1. Field of the Invention
Embodiments of the present disclosure relate to display technology, and more particularly to a mask, a TFT glass substrate and the manufacturing method thereof.
2. Discussion of the Related Art
In order to obtain better display performance, line distances of pixel electrodes are decreased in accordance with the larger dimension of liquid crystal panels. For example, the line distance of the pixel electrode is reduced from 5-8 um to 3 um, which is restricted by etching, coating, or developing processes. Thus, one key issue is to further reduce the line distance to be 2.5 um, or even to be 2 um.
Currently, there is a great difference between the line distance of a rim area of panel patterns and that of a middle area of the panel patterns while the line distances are reduced to be 2.5 um. However, the line distances of the rim area and the middle area cannot be uniformed due to the above-mentioned restrictions.
When the TFT glass substrate 10 reacts with the exposed photo resistors, more photo resistors in the blank area 12 have to react with a developing solution than that in the rim of the panel patterns 11. As such, the concentration of the developing solution in the blank area 12 is greatly decreased. Further, the developing effect in the rim of the panel patterns 11 is not enough so that the line distances of the pixel electrodes are small.
The object of the claimed invention is to provide a mask, a TFT glass substrate and the manufacturing method thereof.
In one aspect, a mask for partially blocking ultraviolet rays in TFT glass substrate manufacturing process includes a panel pattern area for forming the panel patterns, and an additional pattern area for forming additional patterns in a rim of the panel pattern area.
Wherein the panel patterns include panel microstructures, and the additional patterns include additional microstructures.
Wherein the panel microstructures and the additional microstructures are substantially the same.
Wherein the additional microstructures are extensions of the panel microstructures.
Wherein the additional patterns are rectangular-shaped, saw-shaped, or ripple-shaped.
In another aspect, a manufacturing method of TFT glass substrate includes: washing the glass substrate; depositing a thin film on the glass substrate; coating the glass substrate with photo resistors; exposing the glass substrate to ultraviolet rays so as to form panel patterns and to form additional patterns in a rim of the panel patterns; applying a developing procedure to the glass substrate; etching the glass substrate; stripping the glass substrate; and cutting the glass substrate to form the TFT glass substrate.
Wherein the panel patterns include panel microstructures, and the additional patterns include additional microstructures.
Wherein the panel microstructures and the additional microstructures are substantially the same.
Wherein the additional microstructures are extensions of the panel microstructures.
Wherein the additional patterns are rectangular-shaped, saw-shaped, or ripple-shaped.
In another aspect, a TFT glass substrate includes panel patterns, additional patterns arranged in a rim of the panel patterns, and wherein only portions of the additional patterns are exposed to ultraviolet rays so that an amount of photo resistors involving with a developing procedure is decreased.
Wherein the panel patterns include panel microstructures, and the additional patterns include additional microstructures.
Wherein the panel microstructures and the additional microstructures are the same.
Wherein the additional microstructures are extensions of the panel microstructures.
Wherein the additional patterns are rectangular-shaped, saw-shaped, or ripple-shaped.
By arranging additional patterns in the rim of the panel patterns, an amount of the photo resistors involving with the developing procedure is decreased. In this way, the microstructures in the rim of the panel patterns are substantially the same with that in the middle of the panel patterns. Thus, the line distances of the pixel electrode in the rim of the panel pattern are reduced.
Embodiments of the invention will now be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown.
Conventionally, a great deal of photo resistors in the blank area 12 reacts with a great deal of developers in an exposure procedure. As such, the developers are not enough in the rim so that the line width is narrow. The differences between the line distances in the rim of the panel patterns and the line distances in the middle of the panel patterns are large, and thus the defective rate is high.
The panel pattern area 210 is for forming the panel patterns. The additional pattern area 220 is arranged in a rim of the panel pattern area 210 for forming additional patterns.
Specifically, the panel patterns include panel microstructures, and the additional patterns include additional microstructures. The microstructures are shown in
In the embodiment, the panel microstructures and the additional microstructures may be the same. For example, the panel microstructures may include a plurality of bar-shaped branches, and the additional microstructures may also include a plurality of bar-shaped branches. In addition, the line distance of the panel microstructures may be substantially the same with that of the additional microstructures.
In one embodiment, the additional microstructures may be extensions of the panel microstructures. That is, the mask 200 may form an enlarged pattern. As the large differences between the line distances within the panel patterns is mainly caused by the line distances in the rim of the blank areas, and thus a standard pattern may be obtained by cutting the rim of the enlarged pattern.
In other embodiments, there are no microstructures in the additional patterns. The additional patterns are only for blocking portions of the blank area in the exposure procedure so that an amount of the photo resistors involving with the developing procedure is decreased. It is proved by experiments that the differences of the line distances are reduced by arranging the additional patterns in the blank area. It is understood that the additional patterns may be rectangular-shaped, saw-shaped, or ripple-shaped.
In step S110, a washing procedure is applied to the glass substrate.
In step S120, the glass substrate is deposited with a thin film.
In step S130, the glass substrate is coated with photo resistors.
In step S140, the glass substrate is exposed to the ultraviolet rays so as to form the panel patterns and to form the additional patterns in the rim of the panel patterns.
In step S150, a developing procedure is applied to the glass substrate.
In step S160, an etching procedure is applied to the glass substrate.
In step S170, a stripping procedure is applied to the glass substrate.
In step S180, the glass substrate is cut to form the TFT glass substrate.
Specifically, the manufacturing method adopts the mask 200 in the exposure procedure so as to form the panel pattern and the additional pattern as shown in
By adopting the mask 200 in the exposure procedure, only portions of the blank area 23 is exposed to the ultraviolet rays so that the amount of the photo resistors involving with the developing procedure is decreased. It is proved by experiments that the differences of the line distances within the panel patterns are reduced by arranging the additional patterns in the blank area 23. As shown in
By adopting the above manufacturing method, the TFT glass substrate 20 of
In the embodiment, the panel microstructures and the additional microstructures may be the same. For example, the panel microstructures may include a plurality of bar-shaped branches, and the additional microstructures may also include a plurality or bar-shaped branches. In addition, the line distances of the panel microstructures may be substantially the same with that of the additional microstructures.
In one embodiment, the additional microstructures may be an extension of the panel microstructures. That is, the mask 200 may form an enlarged pattern. As the differences of the line distances within the panel patterns is mainly caused by the line distances in the rim of the blank areas, and thus a standard pattern may be obtained by cutting the edges of the enlarged pattern.
In other embodiments, there are no microstructures in the additional pattern. The additional pattern is only for blocking portions of the blank area in the exposure procedure so that the amount of the photo resistors involving with the developing procedure is decreased.
In view of the above, the amount of the photo resistors involving in the developing procedure is decreased by arranging the additional patterns in the rim of the panel patterns. In this way, the microstructures in the rim of the panel patterns are substantially the same with that in the middle of the panel patterns. Thus, the line distances of the pixel electrode in the rim of the panel pattern are reduced.
It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the invention.
Number | Date | Country | Kind |
---|---|---|---|
201210395055.8 | Oct 2012 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN12/83202 | 10/19/2012 | WO | 00 | 10/25/2012 |