. The array includes an aperture layer 322, disposed on the substrate 304, which includes a set of apertures 324 for respective pixels 301 in the array 320. The apertures 324 are aligned with the shutter assemblies 302 in each pixel. In one implementation the substrate 304 is made of a transparent material, such as glass or plastic. In another implementation the substrate 304 is made of an opaque material, but in which holes are etched to form the apertures 324. In yet another implementation for reflective or transflective operation, the regions 324 can represent areas of higher or lower reflectivity than the surrounding substrate such that motion of the shutter assembly serves to modulate the reflected component of light from a source in front of the modulating plane.


Components of shutter assemblies 302 are processed either at the same time as the control matrix 300 or in subsequent processing steps on the same substrate. The electrical components in control matrix 300 are fabricated using many thin film techniques in common with the manufacture of thin film transistor arrays for liquid crystal displays. Available techniques are described in Den Boer, Active Matrix Liquid Crystal Displays(Elsevier, Amsterdam, 2005), incorporated herein by reference. The shutter assemblies are fabricated using techniques similar to the art of micromachining or from the manufacture of micromechanical (i.e., MEMS) devices. Many applicable thin film MEMS techniques are described in Rai-Choudhury, ed., Handbook of Microlithography, Micromachining & Microfabrication (SPIE Optical Engineering Press, Bellingham, Wash. 1997), incorporated herein by reference. Fabrication techniques specific to MEMS light modulators formed on glass substrates can be found in U.S. patent application Ser. Nos. 11/361,785 and 11/731,628, incorporated herein by reference in their entireties. For instance, as described in those applications, the shutter assembly 302 can be formed from thin films of amorphous silicon, deposited by a chemical vapor deposition process.


The shutter assembly 302 together with the actuator 303 can be made bi-stable. That is, the shutters can exist in at least two equilibrium positions (e.g. open or closed) with little or no power required to hold them in either position. More particularly, the shutter assembly 302 can be mechanically bi-stable. Once the shutter of the shutter assembly 302 is set in position, no electrical energy or holding voltage is required to maintain that position. The mechanical stresses on the physical elements of the shutter assembly 302 can hold the shutter in place.


The shutter assembly 302 together with the actuator 303 can also be made electrically bi-stable. In an electrically bi-stable shutter assembly, there exists a range of voltages below the actuation voltage of the shutter assembly, which if applied to a closed actuator (with the shutter being either open or closed), holds the actuator closed and the shutter in position, even if an opposing force is exerted on the shutter. The opposing force may be exerted by a spring such as spring 207 in shutter-based light modulator 200, or the opposing force may be exerted by an opposing actuator, such as an “open” or “closed” actuator.


The light modulator array 320 is depicted as having a single MEMS light modulator per pixel. Other embodiments are possible in which multiple MEMS light modulators are provided in each pixel, thereby providing the possibility of more than just binary “on” or “off” optical states in each pixel. Certain forms of coded area division gray scale are possible where multiple MEMS light modulators in the pixel are provided, and where apertures 324, which are associated with each of the light modulators, have unequal areas.


In other embodiments the roller-based light modulator 220 and the light tap 250, as well as other MEMS-based light modulators, can be substituted for the shutter assembly 302 within the light modulator array 320.



FIGS. 4A and 4B illustrate an alternative shutter-based light modulator (shutter assembly) 400 suitable for inclusion in various embodiments of the invention. The light modulator 400 is an example of a dual actuator shutter assembly, and is shown in FIG. 4A in an open state. FIG. 4B is a view of the dual actuator shutter assembly 400 in a closed state. Shutter assembly 400 is described in further detail in U.S. patent application Ser. No. 11/251,035, referenced above. In contrast to the shutter assembly 200, shutter assembly 400 includes actuators 402 and 404 on either side of a shutter 406. Each actuator 402 and 404 is independently controlled. A first actuator, a shutter-open actuator 402, serves to open the shutter 406. A second opposing actuator, the shutter-close actuator 404, serves to close the shutter 406. Both actuators 402 and 404 are compliant beam electrode actuators. The actuators 402 and 404 open and close the shutter 406 by driving the shutter 406 substantially in a plane parallel to an aperture layer 407 over which the shutter is suspended. The shutter 406 is suspended a short distance over the aperture layer 407 by anchors 408 attached to the actuators 402 and 404. The inclusion of supports attached to both ends of the shutter 406 along its axis of movement reduces out of plane motion of the shutter 406 and confines the motion substantially to a plane parallel to the substrate. By analogy to the control matrix 300 of FIG. 3A, a control matrix suitable for use with shutter assembly 400 might include one transistor and one capacitor for each of the opposing shutter-open and shutter-close actuators 402 and 404.


The shutter 406 includes two shutter apertures 412 through which light can pass. The aperture layer 407 includes a set of three apertures 409. In FIG. 4A, the shutter assembly 400 is in the open state and, as such, the shutter-open actuator 402 has been actuated, the shutter-close actuator 404 is in its relaxed position, and the centerlines of apertures 412 and 409 coincide. In FIG. 4B the shutter assembly 400 has been moved to the closed state and, as such, the shutter-open actuator 402 is in its relaxed position, the shutter-close actuator 404 has been actuated, and the light blocking portions of shutter 406 are now in position to block transmission of light through the apertures 409 (shown as dotted lines).


Each aperture has at least one edge around its periphery. For example, the rectangular apertures 409 have four edges. In alternative implementations in which circular, elliptical, oval, or other curved apertures are formed in the aperture layer 407, each aperture may have only a single edge. In other implementations the apertures need not be separated or disjoint in the mathematical sense, but instead can be connected. That is to say, while portions or shaped sections of the aperture may maintain a correspondence to each shutter, several of these sections may be connected such that a single continuous perimeter of the aperture is shared by multiple shutters.


In order to allow light with a variety of exit angles to pass through apertures 412 and 409 in the open state, it is advantageous to provide a width or size for shutter apertures 412 which is larger than a corresponding width or size of apertures 409 in the aperture layer 407. In order to effectively block light from escaping in the closed state, it is preferable that the light blocking portions of the shutter 406 overlap the apertures 409. FIG. 4B shows a predefined overlap 416 between the edge of light blocking portions in the shutter 406 and one edge of the aperture 409 formed in aperture layer 407.


The electrostatic actuators 402 and 404 are designed so that their voltage-displacement behavior provides a bi-stable characteristic to the shutter assembly 400. For each of the shutter-open and shutter-close actuators there exists a range of voltages below the actuation voltage, which if applied while that actuator is in the closed state (with the shutter being either open or closed), will hold the actuator closed and the shutter in position, even after an actuation voltage is applied to the opposing actuator. The minimum voltage needed to maintain a shutter's position against such an opposing force is referred to as a maintenance voltage Vm. A number of control matrices which take advantage of the bi-stable operation characteristic are described in U.S. patent application Ser. No. 11/607,715, referenced above.



FIG. 5 is a cross sectional view of a display apparatus 500 incorporating shutter-based light modulators (shutter assemblies) 502, according to an illustrative embodiment of the invention. Each shutter assembly incorporates a shutter 503 and an anchor 505. Not shown are the compliant beam actuators which, when connected between the anchors 505 and the shutters 503, help to suspend the shutters a short distance above the surface. The shutter assemblies 502 are disposed on a transparent substrate 504, preferably made of plastic, quartz, or glass. A rear-facing reflective layer, reflective film 506, disposed on the substrate 504 defines a plurality of surface apertures 508 located beneath the closed positions of the shutters 503 of the shutter assemblies 502. The reflective film 506 reflects light not passing through the surface apertures 508 back towards the rear of the display apparatus 500. The reflective aperture layer 506 can be a fine-grained metal film without inclusions formed in thin film fashion by a number of vapor deposition techniques including sputtering, evaporation, ion plating, laser ablation, or chemical vapor deposition. In another implementation, the rear-facing reflective layer 506 can be formed from a mirror, such as a dielectric mirror. A dielectric mirror is fabricated as a stack of dielectric thin films which alternate between materials of high and low refractive index. The vertical gap which separates the shutters 503 from the reflective film 506, within which the shutter is free to move, is in the range of 0.5 to 10 microns. The magnitude of the vertical gap is preferably less than the lateral overlap between the edge of shutters 503 and the edge of apertures 508 in the closed state, such as the overlap 416 shown in FIG. 4B.


The display apparatus 500 includes an optional diffuser 512 and/or an optional brightness enhancing film 514 of various potential orientations of which only one is shown here, which separate the substrate 504 from a planar light guide 516. The light guide is comprised of a transparent, i.e. glass or plastic material. The light guide 516 is illuminated by one or more light sources 518, forming a backlight. The light sources 518 can be, for example, and without limitation, incandescent lamps, fluorescent lamps, lasers, or light emitting diodes (LEDs). A reflector 519 helps direct light from lamp 518 towards the light guide 516. A front-facing reflective film 520 is disposed behind the backlight 516, reflecting light towards the shutter assemblies 502. Light rays such as ray 521 from the backlight that do not pass through one of the shutter assemblies 502 will be returned to the backlight and reflected again from the film 520. In this fashion light that fails to leave the display to form an image on the first pass can be recycled and made available for transmission through other open apertures in the array of shutter assemblies 502. Such light recycling has been shown to increase the illumination efficiency of the display.


The light guide 516 includes a set of geometric light redirectors or prisms 517 which re-direct light from the lamps 518 towards the apertures 508 and hence toward the front of the display. The light re-directors can be molded into the plastic body of light guide 516 with shapes that can be alternately triangular, trapezoidal, or curved in cross section. The density of the prisms 517 generally increases with distance from the lamp 518.


In alternate embodiments the aperture layer 506 can be made of a light absorbing material, and in alternate embodiments the surfaces of shutter 503 can be coated with either a light absorbing or a light reflecting material. In alternate embodiments the aperture layer 506 can be deposited directly on the surface of the light guide 516. In alternate embodiments the aperture layer 506 need not be disposed on the same substrate as the shutters 503 and anchors 505 (see the MEMS-down configuration described below). These and other embodiments for a display illumination system are described in detail in the U.S. patent application Ser. Nos. 11/218,690 and 11/528,191, incorporated herein by reference in their entireties.


In one implementation the light sources 518 can include lamps of different colors, for instance, the colors red, green, and blue. A color image can be formed by sequentially illuminating images with lamps of different colors at a rate sufficient for the human brain to average the different colored images into a single multi-color image. The various color-specific images are formed using the array of shutter assemblies 502. In another implementation, the light source 518 includes lamps having more than three different colors. For example, the light source 518 may have red, green, blue and white lamps or red, green, blue, and yellow lamps.


A cover plate 522 forms the front of the display apparatus 500. The rear side of the cover plate 522 can be covered with a black matrix 524 to increase contrast. In alternate implementations the cover plate includes color filters, for instance distinct red, green, and blue filters corresponding to different ones of the shutter assemblies 502. The cover plate 522 is supported a predetermined distance away from the shutter assemblies 502 forming a gap 526. The gap 526 is maintained by mechanical supports or spacers 527 and/or by an adhesive seal 528 attaching the cover plate 522 to the substrate 504.


The adhesive seal 528 seals in a working fluid 530. The working fluid 530 is engineered with viscosities preferably below about 10 centipoise and with relative dielectric constant preferably above about 2.0, and dielectric breakdown strengths above about 104 V/cm. The working fluid 530 can also serve as a lubricant. In one implementation, the working fluid 530 is a hydrophobic liquid with a high surface wetting capability. In alternate implementations the working fluid 530 has a refractive index that is either greater than or less than that of the substrate 504.


The sealing material 528 can be formed from polymer adhesives such as epoxies, acrylates, or a silicone materials. The adhesive seal 528 should have a curing temperature preferably below about 200.degree. C., it should have a coefficient of thermal expansion preferably below about 50 ppm per degree C. and should be moisture resistant. An exemplary sealant 528 is EPO-TEK B9021-1, sold by Epoxy Technology, Inc. In an alternate embodiment the adhesive is formed from a heat reflowable material such as a solder metal or a glass frit compound.


The adhesive seal 528 seals in a working fluid 530. The working fluid 530 is engineered with viscosities preferably below about 10 centipoise and with relative dielectric constant preferably above about 2.0, and dielectric breakdown strengths above about 10.sup.4 V/cm. The working fluid 530 can also serve as a lubricant. In alternate implementations the working fluid 530 has a refractive index that is either greater than or less than that of the substrate 504. In one implementation the working fluid has a refractive index greater than 2.0. Suitable working fluids 530 include, without limitation, de-ionized water, methanol, ethanol, silicone oils, heptane, octane, fluorinated silicone oils, dimethylsiloxane, polydimethylsiloxane, hexamethyldisiloxane, and diethylbenzene.


In another implementation, the working fluid 530 is a hydrophobic liquid with a high surface wetting capability. Preferably, its wetting capabilities are sufficient to wet the front as well as the rear surfaces of the shutter assemblies 502. Hydrophobic fluids are capable of displacing water from the surfaces of shutter assemblies 502. In another implementation, the working fluid 530 contains a suspension of particles with diameters in the range of 0.2 to 20 microns. Such particles scatter light to increase the viewing angle of a display. In another implementation the working fluid 530 contains dye molecules in solution for absorbing some or all frequencies of visible light to increase the contrast of the display. In another implementation the fluid contains additives such as ethanol, ionic fluids, BHT or other additives to slightly conduct or in other ways prevent the buildup of static charge on the surfaces of the assemblies


A sheet metal or molded plastic assembly bracket 532 holds the cover plate 522, the substrate 504, the backlight 516 and the other component parts together around the edges. The assembly bracket 532 is fastened with screws or indent tabs to add rigidity to the combined display apparatus 500. In some implementations, the light source 518 is molded in place by an epoxy potting compound. Reflectors 536 help return light escaping from the edges of light guide 516 back into the light guide. Not shown in FIG. 5 are electrical interconnects which provide control signals as well as power to the shutter assemblies 502 and the lamps 518.


Further details and alternate configurations for the display apparatus 500, including manufacturing methods therefore, can be found in U.S. patent application Ser. Nos. 11/361,785 and 11/731,628, incorporated herein by reference in their entireties.


Display apparatus 500 is referred to as the MEMS-up configuration, wherein the MEMS-based light modulators are formed on a front surface of substrate 504, i.e. the surface that faces toward the viewer. The shutter assemblies 502 are built directly on top of the reflective aperture layer 506. In an alternate embodiment of the invention, referred to as the MEMS-down configuration, the shutter assemblies are disposed on a substrate separate from the substrate on which the reflective aperture layer is formed. The substrate on which the reflective aperture layer is formed, defining a plurality of apertures, is referred to herein as the aperture plate. In the MEMS-down configuration, the substrate that carries the MEMS-based light modulators takes the place of the cover plate 522 in display apparatus 500 and is oriented such that the MEMS-based light modulators are positioned on the rear surface of the top substrate, i.e. the surface that faces away from the viewer and toward the back light 516. The MEMS-based light modulators are thereby positioned directly opposite to and across a gap from the reflective aperture layer. The gap can be maintained by a series of spacer posts connecting the aperture plate and the substrate on which the MEMS modulators are formed. In some implementations the spacers are disposed within or between each pixel in the array. The gap or distance that separates the MEMS light modulators from their corresponding apertures is preferably less than 10 microns, or a distance that is less than the overlap between shutters and apertures, such as overlap 416. Further details and alternate embodiments for the MEMS-down display configuration can be found in the U.S. patent application Ser. Nos. 11/361,785, 11/528,191, and 11/731,628 referenced above.


In other embodiments, the roller-based light modulator 220 or the light tap 250, as well as other MEMS-based light modulators, can be substituted for the shutter assemblies 502 within the display assembly 500.


Shutter Manufacturing


A shutter must satisfy mechanical, optical and electrical properties. Mechanically, the shutter film support the load and stress of device under operation. Electrically, the material must be at least minimally conductive to allow electrostatic actuation. Optically, the shutter film must be opaque enough to block light. It is possible to have a single film satisfy all the mechanical, electrical and optical requirements. However, using multiple films in a composite stack offers more design and process latitude.



FIGS. 6A-6E are cross-sectional views of stages of construction of an exemplary composite shutter assembly 600, similar to that shown in FIG. 2A, according to an illustrative embodiment of the invention. FIG. 6A shows a cross sectional detail of a composite shutter assembly 600, according to an illustrative embodiment of the invention. The shutter assembly 600 includes shutter 601, a compliant beam 602, and anchor structure 604 built-up on substrate 603 and aperture layer 606. The elements of the composite shutter assembly include a first mechanical layer 605, a conductor layer 607, a second mechanical layer 609, and an encapsulating dielectric 611. At least one of the mechanical layers 605 or 609 will be deposited to thicknesses in excess of 0.05 microns, as one or both of the mechanical layers will comprise the principle load bearing and mechanical actuation member for the shutter assembly. Candidate materials for the mechanical layers 605 and 609 include, without limitation, metals such as Al, Cu, Ni, Cr, Mo, Ti, Ta, Nb, Nd, or alloys thereof; dielectric materials such as Al2O3, SiO2, Ta2O5, or SixNy; or semiconducting materials such as diamond-like carbon, Si, Ge, GaAs, CdTe or alloys thereof. At least one of the layers, such as conductor layer 607, should be electrically conducting so as to carry charge on to and off of the actuation elements. Candidate materials include, without limitation, Al, Cu, Ni, Cr, Mo, Ti, Ta, Nb, Nd, or alloys thereof or semiconducting materials such as diamond-like carbon, Si, Ge, GaAs, CdTe or alloys thereof, especially when the semiconductors are doped with impurities such as phosphorus, arsenic, boron, or aluminum. FIG. 6A shows a 3 layer sandwich configuration for the composite in which the mechanical layers 605 and 609 with similar thicknesses and mechanical properties are deposited on either side of the conductor layer 607. In some embodiments the sandwich structure helps to ensure that stresses remaining after deposition and/or stresses that are imposed by temperature variations will not cause bending or warping of the shutter assembly 600. For some applications a 2 layer sandwich or 1 layer shutter assembly could be sufficient to meet required performance specifications.


In some implementations, the order of the layers in composite shutter assembly 600 can be inverted, such that the outside of the sandwich is comprised of a conducting layer while the inside of the sandwich is comprised of a mechanical layer.


Further description of materials for use in shutter 601, including the incorporation of materials selected for the absorption or reflection of incident light can be found in U.S. patent application Ser. No. 11/361,785, entitled “Display Apparatus and Methods For Manufacture Thereof,” filed Feb. 23, 2006 incorporated herein by reference in its entirety.


Shutter assembly 600 includes a dielectric layer 611 which can encapsulate or partially cover the shutter assembly. Dielectric coatings can be applied in conformal fashion, such that all bottom, tops, and side surfaces of the shutters and beams are uniformly coated or applied such that the surfaces that are to make contact are coated only. Such thin films can be grown by thermal oxidation and/or by conformal chemical vapor deposition of an insulator such as Al2O3, Cr2O3, TiO2, HfO2, V2O5, Nb2O5, Ta2O5, SiO2, or Si3N4, or by depositing similar materials by means of atomic layer deposition. The dielectric coating layer can be applied with thicknesses in the range of 10 nm to 1 micron. Completely conformal dielectric coatings are not always needed. In some cases, sputtering and evaporation can be used to deposit the dielectric coating onto sidewalls, without covering the underside of the devices.



FIGS. 6B-6E show an exemplary process for building shutter assembly 600, according to an illustrative embodiment of the invention. In many implementations, the shutter assembly is built on top of a pre-existing control matrix, for instance an active matrix array of thin film transistors. The processes used for constructing the control matrix on top of or in conjunction with an aperture layer 606 is described in U.S. patent application Ser. No. 11/361,785, referred to and incorporated above.



FIG. 6B is a cross sectional view of a first step in the process of forming the shutter assembly 600, according to an illustrative embodiment of the invention. As shown in FIG. 6B, a sacrificial layer 613 is deposited and patterned. Novolac resin, or any of the thermoplastic phenol-formaldehyde resins made with an excess of phenol in the reaction, is a preferred sacrificial material. Other candidate sacrificial materials include polymer materials such as polyimide, polyamide, fluoropolymer, benzocyclobutene, polyphenylquinoxylene, parylene, or polynorbornene. These materials are chosen for their ability to planarize rough surfaces, maintain mechanical integrity at processing temperatures in excess of 250° C., and their ease of etch and/or thermal decomposition during removal. Alternate sacrificial layers can be found among the photoresists: polyvinyl acetate, polyvinyl ethylene, polyimides and phenolic or novolac resins, although their use will typically be limited to temperatures below 350° C. An alternate sacrificial layer is SiO2, which can be removed preferentially as long as other electronic or structural layers are resistant to the hydrofluoric acid solutions used for its removal (e.g., Si3N4 is so resistant). Another alternate sacrificial layer is silicon, which can be removed preferentially as long as other electronic and structural layers are resistant to the fluorine plasmas or XeF2 used for its removal (e.g., most metals and/or Si3N4 are so resistant). Yet another alternate sacrificial layer is aluminum, which can be removed preferentially as long as other electronic or structural layers are resistant to strong base solutions, such as concentrated NaOH (e.g., Cr, Ni, Mo, Ta, and Si are so resistant). Still another alternate sacrificial layer is copper, which can be removed preferentially as long as other electronic or structural layers are resistant to nitric or sulfuric acid solutions (e.g., Cr, Ni, and Si are so resistant).


Next the sacrificial layer 613 is patterned to expose holes or vias at the anchor regions 604. The preferred novolac resin material and other polymer resins can be formulated to include photoactive agents—enabling regions exposed through a UV photo-mask to be preferentially removed in a developer solution. Other sacrificial layers 613 can be patterned by coating the sacrificial layer in an additional layer of photoresist, photo-patterning the photoresist, and finally using the photoresist as an etching mask. Other sacrificial layers can be patterned by coating the sacrificial layer with a hard mask, which can be a thin layer of SiO2 or metal such as chromium. A photo-pattern is then transferred to the hard mask by means of photoresist and wet chemical etching. The pattern developed in the hard mask can be very resistant to dry chemical, anisotropic, or plasma etching-techniques which can be used to impart very deep and narrow anchor holes into the sacrificial layer.


After the anchor 604 or via regions have been opened in the sacrificial layer, the exposed and underlying conducting surface 614 can be etched, either chemically or via the sputtering effects of a plasma, to remove any surface oxide layers. Such a contact etching step can improve the ohmic contact between the underlying conductor and the shutter material.


After patterning of the sacrificial layer, any photoresist layers or hard masks can be removed through use of either solvent cleans or acid etching.


Next, in the process for building shutter assembly 600, as shown in FIG. 6C, the shutter materials are deposited. The shutter assembly 600 is composed of multiple thin films 605, 607, and 609. In a preferred embodiment, the first mechanical layer 605 is an amorphous silicon layer, deposited first by PECVD or other low temperature method, followed by a conductor layer 607 comprised of aluminum, followed by a second layer 609 of amorphous silicon. The deposition temperature used for the shutter materials 605, 607, and 609 is below that at which physical degradation occurs for the sacrificial layer. For instance, novalac resin is known to decompose at temperatures above 300° C. The shutter materials 605, 607 and 609 can be deposited at temperatures below 300° C., thus allowing usage of novalac resin as a sacrificial material. Hydrogenated amorphous silicon is a useful mechanical material for layers 605 and 609 since it can be grown to thicknesses in the range of 0.05 to 3 microns, in a relatively stress-free state, by means of plasma-assisted chemical vapor deposition (PECVD) from silane gas at temperatures in the range of 150 to 350° C. Phosphene gas (PH3) is used as a dopant so that the amorphous silicon can be grown with resistivities below 10 Megohm-cm. In alternate embodiments, a similar PECVD technique can be used for the deposition of Si3N4, silicon-rich Si3N4, or SiO2 materials as the mechanical layer 605 or for the deposition of diamond-like carbon, Ge, SiGe, CdTe, or other semiconducting materials for mechanical layer 605. An advantage of the PECVD deposition technique is that the deposition can be quite conformal, that is, it can coat a variety of inclined surfaces or the inside surfaces of narrow via holes. Even if the anchor or via holes which are cut into the sacrificial material present nearly vertical sidewalls, the PECVD technique can provide a continuous coating between the bottom and top horizontal surfaces of the anchor.


In addition to the PECVD technique, alternate techniques available for the growth of shutter layers 605 or 609 include RF or DC sputtering, metal-organic chemical vapor deposition, evaporation, electroplating or electroless plating.


For the conducting layer 607, a metal thin film such as Al is preferred, although alternates such as Cu, Ni, Mo, Ta, Ti, W Cr, or alloys of the preceding can be chosen. The inclusion of such a conducting material serves two purposes. It reduces the overall sheet resistance of the shutter material and it helps to block the passage of visible light through the shutter material. (Amorphous silicon, if grown to thicknesses of less than 2 microns can transmit visible light to some degree.) The conducting material can be deposited either by sputtering or, in a more conformal fashion, by chemical vapor deposition techniques, electroplating, or electroless plating.


The process for building the shutter assembly 600 continues in FIG. 6D. The shutter layers 605, 607, and 609 are photomasked and etched while the sacrificial layer 613 is still on the wafer. First a photoresist material is applied, then exposed through a photomask, and then developed to form an etch mask. Amorphous silicon, silicon nitride, and silicon oxide can then be etched in fluorine-based plasma chemistries. SiO2 mechanical layers can be etched using HF wet chemicals; and any metals in the conductor layers can be etched with either wet chemicals or chlorine-based plasma chemistries.


The pattern shapes applied through the photomask at FIG. 6D influence the mechanical properties, such as stiffness, compliance, and the voltage response in the actuators and shutters of the shutter assembly 600. The shutter assembly 600 includes a compliant beam 602, shown in cross section. Compliant beam 602 is shaped such that the width is less than the total height or thickness of the shutter material. It is preferable to maintain a beam dimensional ratio of at least >1:1, with the beams 602 being taller or thicker in the out of plane direction than they are wide so that the desired direction of motion is more flexible than the undesired directions.


The process for building the shutter assembly 600 continues as depicted in FIG. 6E. The sacrificial layer 613 is removed, which frees-up all moving parts from the substrate 603, except at the anchor points. Novalac sacrificial materials are preferably removed in an oxygen plasma. Other polymer materials used for sacrificial layer 613 can also be removed in an oxygen plasma, or in some cases by thermal pyrolysis. Some sacrificial layers 613 (such as SiO2) can be removed by wet chemical etching or by vapor phase etching.


In a final process, not shown in FIG. 6E but shown in FIG. 6A, a dielectric coating 611 is deposited on some of the exposed surfaces of the shutter. Dielectric coatings 611 can be applied in conformal fashion, such that all bottom, tops, and side surfaces of the shutters 601 and beams 602 are uniformly coated using chemical vapor deposition or nonuniformly. The required conformality and film thickness are determined by the application; the dielectric film on the drive beams need only be thick enough to stand off the actuation voltage when the actuation surfaces make contact during operation. Al2O3 and SiMx are a preferred dielectric coating for layer 611, which are deposited by atomic layer deposition or PECVD respectively to thicknesses in the range of 10 to 100 nanometers.


Finally, anti-stiction coatings can be applied to some of the surfaces of shutters 601 and beams 602. These coatings prevent the unwanted stickiness or adhesion between two independent beams of an actuator, for instance. Applicable coatings include carbon films (both graphite and diamond-like) as well as fluoropolymers, and/or low vapor pressure lubricants. These coatings can be applied by either exposure to a molecular vapor or by decomposition of a precursor compound by means of chemical vapor deposition. Anti-stiction coatings can also be created by the chemical alteration of shutter surfaces, as in the fluoridation, silanization, siloxidation, or hydrogenation of insulating surfaces.


The Sidewall Beams Process


U.S. patent application Ser. No. 11/251,035 describes a number of useful designs for shutter assemblies and actuators. One class of suitable actuators for use in MEMS-based shutter displays includes compliant actuator beams for controlling shutter motion that is transverse to or in-the-plane of the display substrate. The voltage necessary for the actuation of such shutter assemblies decreases as the actuator beams become more compliant. The control of actuated motion also improves if the beams are shaped such that in-plane motion is preferred or promoted with respect to out-of-plane motion. In a preferred design, the compliant actuator beams have a rectangular cross section, such as beam 602 of FIG. 6A, such that the beams are taller or thicker than they are wide.


The stiffness of a long rectangular beam with respect to bending within a particular plane scales with the thinnest dimension of that beam in that plane to the third power. It is of interest, therefore, to reduce the width of the compliant beams as far as possible to reduce the actuation voltages for in-plane motion. When using conventional photolithography equipment to define and fabricate the shutter and actuator structures, however, the minimum width of the beams is usually limited to the resolution of the optics. And although photolithography equipment has been developed for defining patterns in photoresist with features as narrow as 15 nanometers, such equipment is expensive and the areas over which can be patterning can be accomplished in a single exposure are limited. For economical photolithography over large panels of glass, the patterning resolution or minimum feature size is typically limited to 1 micron or 2 microns or greater.



FIGS. 7A-7D are isometric views of stages of construction of an exemplary shutter assembly 700 with narrow sidewall beams, according to an illustrative embodiment of the invention. In particular, FIGS. 7A-7D depict a technique whereby a shutter assembly 700 with compliant actuator beams 718 and 720 can be fabricated at dimensions well below the conventional lithography limits on large substrate panels. The technique of FIGS. 7A-7B is described further in U.S. patent application Ser. No. 11/361,785, referred to above. In the process of FIGS. 7A-7D, the compliant beams of shutter assembly 700 are formed as sidewall features on a mold made from a sacrificial material. The process is referred to as a sidewall beams process.


The process of forming a shutter assembly 700 with sidewall beams begins, as shown in FIG. 7A, with the deposition and patterning of a first sacrificial material 701 on top an aperture layer 725 and substrate 726. The pattern defined in the first sacrificial material creates openings or vias 702 within which anchors for the shutter will eventually be formed. The deposition and patterning of the first sacrificial material 701 is similar in concept, and uses similar materials, as those described for the deposition and patterning described in relation to FIGS. 6A-6E. It is also possible to form the shutter assembly on top of control circuitry and metal interconnects, In such embodiments, the vias 702 can be to the substrate surface or to an element of an electrical circuit so as to control the potential of a portion of the shutter assembly 700 which is in electrical contact to the circuit through the via 702.


The process of forming sidewall beams continues with the deposition and patterning of a second sacrificial material 705. FIG. 7B shows the shape of a mold 703 that is created after patterning of the second sacrificial material 705. The mold 703 also includes the first sacrificial material 701 with its previously defined vias 702. The mold 703 in FIG. 7B includes two distinct horizontal levels: The bottom horizontal level 708 of mold 703 is established by the top surface of the first sacrificial layer 701 and is accessible in those areas where the second sacrificial layer 705 has been etched away. The top horizontal level 710 of the mold 703 is established by the top surface of the second sacrificial layer 705. The mold 703 illustrated in FIG. 7B also includes substantially vertical sidewalls 709.


Materials for use as sacrificial materials 701 and 705 are described above with respect to sacrificial material 613.


The process of forming sidewall beams continues with the deposition and patterning of the shutter materials onto all of the exposed surfaces of the sacrificial mold 703, as depicted in FIG. 7C. The preferred materials for use in shutter 712 are described above with respect to the shutter materials 605, 607, and 609. Alternate shutter materials and/or shutter coatings are described in U.S. patent application Ser. No. 11/361,785, referred to above. The shutter materials are deposited to a thickness of less than about 2 microns. In some implementations, the shutter materials are deposited to have a thickness of less than about 1.5 microns. In other implementations, the shutter materials are deposited to have a thickness of less than about 1.0 microns, and as thin as about 0.10 microns. After deposition, the shutter material (which may be a composite shutter as described above) is patterned, as shown in FIG. 7C. The pattern developed into the photoresist is designed such that shutter material remains in the region of shutter 712 as well as at the anchors 714 and 715.


Particular equipment and chemistries are also chosen for the etching process used at the step shown in FIG. 7C, known in the art as an anisotropic etch. The anisotropic etch of the shutter material is carried out in a plasma atmosphere with a voltage bias applied to the substrate 726, or to an electrode in proximity to the substrate 726. The biased substrate 726 (with electric field perpendicular to the surface of the substrate 726) leads to acceleration of ions toward the substrate 726 at an angle nearly perpendicular to the substrate 726. Such accelerated ions, coupled with the etching chemicals, lead to etch rates that are much faster in a direction that is normal to the plane of the substrate 726 as compared to directions parallel to the substrate 726. Undercut-etching of shutter material in the regions protected by photoresist is thereby substantially eliminated. Along sidewall surfaces 709 of mold 703, which are substantially parallel to the track of the accelerated ions, the shutter material is also substantially protected from the anisotropic etch. Such protected sidewall shutter material will later form compliant beams 716, 718, and 720 for supporting the shutter 712. The anisotropic etch used to form sidewall beams 716, 718, and 720 can be achieved in either RF or DC plasma etching equipment, commonly used in IC or LCD manufacturing. Along other (non-photoresist-protected) horizontal surfaces of the mold, such as top horizontal surface 710 or bottom horizontal surface 708, the shutter material has been completely removed by the etch.


The process of forming sidewall beams is completed with the removal of the remainder of the second sacrificial layer 705 and the first sacrificial layer 701, the result being shown in FIG. 7D. The process of removing sacrificial material is similar to that described with respect to FIG. 6E. The material deposited on the sidewalls 709 of the mold 703 remain as the compliant beams 716, 718, and 720. The compliant load beams 716 mechanically connect the anchors 714 to the shutter 712. The anchors 714 connect to an aperture layer 725. The compliant beams 716, 718, and 720 are tall and narrow. The width of the sidewall beams 716, 718, and 720, as formed from the surface of the mold 703, is similar to the thickness of the shutter material as deposited. In some cases, the beam width at 716 will be the same as the thickness of the horizontal shutter material at 712; in other cases, the beam width will be only about ½ the thickness of the shutter material. The height of the sidewall beams 716, 718, and 720 is determined by the thickness of the second sacrificial material 705, or in other words, by the depth of the mold 703 as created during the patterning step described in relation to FIG. 7B. As long as the thickness of the deposited shutter material is chosen to be less than 2 microns (for many applications the thickness range of 0.1 to 2.0 micron is suitable), the method illustrated in FIGS. 7A-7D is well suited for the production of very narrow beams. Conventional photolithography would limit the patterned features shown in FIGS. 7A, 7B, and 7C to much larger dimensions, for instance allowing minimum resolved features no smaller than 2 microns or 5 microns.



FIG. 7D depicts an isometric view of a shutter assembly 700, formed after the release step in the above-described process, yielding compliant beams with cross sections of high aspect ratio. As long as the thickness of the second sacrificial layer is, for example, greater than 4 times larger than the thickness of the shutter material, the resulting ratio of beam height to beam width will be produced to a similar ratio, i.e. to a ratio greater than 4.


An optional step, not illustrated above but included as part of the process leading to FIG. 7C, involves isotropic etching of the sidewall beam material to separate or decouple the compliant load beams 720 from the compliant drive beams 718. For instance, the shutter material at point 724 has been removed from the sidewall through use of an in isotropic etch. An isotropic etch is one whose etch rate is the same in all directions, so that sidewall material in regions such as point 724 is no longer protected. The isotropic etch can be accomplished in the typical plasma etch equipment as long as a bias voltage is not applied to the substrate. Isotropic etch can also be achieved using wet chemical or vapor phase etching techniques. Prior to this optional 4th masking and etch step, the sidewall beam material existed essentially continuously around the perimeter of the recessed features in mold 703. The 4th mask and etch step is used to separate and divide the sidewall material, forming the distinct beams 718 and 720. The separation of beams at point 724 is achieved through a 4th process of photoresist dispense, and exposure through a mask. The photoresist pattern in this case is designed to protect the sidewall beam material against isotropic etching at all points except at the separation point 724.


As a final step in the sidewall process, an encapsulating dielectric, such as dielectric 611, FIG. 6A, is deposited around the outside surfaces of the sidewall beams, or, at a minimum, on the surfaces of the beams that might touch during operation.


In order to protect the shutter material deposited on sidewalls 709 of the mold 703 and to produce sidewall beams 716 of substantially uniform cross section, some particular process guidelines can be followed. For instance, in FIG. 7B, the sidewalls 709 can be made as vertical as possible. Slopes at the sidewalls 709 and/or exposed surfaces become susceptible to the anisotropic etch. Vertical sidewalls 709 can be produced if the patterning step at FIG. 7B, the patterning of the second sacrificial material 705, is also carried out in anisotropic fashion. The use of an additional photoresist coating or a hard mask in conjunction with patterning of the second sacrificial layer 705 (see the discussion with respect to FIG. 12) makes it possible to employ aggressive plasmas and/or high substrate bias in the anisotropic etch of the second sacrificial material 705, without fear of excessive wear of the photoresist. Vertical sidewalls 709 can also be produced in photo-imageable sacrificial materials, as long as care is taken to control the depth of focus during the UV exposure and excessive shrinkage is avoided during final cure of the resist.


Another process specification that helps during sidewall beam processing regards the conformality of the shutter material deposition. The surfaces of the mold 703 are preferably covered with similar thicknesses of shutter material, regardless or the orientation of those surfaces, either vertical or horizontal. Such conformality can be achieved when depositing with a chemical vapor deposition technique (CVD). In particular, the following conformal techniques can be employed: plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD), and atomic or self-limited layer deposition (ALD). In the above CVD techniques, the growth rate of the thin film can be limited by reaction rates on a surface as opposed to exposing the surface to a directional flux of source atoms. In such conformal deposition techniques, the thickness of material grown on vertical surfaces is preferably at least 50% of the thickness of material grown on horizontal surfaces. Alternatively, shutter materials can be conformally deposited from solution by electroless plating or electroplated, as long as a metal seed layer is provided that coats all surfaces before plating.


A 3-Mask Process


The process leading to the shutter assembly 700 in FIG. 7D was a 4-mask process: meaning the process incorporated 4 distinct photolithography steps wherein a photo-sensitive polymer is exposed by illuminating a desired pattern through a photomask. The photolithography steps, also known as masking steps, are amongst the most expensive in the manufacture of MEMS devices, and so it is desirable to create a manufacturing process with a reduced number of masking steps.


In order to enable a 3-mask shutter assembly process, it is helpful to consider variations to the structure of the shutter assembly. The useful structural changes will be illustrated by 4 alternate shutter assemblies 900, 1100, 1400 and 1500 in FIGS. 9, 11, 14 and 15 respectively.


In FIG. 7, the load beam 720 of shutter assembly 700 attaches to the shutter 712 at one end and to the load beam anchor 714 at the other end. The drive beam 718 attaches to the drive beam anchor 715 at one end while the other end is left unattached or free to move. It can be stated that the purpose of the 4th mask in the process leading to shutter assembly 700 in FIG. 7C is to terminate or create the freely moving end for the drive beam 718. It is useful to create this freely moving end for drive beam 718, since the compliant shape of this beam helps to reduce the voltage needed for shutter actuation.


In various embodiments of this invention, however, the compliant drive beams need not have a photo-lithographically terminated freely moving end. In the shutter assembly 852 illustrated in FIG. 8, for example, the drive beams 856 and 857 are patterned in the shape of loops.



FIG. 8 is a plan view of exemplary shutter assembly 852 incorporating a looped drive beam, according to an illustrative embodiment of the invention. The shutter assembly 852 includes dual compliant actuator assembly 854, which is functionally similar to the actuator 404 designed for the shutter assembly 400, described above with respect to FIGS. 4A and 4B. The actuator assembly 854 includes compliant drive beams 856 and 857 along with compliant load beams 858 and 859. The load beams 858 and 859 support the shutter 860 on one end and are attached to load beam anchors 862 and 863, respectively, at the other end. The drive beams 856 and 857 are each formed into a loop wherein each end of the drive beam is attached to a common anchor 864. For each loop, there is a section of outgoing beam which is substantially parallel to a returning section of the same beam. The lengths of these two loop sections are substantially equal. When formed in a sidewall beam process, the stresses which would tend to deform the outgoing section of the looped drive beam 856 or 857 will mirror or oppose the stresses along the returning section of the beam.


The compliant beams that make up the loops 856 and 857 can be completely defined using only the first 3 mask steps described above with respect to shutter assembly 700. The 4th photo-lithography step, wherein the drive beam is separated from the load beam, is not required to manufacture the looped beams 856 and 857. The loops completely enclose or form the periphery around the boundary of a space. Since there is no termination in the loops, as is expected for the boundary around an enclosed space, the 4th photo-lithography step is not required.


In order to eliminate the 4th mask completely, a method is sought whereby other compliant beams in the structure are also made to incorporate shapes analogous to loops. In particular, a termination of a sidewall beam is not necessary as long as the beam forms a boundary which completely encloses a space. For example, load beam 858 in shutter assembly 852 is terminated at the load beam anchor 862. So, in this embodiment, a 4th masking step would be required to terminate the beam 858 at the anchor 862. Designs are therefore sought where the load beam 858 becomes part of a continuous boundary around an enclosed space.



FIG. 9 is an isometric view of exemplary shutter assembly 900 built according to a 3-mask process, according to an illustrative embodiment of the invention. The shutter assembly 900 can be manufactured with only 3 photo-lithography steps. Those 3 masking steps are referred to as an anchor definition step, a mold definition step, and a shutter definition step, which are used to develop patterns into the first sacrificial layer, the second sacrificial layer, and the shutter material, respectively. As described with respect to shutter assembly 700, the compliant beams are formed at the sidewalls of the mold, also referred to as the second sacrificial layer. The shutter assembly 900 can be fabricated within a 3-mask process because the beams are designed as closed boundaries that enclose the periphery of features in the mold.


The shutter assembly 900 comprises a shutter 902, stiffening ribs 903, load beams 904, load beam anchors 906, drive beams 908, and drive beam anchors 910. The shutter assembly additionally includes peripheral beams 912 as well as peripheral anchors 914. The load beams 904 and the drive beams 908 together form a set of compliant actuator beams. When a voltage is imposed between these two beams 904 and 908, the shutter 902 is caused to move towards an open or closed position.


The drive beams 908 are each formed into a loop, which is attached to the substrate at anchor 910. The drive beams 908 enclose the space within the loop.


The load beams 904 extend from the shutter 902 to the load beam anchors 906. The peripheral beams 912 extend from the load beam anchors 906 to the peripheral anchors 914. The peripheral beams also connect together the peripheral anchors 914. The peripheral beams 912 play neither an active mechanical function nor an optical function within shutter assembly 900. The peripheral beams 912 serve to extend the geometry of the load beams 904 so that these compliant beams 904 and 912 can become connected. Together, the load beams 904 and peripheral beams 912 form a boundary which completely encloses a space.



FIG. 10 is an isometric view of an exemplary mold 1000, designed to enable the manufacture of shutter assembly 900 of FIG. 9, according to an illustrative embodiment of the invention. The mold 1000 is formed from the second sacrificial material, and is patterned as part of the second photo-lithography step in the fabrication of shutter assembly 900. FIG. 10 shows the outline of the sacrificial mold before the shutter material has been deposited. The outlines of the shutter 902 are therefore not present in FIG. 10. The mold 1000 does, however, comprise rib indentations 1003 that will be used to shape the stiffening ribs 903 of shutter assembly 900.


The mold shape is generally comprised of three kinds of surfaces. The mold includes sidewalls, upon which the compliant beams will be formed, as well as upper and lower surfaces. The lower surfaces of the mold are the horizontal surfaces formed by the interface between the first and second sacrificial materials. The upper surfaces of the mold are horizontal surfaces in a plane most distant from the substrate.


A mold generally defines two kinds of shapes, both of which are enclosed or bounded by sidewalls upon which the compliant beams can be formed. A “mesa,” as used herein, is a space defined by a presence of mold material enclosed by mold sidewalls. A “recess,” as used herein, is defined by a space of mold material absence, enclosed by mold sidewalls.


The mold 1000 comprises mesa shapes 1008. The sidewalls which enclose the mesas 1008 will be used to form the drive beams 908. The drive beams 908 will thereby have the shape of loops without termination.


The mold 1000 also comprises a recess shape 1004. The sidewalls which enclose this recess 1004 are used to form the load beams 904.


The mold 1000 also comprises load beam anchor holes 1006. The anchor holes 1006 were formed in a previous step as part of the first sacrificial layer. The mold also comprises drive beam anchor holes 1010.


Both the load beams 904 and the drive beams 908 in shutter assembly 900 are therefore formed as boundaries that completely enclose a space. The spaces are formed from one of either a mesa shape or a recess shape in the mold 1000. In particular, load beams 904 and drive beams 908 are formed as boundaries enclosing spaces 1004 and 1008, respectively. The boundaries of the shapes that form the load beams 904 and the drive beams 908 do not intersect. The loop for the drive beam 908 is completely enclosed within the loop that forms the load beam 904 (which is a combination of beams 904 and 912).



FIG. 11 is an isometric view of exemplary shutter assembly 1100, built according to a 3-mask process, according to an illustrative embodiment of the invention. The shutter assembly 1100 can be manufactured with only 3 photo-lithography steps, similar to those described with respect to shutter assemblies 700 and 900 of FIGS. 7 and 9, respectively. As described above with respect to shutter assembly 700, compliant beams are formed at the sidewalls of the mold, also referred to as the second sacrificial layer. The shutter assembly 1100 can be fabricated within a 3-mask process because the beams are designed as closed boundaries that enclose the periphery of features in the mold.


The shutter assembly 1100 comprises a shutter 1102, load beams 1104, load beam anchors 1106, drive beams 1108, and drive beam anchors 1110. The load beams 1104 and the drive beams 1108 together form a set of compliant actuator beams. The shutter assembly additionally comprises a set of peripheral beams 1112.


The drive beams 1108 are formed into a loop, which is attached to the substrate at anchor 1110. The drive beams 1108 enclose the space within the loop.


The load beams 1104 extend from the shutter to the load beam anchors 1106. The peripheral beams 1112 extend between the load beam anchors 1106. The peripheral beams 1112 play neither an active mechanical function nor an optical function within shutter assembly 1100. The peripheral beams 1112 serve to extend the geometry of the load beams 1104 so that these compliant beams 1104 and 1112 can become connected. Together, the load beams 1104 and peripheral beams 1112 form a boundary which completely encloses a space.



FIG. 12 is an isometric view of exemplary mold 1200, designed to enable the manufacture of shutter assembly 1100 of FIG. 11, according to an illustrative embodiment of the invention. The mold 1200 is formed from the second sacrificial material, and is patterned as part of the second photo-lithography step in the fabrication of shutter assembly 1100. FIG. 12 shows the outline of the sacrificial mold before the shutter material has been deposited. The outlines of the shutter 1102 are therefore not present in FIG. 10. The mold 1200 does, however, comprise rib indentations 1203 that will be used to shape the stiffening ribs 1103 shown in shutter assembly 1100.


The mold 1200 includes recesses 1208. The recess shape 1208 is the inverse of the mesa shape 1008 employed for drive beams in mold 1000. The sidewalls which enclose the recesses 1208 will be used to form the drive beams 1108. The drive beams 1108 will thereby have the shape of loops without termination.


The mold 1200 also includes a recess 1204. The sidewalls of this recess are used to form the load beams 1104.


The mold 1200 also includes load beam anchor holes 1206. The anchor holes were formed in a previous step as part of the first sacrificial layer. The mold 1200 also comprises drive beam anchor holes 1210.


In this particular embodiment, the load beam recess 1204 used to form the load beams 1104 is connected or merged with the recesses 1203 used to form the ribs 1103.


The boundaries of the shapes that form the load beams 1104 and the drive beams 1108 do not intersect. The loop for the drive beam 1108 encloses a shape that lies outside of the shape that forms the load beam 1104 (which is a combination of beams 1104 and 1112).


For a 3-mask process, two different types of enclosed areas need to be defined: load beams 904 and drive beams 908. These enclosed boundaries can either define an isolated area of mold polymer (a mesa), or they can define an area where the resist is removed (a recess). Depending on the choice, the drive beams and load beams will be fabricated either on side of a recess or the side of a mesa. FIG. 14 shows an embodiment 1400 where the load beams 1404 and drive beams 1408 are formed on the side of a hole. FIG. 15 shows an embodiment 1500 where the load beams 1504 and drive beams 1508 are formed on the side of a mesa. While either embodiment is effective, the choice of polymer and fab equipment may make it easier to pattern recesses rather than mesa or mesa rather than recesses. Similarly the area outside the display active area can either have resist present or be cleared of resist. Often it is easier to do the third masking step on substrates in which in which the field area is co-planar with the active area of the display, in which case a third closed boundary may be needed around the shutter assembly perimeter. Two possible embodiments of this third closed boundary are illustrated in FIGS. 14 and 15 as elements 1412 and 1512, respectively. Certain polymers may have high stress or high shrinkage or swelling upon processing and cause problems if left as large continuous sheets in the perimeter area of the display. In this case, the mold mask can be used to pattern dummy features in perimeter area to break up continuous areas of resist and lower the film stress. FIG. 16 illustrates one possible embodiment 1600 of stress relief features 1616.


An additional consideration when defining the enclosed mold boundaries is whether the shutter should be fabricated on the top of the mold polymer (on a mesa) on in an area where the mold resist is cleared away (in the bottom of a recess). FIGS. 14 and 15 show shutters 1402 and 1502 fabricated on the bottom of as recess; as compared to FIGS. 9 and 11, where shutters 902 and 1102 are fabricated on the top of a mesa. Again, both options are acceptable, but final device specifications may make one embodiment preferable over the other.



FIG. 13 is an isometric view of two connected exemplary shutter assemblies 1300 built according to a 3-mask process, according to an illustrative embodiment of the invention. The shutter assembly 1300 can be manufactured with only 3 photo-lithography steps, similar to those described with respect to shutter assemblies 700 and 900 of FIGS. 7 and 9, respectively. As described above with respect to shutter assembly 700, compliant beams are formed at the sidewalls of the mold, also referred to as the second sacrificial layer. The shutter assembly 1300 can be fabricated within a 3-mask process because the beams are designed as closed boundaries that enclose the periphery of features in the mold.


The shutter assembly 1300 comprises a shutter 1302, load beams 1304, load beam anchors 1306, drive beams 1308, and drive beam anchors 1310. The load beams 1304 and the drive beams 1308 together form a set of compliant actuator beams. The shutter assembly additionally comprises a set of peripheral beams 1312.


The drive beams 1308 are each formed into a loop, which is attached to the substrate at anchor 1310. The drive beams 1308 enclose the space within the loop.


The load beams 1304 extend from the shutter 1302 to the load beam anchors 1306. The peripheral beams extend between the load beam anchors 1306. The peripheral beams 1312 play neither an active mechanical function nor an optical function within shutter assembly 1300. The peripheral beams 1312 serve to extend the geometry of the load beams 1304 so that these compliant beams can become connected. Together, the load beams 1304 and peripheral beams 1312 form a boundary which completely encloses a space.


In shutter assembly 1300, the peripheral beams 1312 in many cases are used to connect between load beam anchors 1306 that correspond to two different or neighboring shutter assemblies. The load beams 1304 along with peripheral beams 1312 together form a continuous boundary that encloses a space. The space which is enclosed by the beams 1304 and 1312 comprises two shutter assemblies. In alternate embodiments, a large number of shutter assemblies (>100) can be enclosed by a single continuous compliant beam. The compliant beam will be attached to the substrate at multiple points, preferably with at least one attachment point or anchor corresponding to each of the shutter assemblies in the group. The load beams 1304 for each of the corresponding shutter assemblies can be formed from the same loop that encloses multiple shutter assemblies.


The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative, rather than limiting of the invention.

Claims
  • 1. A MEMS device comprising: a substrate; anda first beam having a height to width aspect ratio of at least 4:1, wherein the first beam completely encloses the boundary of a space in a plane parallel to the plane of the substrate, and wherein at least a portion of the first beam forms at least a portion of an actuator,wherein the height of the beam is in a direction orthogonal to the plane of the substrate and the width of the beam is in a direction parallel to the plane of the substrate.
  • 2. The MEMS device of claim 1, wherein the first beam forms a loop.
  • 3. The MEMS device of claim 1, comprising a mechanical light modulator supported over a substrate by the first beam.
  • 4. The MEMS device of claim 1, comprising a mechanical light modulator, wherein the actuator is configured for moving the mechanical light modulator to modulate light.
  • 5. The MEMS device of claim 4, wherein the first beam is a compliant beam.
  • 6. The MEMS device of claim 1, comprising an anchor connecting the first beam to the substrate.
  • 7. The MEMS device of claim 1, comprising a second beam, wherein the first and second beam enclose respective, non-intersecting spaces.
  • 8. The MEMS device of claim 1, comprising a second beam, wherein the second beam encloses a space that is completely enclosed by the first beam.
  • 9. The MEMS device of claim 1, wherein the width of the first beam is no greater than 2 microns.
  • 10. The MEMS device of claim 1 further comprising a plurality of beams with height to width aspect ratios of at least 4:1, wherein each of the beams completely encloses the boundary of respective spaces.
  • 11. A method of manufacturing a MEMS device, comprising: forming a first beam to have a height to width aspect ratio of at least 4:1, coupled to the substrate such that the first beam completely encloses the boundary of a space within a plane parallel to the plane of the substrate, and such that at least a portion of the first beam forms at least a portion of an actuator,wherein the height of the beam is in a direction orthogonal to the plane of the substrate and the width of the beam is in a direction parallel to the plane of the substrate.
  • 12. The method of claim 11, wherein forming the first beam comprises: depositing a mold material onto a sacrificial layer;etching a shape into the mold material to form a mold having at least one sidewall and at least one lower horizontal surface;depositing material onto the etched mold such that the deposited material adheres to at least the side walls and the lower horizontal surface of the etched mold;etching away a portion of the deposited material to remove the deposited material from the lower horizontal surface while leaving substantially all of the material deposited on the sidewalls intact; andremoving the mold such that material remaining on the sidewalls forms the first beam.
  • 13. The method of claim 12, wherein the sidewalls comprise walls of a mesa formed in the mold, and the first beam encloses the mesa.
  • 14. The method of claim 12, wherein the sidewalls comprise walls of a recess formed in the mold, and the first beam encloses the recess.
  • 15. The method of claim 12, wherein the mold material is deposited on top of a layer of sacrificial material, the method further comprising removing the sacrificial material to release the first beam.
  • 16. The method of claim 12, wherein the mold further comprises an upper horizontal surface, and the material deposited on the mold adheres to the upper horizontal surface, the method further comprising: applying a mask to the upper horizontal surface prior to etching away the deposited material such that a portion of the material deposited on the upper horizontal surface remains on the upper horizontal surface after the etch to form a mechanical light modulator.
  • 17. The method of claim 16, further comprising, prior to etching the shape into the mold, etching anchor holes into the mold material, and wherein the material deposited onto the mold fills the anchor holes to form anchors.
  • 18. The method of claim 17, wherein formation of the anchors, first beam, and the mechanical light modulator requires the utilization of no more than three photolithographic masks.
  • 19. The method of claim 12, wherein the MEMS device comprises a mechanical light modulator and an anchor, and the first beam supports the mechanical light modulator over a substrate and connects the mechanical light to the substrate via the anchor, the method comprising utilizing no more than three photolithographic masks.
REFERENCE TO RELATED APPLICATIONS

This application is a national stage filing under 35 U.S.C. §371 of International Application PCT/US2009/062252, filed on Oct. 27, 2009, which claims the benefit of the filing date under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/108,783, filed on Oct. 27, 2008, entitled “MEMS Anchors”, which is incorporated by reference herein in its entirety. This application also claims the benefit of U.S. Provisional Patent Application Ser. No. 61/109,045, filed on Oct. 28, 2008, entitled “Manufacturing Structure and Process for Compliant Mechanisms”, which is incorporated by reference herein in its entirety. International Application No. PCT/US2009/062252 was published under PCT Article 21(2) in English.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2009/062252 10/27/2009 WO 00 7/7/2011
Publishing Document Publishing Date Country Kind
WO2010/062616 6/3/2010 WO A
US Referenced Citations (763)
Number Name Date Kind
3864582 Keeler Feb 1975 A
4067043 Perry Jan 1978 A
4074253 Nadir Feb 1978 A
4421381 Ueda et al. Dec 1983 A
4559535 Watkins et al. Dec 1985 A
4563836 Woodruff et al. Jan 1986 A
4564836 Vuilleumier et al. Jan 1986 A
4582396 Bos et al. Apr 1986 A
4673253 Tanabe et al. Jun 1987 A
4728936 Guscott et al. Mar 1988 A
4744640 Phillips May 1988 A
4889603 DiSanto et al. Dec 1989 A
4958911 Beiswenger et al. Sep 1990 A
4991941 Kalmanash Feb 1991 A
5005108 Pristash et al. Apr 1991 A
5025346 Tang et al. Jun 1991 A
5025356 Gawad Jun 1991 A
5042900 Parker Aug 1991 A
5044734 Sperl et al. Sep 1991 A
5050946 Hathaway et al. Sep 1991 A
5061049 Hornbeck Oct 1991 A
5062689 Koehler Nov 1991 A
5078479 Vuilleumier Jan 1992 A
5093652 Bull et al. Mar 1992 A
5096279 Hornbeck et al. Mar 1992 A
5128787 Blonder Jul 1992 A
5136480 Pristash et al. Aug 1992 A
5136751 Coyne et al. Aug 1992 A
5142405 Hornbeck Aug 1992 A
5184248 De Vaan et al. Feb 1993 A
5184428 Feldt et al. Feb 1993 A
5198730 Vancil Mar 1993 A
5202950 Arego et al. Apr 1993 A
5233385 Sampsell Aug 1993 A
5233459 Bozler et al. Aug 1993 A
5245454 Blonder Sep 1993 A
5266612 Kim et al. Nov 1993 A
5278652 Urbanus et al. Jan 1994 A
5280277 Hornbeck Jan 1994 A
5319061 Ramaswamy Jun 1994 A
5319491 Selbrede Jun 1994 A
5339116 Urbanus et al. Aug 1994 A
5339179 Rudisill et al. Aug 1994 A
5359345 Hunter Oct 1994 A
5379135 Nakagaki et al. Jan 1995 A
5393710 Park et al. Feb 1995 A
5396350 Beeson et al. Mar 1995 A
5405490 Park et al. Apr 1995 A
5416631 Yagi May 1995 A
5440197 Gleckman Aug 1995 A
5452024 Sampsell Sep 1995 A
5461411 Florence et al. Oct 1995 A
5465175 Woodgate et al. Nov 1995 A
5467104 Furness, III Nov 1995 A
5477086 Rostoker et al. Dec 1995 A
5479279 Barbier et al. Dec 1995 A
5491347 Allen et al. Feb 1996 A
5493439 Engle Feb 1996 A
5497172 Doherty et al. Mar 1996 A
5497258 Ju et al. Mar 1996 A
5499127 Tsubota et al. Mar 1996 A
5504389 Dickey Apr 1996 A
5504614 Webb et al. Apr 1996 A
5510824 Nelson Apr 1996 A
5517341 Kim et al. May 1996 A
5517347 Sampsell May 1996 A
5519240 Suzuki May 1996 A
5519565 Kalt et al. May 1996 A
5523803 Urbanus et al. Jun 1996 A
5526051 Gove et al. Jun 1996 A
5528262 McDowall et al. Jun 1996 A
5548301 Kornher et al. Aug 1996 A
5548670 Koike Aug 1996 A
5552925 Worley Sep 1996 A
5559389 Spindt et al. Sep 1996 A
5568964 Parker et al. Oct 1996 A
5578185 Bergeron et al. Nov 1996 A
5579035 Beiswenger Nov 1996 A
5579240 Buus Nov 1996 A
5591049 Dohnishi Jan 1997 A
5596339 Furness, III Jan 1997 A
5596369 Chau Jan 1997 A
5613751 Parker et al. Mar 1997 A
5618096 Parker et al. Apr 1997 A
5619266 Tomita et al. Apr 1997 A
5622612 Mihara et al. Apr 1997 A
5629784 Abileah et al. May 1997 A
5629787 Tsubota et al. May 1997 A
5655832 Pelka et al. Aug 1997 A
5655838 Ridley et al. Aug 1997 A
5659327 Furness, III Aug 1997 A
5663917 Oka et al. Sep 1997 A
5666226 Ezra et al. Sep 1997 A
5677749 Tsubota et al. Oct 1997 A
5684354 Gleckman Nov 1997 A
5687465 Hinata et al. Nov 1997 A
5691695 Lahiff Nov 1997 A
5694227 Starkweather Dec 1997 A
5724062 Hunter Mar 1998 A
5731802 Aras et al. Mar 1998 A
5745193 Urbanus et al. Apr 1998 A
5745203 Valliath et al. Apr 1998 A
5745281 Yi et al. Apr 1998 A
5745284 Goldberg et al. Apr 1998 A
5771321 Stern Jun 1998 A
5781331 Carr et al. Jul 1998 A
5781333 Lanzillotta et al. Jul 1998 A
5784189 Bozler et al. Jul 1998 A
5794761 Renaud et al. Aug 1998 A
5798746 Koyama Aug 1998 A
5801792 Smith et al. Sep 1998 A
5808800 Handschy et al. Sep 1998 A
5810469 Weinreich Sep 1998 A
5815134 Nishi Sep 1998 A
5835255 Miles Nov 1998 A
5835256 Huibers Nov 1998 A
5854872 Tai Dec 1998 A
5867302 Fleming Feb 1999 A
5876107 Parker et al. Mar 1999 A
5884872 Greenhalgh Mar 1999 A
5889625 Chen et al. Mar 1999 A
5894686 Parker et al. Apr 1999 A
5895115 Parker et al. Apr 1999 A
5917692 Schmitz et al. Jun 1999 A
5921652 Parker et al. Jul 1999 A
5923480 Labeye Jul 1999 A
5926591 Labeye et al. Jul 1999 A
5936596 Yoshida et al. Aug 1999 A
5943223 Pond Aug 1999 A
5953469 Zhou Sep 1999 A
5959763 Bozler et al. Sep 1999 A
5963367 Aksyuk et al. Oct 1999 A
5973727 McGrew et al. Oct 1999 A
5975711 Parker et al. Nov 1999 A
5986628 Tuenge et al. Nov 1999 A
5986796 Miles Nov 1999 A
5986828 Wood et al. Nov 1999 A
5990990 Crabtree Nov 1999 A
5994204 Young et al. Nov 1999 A
5995688 Aksyuk et al. Nov 1999 A
6008781 Furness, III Dec 1999 A
6008929 Akimoto et al. Dec 1999 A
6028656 Buhrer et al. Feb 2000 A
6030089 Parker et al. Feb 2000 A
6034807 Little et al. Mar 2000 A
6040796 Matsugatani et al. Mar 2000 A
6040937 Miles Mar 2000 A
6046836 Tuchman Apr 2000 A
6046840 Huibers Apr 2000 A
6049317 Thompson et al. Apr 2000 A
6055090 Miles Apr 2000 A
6069676 Yuyama May 2000 A
6079838 Parker et al. Jun 2000 A
6111560 May Aug 2000 A
6130527 Bontempo et al. Oct 2000 A
6130735 Hatanaka et al. Oct 2000 A
6137313 Wong et al. Oct 2000 A
6154586 MacDonald et al. Nov 2000 A
6158867 Parker et al. Dec 2000 A
6162657 Schiele et al. Dec 2000 A
6168395 Quenzer et al. Jan 2001 B1
6172657 Kamakura et al. Jan 2001 B1
6172797 Huibers Jan 2001 B1
6174064 Kalantar et al. Jan 2001 B1
6195196 Kimura et al. Feb 2001 B1
6201633 Peeters et al. Mar 2001 B1
6201664 Le et al. Mar 2001 B1
6206550 Fukushima et al. Mar 2001 B1
6215536 Ebihara et al. Apr 2001 B1
6219119 Nakai Apr 2001 B1
6225991 McKnight May 2001 B1
6227677 Willis May 2001 B1
6239777 Sugahara et al. May 2001 B1
6249169 Okada Jun 2001 B1
6249269 Blalock et al. Jun 2001 B1
6249370 Takeuchi et al. Jun 2001 B1
6266240 Urban et al. Jul 2001 B1
6275320 Dhuler et al. Aug 2001 B1
6282951 Loga et al. Sep 2001 B1
6285270 Lane et al. Sep 2001 B1
6288824 Kastalsky Sep 2001 B1
6288829 Kimura Sep 2001 B1
6295054 McKnight Sep 2001 B1
6296383 Henningsen Oct 2001 B1
6296838 Bindra et al. Oct 2001 B1
6300154 Clark et al. Oct 2001 B2
6300294 Robbins et al. Oct 2001 B1
6317103 Furness, III Nov 2001 B1
6323834 Colgan et al. Nov 2001 B1
6329967 Little et al. Dec 2001 B1
6329971 McKnight Dec 2001 B2
6329974 Walker et al. Dec 2001 B1
6360033 Lee et al. Mar 2002 B1
6367940 Parker et al. Apr 2002 B1
6388661 Richards May 2002 B1
6392736 Furukawa et al. May 2002 B1
6402335 Kalantar et al. Jun 2002 B1
6402355 Kinouchi Jun 2002 B1
6404942 Edwards et al. Jun 2002 B1
6407851 Islam et al. Jun 2002 B1
6411423 Ham Jun 2002 B2
6424329 Okita Jul 2002 B1
6424388 Colgan et al. Jul 2002 B1
6428173 Dhuler et al. Aug 2002 B1
6429625 LeFevre et al. Aug 2002 B1
6429628 Nakagawa Aug 2002 B2
6459467 Hashimoto et al. Oct 2002 B1
6471879 Hanson et al. Oct 2002 B2
6473220 Clikeman et al. Oct 2002 B1
6476886 Krusius et al. Nov 2002 B2
6483613 Woodgate et al. Nov 2002 B1
6486997 Bruzzone et al. Nov 2002 B1
6498685 Johnson Dec 2002 B1
6504985 Parker et al. Jan 2003 B2
6507138 Rodgers et al. Jan 2003 B1
6508563 Parker et al. Jan 2003 B2
6514111 Ebihara et al. Feb 2003 B2
6523961 Ilkov et al. Feb 2003 B2
6529250 Murakami et al. Mar 2003 B1
6529265 Henningsen Mar 2003 B1
6531329 Asakura et al. Mar 2003 B2
6531947 Weaver et al. Mar 2003 B1
6532044 Conner et al. Mar 2003 B1
6535256 Ishihara et al. Mar 2003 B1
6535311 Lindquist Mar 2003 B1
6556258 Yoshida et al. Apr 2003 B1
6556261 Krusius et al. Apr 2003 B1
RE38108 Chee et al. May 2003 E
6559827 Mangerson May 2003 B1
6567063 Okita May 2003 B1
6567138 Krusius et al. May 2003 B1
6574033 Chui et al. Jun 2003 B1
6576887 Whitney et al. Jun 2003 B2
6582095 Toyoda Jun 2003 B1
6583915 Hong et al. Jun 2003 B1
6589625 Kothari et al. Jul 2003 B1
6591049 Williams et al. Jul 2003 B2
6593677 Behin et al. Jul 2003 B2
6600474 Heines et al. Jul 2003 B1
6621488 Takeuchi et al. Sep 2003 B1
6626540 Ouchi et al. Sep 2003 B2
6633301 Dallas et al. Oct 2003 B1
6639570 Furness, III Oct 2003 B2
6639572 Little et al. Oct 2003 B1
6650455 Miles Nov 2003 B2
6650822 Zhou Nov 2003 B1
6664779 Lopes et al. Dec 2003 B2
6666561 Blakley Dec 2003 B1
6671078 Flanders et al. Dec 2003 B2
6674562 Miles Jan 2004 B1
6677709 Ma et al. Jan 2004 B1
6677936 Jacobsen et al. Jan 2004 B2
6678029 Suzuki Jan 2004 B2
6680792 Miles Jan 2004 B2
6687040 Kimura Feb 2004 B2
6687896 Royce et al. Feb 2004 B1
6690422 Daly et al. Feb 2004 B1
6697035 Sugahara et al. Feb 2004 B2
6698348 Bloss Mar 2004 B1
6698349 Komata Mar 2004 B2
6700554 Ham et al. Mar 2004 B2
6701039 Bourgeois et al. Mar 2004 B2
6707176 Rodgers Mar 2004 B1
6710008 Chang et al. Mar 2004 B2
6710538 Ahn et al. Mar 2004 B1
6710908 Miles et al. Mar 2004 B2
6710920 Mashitani et al. Mar 2004 B1
6712071 Parker Mar 2004 B1
6712481 Parker et al. Mar 2004 B2
6731355 Miyashita May 2004 B2
6731492 Goodwin-Johansson May 2004 B2
6733354 Cathey et al. May 2004 B1
6738177 Gutierrez et al. May 2004 B1
6741377 Miles May 2004 B2
6746886 Duncan et al. Jun 2004 B2
6749312 Parker et al. Jun 2004 B2
6750930 Yoshii et al. Jun 2004 B2
6752505 Parker et al. Jun 2004 B2
6755534 Veligdan et al. Jun 2004 B2
6755547 Parker Jun 2004 B2
6760081 Takagi Jul 2004 B2
6760505 Street et al. Jul 2004 B1
6762743 Yoshihara et al. Jul 2004 B2
6762868 Liu et al. Jul 2004 B2
6764796 Fries Jul 2004 B2
6774964 Funamoto et al. Aug 2004 B2
6775048 Starkweather et al. Aug 2004 B1
6778162 Kimura et al. Aug 2004 B2
6778228 Murakami et al. Aug 2004 B2
6778248 Ootaguro et al. Aug 2004 B1
6785454 Abe Aug 2004 B2
6787969 Grade et al. Sep 2004 B2
6788371 Tanada et al. Sep 2004 B2
6794119 Miles Sep 2004 B2
6795064 Walker et al. Sep 2004 B2
6796668 Parker et al. Sep 2004 B2
6798935 Bourgeois et al. Sep 2004 B2
6800996 Nagai et al. Oct 2004 B2
6809851 Gurcan Oct 2004 B1
6819386 Roosendaal et al. Nov 2004 B2
6819465 Clikeman et al. Nov 2004 B2
6822734 Eidelman et al. Nov 2004 B1
6825470 Bawolek et al. Nov 2004 B1
6825499 Nakajima et al. Nov 2004 B2
6827456 Parker et al. Dec 2004 B2
6831678 Travis Dec 2004 B1
6832511 Samoto et al. Dec 2004 B2
6835111 Ahn et al. Dec 2004 B2
6844959 Huibers et al. Jan 2005 B2
6846082 Glent-Madsen et al. Jan 2005 B2
6846089 Stevenson et al. Jan 2005 B2
6847425 Tanada et al. Jan 2005 B2
6847428 Sekiguchi et al. Jan 2005 B1
6852095 Ray Feb 2005 B1
6857751 Penn et al. Feb 2005 B2
6859625 Sawada Feb 2005 B2
6862072 Liu et al. Mar 2005 B2
6863219 Jacobsen et al. Mar 2005 B1
6864618 Miller et al. Mar 2005 B2
6867192 Armour et al. Mar 2005 B1
6867896 Miles Mar 2005 B2
6873311 Yoshihara et al. Mar 2005 B2
6879307 Stern Apr 2005 B1
6886956 Parker et al. May 2005 B2
6887202 Currie et al. May 2005 B2
6888678 Nishiyama et al. May 2005 B2
6889565 DeConde et al. May 2005 B2
6893677 Yamada et al. May 2005 B2
6897164 Baude et al. May 2005 B2
6897843 Ayres et al. May 2005 B2
6900072 Patel et al. May 2005 B2
6906847 Huibers et al. Jun 2005 B2
6911891 Qiu et al. Jun 2005 B2
6911964 Lee et al. Jun 2005 B2
6912082 Lu et al. Jun 2005 B1
6919981 Clikeman et al. Jul 2005 B2
6934080 Saccomanno et al. Aug 2005 B2
6936013 Pevoto Aug 2005 B2
6936968 Cross et al. Aug 2005 B2
6939013 Asao Sep 2005 B2
6940631 Ishikawa Sep 2005 B2
6943495 Ma et al. Sep 2005 B2
6947107 Yoshii et al. Sep 2005 B2
6947195 Ohtaka et al. Sep 2005 B2
6950240 Matsuo Sep 2005 B2
6952301 Huibers Oct 2005 B2
6953375 Ahn et al. Oct 2005 B2
6961167 Prins et al. Nov 2005 B2
6962418 Utsumi et al. Nov 2005 B2
6962419 Huibers Nov 2005 B2
6963330 Sugahara et al. Nov 2005 B2
6965375 Gettemy et al. Nov 2005 B1
6967698 Tanoue et al. Nov 2005 B2
6967763 Fujii et al. Nov 2005 B2
6969635 Patel et al. Nov 2005 B2
6970227 Kida et al. Nov 2005 B2
6972889 Goodwin-Johansson et al. Dec 2005 B2
6977710 Akiyama et al. Dec 2005 B2
6980349 Huibers et al. Dec 2005 B1
6985205 Chol et al. Jan 2006 B2
6992375 Robbins et al. Jan 2006 B2
6996306 Chen et al. Feb 2006 B2
7004610 Yamashita et al. Feb 2006 B2
7004611 Parker et al. Feb 2006 B2
7012726 Miles Mar 2006 B1
7012732 Miles Mar 2006 B2
7014349 Shinohara et al. Mar 2006 B2
7019809 Sekiguchi Mar 2006 B2
7026821 Martin et al. Apr 2006 B2
7038758 Suzuki May 2006 B2
7042618 Selbrede et al. May 2006 B2
7042643 Miles May 2006 B2
7046221 Malzbender May 2006 B1
7046905 Gardiner et al. May 2006 B1
7048905 Paparatto et al. May 2006 B2
7050035 Iisaka May 2006 B2
7050141 Yokoue May 2006 B2
7050219 Kimura May 2006 B2
7050790 Yamaga May 2006 B2
7060895 Kothari et al. Jun 2006 B2
7071611 Yonekubo et al. Jul 2006 B2
7072096 Holman et al. Jul 2006 B2
7075702 Huibers et al. Jul 2006 B2
7092142 Selebrede et al. Aug 2006 B2
7110158 Miles Sep 2006 B2
7116464 Osawa Oct 2006 B2
7119944 Patel et al. Oct 2006 B2
7123216 Miles Oct 2006 B1
7123796 Steckl et al. Oct 2006 B2
7126738 Miles Oct 2006 B2
7140751 Lin Nov 2006 B2
7156548 Teng et al. Jan 2007 B2
7161094 Kothari et al. Jan 2007 B2
7164250 Boscolo et al. Jan 2007 B2
7164520 Palmateer et al. Jan 2007 B2
7180677 Fujii et al. Feb 2007 B2
7184202 Miles et al. Feb 2007 B2
7198982 Patel et al. Apr 2007 B2
7199916 Faase et al. Apr 2007 B2
7215459 Huibers et al. May 2007 B2
7217588 Hartzell et al. May 2007 B2
7218437 Selbrede May 2007 B2
7227677 Ravnkilde et al. Jun 2007 B2
7233304 Aratani et al. Jun 2007 B1
7271945 Hagood et al. Sep 2007 B2
7274416 Feenstra et al. Sep 2007 B2
7291363 Miller Nov 2007 B2
7292235 Nose Nov 2007 B2
7298448 Wu Nov 2007 B2
7304785 Hagood et al. Dec 2007 B2
7304786 Hagood et al. Dec 2007 B2
7315294 Richards Jan 2008 B2
7345805 Chui Mar 2008 B2
7359108 Hayes et al. Apr 2008 B2
7365897 Hagood et al. Apr 2008 B2
7374328 Kuroda et al. May 2008 B2
7391493 Kim Jun 2008 B2
7391552 Barton et al. Jun 2008 B2
7405852 Brosnihan et al. Jul 2008 B2
7417735 Cummings et al. Aug 2008 B2
7417782 Hagood et al. Aug 2008 B2
7460290 Hagood, IV et al. Dec 2008 B2
7463227 Van Gorkom Dec 2008 B2
7463398 Feenstra et al. Dec 2008 B2
7502159 Hagood, IV et al. Mar 2009 B2
7529012 Hayes et al. May 2009 B2
7551344 Hagood et al. Jun 2009 B2
7573547 Palmateer et al. Aug 2009 B2
7601942 Underwood et al. Oct 2009 B2
7666049 Saito et al. Feb 2010 B2
7715080 Natarajan et al. May 2010 B2
7746529 Hagood et al. Jun 2010 B2
7826127 Khonsari et al. Nov 2010 B2
7920317 Lee et al. Apr 2011 B2
7975665 Mori Jul 2011 B2
7999994 Hagood, IV et al. Aug 2011 B2
8169679 Wu et al. May 2012 B2
8519923 Hagood et al. Aug 2013 B2
8526096 Steyn et al. Sep 2013 B2
8599463 Wu et al. Dec 2013 B2
8698980 Chao et al. Apr 2014 B2
20010028422 Tsujimura et al. Oct 2001 A1
20010028993 Sanford Oct 2001 A1
20010030488 Jerman et al. Oct 2001 A1
20010040538 Quanrud Nov 2001 A1
20010043177 Huston et al. Nov 2001 A1
20010048265 Miller et al. Dec 2001 A1
20010048431 Laffargue et al. Dec 2001 A1
20010050661 Noda et al. Dec 2001 A1
20020000959 Colgan et al. Jan 2002 A1
20020012159 Tew Jan 2002 A1
20020030566 Bozler et al. Mar 2002 A1
20020047172 Reid Apr 2002 A1
20020051096 Yamazaki et al. May 2002 A1
20020063218 Maydanich et al. May 2002 A1
20020063661 Comiskey et al. May 2002 A1
20020075555 Miles Jun 2002 A1
20020093722 Chan et al. Jul 2002 A1
20020109903 Kaeriyama Aug 2002 A1
20020113281 Cunningham et al. Aug 2002 A1
20020126387 Ishikawa et al. Sep 2002 A1
20020135553 Nagai et al. Sep 2002 A1
20020150698 Kawabata Oct 2002 A1
20020163482 Sullivan Nov 2002 A1
20020163484 Furness, III et al. Nov 2002 A1
20020163709 Mirza Nov 2002 A1
20020171327 Miller et al. Nov 2002 A1
20020181597 Okada Dec 2002 A1
20020185699 Reid Dec 2002 A1
20020195423 Patel et al. Dec 2002 A1
20020196522 Little et al. Dec 2002 A1
20030001815 Cui Jan 2003 A1
20030009898 Slocum et al. Jan 2003 A1
20030021004 Cunningham et al. Jan 2003 A1
20030023110 Tam et al. Jan 2003 A1
20030036215 Reid Feb 2003 A1
20030042157 Mays Mar 2003 A1
20030043337 Takabayashi Mar 2003 A1
20030048036 Lemkin Mar 2003 A1
20030048370 Koyama Mar 2003 A1
20030058543 Sheedy et al. Mar 2003 A1
20030063234 Oda et al. Apr 2003 A1
20030067565 Yamamura Apr 2003 A1
20030068118 Bourgeois et al. Apr 2003 A1
20030071686 Lemkin Apr 2003 A1
20030076649 Speakman Apr 2003 A1
20030081315 Kobayashi May 2003 A1
20030081402 Jeon et al. May 2003 A1
20030085650 Cathey et al. May 2003 A1
20030085867 Grabert May 2003 A1
20030095081 Furness, III May 2003 A1
20030123245 Parker et al. Jul 2003 A1
20030123246 Parker Jul 2003 A1
20030128218 Struyk Jul 2003 A1
20030128416 Caracci et al. Jul 2003 A1
20030133284 Chipchase et al. Jul 2003 A1
20030156422 Tatewaki et al. Aug 2003 A1
20030164814 Starkweather et al. Sep 2003 A1
20030174422 Miller et al. Sep 2003 A1
20030174931 Rodgers et al. Sep 2003 A1
20030183008 Bang et al. Oct 2003 A1
20030184189 Sinclair Oct 2003 A1
20030190536 Fries Oct 2003 A1
20030196590 Hartzell Oct 2003 A1
20030202338 Parker Oct 2003 A1
20030210811 Dubowsky et al. Nov 2003 A1
20030218793 Soneda et al. Nov 2003 A1
20030231160 Yoshihara et al. Dec 2003 A1
20040012946 Parker et al. Jan 2004 A1
20040036668 Nakanishi Feb 2004 A1
20040051929 Sampsell et al. Mar 2004 A1
20040058532 Miles et al. Mar 2004 A1
20040076008 Ikeda Apr 2004 A1
20040080484 Heines et al. Apr 2004 A1
20040085608 Theil et al. May 2004 A1
20040085749 Parker et al. May 2004 A1
20040088629 Ott May 2004 A1
20040090144 Miller et al. May 2004 A1
20040090599 Kowarz et al. May 2004 A1
20040113903 Mikami et al. Jun 2004 A1
20040114346 Parker et al. Jun 2004 A1
20040122328 Wang et al. Jun 2004 A1
20040125062 Yamamoto et al. Jul 2004 A1
20040135273 Parker et al. Jul 2004 A1
20040135951 Stumbo et al. Jul 2004 A1
20040136680 Medina et al. Jul 2004 A1
20040141700 Yang Jul 2004 A1
20040145580 Perlman Jul 2004 A1
20040145793 Barbour et al. Jul 2004 A1
20040145854 Tamura Jul 2004 A1
20040156246 Nakamura Aug 2004 A1
20040157664 Link Aug 2004 A1
20040165372 Parker Aug 2004 A1
20040171206 Rodgers Sep 2004 A1
20040173872 Park et al. Sep 2004 A1
20040179146 Nilsson Sep 2004 A1
20040184710 Kubby et al. Sep 2004 A1
20040196215 Duthaler et al. Oct 2004 A1
20040207768 Liu Oct 2004 A1
20040207815 Allen et al. Oct 2004 A1
20040212759 Hayashi Oct 2004 A1
20040212907 Mala et al. Oct 2004 A1
20040217919 Piehl et al. Nov 2004 A1
20040218149 Huibers Nov 2004 A1
20040218154 Huibers Nov 2004 A1
20040218292 Huibers Nov 2004 A1
20040218293 Huibers Nov 2004 A1
20040223088 Huibers Nov 2004 A1
20040223240 Huibers Nov 2004 A1
20040227428 Sinclair Nov 2004 A1
20040233354 Uehara et al. Nov 2004 A1
20040233392 Huibers Nov 2004 A1
20040233498 Starkweather et al. Nov 2004 A1
20040233503 Kimura Nov 2004 A1
20040240032 Miles Dec 2004 A1
20040240138 Martin et al. Dec 2004 A1
20040246275 Yoshihara et al. Dec 2004 A1
20040263076 De Zwart et al. Dec 2004 A1
20040263502 Dallas et al. Dec 2004 A1
20040263944 Miles et al. Dec 2004 A1
20050002082 Miles Jan 2005 A1
20050002086 Starkweather et al. Jan 2005 A1
20050007671 Onvlee Jan 2005 A1
20050007759 Parker Jan 2005 A1
20050012197 Smith et al. Jan 2005 A1
20050018322 Ben-Gad et al. Jan 2005 A1
20050024849 Parker et al. Feb 2005 A1
20050052681 Kogi Mar 2005 A1
20050052723 Watanabe et al. Mar 2005 A1
20050059184 Sniegowski et al. Mar 2005 A1
20050062708 Yoshihara et al. Mar 2005 A1
20050072032 McCollum et al. Apr 2005 A1
20050073471 Selbrede Apr 2005 A1
20050088404 Heines et al. Apr 2005 A1
20050094240 Huibers et al. May 2005 A1
20050094418 Parker May 2005 A1
20050104804 Feenstra et al. May 2005 A1
20050111238 Parker May 2005 A1
20050111241 Parker May 2005 A1
20050116798 Bintoro et al. Jun 2005 A1
20050122560 Sampsell et al. Jun 2005 A1
20050122591 Parker et al. Jun 2005 A1
20050123249 Yun et al. Jun 2005 A1
20050123349 Koch Jun 2005 A1
20050128370 Moon Jun 2005 A1
20050134768 Sugiura et al. Jun 2005 A1
20050134805 Conner et al. Jun 2005 A1
20050139542 Dickensheets et al. Jun 2005 A1
20050140636 Chung et al. Jun 2005 A1
20050141076 Bausenwein et al. Jun 2005 A1
20050151940 Asao Jul 2005 A1
20050157376 Huibers et al. Jul 2005 A1
20050168431 Chui Aug 2005 A1
20050168789 Glent-Madsen Aug 2005 A1
20050171408 Parker Aug 2005 A1
20050172625 Starkweather et al. Aug 2005 A1
20050179977 Chui et al. Aug 2005 A1
20050195467 Kothari et al. Sep 2005 A1
20050195468 Sampsell Sep 2005 A1
20050206991 Chui et al. Sep 2005 A1
20050207154 Parker Sep 2005 A1
20050207178 Parker Sep 2005 A1
20050212734 Kimura Sep 2005 A1
20050212738 Gally Sep 2005 A1
20050213322 Parker Sep 2005 A1
20050213323 Parker Sep 2005 A1
20050213349 Parker Sep 2005 A1
20050219676 Kimura et al. Oct 2005 A1
20050219679 Ishikawa Oct 2005 A1
20050219680 Ishikawa Oct 2005 A1
20050225501 Srinivasan et al. Oct 2005 A1
20050225519 Naugler Oct 2005 A1
20050225732 Conner et al. Oct 2005 A1
20050225827 Kastalsky Oct 2005 A1
20050231791 Sampsell et al. Oct 2005 A1
20050236928 Kurozuka et al. Oct 2005 A1
20050237596 Selbrede Oct 2005 A1
20050242710 Yamazaki et al. Nov 2005 A1
20050243023 Reddy et al. Nov 2005 A1
20050244099 Pasch et al. Nov 2005 A1
20050244949 Miles Nov 2005 A1
20050245313 Yoshino et al. Nov 2005 A1
20050249966 Tung et al. Nov 2005 A1
20050253779 Feenstra et al. Nov 2005 A1
20050258571 Dumond et al. Nov 2005 A1
20050259198 Lubart et al. Nov 2005 A1
20050263866 Wan Dec 2005 A1
20050265029 Epstein et al. Dec 2005 A1
20050275072 Haluzak et al. Dec 2005 A1
20050275930 Patel et al. Dec 2005 A1
20050285816 Glass Dec 2005 A1
20050286113 Miles Dec 2005 A1
20050286114 Miles Dec 2005 A1
20060001942 Chui et al. Jan 2006 A1
20060003676 Bernard et al. Jan 2006 A1
20060004928 Hess et al. Jan 2006 A1
20060007514 Desai Jan 2006 A1
20060007701 Schoellmann et al. Jan 2006 A1
20060012781 Fradkin et al. Jan 2006 A1
20060023287 Przybyla et al. Feb 2006 A1
20060028708 Miles Feb 2006 A1
20060028811 Ross et al. Feb 2006 A1
20060028817 Parker Feb 2006 A1
20060028840 Parker Feb 2006 A1
20060028841 Parker Feb 2006 A1
20060028843 Parker Feb 2006 A1
20060028844 Parker Feb 2006 A1
20060033676 Faase et al. Feb 2006 A1
20060033975 Miles Feb 2006 A1
20060038766 Morita Feb 2006 A1
20060038768 Sagawa et al. Feb 2006 A1
20060044246 Mignard Mar 2006 A1
20060044298 Mignard et al. Mar 2006 A1
20060044508 Mochizuki Mar 2006 A1
20060044928 Chui et al. Mar 2006 A1
20060061559 King Mar 2006 A1
20060066504 Sampsell et al. Mar 2006 A1
20060066540 Hewlett et al. Mar 2006 A1
20060066560 Gally et al. Mar 2006 A1
20060066598 Floyd Mar 2006 A1
20060066934 Selbrede Mar 2006 A1
20060066937 Chui Mar 2006 A1
20060077125 Floyd Apr 2006 A1
20060077153 Cummings et al. Apr 2006 A1
20060092490 McCollum et al. May 2006 A1
20060104061 Lerner et al. May 2006 A1
20060132383 Gally et al. Jun 2006 A1
20060152476 Van Gorkom et al. Jul 2006 A1
20060154078 Watanabe et al. Jul 2006 A1
20060172745 Knowles Aug 2006 A1
20060187190 Hagood et al. Aug 2006 A1
20060187191 Hagood et al. Aug 2006 A1
20060187290 Nakashima Aug 2006 A1
20060209000 Sumiyoshi et al. Sep 2006 A1
20060209012 Hagood, IV Sep 2006 A1
20060215540 Krishnamoorthi et al. Sep 2006 A1
20060238443 Derichs Oct 2006 A1
20060250325 Hagood et al. Nov 2006 A1
20060250676 Hagood, IV Nov 2006 A1
20060256039 Hagood et al. Nov 2006 A1
20060262060 Amundson Nov 2006 A1
20060262380 Miles Nov 2006 A1
20060268386 Selbrede et al. Nov 2006 A1
20060268568 Oku et al. Nov 2006 A1
20060270179 Yang Nov 2006 A1
20060280319 Wang et al. Dec 2006 A1
20060291034 Patry et al. Dec 2006 A1
20060291771 Braunisch et al. Dec 2006 A1
20060291774 Schoellmann et al. Dec 2006 A1
20070002413 Psaltis et al. Jan 2007 A1
20070003055 Bark et al. Jan 2007 A1
20070007889 Bongaerts et al. Jan 2007 A1
20070024701 Prechtl et al. Feb 2007 A1
20070031097 Heikenfeld et al. Feb 2007 A1
20070035808 Amundson et al. Feb 2007 A1
20070040982 Nakano et al. Feb 2007 A1
20070047051 Selbrede et al. Mar 2007 A1
20070047887 Selbrede Mar 2007 A1
20070052636 Kalt et al. Mar 2007 A1
20070052660 Montbach et al. Mar 2007 A1
20070053652 Mignard et al. Mar 2007 A1
20070086078 Hagood et al. Apr 2007 A1
20070091011 Selbrede Apr 2007 A1
20070091038 Hagood et al. Apr 2007 A1
20070103209 Lee May 2007 A1
20070132680 Kagawa et al. Jun 2007 A1
20070150813 Selebrede et al. Jun 2007 A1
20070172171 Van Ostrand et al. Jul 2007 A1
20070190265 Aoki et al. Aug 2007 A1
20070195026 Hagood et al. Aug 2007 A1
20070205969 Hagood, IV et al. Sep 2007 A1
20070216987 Hagood et al. Sep 2007 A1
20070217108 Ozawa et al. Sep 2007 A1
20070247401 Sasagawa et al. Oct 2007 A1
20070279727 Gandhi et al. Dec 2007 A1
20070297747 Biernath et al. Dec 2007 A1
20080014557 Kuhn et al. Jan 2008 A1
20080026066 Roser Jan 2008 A1
20080030827 Hagood et al. Feb 2008 A1
20080037104 Hagood et al. Feb 2008 A1
20080043726 Herrero-Veron et al. Feb 2008 A1
20080062500 Hagood, IV Mar 2008 A1
20080094853 Kim et al. Apr 2008 A1
20080129681 Hagood et al. Jun 2008 A1
20080145527 Hagood et al. Jun 2008 A1
20080158635 Hagood et al. Jul 2008 A1
20080158636 Hagood et al. Jul 2008 A1
20080165122 Duthaler et al. Jul 2008 A1
20080174532 Lewis Jul 2008 A1
20080279727 Haushalter Nov 2008 A1
20080283175 Hagood et al. Nov 2008 A1
20080297880 Steckl et al. Dec 2008 A1
20090034052 Hagood et al. Feb 2009 A1
20090091561 Koyama Apr 2009 A1
20090103164 Fijol et al. Apr 2009 A1
20090103281 Koh Apr 2009 A1
20090141335 Feenstra et al. Jun 2009 A1
20090284824 Feenstra et al. Nov 2009 A1
20100328608 Fujii et al. Dec 2010 A1
20110122474 Payne et al. May 2011 A1
20110148948 Gandhi et al. Jun 2011 A1
20110164067 Lewis et al. Jul 2011 A1
20110205259 Hagood Aug 2011 A1
20110267668 Hagood, IV et al. Nov 2011 A1
20120133006 Hasselbach et al. May 2012 A1
20120229226 Oja et al. Sep 2012 A1
20120280971 Hagood et al. Nov 2012 A1
20120320111 Hagood, IV et al. Dec 2012 A1
20120320112 Hagood, IV et al. Dec 2012 A1
20120320113 Hagood, IV et al. Dec 2012 A1
20130010341 Hagood et al. Jan 2013 A1
20130010342 Hagood, IV et al. Jan 2013 A1
20130010344 Hagood et al. Jan 2013 A1
20130335806 Steyn et al. Dec 2013 A1
20130342522 Hagood Dec 2013 A1
20140078154 Payne et al. Mar 2014 A1
20140085698 Wu et al. Mar 2014 A1
20140145926 Wu et al. May 2014 A1
20140184573 Nemchuk et al. Jul 2014 A1
20140184621 Brosnihan et al. Jul 2014 A1
20140267196 Villarreal et al. Sep 2014 A1
20140267331 Villarreal et al. Sep 2014 A1
20140268293 Chleirigh et al. Sep 2014 A1
Foreign Referenced Citations (230)
Number Date Country
2241823 Aug 1997 CA
2334403 Dec 1999 CA
1206218 Jan 1999 CN
1309782 Aug 2001 CN
1390045 Jan 2003 CN
1402033 Mar 2003 CN
1476664 Feb 2004 CN
1491030 Apr 2004 CN
1498408 May 2004 CN
1541483 Oct 2004 CN
1542499 Nov 2004 CN
1555472 Dec 2004 CN
1573525 Feb 2005 CN
1584731 Feb 2005 CN
1599522 Mar 2005 CN
1623111 Jun 2005 CN
1898969 Jan 2007 CN
10332647 Feb 2005 DE
0366847 May 1990 EP
0438614 Jul 1991 EP
0359450 Nov 1994 EP
0495273 Sep 1996 EP
0415625 Jan 1997 EP
0786679 Jul 1997 EP
0884525 Dec 1998 EP
0889458 Jan 1999 EP
0751340 May 2000 EP
1022598 Jul 2000 EP
1091342 Apr 2001 EP
1091343 Apr 2001 EP
1091842 Apr 2001 EP
1093142 Apr 2001 EP
1168051 Jan 2002 EP
1202096 May 2002 EP
1202244 May 2002 EP
1426190 Jun 2004 EP
1429310 Jun 2004 EP
1471495 Oct 2004 EP
1522883 Apr 2005 EP
1533853 May 2005 EP
1551002 Jul 2005 EP
1674893 Jun 2006 EP
1734502 Dec 2006 EP
1757958 Feb 2007 EP
2287110 Feb 2011 EP
1640770 Apr 2012 EP
2459777 Jun 2012 EP
2726135 Apr 1996 FR
2071896 Sep 1981 GB
2343980 May 2000 GB
S56137386 Oct 1981 JP
57062028 Apr 1982 JP
S5774730 May 1982 JP
57127264 Aug 1982 JP
S5933077 Feb 1984 JP
S62275230 Nov 1987 JP
3142409 Jun 1991 JP
4249203 Sep 1992 JP
5045648 Feb 1993 JP
H06174929 Jun 1994 JP
6194649 Jul 1994 JP
H06202009 Jul 1994 JP
H06222290 Aug 1994 JP
H06250593 Sep 1994 JP
H0836161 Feb 1996 JP
H0895526 Apr 1996 JP
8234158 Sep 1996 JP
8334752 Dec 1996 JP
9080386 Mar 1997 JP
09189869 Jul 1997 JP
9198906 Jul 1997 JP
H09218360 Aug 1997 JP
H09292576 Nov 1997 JP
H1054916 Feb 1998 JP
H1054947 Feb 1998 JP
10282474 Oct 1998 JP
H10282521 Oct 1998 JP
H10333145 Dec 1998 JP
11015393 Jan 1999 JP
11024038 Jan 1999 JP
H1184419 Mar 1999 JP
H1195693 Apr 1999 JP
H11126118 May 1999 JP
H11202325 Jul 1999 JP
2000028933 Jan 2000 JP
2000028938 Jan 2000 JP
2000057832 Feb 2000 JP
2000105547 Apr 2000 JP
2000111813 Apr 2000 JP
2000121970 Apr 2000 JP
2000131627 May 2000 JP
2000172219 Jun 2000 JP
2000214393 Aug 2000 JP
2000214394 Aug 2000 JP
2000214395 Aug 2000 JP
2000214397 Aug 2000 JP
2000214831 Aug 2000 JP
2000235152 Aug 2000 JP
2000259116 Sep 2000 JP
2000321566 Nov 2000 JP
2001067010 Mar 2001 JP
2001075534 Mar 2001 JP
2001100121 Apr 2001 JP
2001125014 May 2001 JP
2001154642 Jun 2001 JP
2001175216 Jun 2001 JP
2001201698 Jul 2001 JP
2001201767 Jul 2001 JP
2001242826 Sep 2001 JP
2001281563 Oct 2001 JP
2001318377 Nov 2001 JP
2001331142 Nov 2001 JP
2001331144 Nov 2001 JP
2001337649 Dec 2001 JP
2001356281 Dec 2001 JP
2001356327 Dec 2001 JP
2002040336 Feb 2002 JP
2002040337 Feb 2002 JP
2002139683 May 2002 JP
2002140038 May 2002 JP
2002214543 Jul 2002 JP
2002279812 Sep 2002 JP
2002528763 Sep 2002 JP
2002287718 Oct 2002 JP
2002297085 Oct 2002 JP
2002318564 Oct 2002 JP
2002333619 Nov 2002 JP
2002341343 Nov 2002 JP
2002351431 Dec 2002 JP
2002365650 Dec 2002 JP
2003029295 Jan 2003 JP
2003036057 Feb 2003 JP
2003506755 Feb 2003 JP
2003084314 Mar 2003 JP
2003086233 Mar 2003 JP
2003098984 Apr 2003 JP
2003121824 Apr 2003 JP
2003162904 Jun 2003 JP
2003202519 Jul 2003 JP
2003248463 Sep 2003 JP
2003344785 Dec 2003 JP
2004004216 Jan 2004 JP
2004053839 Feb 2004 JP
2004069788 Mar 2004 JP
2004117833 Apr 2004 JP
2004140800 May 2004 JP
2004151722 May 2004 JP
2004163915 Jun 2004 JP
2004191736 Jul 2004 JP
2004205973 Jul 2004 JP
2004212673 Jul 2004 JP
2004221051 Aug 2004 JP
2004287215 Oct 2004 JP
2004287431 Oct 2004 JP
2004302270 Oct 2004 JP
2004317557 Nov 2004 JP
2004317785 Nov 2004 JP
2004325909 Nov 2004 JP
2004327025 Nov 2004 JP
2004347982 Dec 2004 JP
2005010786 Jan 2005 JP
2005043674 Feb 2005 JP
2005043726 Feb 2005 JP
2005504355 Feb 2005 JP
2005512119 Apr 2005 JP
2005134896 May 2005 JP
2005309416 Nov 2005 JP
2006098990 Apr 2006 JP
2006522360 Sep 2006 JP
2007155983 Jun 2007 JP
2007517488 Jun 2007 JP
2008015081 Jan 2008 JP
2008098984 Apr 2008 JP
2008233898 Oct 2008 JP
2009111813 May 2009 JP
2012128451 Jul 2012 JP
2012186782 Sep 2012 JP
2012230079 Nov 2012 JP
2013061658 Apr 2013 JP
WO9401716 Jan 1994 WO
9528035 Oct 1995 WO
WO9704436 Feb 1997 WO
WO9804950 Feb 1998 WO
9819201 May 1998 WO
WO9901696 Jan 1999 WO
0017695 Mar 2000 WO
WO0050807 Aug 2000 WO
WO0052674 Sep 2000 WO
WO0055916 Sep 2000 WO
WO0169584 Sep 2001 WO
0189986 Nov 2001 WO
WO0207482 Jan 2002 WO
WO03004836 Jan 2003 WO
WO03007049 Jan 2003 WO
WO03008860 Jan 2003 WO
03029874 Apr 2003 WO
WO03040802 May 2003 WO
WO03048836 Jun 2003 WO
WO03050448 Jun 2003 WO
03061007 Jul 2003 WO
WO03061329 Jul 2003 WO
WO03069593 Aug 2003 WO
WO03081315 Oct 2003 WO
03105198 Dec 2003 WO
WO2004008629 Jan 2004 WO
WO2004019120 Mar 2004 WO
WO2004034136 Apr 2004 WO
2004038496 May 2004 WO
WO2004086098 Oct 2004 WO
WO2004088629 Oct 2004 WO
2004097506 Nov 2004 WO
WO2005001892 Jan 2005 WO
2005015287 Feb 2005 WO
WO2005062908 Jul 2005 WO
WO2005073950 Aug 2005 WO
WO2005082908 Sep 2005 WO
WO2006017129 Feb 2006 WO
WO2006023077 Mar 2006 WO
WO2006039315 Apr 2006 WO
WO2006052755 May 2006 WO
2006091860 Aug 2006 WO
2006091904 Aug 2006 WO
WO2006091791 Aug 2006 WO
WO2007075832 Jul 2007 WO
WO2007123173 Nov 2007 WO
WO2007145973 Dec 2007 WO
WO2008026066 Mar 2008 WO
2008091339 Jul 2008 WO
2009102471 Aug 2009 WO
2013032865 Mar 2013 WO
Non-Patent Literature Citations (118)
Entry
Akimoto, et al. “15.1: A 0.9-in UXGA/HDTV FLC Microdisplay,” Society for Information Display, pp. 194-197 (2000).
AZ Displays, Inc., “Complete LCD Solutions,” ATM3224C-NC-FTH, pp. 1-15 (Oct. 2, 2003).
Bergquist et. al. “Field Sequential Colour Display with Adaptive Gamut”, Society for Information Display, Digest of Technical Papers 2006, pp. 1594-1597.
Birch et al, “31.1: SXGA Resolution FLC Microdisplays,” SID 02 Digest, 954-957 (2002).
B.J. Feenstra et. al. “A Reflective Display Based on Electrowetting: Principle and Properties”, International Display Research Conference Proceedings 2003, p. 322.
Blackstone, “Making MEMS Reliable,” SPIE's OEMagazine, 32-34 (Sep. 2002).
“BLU,”Heesung Precision Ltd., http://www.hspr.co.kr/eng/product/blu.asp Retrieved on Aug. 3, 2006.
Boeuf, J.P., “Plasma display panels: physics,recent deveopments and key issues,” J. Phys. D: Appl. Phys. 36 (2003) R53-R79 (received Aug. 29, 2002: published Feb. 26, 2003).
Boucinha, M., et al., “Air-gap amorphous silicon thin film transistors,” Applied Physics Letters, 73 (4): 502-4 (Jul. 27, 1998).
Bozler et al, “Arrays of gated field-emitter cones having 0.32 mm tip-to-tip spacing,” J. Vec. Sci. Technol. B, 12 (2): 629-632 (Mar./Apr. 1994).
Bryan-Brown, “Ultra Low Power Bistable LCDs,” SID 00, 76-79 (2000).
Chino, E., et al., “25.1: Invited Paper: Development of Wide-Color-Gamut Mobile Displays with Four-primary-color LCDs,” Society for Information Display, 37 (2): 1221-1224 (2006).
Conde, J.P., et. al., “Amorphous and microcrystalline silicon deposited by hot-wire chemical vapor deposition at low substrate temperatures: application to devices and thin-film microelectromechanical systems,” Thin Solid Films 395: 105-111 (2001).
Conde, J.P., et al., “Low-temperature Thin-film Silicon MEMS”, in Thin Solid Films 427, p. 181 (2003).
D. Doherty et. al. “Pulse Width Modulation Control of DLP Projectors”, TI Technical Journal, No. 3, pp. 115-121 (Jul.-Sep. 1998).
Davis, “Light Emitting Diode Source Modeling for Optical Design,” Reflexite Display Optics (Oct. 2004).
Davis, “Microstructured Optics for LED Applications,” Reflexite Display Optics (2002).
Den Boer, “Active Matrix Liquid Crystal Displays,” Elsevier Science & Technology Books, ISBN #0750678135, Aug. 2005.
Doane, et al, “Display Technologies in Russia, Ukraine, and Belarus,” World Technology Evaluation Center Panel Report (Dec. 1994) http://www.wtec.org/loyola/displays/toc.htm, retrieved on Nov. 22, 2005.
“Electronic Display Lighting Tutorials,” 3M Corporation,file″//D:/Optical/VikuitiTutorial.htm. retrieved on Aug. 10, 2006.
European Patent Office Examination Report dated Sep. 7, 2009 in European Patent Application No. 06847859.3.
European Search Opinion for EP Patent Application No. EP08005944, European Patent Office, Munich filed on Dec. 4, 2012.
European Search Opinion for EP Patent Application No. EP08005973, European Patent Office, Munich filed on Oct. 4, 2012.
European Search Opinion for EP Patent Application No. EP10175901, European Patent Office, Munich filed on Feb. 5, 2012.
European Search Opinion for EP Patent Application No. EP10175920, European Patent Office, Munich filed on Sep. 5, 2012.
European Search Report—EP10176478—Search Authority—Munich—May 4, 2012.
European Search Report—EP10177217—Search Authority—Munich—Mar. 13, 2012.
Feenstra et al, “Electrowetting Displays,” Liquavista BV, http://www.liquavista.com/documents/electrowetting—displays—whitepaper.pdf, Retrieved on Aug. 17, 2006, pp. 1-16.
Feng, et al, “Novel Integrated Light-Guide Plates for Liquid Crystal Display Backlight,” Journal of optics a Pure and applied optics, 2005, 7, 111-117.
Feng, “High Quality Light Guide Plates that Can Control the Illumination Angle Based on Microprism Structures,” Applied Physics Letters, 85 (24): 6016-6018 (Dec. 2004).
Final Office Action dated May 18, 2007, U.S. Appl. No. 11/218,690.
Final Office Action dated Oct. 3, 2007 in U.S. Appl. No. 11/218,690.
Final Office Action dated Sep. 21, 2007, U.S. Appl. No. 11/546,937.
Flat Panel Display (FPD) Manufacturing Equipment that Cuts Production Costs by Half, Shibaura Mechatronics Corporation, product brochure for panel processing.
Foley, “NE04-21: Microstructured Plastic Optics for Display, Lighting, and Telecommunications Applications,” Fresnel Optics (2001).
Funamoto et al, “Diffusive-sheetless Backlight System for Mobile Phone,” IDW/AD, 1277-1280 (2005).
Funamoto et. al. “LED Backlight System with Double-Prism Pattern”, Journal of the Society for Information Display v. 14, pp. 1045-1051 (2006).
Goddhue et al, “Bright-field analysis of field-emission cones using high-resolution tranmission electron microscopy and the effect of structural properties on current stability,” J. Vac. Sci. Technol. B, 12 (2): 693-696 (Mar. Apr. 1994).
Hartman, “4.1: Invited paper: Two-Terminal Devices Technologies for AMLCDs,” SID 95 Digest, 7-10 (1995).
Hewlett et al, “DLP CinemaTM projection: A hybrid frame-rate technique for flicker-free performance,” Journ of the SID 9/3, 221-226 (2001).
Hornbeck, J., “Digital Light Processing TM: A New MEMS-Based Display Technology,” Technical Digest of the IEEJ 14th Sensor Symposium, pp. 297-304 (Jun. 4-5, 1996).
Yasumura et al, “Fluid Damping of an Electrostatic Actuator for Optical Switching Applications,” Transducers Research Foundation (2002).
Jepsen et al, “4.11: 0.9″ SXGA Liquid Crystal on Silicon Panel with 450 Hz. Field Rate,” SID MicroDisplay Corporation, pp. 106-109 (Sep. 2001).
Joaquirn, M., “Polyphenyl Ether Lubricants” Synthetic Lubricants and High-performance Functional Fluids, R. L. Rudnick and R. L. Shubkin, Eds., p. 239, Marcel Dekker, Inc., NY, 1999.
Johnstone et al, “Theoretical limits on the freestanding length of cantilevers produced by surface micromachining technology,” J. Micromech. Microeng. 12: 855-861 (Published Oct. 3, 2002).
Jones et al, “29-1: Addressing TVmin Ferroelectric Liquid Crystal Displays,” (1998).
Judy, et al, “Self-Adjusting Microstructures(SAMS),” Proceedings of the Workshop on Micro Electro Mechanical Systems, New York, Jan. 30, 1991, vol. Workshop 4, pp. 51-56.
Judy, M. W., “Micromechanisms Using Sidewall Beams,” Dissertation, University of California at Berkeley, 1994.
Kalantar et al, “Optical Micro Deflector Based Functional Light-Guide Plate for Backlight Unit,” SID 00 Digest, 1029-1031 (2000).
Kalantar, K., et al., “Backlight Unit with Double Surface Light Emission Using a Single Micro-structured Light-guide Plate,” p. 1182, Society for Information Display Digest (2004).
Kalantar, “Modulation of viewing angle on an LCD surface through backlight optics,” Journal of the SID, 11 (4): 647-652 (2003).
Kim, C.W., et al., “Manufacturing Technologies for the Next Generation a-Si TFT-LCD,” Proceedings of the Intl. Display Mfg. Cnf. Seoul, Korea (2000).
Koden et al., “Ferroelectric Liquid Crystal Display,” (Sep. 17, 1997).
Kuang et al., “Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method,” Journal of Micromechanics and Microengineering, 14: 647-655, (2004).
Kunzman, A., et al., “10.3 White Enhancement for Color Sequential DLP” Society for Information Display, Digest of Technical Papers 1998.
Lee et. al. “40.1: Distingusihed Contributed Paper: Integrated Amorphous Silicon Color Sensor on LCD Panel for LED Backlight Feedback Control System”, Society for Information Display, Digest of Technical Papers, pp. 1376-1379 (2005).
Lee et al, “P-25: A LCOS Microdisplay Driver with Frame Buffering Pixels,” SID 02 Digest, 292-295 (2002).
Legtenberg, et al., “Electrostatic Curved Electrode Actuators,” Journal of Microelectromechanical Systems, 6 (3): 257-265 (Sep. 1997).
Li, J., et al., “DRIE-Fabricated Curved-Electrode Zipping Actuators with Low Pull-In Voltage,” 12th International Conference on Solid State Sensors, Actuators and Microsystems, IEE, 480-483 (2003).
Liang et al, “Observation of electric field gradients near field-emission cathode arrays,” Appl Phys. Lett., 66 (9): 1147-1149 (Feb. 27, 1995).
Liu et al, “Scaling Laws of Microactuators and Potential Applications of Electroactive Polymers in MEMS,” SPIE, 3669: 345-354 (Mar. 1999).
“Low Temperature Polysilicon TFT Reflective Color LCD” by Techno World.
Maboudian et al., “Stiction reduction processes for surface micromachines,” Tribology Letters, 3: 215-221 (1997).
Markandey, V., et al., “Video Processing for DLP Display Systems,” Texas Instruments Corporation, 2666: 21-32 (Mar. 13, 1996).
Mastrangelo et al, “Mechanical Stability and Adhesion of Microstructures Under Capillary Forces—Part I: Basic Theory,” Journal of Microelectromechanical Systems, 2 (1): 33-43 (Mar. 1993).
Mastrangelo et al, “Mechanical Stability and Adhesion of Microstructures Under Capillary Forces—Part II: Experiments,” Journal of Microelectromechanical Systems, 2 (1): 44-55 (Mar. 1993).
McLaughlin, “Progress in Projection and Large-Area Displays,” Proceedings of the IEEE, 90 (4): 521-532 (Apr. 2002).
“MicroLensTm—Re-Inventing LCD Backlighting,” Global Lighting Technologies Inc., http://www.glthome.com/tech.htm, 1-2; retrieved on Aug. 3, 2006.
“Microprism Technology for Luminaires,” Reflexite Display Optics; Reflexite Corporation, Technical Publication RLO-181, Rev. 2 (2004).
“Nano Tm Su-8 2000 Negative Tone Photoresist Formulations 2002-2025,” Micro Che, Rev. 2/02.
Non Final Office Action Dated Mar. 22, 2007, U.S. Appl. No. 11/546,937.
Non Final Office Action dated Nov. 1, 2006, U.S. Appl. No. 11/218,690.
Notice of Allowance and Fee(s) Due, mailed Jan. 31, 2008 (U.S. Appl. No. 11/361,785).
Office Action dated Jul. 13, 2010 in Japanese Patent Application No. 2007-556428.
Office Action dated Oct. 12, 2010 in Japanese Patent Application No. 2008-058190.
Okumura et al, “Highly-efficient backlight for liquid crystal display having no optical films,” Applied Physics Letters, 83 (13): 2515-2517 (Sep. 29, 2003).
“Optical Design Tools for Backlight Displays,” Light Tools, Optical Engineering, Publication of ROCOES, 81: 90-101 (Jun. 2003).
Park, Y.I., et al., “Active Matrix OLED Displays Using Simple Poly-Si TFT Process,” Society of Information Display, Digest, pp. 487-489 (2003).
Perregaux, G., et al, “Arrays of Addressable High-Speed Optical Microshutters,” CSEM Swiss Center for Electronics and Microtechnology Inc., Microsystems Division, pp. 232-235 (2001).
“Prism Brightness Enhancement Films,” 3M Corporation, http://products3.3m.com/catalog/us/en001/electronics—mfg/vikuiti/node—V6G78RBQ5Tbe/root—GST1T4S9TCgv/vroot—S6Q2FD9X0Jge/gvel—GD378DOHGJgl/theme—us—vikuiti—3—0/command—AbcPageHandler/ output—html Retrieved on Aug. 3, 2006.
“Prism Sheet,” Mitsubishi Rayon America Inc., http://www.mrany.com/data/HTML/29.htm Retrieved on Aug. 4, 2006.
Qiu et al, “A Curved-Beam Bistable Mechanism,” Journal of Microelectromechanical Systems, 13 (2): 137-145 (Apr. 2004).
Qui et al, “A High-Current Electrothermal Bistable MEMS Relay,” Micro Electro Mechanical Systems, MEMS-03 Kyoto, pp. 64-67 (Jan. 19-23, 2003).
Roosendaal et al, “25.2: A Wide Gamut, High Aperture Mobile Spectrum Sequential Liquid Crystal Display,” SID 05 Digest, 1116-1119 (2005).
S. Pasricha et. al. “Dynamic Backlight Adaptation for Low Power Handheld Devices” IEEE Design and Test v. 21, p. 398 (2004).
Saeedi, et. al. “Molten-Alloy Driven Self-Assembly for Nano and Micro Scale System Integration” Fluid Dynamics and Materials Processing, vol. 2, No. 4, pp. 221-245 (2006).
Sato, “Research on Flexible Display Systems,” Broadcast Technology, 21: 10-15 (Winter, 2005).
Sharp Specification No. LCP—03015 for Mobile Liquid Crystal Display Group, Sharp Corporation, Jun. 13, 2003.
Shikida et al, “Fabrication of an S-shaped Microactuator,” Journal of Microelectromechanical Systems, 6 (1): 18-24 (Mar. 1997).
Steyn, Lodewyck, “Electroquasistatic Zipper Actuators: A Technology Review”, Dec. 2004.
Tagaya et al., “Thin Liquid-Crystal Display Backlight System with Highly Scattering Optical Transmission Polymers,” Applied Optics, 40 (34): 6274-6280 (Dec. 2001).
Tan et al “Soldering Technology for Optoelectronics Packaging”, 1996 Electronic Components and Technology Conference, pp. 26-36 (1996).
Teijido, J.M., “Conception and Design of Illumination Light Pipes,” Thesis No. 1498 for University of Neuchatel, http://www.unige.ch/cyberdocuments/unine/theses2000/TeijidoJM/these—front.htm 1: 1-99 Retrieved on Aug. 3, 2006.
Tien et al, “MEMS Actuators for Silicon Micro-Optical Elements,” Proc. of SPIE, 4178: 256-269, (2000).
“Two Proprietary Technologies Supporting OMRON Backlight,” OMRON Electronics Corporation, OMRON Electronics Components Web, www.omron.co.jp/ecb/products/bklight/english/genri/index.html, retrieved on Aug. 3, 2006.
Underwood, “A review of microdisplay technologies,” SID© EID, (Nov. 21 to 23, 2000).
Underwood, “LCoS through the looking glass,” SID (2001).
van de Biggelaar, et. al. “Passive and Active Matrix Addressed Polymer Light-emitting Diode Displays”, Proc. SPIE vol. 4295, p. 134 (2001).
Vangbo et al, “A lateral symmetrically bistable buckled beam,” J. Micromech. Microeng., 8: 29-32 (1998).
Yamada et al, “52.2: Invited Paper: Color Sequential LCD Based on OCB with an LED Backlight,” SID 00 Digest, 1180-1183 (2000).
J. Heikenfeld et al, “Contrast Enhancement in Black Dielectric Electroluminescent Devices”, IEEE Transactions on Electron Devices, 49:8, 1348-52 (2002).
Alt et al, “A Gray-Scale Addressing Technique for Thin-Film-Transistor/Liquid Crystal Displays,” IBM J. Res. Develop., 36(1):11-22 (Jan. 1992).
Clark et al, “FLC Microdisplays,” Ferroelectrics, 246:97-110 (2000).
Ravnkilde, J., et al. “Fabrication of Nickel Microshutter Arrays for Spatial Light Modulation,” Mesomechanics, pp. 161-165 (2002). Also on their web site: http://www2.mic.dtu.dk/research/mems/publications/Papers/Dicon—Meso2002.pdf.
Takatori et al, “6.3: Field-Sequential Smectic LCD with TFT Pixel Amplifier,” SID 01 Digest, 48-51 (2001).
Wang, K., et al, “Highly Space-Efficient Electrostatic Zigzag Transmissive Micro-Optic Switches for an Integrated MEMS Optical Display System”, Transducers 03 Conference, 1:575-575 (Jun. 8-12, 2003).
International Search Report and Written Opinion dated Jun. 11, 2010 in International Application No. PCT/US2009/06252.
Boer W.D., “AMLCD Electronics”, Active Matrix Liquid Crystal Displays: Fundamentals and Applications, 2005 pp. 87-111, XP055089329, U.S.A, ISBN: 978-0-75-067813-1.
Boer W.D., “Improvement of Image Quality in AMLCDs”, Active Matrix Liquid Crystal Displays: Fundamentals and Applications, 2005, pp. 139-177, XP055089313, U.S.A, ISBN: 978-0-75-067813-1.
International Search Report and Written Opinion—PCT/US2009/062252, International Search Authority—European Patent Office—Jun. 11, 2010.
Microchem “Nano SU 8 2000”, product brochure for thick polymer, Rev. 2/02.
“Microprism Technology for Liminaires,” Reflexite Corporation, Technical Publication RLO•181, Rev. 2 (2003).
Wang et al., “A highly efficient system for automatic face region detection in MPEG video.” IEEE Trans. on Circuits and Systems for Video Technology, vol. 7 Issue 4, Aug. 1997, pp. 615-628.
Uchida T. et al., “Encyclopedia of Flat Panel Displays”, Japan, Kogyo Chosakai Publishing Co., Ltd./Yukio Shimura, Dec. 25, 2001, pp. 617 to 619.
“Low Temperature Polysilicon TFT Reflective Color LCD” by Techno World, Feb. 18, 1999.
“Nano TM Su-8 2000 Negative Tone Photoresist Formulations 2002-2025,” Micro Che, Rev. 2/02m.
Pasricha S. et al., “Dynamic Backlight Adaptation for Low Power Handheld Devices” IEEE Design and Test v. 21, 2004, p. 398.
Sony Corporation, “ACX705AKM, 6.92cm Diagonal Reflective Color LCD Module”.
Related Publications (1)
Number Date Country
20110255146 A1 Oct 2011 US
Provisional Applications (2)
Number Date Country
61108783 Oct 2008 US
61109045 Oct 2008 US