The present application claims priority from Japanese application JP 2006-031585 filed on Feb. 8, 2006, the content of which is hereby incorporated by reference into this application.
The present invention concerns a mass spectrometer for analyzing a sample separated by gas chromatography and mass spectrometry using the same.
In the specification, relevant terms used are abbreviated for gas chromatography as GC, liquid chromatography as LC, mass spectrometer as MS, apparatus combining gas chromatography and mass spectrometer as GC/MS, atmospheric pressure chemical ionization as APCI, chemical ionization as CI, electron impact as EI, and electro-spray ionization as ESI, respectively.
GC/MS is a well known analysis technology. APCI/MS is an apparatus for ionizing and detecting micro-amount of ingredients in a mixed sample at high sensitivity by using ion-molecular reaction, which is utilized for the analysis of micro-ingredients in environmental samples and bio-samples. JP-A No. 9-15207 discloses an analyzer at high sensitivity combining GC and APCI/MS for conducting analysis of various kinds of micro-impurities containing special gases for use in semiconductor production. In the apparatus, a sample gas separated by the column of GC is introduced in admixture with a carrier gas by way of a line to an APCI source and analyzed. JP-A No. 11-307041 discloses an apparatus in which a first ionization chamber for CI, a second ionization chamber for EI, and a mass analysis part are serially in adjacent with each other, and a passage port for passing ions is disposed between each of the ion sources. The sample gas enters the first ionization chamber and is introduced through the passage port into the second ionization chamber. During CI operation, the sample gas is ionized in a state of stopping the EI operation. During EI operation, the sample gas is ionized in a state of stopping the CI operation, and the introduced samples are analyzed by switching the two ion sources. JP-A No. 2000-357488 discloses an apparatus of separating ingredients flown out of LC by a branching tee and delivering the same to two ion sources of ESI and APCI. By switching the ion sources, they can be analyzed by two ionization methods. Further, JP-A No. 2001-93461 discloses a constitution of improving the sensitivity by making the gas flow different from the ion moving direction in APCI ionization by corona discharge using a needle electrode.
Analysis by GC/MS is suitable to separation and analysis of plural ingredients, particularly, ingredients of high volatility in a mixed sample. Generally, the ion source used for GC/MS includes an EI ion source. For the mass spectra obtained by EI ionization, spectrum patterns for fragment ions are open to public by data bases and information for molecular structures can be obtained. The EI source conducts ionization under a vacuum of about 10−3 Torr or less.
On the other hand, in a case of using APCI as the ion source, ionization of a sample is conducted at an atmospheric pressure and a differential pumping part is provided for transporting ions from the ion source at the atmospheric pressure to a mass analysis part under vacuum. Ions from the ion source are introduced by way of an ion introduction aperture of about 0.1 mm to 0.5 mm diameter into a vacuum part. In a case of using corona discharge for the ion source of APCI, it is necessary to flow a gas (primary ion generating gas (discharge gas)) at a flow rate of about 0.1 L/min to 1 L/min for stable maintenance of discharge to the ion source. Since the mass spectrum by APCI ionization mainly has molecular ion peaks, mass information for molecule can be obtained easily.
In JP-A No. 9-15207, a sample gas separated by the column of GC is analyzed only by the APCI ion source. In JP-A No. 11-307041, since the introduction port for the sample gas is restricted to the ion passage port for the ion source for CI, it is difficult to introduce the sample gas to a position where the ionization efficiency is higher in the EI ion source during EI operation. Further, since the pressure in the ionization chamber for CI (0.1 to 1 Torr) and the pressure in the ionization chamber for EI (10−3 Torr or less), are different, there is a problem that the high vacuum in the EI ionization chamber can not be maintained unless the introduction port between both of the ionization chambers is sufficiently small, but passage of ions through the introduction port becomes difficult during CI operation as the introduction port is smaller. While JP-A No. 2000-357488 describes a method of analyzing by two types of ionization methods (APCI and ESI) used substantially at an atmospheric pressure, it does not disclose a method of analyzing a sample gas separated by a single column by switching plural ion sources where the pressure levels are different greatly.
The invention intends to provide a mass spectrometer having a constitution of switching two ion sources at different pressure levels such as between APCI and EI, CI and EI, and APCI and CI, and provide GC-APCI/EI mass spectrometer and mass spectrometry capable of collecting a large amount of information for identifying unknown ions by using the spectrometer.
In the mass spectrometer of the invention, a sample gas separated by a GC column is branched, and introduced separately to a first sample ion source (for example, APCI ion source) and a second sample ion source at a pressure level lower than that of the first ion source (for example, EI ion source) respectively.
Further, the flow rates of a sample gas introduced to respective sample ion sources are controlled such that the flow rate of a sample gas introduced to the first sample ion source is more than the flow rate of a sample gas introduced into the second sample ion source and the pressure for each of the sample ion sources can be maintained, and analysis by respective ionization can be conducted at a good balance in view of sensitivity.
In one of embodiments of the invention, an APCI ion source and an EI ion source are disposed serially to a mass spectrometric part and analysis can be conducted at high sensitivity by respective ionization methods by connecting branched columns separately to the two ion sources. In another embodiment, by changing the length of the branched column, the time in which the separated ingredient is introduced to the APCI ion source and the time in which the separated identical ingredient is introduced to the EI ion source are shifted.
With such a constitution, in a case of analyzing a sample where plural ingredients are mixed, it is possible to previously measure the ingredients separated by the GC column successively by APCI ionization, APCI ionization is switched to EI ionization at the instance an unidentifiable unknown ingredient is observed, and analyze the identical unknown ingredient introduced with a time delay to the EI ion source by EI ionization. As described above, by obtaining two kinds of information, that is, the mass information by APCI ionization and the molecular structure information by EI ionization in one measurement, rapid identification can be conducted.
According to the invention, mass spectra by two ion sources at different pressure levels can be obtained in one measurement and rapid identification can be conducted for unknown ingredients by obtaining more information.
The present invention is to be described by way of preferred embodiments. While description is to be made to an example of using an APCI ion source as a first ion source and an EI ion source as a second ion source, the invention is applicable also to a combination of two types of ion sources such as a case where the first ion source is CI and the second ion source is EI or a case where the first ion source is APCI and the second ion source is CI in which the pressure in the ionization chamber of a second ion source is lower than the pressure in the ionization chamber of a first ion source.
In a case of using a dry air for the discharge gas, primary ions (N2+ or N4+) are generated by the reactions shown in the following equations (1) or (2) (refer to The Journal of Chemical Physics, Vol. 53, pp. 212 to 229 (1970)).
N2→N2++e− (1)
N2++2N2→N4++N2 (2)
A lead-out electrode 16 has a primary ion introduction aperture 17 of about 2 mm diameter through which generated primary ions are introduced by an electric field to an APCI ion source 11. In the APCI ion source 11, the primary ions generated by corona discharge and the sample gas introduced from the end 18 at the exit of the GC column are reacted (ion-molecule reaction), to generate ions of the sample gas (secondary ions: sample ions). The generated sample ions are introduced by way of apertures 8, 20, and 25 into a mass spectrometric part 23 and analyzed.
The sample gas introduced to the APCI ion source 2 is directly introduced from the end 18 of the GC column to the APCI ion source 11 from a position near the axis connecting the center for the primary ion introduction aperture 17 through which the primary ions pass and the center for the aperture 8 through which the sample ions move. As shown in
In a case where the center for the opening 18 at the end of the GC column approaches excessively to the aperture 18, a substantially entire amount of the sample gas is exhausted from the sample ion moving aperture 8. Since, the staying time in which the primary ions and the sample molecules are present together in the field of ion-molecule reaction is shortened and sufficient time to proceed the ion-molecule reaction can not be ensured, the amount of the generated sample ions is lowered to lower the sensitivity. On the other hand, in a case where the center for the opening 18 at the end of the GC column approaches excessively to the primary ion introduction aperture 17, a substantially entire amount of the sample gas is exhausted from the primary ion introduction aperture 17. Also in this case, since the sample gas is exhausted, while not being ionized, from the primary ion introduction port 17, the staying time in which the primary ions and the sample molecules are present together in the field of ion-molecule reaction is shortened in the same manner as described above, sufficient time to proceed the ion-molecule reaction can not be ensured, the amount of generated sample ions is decreased and the sensitivity is lowered.
That is, for attaining a high sensitivity, the center for the opening 18 at the end of the GC column is situated at a position between the primary ion introduction aperture 17 and the aperture 18 where the sample gas introduced from the opening 18 at the end of the GC column is exhausted at a good balance from the primary ion introduction aperture 17 and the aperture 8, by which the staying time where the primary ions and the sample molecules are present together in the field of ion-molecule reaction is made sufficiently long to ensure a sufficient time to proceed the ion-molecule reaction and the amount of the generated sample ions can be increased to improve the sensitivity.
Assuming the flow rate of the sample gas flowing through the opening 18 at the end of the GC column as Q, and the flow rate in Q that is exhausted by way of the aperture 8 to the mid-differential pumping part 21 as Q′, it is preferred that the central position for the opening 18 at the end of the GC column in the direction of the axis shown by a dotted chain in
In the EI ion source 3, electrons emitted from an electron generation device (filament 7) disposed in the ion source collide against the sample molecules introduced from the end 19 at the exit of the GC column to cause ionization. It is preferred that the end 19 at the exit of the GC column is situated near the axis connecting the aperture 20 and the aperture 25.
The APCI ion source and the EI ion source are switched by a signal from a controller 10. In a case of APCI ionization, a signal 14 is sent so as to turn-on the power source 4 for the needle electrode and a signal 15 is sent so as to turn-off a filament power source 13 for the EI ion source. In a case of EI ionization, the power source 4 for the needle electrode is turned-off and the filament power source 13 is turned-on.
Ingredients ionized by APCI or EI are analyzed in the mass spectrometric part 23 and indicated or stored as mass spectra in the data collection part 9 or stored. The mass spectrometer that can be used includes, for example, quadrupole mass spectrometer, ion trap mass spectrometer, ion trap TOF (Time of Flight) mass spectrometer, and magnetic sector type mass spectrometer.
While the pressure in the APCI ion source is substantially at an atmospheric pressure and the pressure in the EI ion source 3 is at the order of 10−3 (torr), the differential pumping part may be omitted as shown in
In the embodiments shown in
Then, as shown in
In the example of
The gas introduced to the aperture 8 is a gas mixture of the discharge gas and the sample gas from the GC column and, assuming the flow rate of the gas introduced at the aperture 8 to the vacuum part as 300 [ml/min], the pore diameter of the aperture 20 as 0.9 [mm], and the pressures for the mid-differential pumping part 21 and the EI ion source 3 as 1 [Torr] and 4×10−4 [Torr] respectively, the flow rate Q20[Pa·m3/s] of the gas passing through the aperture 20 is determined according to the following equation:
Q20=C×(P1−P2)
where C: conductance at the aperture 20 [m3/s], P1: pressure [Pa] in the mid-differential pumping part, and P2: pressure [Pa] in the EI ionization chamber. In a case where the aperture 20 is an orifice, the conductance C can be approximately determined by the following equation:
C=116×A
where A represents a hole area of an orifice and, since A=π/4×(0.9×10−3)2=6.36×10−7 [m2], Q20=9.8×10−3 [Pa·m3/s].
For the amount of the gas introduced from the aperture 8: 300 [ml/min]=0.488 [Pa·m3/s], 2% of the amount is introduced into the EI ion source 3. Even when an entire amount of the sample gas introduced from the exit 18 of the GC column is contained in the amount of the gas introduced at the aperture 8, since only 2% thereof is introduced to the EI ion source 3, it may be considered that the sensitivity is insufficient in a case of analyzing a sample of a micro-level concentration. Then, it is important in view of the sensitivity to introduce the sample gas at a good balance separately to the APCI ion source and EI ion source as shown in
For example, in a case of
After the completion of MS/MS analysis, the ionization method is switched from APCI to EI and mass spectrum by EI is obtained. In this way, in a case of conducting plural analysis for one ingredient, the flow rate introduced to the APCI ion source and the flow rate introduced to the EI ion source may be determined in accordance with the ratio of the number of analysis scanning.
That is, in a case of examples shown in
For changing the flow rate, a valve 26 is provided to the column after a tee 6 as shown in
In a case of not providing the time difference as in the example of
As shown in
At first, a sample is added to the upstream of the GC column (S11). APCI mass spectrum is obtained by turning-on the APCI ion source and turning-off the EI ion source (S12). The measured data is compared with the information in the previously obtained data base (S13) and, in a case where the spectrum of the detected peak 101 is known (aligned with the data base), measurement is continued as it is by APCI ionization. In the data base used herein, information for the mass spectra and the retention time of the GC column of standard samples are stored as data to confirm whether the mass spectrum obtained by analysis of the sample to be measured and the retention time are aligned with any of data in the data base or not. Then, in a case where the APCI mass spectrum for a peak 104 detected at a certain instance is not aligned with the data in the data base and the peak can not be identified, a switching signal for ionization is sent from the controller after the completion of elution of the peak to the APCI ion source, to turn the needle electrode power source off for the APCI ion source and to turn the filament power source to on for the EI ion source (S14). Then, after switching to EI and obtaining the EI mass spectrum for a peak 105 of the unknown ingredient eluted to the EI ion source, a switching signal is again generated from the controller to switch the mode to the APCI ionization by turning-on the needle electrode power source for the APCI ion source and turning-off the filament power source for the EI ion source (S16). Then, the process returns to step S12 and the APCI mass spectrum for the next elution peak is measured.
In a case where the time difference of introducing identical ingredients into two ion sources is large, after switching from APCI ionization to EI ionization, a peak which has been already confirmed to be aligned with the data base in APCI ionization may sometimes be detected as a peak 106 also in EI ionization as shown in
The present invention can provide a mass spectrometer capable of analyzing a sample gas separated in GC by switching two kinds of ion sources at different pressure levels such as APCI and EI and capable of obtaining a large amount of information necessary for the identification of unknown ingredient (for example, GC-APCI/EI-MS), and mass spectrometry.
Number | Date | Country | Kind |
---|---|---|---|
2006-031585 | Feb 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5218203 | Eisele et al. | Jun 1993 | A |
7303727 | Dubrow et al. | Dec 2007 | B1 |
Number | Date | Country |
---|---|---|
9-15207 | Jun 1995 | JP |
11-307041 | Apr 1998 | JP |
2001-93461 | Sep 1999 | JP |
2000-357488 | Apr 2000 | JP |
2006-86002 | Sep 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20070181801 A1 | Aug 2007 | US |