This application claims the priority of European Patent Application, Serial No. EP 12163172.5, filed Apr. 4, 2012, pursuant to 35 U.S.C. 119(a)-(d), the content of which is incorporated herein by reference in its entirety as when fully set forth herein.
The present invention relates to a measuring transducer, which may also be referred to in abbreviated form as a transducer or rotary transducer, for obtaining position data and a method for operating a measuring transducer. Such measuring transducers may be implemented as absolute transducers or incremental transducers and may be based on optical scanning of a dimensional scale.
Furthermore, the invention also relates to a unit having such a measuring transducer, for example a drive or an electric motor, in order to obtain at that point position data relating to a speed or position of the motor/drive or generally of the respective unit.
Measuring transducers, especially measuring transducers for drive technology, are subject to particularly high demands on their operational reliability and fault tolerance.
Semiconductor light sources, for example laser diodes, whose service life and operational robustness is critically affected by maximum and minimum operating temperatures, are required for rotary transducers based on a microstructured, diffractive, absolute optical coding. On the one hand this depends on cyclical loading due to temperature fluctuations during repetitive activation and de-activation of such light sources, and on the other hand on diffusion processes which occur at high temperatures, and in this case lead to undesirable doping, crystal damage and the like. Equally, high demands of the application, for example a rotary transducer integrated in a motor, affect packaging as well as the construction and interconnection technologies.
The suitability of such measuring transducers for industrial use, especially where there are particular requirements to be met regarding their reliability in continuous operation, has hitherto not been optimal.
It would therefore be desirable to obviate prior art shortcomings and to provide an improved measuring transducer and a method for its operation.
According to one aspect of the present invention, a measuring transducer for obtaining position data, includes a transmit/receive unit having a plurality of light sources for scanning a dimensional scale. At least one light source may have a plurality of emitters. In this case, semiconductor lasers are considered as light sources or emitters. A unit containing a plurality of such emitters, in which each emitter functions as an independent, potential light source, will hereinafter generally be referred to as a light source.
At present, such semiconductor lasers, in particular Vertical Cavity Surface Emitting Lasers (also referred to as VCSEL emitters), are not designed for an industrial application at high temperatures. In an application of such semiconductor lasers, the individual emitters are usually also individually positioned. VCSEL arrays are known from communications technology and for laser lighting, as well as for increasing total radiated power.
According to another aspect of the invention, a method for operating a measuring transducer, and more particularly a method for obtaining position data by scanning a dimensional scale with a measuring transducer of a transmit/receive unit having a plurality of light sources, with at least one light source having a plurality of emitters, includes activating a subset of emitters of the plurality of emitters simultaneously so as to obtain a specified minimum signal power. Instead of activating a subset of emitters simultaneously, individual emitters or groups of emitters may be activated as a replacement for or in addition to other emitters or groups of other emitters.
According to an advantageous feature of the present invention, the laser diodes in a light source having a plurality of laser diodes, in particular a plurality of integrated VCSEL emitters, may be utilized in different ways to increase the tolerance of the mechanical construction of the measuring transducer and/or the reliability, by means of redundancy. In addition, this advantage is achievable in a relatively economical way. Furthermore, the combination or integration of a plurality of laser emitters brings significant advantages with regard to mechanical tolerance and operational reliability.
When an optimum emitter fails at any one time, another emitter may be used in its place, in particular an emitter having the next best resulting signal quality after the optimum emitter, producing redundancy so that the measuring transducer can still be used even when one emitter fails when several emitters successively fail. Here a best possible emitter is an emitter whose activation produces a best possible image on the basis of the scanning beam emitted by this emitter.
Advantageously, an increase in the service life of the measuring transducer, i.e. an increase in its usability in service, may be achieved by a specific sequence of the application (activation) of the individual integrated laser emitters. Consequently, a resulting total ON-time is distributed among the emitters in use. With a number of usable emitters denoted symbolically by N, the service life of the measuring transducer can be theoretically increased by the factor N.
Furthermore, the integrated emitters may advantageously be used at times to increase the total beam intensity, in particular when they image (scan) the same hologram with only a radial offset and the position of the imaged bit pattern differs by only a few pixels (in this case the only condition is on the one hand an identical bit information consisting of 1 to N pixels with a minimum signal amplitude and a clear bit separation with an adequate distance to the next bit, likewise consisting of N pixels). Consequently, even at high operating temperatures, sufficient power can still be produced to read the dimensional scale, i.e. the absolute track, for example, and a partial corruption of computer-generated holograms (CGH) functioning as the dimensional scale can be compensated.
According to another advantageous feature of the present invention, the transmit/receive unit may include at least one light source having a plurality of emitters arranged in a row. In such a linear type of arrangement of all emitters of a light source, a radial or a tangential alignment of an absolute and/or incremental track can be considered as the dimensional scale. The related possibilities and advantages are described further on.
According to another advantageous feature of the present invention, the transmit/receive unit may include at least one light source having a plurality of emitters arranged in a matrix-type structure. The increased number of emitters contained by the light source in the matrix-type structure presents additional possibilities in respect of the usability period of the measuring transducer because, simply put, in the event of an age-related failure of individual emitters a larger number of alternate usable emitters is available for compensating one or more failed emitters. Furthermore, a two-dimensional structure of such a light source having emitters arranged in a matrix-type structure advantageously also enables compensation of an unsuitable or defective orientation of the light source and/or of the detector with respect to a scanned dimensional scale. This will be described in more detail below.
In a method for operating a measuring transducer with a light source and a plurality of emitters which can be activated simultaneously within the light source irrespective of any linear or matrix-type arrangement, a plurality of emitters may be activated automatically and simultaneously for obtaining a specified or specifiable minimum signal power. A plurality of emitters can here be activated simultaneously and automatically, because a signal power of the images recorded during operation is likewise recorded regularly and automatically detect and is compared with a specified or specifiable threshold value. When the value falls below the threshold value, at least one further emitter is activated automatically, i.e. for example by control electronics contained in the measuring transducer. When necessary, individual emitters may also be operated at reduced power, so that when the signal power is below the threshold value, for example, an already active emitter remains in operation and a further emitter is additionally activated at half power, for example. An automatic selection of an additional emitter or of a plurality of emitters made by the control electronics depends, at least partly, on a position of such additional emitters that can be activated within the light source and/or in relation to the emitter or to every emitter already in operation. Principally, all conceivable geometric patterns may be considered in this case when a group of simultaneously active emitters and their position together is to be considered as a pattern.
According to another advantageous feature of the present invention, in the event of a failure or an imminent failure of an emitter, either this emitter is de-activated and in its place at least one other emitter is activated automatically or this emitter remains activated and additionally another emitter is activated. The emitters contained in the light source are then utilized as a redundant replacement or a redundant addition for failing, failed or no longer adequately radiating emitters.
According to another advantageous feature of the present invention, successive individual emitters or groups of emitters may be activated automatically—i.e. for example by control electronics contained in the measuring transducer—and resulting images registered by a detector of the measuring transducer may be evaluated to identify and then activate a best possible emitter or a group of best possible emitters. In a light source having a plurality of emitters, a most suitable emitter or a group of most suitable emitters for scanning the dimensional scale may be identified and then automatically activated in this way. Such a process can be initiated following installation of the measuring transducer and as a part of setup process. The process itself can run automatically under the control of the control electronics, for example, and the emitter or each emitter identified within the framework of such a process is stored, so that its or their automatic activation can take place at the conclusion of the identification process.
The invention may at least partially be implemented in software. The invention therefore also relates to a computer program with program code instructions executable by a computer and on the other hand is a storage medium having such a computer program, as well as finally also a measuring transducer having control electronics with a processing unit in the form of or a type of a microprocessor or ASIC, and a memory in which such a computer program can be stored or loaded as a means for implementing the method and its embodiments, which computer program can be or is executed by its processing unit during the operation of the measuring transducer. Here the software aspect of the invention relates in particular to the automatic activation and de-activation of individual emitters according to a scheme coded in software, that is for example for compensating a failed emitter or for selecting a best possible emitter or a best possible group of emitters, as well as for temporarily storing results of an evaluation of images due to activation of individual emitters or a group of emitters in conjunction with data for coding the one emitter or each respective original emitter.
Other features and advantages of the present invention will be more readily apparent upon reading the following description of currently preferred exemplified embodiments of the invention with reference to the accompanying drawing, in which:
Throughout all the figures, same or corresponding elements may generally be indicated by same reference numerals. These depicted embodiments are to be understood as illustrative of the invention and not as limiting in any way. It should also be understood that the figures are not necessarily to scale and that the embodiments are sometimes illustrated by graphic symbols, phantom lines, diagrammatic representations and fragmentary views. In certain instances, details which are not necessary for an understanding of the present invention or which render other details difficult to perceive may have been omitted.
Turning now to the drawing, and in particular to
In order to obtain position data, the measuring transducer 16 contains a transmit/receive unit 18 (OPU) with which the respective dimensional scale 12, 14 is scanned. For this, the transmit/receive unit 18 contains at least one light source 20, i.e. a VCSEL chip for example, for generating a scanning beam 22, i.e. in particular for generating a laser beam, as well as at least one detector 22 for detecting an optical code resulting from a reflection or transmission of a scanning beam 24 emitted by the light source 20. The detection of the optical code shown here is for the case of a reflection on the respective dimensional scale, i.e. here the absolute track 12.
The rotatable disk 10 is only one example of how position data can be obtained with a measuring transducer 16, in this case position data with respect to the rotational position of the disk 10. Such a disk 10 can be assigned to a drive (not shown) and thence to a motor shaft, for example, in order to detect a rotational speed or rotational position of the motor shaft. Furthermore, a disk 10 is also only one example of a mounting position for a dimensional scale. In principle, the dimensional scale could, in the case of a drive for example, also be directly attached to the relevant monitored shaft, i.e. the motor shaft, for example.
Correspondingly, the representation in
Whereas
When using a VCSEL chip, the light source 20 in
The representation in
In this connection,
The representation in
Such a selection of a best possible imaging emitter 30-34 can be realized in a particularly satisfactory manner in a tangential orientation of the emitters 30-34 (
Due to the arrangement in a matrix-like form (
During scanning of an incremental track 14 (
The position of the emitter or each of the active emitters 30-34 with respect to the sinusoidal aperture is crucial for a signal quality of an incremental signal 44, 46 originating from an incremental track 14. Optimum filtering exists when a best possible tangential orientation of emitters 30-34 or of emitter group 30-34, aperture and detector 22 is achieved. The close tolerance limits which apply here can be met by activation of individual or a plurality of emitters 30-34 functioning as a quasi adjustment of a resulting laser spot.
The decision as to whether the emitter 30-34 or which group of emitters 30-34 leads to a best possible image is made by comparing the waveform of the resulting incremental signals 44, 46. The representation in
In addition, the resulting signal waveform (incremental signal 44, 46) of the next best emitters 30-34 for the incremental track 14, can be stored during commissioning, either for correction according to tables or for signaling the achievable, possibly reduced, incremental resolution in the case of a bad signal waveform.
Although the invention has been illustrated and described in detail by means of the exemplary embodiment, the invention is therefore not restricted by the disclosed example or examples, and the person skilled in the art can derive other variations from these without going beyond the scope of protection of the invention.
The combination or integration of a plurality of laser emitters 30-34 has advantages with regard to the mechanical tolerance as well as operational reliability and assumes detailed knowledge of the optical principle of operation of diffractive optics and of the typical construction of binary coded encoder disks 10 in interaction with the transmit/receive unit (OPU) 18.
As explained above in conjunction with
Of course, an increased temperature range has a detrimental effect on the service life of the laser emitters 30-34. However, a reduced service life can be compensated in that in each case a plurality of laser emitters 30-34 is provided and that in the event of an age-related failure of one laser emitter 30-34, another laser emitter 30-34 or a plurality of other laser emitters 30-34 can be activated or is activated in its place.
Moreover, a temperature increase also results in a drift in the wavelength range. The result of the drift in the wavelength range is that the focusing of the resulting image (
These emitters 30-34 can be connected in a variety of ways, so that, for example, activation of an additional emitter 30-34 only takes place when, during evaluation of a recorded image, deviations from an expected scenario are detected. Additionally or alternately, it is possible to activate another emitter 30-34 after a specific operating period, additionally or alternately, in a time-dependent, i.e. quasi service-life-dependent manner.
Otherwise it is possible in a light source 20 having a matrix-type arrangement of emitters 30-34 to activate these so as to obtain a maximum back-up effect and an optimum laser spot orientation, as well as an optimum image resulting from this. In this case an optimum orientation is a radial orientation (
In a tangential orientation of a light source 20 having emitters 30-34 (
Individual, prominent aspects of the description submitted here can be briefly summarized as follows:
Specified first and foremost is a measuring transducer 16 for obtaining position data, with the measuring transducer 16 containing a transmit/receive unit 18 for scanning a dimensional scale and with the transmit/receive unit 18 containing a plurality of light sources, in particular at least one light source 20 having a plurality of emitters 30, 32, 34, namely laser diodes, in particular VCSEL emitters, for example.
While the invention has been illustrated and described in connection with currently preferred embodiments shown and described in detail, it is not intended to be limited to the details shown since various modifications and structural changes may be made without departing in any way from the spirit and scope of the present invention. The embodiments were chosen and described in order to explain the principles of the invention and practical application to thereby enable a person skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated.
Number | Date | Country | Kind |
---|---|---|---|
12163172.5 | Apr 2012 | EP | regional |