The invention relates in general to the manufacture of containers that may be readily used to ship and/or display contents following delivery of the container, as specified in the independent claims.
Various containers are conventionally provided as packaging for shipping or for display of product in a retail environment to prospective customers. As is conventionally known in the industry, such containers can be transported to manufacturing and/or retail environments for use in shipping or display in knock-down form; i.e., flattened but otherwise being glued, stapled or otherwise secured together, such that they are already substantially pre-assembled; such knock-down form containers are also referred to as preassemblies. In such a “knockdown” state (i.e., knocked down or not set-up), personnel assembling the product container need only open the sides and or ends of the container and affix the package bottom wall into its assembled condition. As a result, such containers assembly may be performed such that the product can be placed into a resulting assembled container for shipping or as display package for ready display.
Conventionally, it has been deemed advantageous at times to stack a plurality of such containers, one on top of the other for the purposes of transport to a retail environment or during display in the retail environment. In this use, it is necessary that the containers stacked above the bottom-most package are amply supported also that a stack of a number of such containers, when filled with product, will not collapse.
However, the time required for assembling containers such as display cases can be somewhat lengthy as assembly of a container may require a number of separate actions to be performed by the assembler. The number of such separate actions is conventionally referred to as the number of “touches” required for assembly; thus, a container requiring complex assembly requires a greater number of touches than a container requiring relatively simple assembly. Moreover, because assembly may be performed by one or more personnel members, the quality of an assembled container may be variable based one personnel skill and expertise.
The following presents a simplified summary in order to provide a basic understanding of some aspects of various invention embodiments. The summary is not an extensive overview of the invention. It is neither intended to identify key or critical elements of the invention nor to delineate the scope of the invention. The following summary merely presents some concepts of the invention in a simplified form as a prelude to the more detailed description below.
In accordance with illustrated embodiments, a method is provided of manufacturing containers and resulting containers and associated preassemblies and blanks, which, when utilized, result in containers that include a supplementary blank that provides a plurality of pillars that serve as a mechanism for dividing the container into a plurality of compartments and as a mechanism for increasing stacking strength of the container, whereby the container may be configured to bare larger amounts of weight than without the supplementary blank without collapse.
Additionally, illustrated embodiments may provide consistent assembly of divided containers for shipping, display and/or display ready packaging including a plurality of compartments, wherein the compartments are formed by the interaction of the supplementary blank with a primary blank through at least one of adhering a plurality of parts of the supplementary and primary blanks to one another and the interaction between supplementary corner tabs of the supplementary blank and the corners of the tray formed by the primary blank.
These illustrated embodiments are achieved by a combination of features recited in the independent claim. Accordingly, dependent claims prescribe further detailed implementations of the present invention.
Various embodiments are described herein, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings, it should be understood that the particulars shown are by way of example and for purposes of discussion of illustrated embodiments only, and are presented in order to provide what is believed to be a useful and readily understood description of the principles and concepts of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
Accordingly, a more complete understanding of the present invention and the utility thereof may be acquired by referring to the following description in consideration of the accompanying drawings, in which like reference numbers indicate like features, and wherein:
In the following description of various invention embodiments, reference is made to the accompanying drawings, which form a part hereof, and in which is shown, by way of illustration, various embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made without departing from the scope and spirit of the present invention.
Although knockdown display containers (i.e., a preassembly) provide the opportunity for product manufacturers and retailers to present product in a customized manner, the time and skill required for assembling such containers in a consistent manner varies depending on the number of “touches” required for assembling the container. That is, the more complicated the container, the more time it takes to assemble it. Additionally, the more complicated the container, the more likely the container is to be assembled in a manner that provides inconsistent resulting containers, i.e., containers do not look the same.
Therefore, although the use of containers that may be used for display can improve sales of product in a retail environment and the user of containers that have increased features (e.g., pillars that enable increased stacking strength) both can improve the retailer's ability to use retail space efficiently, the fulfillment cost and time to assemble the container detracts from the provided utility. Thus, there is a need to reduce the number of touches required for final assembly of a container, for example, a shipping package, display or display ready package or compartmentalized package so as to reduce fulfillment cost and time. Additionally, there is a need to increase the consistency with which such containers may be assembled so as to generate more consistent containers without regard to the skill or experience level of an assembler.
With this understanding in mind, a description of various invention embodiments is now provided.
Understanding of the manufacturing of a container, blanks and/or preassemblies in accordance with embodiments may best be understood by first reviewing an illustration of a manufactured container provided in accordance with one illustrated embodiment. As illustrated in
Thus, in accordance with illustrated embodiments, a method is provided of manufacturing containers and resulting containers 100 and associated preassemblies (the combination of 101, 102) and blanks 101, 102, which, when utilized, result in containers 100 that include a supplementary blank 102 that provides a plurality of pillars 103 that serve as a mechanism for dividing the container into a plurality of compartments. These pillars 103 also increase the stacking strength of the container 100, whereby the container 100 may be configured to bare larger amounts of force (e.g., weight) from a top direction than without the supplementary blank.
As will be appreciated from the remaining disclosure by one of ordinary skill in the art, the container 100 may be used to display product therein in a retail environment. Thus, subsequent to arrival at a retail environment or off-site fulfillment or contract packaging facility, a knockdown version of the container 100 (e.g., a preassembly) may be assembled and product placed in the container 100 for transport and/or display.
As used in
As shown in
Thus, the total length 112 of the blank 101 includes the length 114 of the major panel 105 as well as the lengths 117 of the two end panels 108 and the lengths 116 of the end flaps 109 (which are illustrated as greater than the lengths 115 of the corner tab 107 but are not necessarily so). Likewise, the total width 119 of the blank 101 includes the width 120 of the major panel 105 as well as the widths 121 of the two side panels 106.
The total length 127 of the supplementary blank 102 includes the length 129 of the primary panel 138 which is illustrated (but need not be) greater than the length of the main divider walls 125 (comprised of the length of the aperture 133 and associated side sections 131 of the main divider wall 125) as well as the widths 132, 130 of the first and second pillar sections 123, 124 as well as the length 126 of the supplementary corner tabs 122. Likewise, the total width 134 of the blank 102 includes the width 135 of the main wall divider 125 (which included the width 136 of the aperture 104).
As explained above, illustrated embodiments may provide consistent assembly of divided containers for shipping and/or display ready packaging including a plurality of compartments, wherein the compartments are formed by the interaction of the supplementary blank 102 with the primary blank 101 through at least one of adhering a plurality of parts of the supplementary and primary blanks to one another and the interaction between supplementary corner tabs of the supplementary blank and the corners of the tray formed by the primary blank.
Accordingly, as illustrated in
It should be appreciated that, although
In one potential implementation, one or more portions of the primary and supplementary blanks 101, 102 may be adhered to one another via, for example, adhesive such as glue, staples, tape, etc. so as to produce a preassembly (e.g., a knockdown or preassembly for the container illustrated in
As a result of such a process, a preassembly may be provided that offers consistent positioning of the primary and secondary blank components as well as a mechanism for ensuring that the primary and secondary blanks do not become separated prior to or subsequent to final assembly of a container.
Such an implementation may have particular utility when, for example, there is a risk of containers being incorrectly assembled as a result of inaccurate positioning of the supplemental blank's primary panel (138 illustrated in
Alternatively, or in addition, it should be appreciated that a mechanism for affixing the supplementary corner tabs 122 to the corners of the tray formed by blank 101 may also be provided. For example, adhesive source 139, e.g., a sticker or other conventionally understood means for adhering materials together, may be applied to the supplementary corner tabs 122 that may include, for example, a top sheet that may be removed during final assembly to reveal a portion of adhesive that may be used to adhere the face of the corner tab 122 to the end panel 108 (or if the corner tab is inserted into the rollover slot formed by panel 108 and flap 109, to the flap 109). Alternatively, adhesive source 139 may be a dehydrated adhesive that, when moistened, becomes an effective adhesive to adhere the face of the corner tab 122 to another surface. Further, it should be appreciated that various conventionally known mechanisms may be provided for providing a connection between the corner tab 122 and components of the primary blank 101.
Returning to the manufacture of the preassembly explained above, it should be appreciated that, as a first operation in manufacturing the preassembly for the container 100, the faces of the primary and supplementary blanks 101, 102 are affixed together at various locations. Thus, although not shown, a preassembly may be provided wherein the primary and supplementary blanks 101, 102 are adhered to one another via adhesive 141 but the panels, walls, dividers, pillars and tabs are not configured for final assembly. As a result, such a preassembly may be delivered to a location for final assembly and placement of product; such a preassembly may be effectively and easily stacked with other preassemblies because such preassemblies are flat having not yet been built or assembled as shown in
Although
Preassembly is normally performed at a container manufacturing facility to produce a preassembly which may also be thought of and referred to as a knockdown of the container. These preassemblies may be shipped to a customer location such as a product manufacturing facility or retail environment or third party fulfillment contract packaging facility. At that destination, the container customer may perform final assembly/use of the containers by, for example, folding and assembling various panels of the container to provide a container that is configured to hold manufacture product, e.g., for shipping and/or display.
In such operations, the manufacturing of the container preassemblies may be performed by the customer of the preassemblies and/or as part of manufacture of the preassemblies as illustrated in
Subsequent to blank manufacturing 515, the manufactured blanks may be affixed to one another as part of the joining of multi-blank preassembly operations 520. The operations performed at 520 may be performed in various suitable manners including by hand or using various commercially available machines (for example, those produced by Bahmueller Technologies, Inc. of Charlotte, N.C., USA or Bobst Group North America of Roseland, N.J., USA). Thus, the operations performed at 520 may produce preassemblies for containers such as that illustrated in
Therefore, it should be appreciated that one or more of the operations performed to produce blanks, preassemblies, knockdowns and containers may be performed in whole or in part by machines and or human personnel. Moreover, human personnel may utilize one or more different types of machines and/or tools to perform assembly operations performed either to manufacture preassemblies or finally assembled containers.
Thus, at the beginning of such operations, raw material 525 is used to produce blanks 530. Such raw materials 525 may include but are not limited to various grades, types, configurations and combinations of corrugated fiberboard and/or solid paperboard, liner board, board of various fluting types and combinations as well as various types of sealants, non-organic materials and inks and dies of various suitable types.
It should be understood that implementation of the method and system of the present invention involves performing or completing certain selected tasks or steps manually, automatically, or a combination thereof.
While this invention has been described in conjunction with the specific embodiments outlined above, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, the various embodiments of the invention, as set forth above, are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the invention.
For example, various illustrated features of the preassembly and resulting containers may be omitted. Furthermore, it should be understood that invention embodiments are capable of variations practiced or carried out in various ways. Therefore, it should be appreciated that, in accordance with at least one embodiment of the invention, any and all of the walls may be constructed of corrugated cardboard. However, it should be understood that the walls, panels, any tabs on various panels, etc., may be constructed of various industry recognized appropriate materials that meet various transporting and/or display criteria. As a result, it should be understood that containers manufactured in accordance with at least one embodiment of the invention may also be considered “cartons,” which may be considered packaging or display containers, commonly made from cardstock or cardboard. Further, it should be understood that cartons come in many different varieties but most cartons can be folded and assembled from a flat form, known as a carton blank. Thus, it should be understood that the pattern for any blank, preassembly or container may be different than those described herein.
Alternatively, or more specifically, the packaging and/or display containers may be made using various types of material including, solide fibre, Solid Bleach Sulphate (SBS), currugated board, e.g., material made by a corrugator (a machine that produces corrugated board by attaching fluting to liners), which is a structured board formed by gluing one or more arched layers of corrugated medium to one or more flat-facing linerboards.
Additionally, it should be appreciated that material used in accordance with at least one embodiment of the invention may be laminated to provide barrier properties. Further, other barrier materials may be used including Ultra Violet (UV), moisture and gas barriers. Additionally, though not discussed in detail herein, it should be understood that any adhesive used to provide a bond between materials used in containers provided in accordance with the invention may include any substance that helps bond two materials together, examples including but not limited to glue and paste.
Further, it should be appreciated that the material used to form the primary blank 101 may be different, stronger, or weaker than the blank used to form the supplementary blank 102. Thus, for example, use of a supplementary blank 102 that is of a heavier, more durable or stronger material than the material used for primary blank 101, may provide the increased ease of final assembly as well as increased durability or strength to the resulting container 100 while reducing the amount of material in the container (something of interest for environmental and cost issues).
It should also be appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable sub-combination.
Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.
Additionally, it should be understood that the functionality described in connection with various described components of various invention embodiments may be combined or separated from one another in such a way that the architecture of the invention is somewhat different than what is expressly disclosed herein. Moreover, it should be understood that, unless otherwise specified, there is no essential requirement that methodology operations be performed in the illustrated order; therefore, one of ordinary skill in the art would recognize that some operations may be performed in one or more alternative order and/or simultaneously.
As a result, it will be apparent for those skilled in the art that the illustrative embodiments described are only examples and that various modifications can be made within the scope of the invention as defined in the appended claims.