The present application is directed to a method and/or system for depositing material.
In a variety of circumstances, it may be desirable to deposit material in a layered fashion. Depending upon the particular context, one difficulty may relate to proper alignment as layers are added over one another. For example, if the layers include patterns, it may be desirable for features of those patterns to be substantially in alignment or for corresponding features of different layers to also be substantially aligned. In this context, the term “dimensional excursions” refers to errors, or distortions, or combinations of both, in a pattern of a deposited layer as a result of processor variations, deformations of a substrate or underlying layers, and/or other sources of error.
The following detailed description presents illustrative embodiments consistent with claimed subject matter as set forth in this application. This description is not meant to be taken in a limiting sense, but rather to serve the purpose of illustrating general principles consistent with claimed subject matter. In some instances, detailed discussions of various operating components that are not necessary for comprehending claimed subject matter are omitted for simplicity.
As used herein, the term “jetting” refers to any of several material deposition techniques that may be used in the alternative or in combination. For example, U.S. Pat. No. 4,438,191, entitled “Monolithic Ink Jet Print Head,” of Cloutier et al., presents one example of a material deposition mechanism; although claimed subject matter is, of course, not limited to this particular embodiment. A few examples of various types of jetting technologies may include continuous jetting, or piezo-inkjet, or thermal inkjet printing, or combinations thereof. Other deposition techniques may include various dry electrophotography technologies, such as LaserJet® technology, or liquid electrophotography technologies, for example. Claimed subject matter is intended to include all such material deposition techniques. Likewise, examples presented throughout this application are for illustrative purposes only and they are neither exclusive nor meant to limit the scope of claimed subject matter.
Embodiments encompassed by claimed subject matter may include devices, apparatuses, systems, methods, and/or other subject matter that may be employed to substantially align material deposited as a pattern layer, or a portion thereof, over a previous pattern layer or portion thereof. In some embodiments, as discussed in more detail hereinafter, accomplishing such alignment may involve addressing dimensional excursions and/or other variations that may exist in a pattern layer. In this particular context, the term pattern layer refers to a layer of material that has been deposited so as to form a pattern. Typically, such pattern layers are deposited on or over a substrate or another pattern layer, although, of course, claimed subject matter is not limited in scope in this respect.
In describing embodiments, reference herein may be made to “depositing a pattern layer,” or the like. An embodiment may effect the deposition of a pattern layer by depositing material so as to form a pattern. The phrase “depositing a pattern layer,” or the like, may be used herein to refer to such a process for purposes of simplifying the disclosure.
Features of pattern layer 100 or features of structures 104 may be selected for subsequent detection, or identification or both. For example, substantially perpendicular or parallel borders or edges of structures 104 may be selected and/or defined as features identifying composite pattern layer 100 and/or structures 104. Similarly, ribs or spaces between structures 104, or both may be selected as detectable features. Material corresponding to one or more additional pattern layers may be deposited in substantial alignment with pattern layer 100. In this particular context, the term substantial alignment or substantially aligned refers to the notion that corresponding features are substantially spatially aligned in a particular direction. For example, between pattern layers, particular corresponding features of dfferent pattern layers may be substantially aligned vertically, although this example is not intended to limit the scope of claimed subject matter. As described in more detail hereinafter, as an example, one embodiment may employ a sensor or one or more other feature detection mechanisms to detect one or more features of a pattern layer. Based, at least in part, on the features detected, material may be deposited to form another or subsequent pattern layer having features that may correspond to and be substantially aligned with the detected features, although claimed subject matter is not limited in scope in this respect.
In one embodiment, pattern layers are deposited in substantially vertical alignment. Substantially vertically aligning layers of deposited material may be achieved by depositing material for a pattern layer over a prior pattern layer, such as pattern layer 100, for example. Subsequent layers may, therefore, be substantially aligned with respect to position, size, orientation, or relative placement, or combinations thereof over pattern layer 100, for example. Other parameters for substantially aligning layers may also be used. For example, layers may be substantially aligned based at least in part on feature-by-feature matching between layers, such as, for example, based at least in part on structures, such as 104. In such an embodiment, detection of a feature in pattern layer 100, for example, such as structures 104, for example, by a sensor and/or through other detection mechanisms may be used to trigger the deposition of material to comprise a corresponding feature in a subsequent layer, so that a feature in the subsequent layer may be substantially vertically aligned with the corresponding detected feature. Any one of a number of techniques may be employed to trigger such deposition and claimed subject matter is not limited in scope to a particular approach or technique.
Likewise, in an alternate embodiment, material may be deposited in substantial horizontal alignment. For example, if pattern layer 100 covers a portion of substrate 102, an additional composite pattern layer portion and/or one or more additional structures 104 may be depositied in a substantially adjacent and/or substantially horizontally aligned relationship. For pattern layer 100, for example, substantially horizontal alignment may include depositing a subsequent layer or structures 104 so as to substantially align rows or columns or both on substantially the same layer. Alternative alignments, or variations or combinations thereof may be employed as well.
Embodiments within the scope of claimed subject matter may at least partially compensate such mismatches, or distortions, or errors, or combinations thereof, by triggering the deposition of material for a subsequent layer based at least in part on detecting selected features of a previous or prior pattern layer. The previous pattern layer may comprise a layer deposited across at least a portion of a substrate, or it may comprise one or more smaller structures and/or repeated patterns. Many other pattern types or variations may also exist within the scope of claimed subject matter. Deposition may be substantially synchronized, or controlled, or both using, in part, position information or other feedback, or both obtained from detecting one or more features of a pattern layer. Information regarding such features may be gathered as part of the process of depositing material to form a subsequent layer, referred to in this context, as “real-time.” Information on dimensional excursions, for example exhibited by features of a previous pattern layer may then be used, at least in part, to provide timing information, or other control signals, or both when depositing material to form a subsequent pattern layer.
One embodiment may employ a sensor mechanism to detect, or evaluate, or various combinations thereof the features of a pattern layer. Some examples of possible sensors, listed for illustrative purposes only and not as a limitation on claimed subject matter, may include laser profilometers, laser displacement sensors, or retro-reflective LDC sensors, or various combinations of sensors, to name a few. Other suitable variations may be used as well and are also within the scope of claimed subject matter. An alternative embodiment may employ a vision system using a charge coupling device (“CCD”) video camera and frame grabber, or other imaging devices, to obtain information regarding a previous pattern layer.
As shown in the embodiment illustrated in
As shown in
In one embodiment, an encoder may be employed as one method for ascertaining position information. A sensor affixed or otherwise coupled with the deposition mechanism may be configured such that a typical incremental encoder signal may be obtained based, at least in part, on the features in the pattern layer deposited on the substrate. Encoder calculations may be used to obtain substantially accurate position information corresponding to sensed features.
As an alternative to the embodiment of
Various types and models of encoder devices are commercially available and may be implemented, with or without configuration changes or other adaptations or modifications, as desirable, for embodiments consistent with claimed subject matter. For example, the following technical data specifications and data sheets provide specific detail on various encoders: “Agilent AEAS-7000 Plug and Play Ultra-Precision Absolute Encoder 16-bit Gray Code,” Feb. 23, 2004, Agilent Technologies, Inc.; “Reflective Optical Surface Mount Encoders,” Feb. 19, 2004, Agilent Technologies, Inc.; “Agilent HEDS-9710, HEDS-9711 200 Ipi Analog Output Small Optical Encoder Modules,” May 10, 2002, Agilent Technologies, Inc.; and “Agilent ADNS-2051 Optical Mouse Sensor,” Oct. 8, 2004, Agilent Technologies, Inc. Of course, claimed subject matter is not limited to employing these or any other particular encoders.
Consistent with claimed subject matter, incremental encoders conceptually similar to the embodiments illustrated in
In another potential embodiment, encoder embodiments may use pattern features. Depending at least in part on the particular embodiment, such features may be substantially uniform in appearance, frequency, spacing, or other characteristics, or various combinations thereof, or such features may not be substantially uniform. Such encoders may be used, for example, to obtain relative, or incremental position information, or both. By employing substantially uniform features as marks, a feature detected by the sensor may convey incremental position information relative to a previous feature detected by the sensor.
However, in another embodiment, substantially non-uniform features may be slightly different in a discernable, or quantifiable fashion, or both such that they may be used in concert with a sensor system. In such an embodiment, an encoder may also obtain, from such detected features, desired position information.
Pattern features may be pre-selected based at least in part on the type of material and/or pattern layer being deposited. One example may be embodied in an application for depositing red/green/blue color filter material onto LCD displays. The color filters may be conceptualized, for illustrative purposes, as small substantially rectangular structures, analogous to structures 104 of
Many alternative embodiments are also possible. For example, in another embodiment, gate lines leading to a transistor element may be used as pattern features to trigger deposition of semiconductor material at a corresponding location. In still another embodiment, color transitions, such as from black to gray sections of a substrate, or between red, green, and blue rectangles in an LCD display, could be designated as pattern features detectable using color-sensitive sensors. Many other pattern feature selections may also be made based at least in part on the desired application.
With particular reference to
Many changes may be made to the details of the above-described embodiments without departing from the scope of claimed subject matter. All such changes that fall within the scope of the following claims are intended to be covered by the following claims.