This application is a national phase of International PCT Patent Application No. PCT/EP2015/051473, filed Jan. 26, 2015, which claims priority to Switzerland Patent Application No. CH00408/14, filed Mar. 18, 2014, EPO Patent Application No. 14159025.7, filed Mar. 12, 2014, and Switzerland Patent Application No. CH00138/14, filed Feb. 3, 2014, the entire contents of each of which are incorporated herein by reference.
The present invention relates to the field of remotely actuated mechanical systems. In particular embodiments, the invention relates to a mechanical teleoperated device for use primarily in surgical procedures and comprising an interchangeable distal instrument. Certain embodiments have particular applicability in minimally invasive surgical procedures. The present invention is also suitable for any remotely actuated application requiring dexterous manipulation with high stiffness and precision along with force feedback. Examples of such applications include assembly manipulation, manipulation in narrow places, manipulation in dangerous or difficult environments, and manipulation in contaminated or clean-room environments.
Numerous environments and applications call for remote actuation with mechanically teleoperated devices. These applications include fine manipulation in assembly tasks, manipulation in narrow places, manipulation in dangerous or contaminated environments, manipulation in clean-room or sterile environments and manipulation in surgical environments, whether open field or minimally invasive. While these applications vary along parameters such as precise tolerances and typical end user, each demands many of the same features from a mechanically teleoperated system, such as the ability to carry out dexterous manipulation with high stiffness and precision along with force feedback.
Surgical applications are now discussed in more detail as a representative example of an application for a mechanically teleoperated device system where known devices exist but significant shortcomings are evident in the current state of the art.
Open surgery is still the standard technique for most surgical procedures. It has been used by the medical community for several decades and consists of performing the surgical tasks by making a long incision in the abdomen or other area of the body, through which traditional surgical tools are inserted. However, due to the long incision, this approach is extremely invasive for patients, resulting in substantial blood loss during surgery and, typically, long and painful recovery periods in a hospital setting.
In order to reduce the invasiveness of open surgery, laparoscopy, a minimally invasive technique, was developed. Instead of a single long incision, several small incisions are made in the patient through which long and thin surgical instruments and endoscopic cameras are inserted. Because of the minimally invasive nature of the procedure, this technique reduces blood loss and pain and shortens hospital stays. When performed by experienced surgeons, this technique can attain clinical outcomes similar to open surgery. However, despite the above-mentioned advantages, laparoscopy requires extremely advanced surgical skill to manipulate the rigid and long instrumentation. The entry incision acts as a point of rotation, decreasing the freedom for positioning and orientating the instruments inside the patient. The movements of the surgeon's hand about this incision are inverted and scaled-up relative to the instrument tip (“fulcrum effect”), which reduces dexterity and sensitivity and magnifies the tremors of the surgeon hands. In addition, the long and straight instruments force the surgeon to work in an uncomfortable posture for hands, arms and body, which can be tremendously tiring during several hours of an operation. Therefore, due to these drawbacks of laparoscopic instrumentation, these minimally invasive techniques are mainly limited to use in simple surgeries, while only a small minority of surgeons is able to use them in complex procedures.
To overcome these limitations, surgical robotic systems were developed to provide an easier-to-use approach to complex minimally invasive surgeries. By means of a computerized robotic interface, these systems enable the performance of remote laparoscopy where the surgeon sits at a console manipulating two master manipulators to perform the operation through several small incisions. Like laparoscopy, the robotic approach is also minimally invasive, bringing the above-mentioned advantages over open surgery in terms of pain, blood loss, and recovery time. In addition, it also offers better ergonomy for the surgeon compared to open and laparoscopic techniques. However, although being technically easier, robotic surgery brings several negative aspects. A major disadvantage of these systems relates to the extremely high complexity of the existing robotic devices, which comprise complex mechatronic systems, leading to huge costs of acquisition and maintenance, which are not affordable for the majority of surgical departments worldwide. Another drawback of these systems comes from the fact that current surgical robots are large, competing for precious space within the operating room environment and significantly increasing preparation time. Access to the patient is thus impaired, which, together with a general lack of force-feedback, raises safety concerns.
WO9743942, WO9825666 and U.S.2010011900 disclose a robotic tele-operated surgical instrument, designed to replicate surgeons' hand movements inside the patient's body. By means of a computerized, robotic interface, it enables the performance of remote laparoscopy, wherein the surgeon sits at a console manipulating two joysticks to perform the operation through several small incisions. However, this system does not have autonomy or artificial intelligence, being essentially a sophisticated tool fully controlled by the surgeon. The control commands are transmitted between the robotic master and robotic slave by a complex computer-controlled mechatronic system, which is extremely costly to produce and maintain and difficult to use for the hospital staff.
WO2012049623 describes a mechanical manipulator for surgical instruments with a master-slave configuration and including remote actuation of a distal end effector. However, the system described therein does not provide for an interchangeable instrument.
WO2013014621 describes a mechanical teleoperated device for remote manipulation which comprises master-slave configuration including a slave unit driven by a kinematically equivalent master unit such that each part of the slave unit mimics the movement of each corresponding part of the master unit. Although the mechanical transmission system is well adapted to the device, cables passing through an axial joint are twisted when the device is operating, which can force the cables to rub against each other. This increases wear on the cables over time and increases friction in the overall mechanical transmission.
Accordingly, an aim of the present invention is to provide a mechanical teleoperated device comprising an interchangeable distal instrument. This device could be designed for use in a surgical environment such that the interchangeable distal instruments would be surgical instruments. However, one of skill in the art will realize that the device could also be deployed in other applications where complex, remote manipulation is required and wherein interchangeable instruments would be useful for different manipulation tasks.
Another aim of the present invention is to provide a mechanical teleoperated system with an improved transmission system. In such a system, the transmission system, and particularly the joints, would be designed such that cables do not rub against each other, thus reducing wear and tear.
These aims and other advantages are achieved through a mechanical teleoperated device for remote manipulation designed to naturally replicate the operator's hand movements in the distal area where the manipulation must occur. The mechanical teleoperated device may comprise a slave unit, configured to be driven by a master unit, which is preferably kinematically equivalent to the slave unit. The slave unit has a plurality of slave links interconnected by respective slave joints and comprises a proximal part and a distal part (also referred to as a distal instrument) connected distally to one of the slave joints, referred to as the interface slave joint. More particularly, this interface slave joint of the slave unit may have a coaxial configuration, connecting a proximal and a distal link of the slave unit in such a manner that these two adjoining links are axially rotatable with respect to each other about the axis of the coaxial joint. The master unit comprises a plurality of master links interconnected by respective master joints, and a corresponding interface master joint.
An articulated handle is connected to the master unit for operating the mechanical teleoperated device and an articulated end-effector is connected to the distal extremity of the distal instrument. The mechanical teleoperated device further comprises a transmission system arranged to kinematically connect the equivalent degrees-of-freedom of the master and slave units, including the degrees-of-freedom of the end-effector to the degrees-of-freedom of the handle such that said end-effector replicates the movements of the handle when the mechanical teleoperated device is operated.
The transmission system comprises (i) at least one arrangement of a plurality of rotatable elements coaxially mounted together and coaxial to the axis of the interface slave joint of the slave unit and arranged to rotate independently from each other; (ii) first transmission means integrated into the proximal part of the slave unit and comprising driving cables or the like which are arranged to actuate in rotation each one of the rotatable elements of the said at least one arrangement; and (iii) second transmission means integrated into the distal instrument and comprising driven cables or the like which are arranged to be driven by the rotation of each one of the corresponding rotatable elements of the at least one arrangement of a plurality of rotatable elements.
The transmission system according to the invention is advantageously configured for removably coupling together the first and second transmission means of the respective proximal and distal parts of the slave unit. In this arrangement, each driven cable of said second transmission means is removably connected, by means of additional elements, to one corresponding rotatable element of said at least one arrangement of a plurality of rotatable elements in order to provide a user-friendly interchangeable and modular tooling/instrument system for use with the mechanical teleoperated device.
According to one embodiment of the invention, a segment of each driven cable of the second transmission means is removably connected to one corresponding rotatable element of the at least one arrangement of a plurality of rotatable elements. Each of these segments is guided along a path within a plane which is substantially perpendicular to the axis about which the rotatable elements of the at least one arrangement of a plurality of rotatable elements are able to rotate. This path preferably extends along a circular trajectory, whose center point is coincident with the rotatable elements' axis.
According to another embodiment of the invention, each driven cable of said second transmission means is anchored to a mating receptacle pivotally mounted about the axis of the interface slave joint of the slave unit. Each corresponding rotatable element of the at least one arrangement of a plurality of rotatable elements comprises a complementary mating part removably mounted inside the corresponding mating receptacle.
According to a further embodiment of the invention, each complementary mating part is mounted on a pointer which is connected to one corresponding rotatable element. These pointers are able to rotate around the axis of the interface slave joint and may be angularly offset from each other so that their angular amplitude of movement allows the full-range actuation of the end-effector articulations.
According to a further embodiment of the invention, the mating receptacles and corresponding mating parts are housed inside a slave housing. The slave housing comprises two complementary housing parts removably mounted against each other. Said mating receptacles are mounted inside one complementary housing part which is connected to the distal part of the slave unit whereas said complementary mating parts are mounted inside the other complementary housing part which is connected to the proximal part of the slave unit.
According to another embodiment of the invention, the transmission system comprises two arrangements of a plurality of rotatable elements, wherein rotatable elements of the first arrangement are coaxially mounted together so that each one is able to rotate about the axis of an interface slave joint of the slave unit, and wherein rotatable elements of the second arrangement are coaxially mounted together to rotate about each other, being collinear with the axis of an interface master joint of the master unit. In this configuration, each driving cable of the first transmission means is connected to one rotatable element of the first arrangement of the slave unit and to one corresponding rotatable element of the second arrangement of the master unit such that rotation of each rotatable element of said second arrangement rotates the corresponding rotatable element of said first arrangement.
According to yet another embodiment of the invention, two or more teleoperated devices, as defined above, can be set to work together, enabling the user to perform bi-manual manipulation. In addition, two or more telemanipulators can be mounted on a movable and articulated station, so that they can be easily moved on the ground from one place to the other and their working position and orientation can be tuned in the 3D space.
The invention will be better understood according to the following detailed description of several embodiments of the invention with reference to the attached figures, in which:
A mechanical telemanipulator, which may be used in minimally invasive surgical procedures or in other applications, constructed in accordance with an embodiment of the present invention, is described herein, and is seen generally in
Referring more particularly to
Upward and downward movements applied to the handle 30 by the operator when the mechanical teleoperated device is in the neutral position of
As schematically shown in
Still referring to
The transmission system as shown in
Referring now to
The transmission system further comprises third transmission means which have three cables 61a, 61b, 61c or similar structures which are each arranged to be anchored on a corresponding pulley 30a, 30b, 30c of the handle 30 in order to be driven by angular displacement of these pulleys about their respective pivotal connection generated by the actuation of handle 30. Each of these cables 61a, 61b, 61c extends axially along the master link 24 to be anchored to a corresponding rotatable element 51a, 51b, 51c of the second arrangement 50 of the master unit 20.
According to the configuration of the transmission system, angular displacement of each pulley 30a, 30b, 30c of the handle 30 about their respective pivotal connection, during operation of the mechanical teleoperated device, drives the corresponding cable 61a, 61b, 61c of the third transmission means which causes the angular displacement of the corresponding rotatable element 51a, 51b, 51c of the second arrangement 50 about the axis of the interface slave joint 29 of the master unit 20. Rotation of each one of these rotatable elements 51a, 51b, 51c drives the corresponding cable 62a, 62b, 62c of the first transmission means which causes the angular displacement of the equivalent rotatable element 41a, 41b, 41c of the first arrangement 40 about the axis of the interface slave joint 19 of the slave unit 10. Rotation of each one of these rotatable elements 41a, 41b, 41c causes in turn the angular displacement of the corresponding pulley 31a, 31b, 31c of the end-effector 31 by means of the corresponding driven cable 63a, 63b, 63c of the second transmission means. The remaining two rotatable elements 41d, 51d of respective slave and master units 10, 20 are connected together by means of cable 62d such that axial rotation of the master link 24 rotates the corresponding slave link 14 about its longitudinal axis.
Due to this particular configuration, the transmission system is advantageously arranged to avoid twisting of the cables, when the master link 24 and the corresponding slave link 14 are coaxially rotating. Wear and tear of the cables resulting from prolonged use of the mechanical teleoperated device are therefore significantly reduced.
Referring now to
With reference to
According to the transmission system, the ratio of Rs/Rm (
The configuration of the mechanical teleoperated device according to the invention allows the operator to easily remove the distal part 10a, comprising at its distal end the end-effector 31, and to replace it with another distal part comprising any type of end-effector such as scissors, scalpels, cutters, needle holders or any other surgical accessories.
Although the transmission system as disclosed in this preferred embodiment comprises cables, its particular configuration is not limited to this embodiment. For example, the present invention may also encompasses other flexible and non-flexible drive elements such as rods, linkages or the like which could be arranged to achieve the same functionality set forth herein.
Moreover, although the transmission system of the mechanical teleoperated device according to the preferred embodiment comprises first, second and third transmission means comprising each three cables to actuate three degrees of freedom of the end-effector when the handle is operated, the scope of the invention also covers configurations with first and second transmission means only such that their respective cables circumvents only joint 19 of the slave unit to allow detachment of the distal part 10a from the proximal part 10b of the slave unit 10. Transmission means in excess of three comprising each a distinct set of cables can also be envisaged to cover embodiments in which the master and slave units comprise each several coaxial joints.
While this invention has been particularly shown and described with references to particular embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. For example the scope of the invention includes configurations where at least the first and the third transmission means comprise N cables for the transmission of N degrees-of-freedom of the handle to the end-effector, where N can be for example 2, 4 or 5. In addition, the transmission system disclosed according to the embodiments described herein can be adapted to any teleoperated device which does not necessarily comprise a kinematically equivalent master-slave configuration.
Number | Date | Country | Kind |
---|---|---|---|
138/14 | Feb 2014 | CH | national |
14159025 | Mar 2014 | EP | regional |
408/14 | Mar 2014 | CH | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/051473 | 1/26/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/113933 | 8/6/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2774488 | Goertz | Dec 1956 | A |
2846084 | Goertz et al. | Aug 1958 | A |
4756655 | Jameson | Jul 1988 | A |
5147357 | Rose et al. | Sep 1992 | A |
5207114 | Salisbury et al. | May 1993 | A |
5209747 | Knoepfler | May 1993 | A |
5304203 | El-Mallawany et al. | Apr 1994 | A |
5308358 | Bond et al. | May 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5368606 | Marlow et al. | Nov 1994 | A |
5383888 | Zvenyatsky et al. | Jan 1995 | A |
5484435 | Fleenor et al. | Jan 1996 | A |
5599151 | Daum et al. | Feb 1997 | A |
5603723 | Aranyi et al. | Feb 1997 | A |
5631973 | Green | May 1997 | A |
5649956 | Jensen et al. | Jul 1997 | A |
5710870 | Ohm et al. | Jan 1998 | A |
5716352 | Viola et al. | Feb 1998 | A |
5735874 | Measamer et al. | Apr 1998 | A |
5784542 | Ohm et al. | Jul 1998 | A |
5797900 | Madhani et al. | Aug 1998 | A |
5810716 | Mukherjee et al. | Sep 1998 | A |
5810805 | Sutcu et al. | Sep 1998 | A |
5828813 | Ohm | Oct 1998 | A |
5908436 | Cuschieri et al. | Jun 1999 | A |
5951587 | Qureshi et al. | Sep 1999 | A |
6026701 | Reboulet | Feb 2000 | A |
6197017 | Brock et al. | Mar 2001 | B1 |
6206903 | Ramans | Mar 2001 | B1 |
6233504 | Das et al. | May 2001 | B1 |
6281651 | Haanpaa et al. | Aug 2001 | B1 |
6358249 | Chen et al. | Mar 2002 | B1 |
6361534 | Chen et al. | Mar 2002 | B1 |
6364879 | Chen et al. | Apr 2002 | B1 |
6371952 | Madhani et al. | Apr 2002 | B1 |
6394998 | Wallace et al. | May 2002 | B1 |
6435794 | Springer | Aug 2002 | B1 |
6554844 | Lee et al. | Apr 2003 | B2 |
6786896 | Madhani et al. | Sep 2004 | B1 |
6788999 | Green | Sep 2004 | B2 |
6850817 | Green | Feb 2005 | B1 |
6852107 | Wang et al. | Feb 2005 | B2 |
6902560 | Morley et al. | Jun 2005 | B1 |
6951535 | Ghodoussi et al. | Oct 2005 | B2 |
6991627 | Madhani et al. | Jan 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
7090637 | Danitz et al. | Aug 2006 | B2 |
7101363 | Nishizawa et al. | Sep 2006 | B2 |
7204836 | Wagner et al. | Apr 2007 | B2 |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
7306597 | Manzo | Dec 2007 | B2 |
7316681 | Madhani et al. | Jan 2008 | B2 |
7338513 | Lee et al. | Mar 2008 | B2 |
7364582 | Lee | Apr 2008 | B2 |
7398707 | Morley et al. | Jul 2008 | B2 |
7481824 | Boudreaux et al. | Jan 2009 | B2 |
7608039 | Todd | Oct 2009 | B1 |
7615002 | Rothweiler et al. | Nov 2009 | B2 |
7615067 | Lee et al. | Nov 2009 | B2 |
7674255 | Braun | Mar 2010 | B2 |
7699855 | Anderson et al. | Apr 2010 | B2 |
7819894 | Mitsuishi et al. | Oct 2010 | B2 |
7824401 | Manzo et al. | Nov 2010 | B2 |
7828798 | Buysse et al. | Nov 2010 | B2 |
7976458 | Stefanchik et al. | Jul 2011 | B2 |
8048084 | Schneid | Nov 2011 | B2 |
8105320 | Manzo | Jan 2012 | B2 |
8114017 | Bacher | Feb 2012 | B2 |
8137263 | Marescaux et al. | Mar 2012 | B2 |
8224485 | Unsworth | Jul 2012 | B2 |
8287469 | Stefanchik et al. | Oct 2012 | B2 |
8292889 | Cunningham et al. | Oct 2012 | B2 |
8306656 | Schaible et al. | Nov 2012 | B1 |
8308738 | Nobis et al. | Nov 2012 | B2 |
8332072 | Schaible et al. | Dec 2012 | B1 |
8336751 | Scirica | Dec 2012 | B2 |
8347754 | Veltri et al. | Jan 2013 | B1 |
8353898 | Lutze et al. | Jan 2013 | B2 |
8357161 | Mueller | Jan 2013 | B2 |
8382742 | Hermann et al. | Feb 2013 | B2 |
8403832 | Cunningham et al. | Mar 2013 | B2 |
8418904 | Wenchell et al. | Apr 2013 | B2 |
8496152 | Viola | Jul 2013 | B2 |
8523900 | Jinno et al. | Sep 2013 | B2 |
8540748 | Murphy et al. | Sep 2013 | B2 |
8562592 | Conlon et al. | Oct 2013 | B2 |
8568444 | Cunningham | Oct 2013 | B2 |
8579176 | Smith et al. | Nov 2013 | B2 |
8591397 | Berkelman et al. | Nov 2013 | B2 |
8603077 | Cooper et al. | Dec 2013 | B2 |
8617203 | Stefanchik et al. | Dec 2013 | B2 |
8663270 | Donnigan et al. | Mar 2014 | B2 |
8668689 | Dumbauld et al. | Mar 2014 | B2 |
8668702 | Awtar et al. | Mar 2014 | B2 |
8696666 | Sanai et al. | Apr 2014 | B2 |
8709000 | Madhani et al. | Apr 2014 | B2 |
8768509 | Unsworth | Jul 2014 | B2 |
8792688 | Unsworth | Jul 2014 | B2 |
8801752 | Fortier et al. | Aug 2014 | B2 |
8818560 | Kishi | Aug 2014 | B2 |
8821480 | Burbank | Sep 2014 | B2 |
8828046 | Stefanchik et al. | Sep 2014 | B2 |
8845517 | Russo | Sep 2014 | B2 |
8845622 | Paik et al. | Sep 2014 | B2 |
8870867 | Walberg et al. | Oct 2014 | B2 |
8887979 | Mastri et al. | Nov 2014 | B2 |
8894674 | Balanev et al. | Nov 2014 | B2 |
8930027 | Schaible et al. | Jan 2015 | B2 |
8945098 | Seibold et al. | Feb 2015 | B2 |
8961499 | Paik et al. | Feb 2015 | B2 |
8961514 | Garrison | Feb 2015 | B2 |
8968187 | Kleyman et al. | Mar 2015 | B2 |
8989844 | Cinquin et al. | Mar 2015 | B2 |
8992564 | Jaspers | Mar 2015 | B2 |
9023015 | Penna | May 2015 | B2 |
9033998 | Schaible et al. | May 2015 | B1 |
9044238 | Orszulak | Jun 2015 | B2 |
9084606 | Greep | Jul 2015 | B2 |
9113861 | Martin et al. | Aug 2015 | B2 |
9149339 | Unsworth | Oct 2015 | B2 |
9307894 | Von Grunberg et al. | Apr 2016 | B2 |
9480531 | Von Grunberg | Nov 2016 | B2 |
9696700 | Beira et al. | Jul 2017 | B2 |
20020040217 | Jinno | Apr 2002 | A1 |
20020049367 | Irion et al. | Apr 2002 | A1 |
20020072736 | Tierney et al. | Jun 2002 | A1 |
20030155747 | Bridges | Aug 2003 | A1 |
20030208186 | Moreyra | Nov 2003 | A1 |
20040049205 | Lee et al. | Mar 2004 | A1 |
20040236316 | Danitz et al. | Nov 2004 | A1 |
20040253079 | Sanchez | Dec 2004 | A1 |
20050096502 | Khalili | May 2005 | A1 |
20050204851 | Morley et al. | Sep 2005 | A1 |
20050240078 | Kwon et al. | Oct 2005 | A1 |
20060043698 | Bridges | Mar 2006 | A1 |
20060178559 | Kumar et al. | Aug 2006 | A1 |
20060183975 | Saadat et al. | Aug 2006 | A1 |
20060219065 | Jinno et al. | Oct 2006 | A1 |
20060235436 | Anderson et al. | Oct 2006 | A1 |
20060253109 | Chu | Nov 2006 | A1 |
20070088340 | Brock et al. | Apr 2007 | A1 |
20070137371 | Devengenzo et al. | Jun 2007 | A1 |
20070156123 | Moll et al. | Jul 2007 | A1 |
20070208375 | Nishizawa et al. | Sep 2007 | A1 |
20070299387 | Williams et al. | Dec 2007 | A1 |
20080046122 | Manzo et al. | Feb 2008 | A1 |
20080058776 | Jo et al. | Mar 2008 | A1 |
20080071208 | Voegele et al. | Mar 2008 | A1 |
20080103492 | Morley et al. | May 2008 | A1 |
20080177285 | Brock et al. | Jul 2008 | A1 |
20080243106 | Coe | Oct 2008 | A1 |
20080314181 | Schena | Dec 2008 | A1 |
20090036902 | Dimaio et al. | Feb 2009 | A1 |
20090198253 | Omori | Aug 2009 | A1 |
20090216249 | Jinno et al. | Aug 2009 | A1 |
20090247821 | Rogers | Oct 2009 | A1 |
20090248039 | Cooper et al. | Oct 2009 | A1 |
20090299141 | Downey et al. | Dec 2009 | A1 |
20100004508 | Naito et al. | Jan 2010 | A1 |
20100023025 | Zeiner et al. | Jan 2010 | A1 |
20100121347 | Jaspers | May 2010 | A1 |
20100160929 | Rogers et al. | Jun 2010 | A1 |
20100160940 | Lutze et al. | Jun 2010 | A1 |
20100170519 | Romo et al. | Jul 2010 | A1 |
20100305595 | Hermann | Dec 2010 | A1 |
20100318099 | Itkowitz et al. | Dec 2010 | A1 |
20100318101 | Choi | Dec 2010 | A1 |
20110087236 | Stokes et al. | Apr 2011 | A1 |
20110213346 | Morley et al. | Sep 2011 | A1 |
20110230867 | Hirschfeld et al. | Sep 2011 | A1 |
20110275901 | Shelton, IV | Nov 2011 | A1 |
20110276084 | Shelton, IV | Nov 2011 | A1 |
20110290854 | Timm et al. | Dec 2011 | A1 |
20110301419 | Craft et al. | Dec 2011 | A1 |
20120027762 | Schofield | Feb 2012 | A1 |
20120031114 | Mueller et al. | Feb 2012 | A1 |
20120095298 | Stefanchik et al. | Apr 2012 | A1 |
20120116163 | Lutze et al. | May 2012 | A1 |
20120132018 | Tang et al. | May 2012 | A1 |
20120143173 | Steege et al. | Jun 2012 | A1 |
20120158014 | Stefanchik et al. | Jun 2012 | A1 |
20120209292 | Devengenzo et al. | Aug 2012 | A1 |
20120253326 | Kleyman | Oct 2012 | A1 |
20120277762 | Lathrop et al. | Nov 2012 | A1 |
20120289973 | Prisco | Nov 2012 | A1 |
20120289974 | Rogers et al. | Nov 2012 | A1 |
20120296341 | Seibold et al. | Nov 2012 | A1 |
20130123805 | Park et al. | May 2013 | A1 |
20130144274 | Stefanchik et al. | Jun 2013 | A1 |
20130245643 | Woodard et al. | Sep 2013 | A1 |
20130245647 | Martin et al. | Sep 2013 | A1 |
20130282027 | Woodard et al. | Oct 2013 | A1 |
20130304083 | Kaercher et al. | Nov 2013 | A1 |
20140005681 | Gee et al. | Jan 2014 | A1 |
20140018447 | McGovern et al. | Jan 2014 | A1 |
20140018780 | Hirscheld | Jan 2014 | A1 |
20140076088 | Berkelman et al. | Mar 2014 | A1 |
20140114481 | Ogawa et al. | Apr 2014 | A1 |
20140142595 | Awtar et al. | May 2014 | A1 |
20140166023 | Kishi | Jun 2014 | A1 |
20140180308 | Von Grünberg | Jun 2014 | A1 |
20140188091 | Vidal et al. | Jul 2014 | A1 |
20140188159 | Steege | Jul 2014 | A1 |
20140200561 | Ingmanson et al. | Jul 2014 | A1 |
20140207150 | Rosa et al. | Jul 2014 | A1 |
20140230595 | Butt et al. | Aug 2014 | A1 |
20140249546 | Shvartsberg et al. | Sep 2014 | A1 |
20140263541 | Leimbach et al. | Sep 2014 | A1 |
20140263553 | Leimbach et al. | Sep 2014 | A1 |
20140276956 | Crainich et al. | Sep 2014 | A1 |
20140350570 | Lee | Nov 2014 | A1 |
20150057499 | Erden et al. | Feb 2015 | A1 |
20150057702 | Edmondson et al. | Feb 2015 | A1 |
20150060517 | Williams | Mar 2015 | A1 |
20150066018 | Doll et al. | Mar 2015 | A1 |
20150105821 | Ward et al. | Apr 2015 | A1 |
20150142018 | Sniffin et al. | May 2015 | A1 |
20150150575 | Hartoumbekis et al. | Jun 2015 | A1 |
20150250547 | Fukushima et al. | Sep 2015 | A1 |
20150265355 | Prestel et al. | Sep 2015 | A1 |
20160022365 | Jensen et al. | Jan 2016 | A1 |
20160051274 | Howell et al. | Feb 2016 | A1 |
20160151115 | Karguth et al. | Jun 2016 | A1 |
20160374766 | Schuh | Dec 2016 | A1 |
20170273749 | Grover | Sep 2017 | A1 |
20180055583 | Schuh | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
101584594 | Nov 2009 | CN |
101637402 | Feb 2010 | CN |
101732093 | Jun 2010 | CN |
103717355 | Apr 2014 | CN |
43 03 311 | Aug 1994 | DE |
19652792 | May 1999 | DE |
10314827 | Apr 2004 | DE |
10314828 | Jul 2004 | DE |
10 2012 222 755 | Jun 2014 | DE |
10 2014 205 036 | Sep 2015 | DE |
10 2014 205 159 | Sep 2015 | DE |
0 595 291 | May 1994 | EP |
0 621 009 | Oct 1994 | EP |
0 677 275 | Oct 1995 | EP |
1 254 642 | Nov 2002 | EP |
1 279 371 | Dec 2004 | EP |
1 886 630 | Feb 2008 | EP |
1 889 579 | Feb 2008 | EP |
2 058 090 | May 2009 | EP |
1 977 677 | Aug 2009 | EP |
2 095 778 | Sep 2009 | EP |
1 889 583 | Apr 2011 | EP |
2 377 477 | May 2012 | EP |
2 473 119 | Jul 2012 | EP |
2 305 144 | Oct 2012 | EP |
2 044 893 | Jul 2013 | EP |
2 653 110 | Oct 2013 | EP |
2 679 192 | Jan 2014 | EP |
2 736 680 | Jun 2014 | EP |
2 777 561 | Sep 2014 | EP |
2 837 340 | Feb 2015 | EP |
2 837 354 | Feb 2015 | EP |
2 554 131 | Aug 2015 | EP |
2 979 657 | Feb 2016 | EP |
0 969 899 | Sep 1964 | GB |
2004-041580 | Feb 2004 | JP |
2007-290096 | Nov 2007 | JP |
2008-104620 | May 2008 | JP |
2009-018027 | Jan 2009 | JP |
20110032444 | Mar 2011 | KR |
20130031403 | Mar 2013 | KR |
WO-8200611 | Mar 1982 | WO |
WO-03067341 | Aug 2003 | WO |
WO-03086219 | Oct 2003 | WO |
WO-2004052171 | Jun 2004 | WO |
WO-2005009482 | Feb 2005 | WO |
WO-2005046500 | May 2005 | WO |
WO-2006086663 | Apr 2006 | WO |
WO-2007133065 | Nov 2007 | WO |
WO-2008130235 | Oct 2008 | WO |
WO-2009091497 | Jul 2009 | WO |
WO-2009095893 | Aug 2009 | WO |
WO-2009145572 | Dec 2009 | WO |
WO-2009157719 | Dec 2009 | WO |
WO-2010019001 | Feb 2010 | WO |
WO-2010030114 | Mar 2010 | WO |
WO-2010050771 | May 2010 | WO |
WO-2010083480 | Jul 2010 | WO |
WO-2010096580 | Aug 2010 | WO |
WO-2010130817 | Nov 2010 | WO |
WO-2012020386 | Feb 2012 | WO |
WO-2012049623 | Apr 2012 | WO |
WO-2014012780 | Jan 2014 | WO |
WO-2014018447 | Jan 2014 | WO |
WO-2014067804 | May 2014 | WO |
WO-2014094716 | Jun 2014 | WO |
WO-2014094717 | Jun 2014 | WO |
WO-2014094718 | Jun 2014 | WO |
WO-2014094719 | Jun 2014 | WO |
WO-2014145148 | Sep 2014 | WO |
WO-2014156221 | Oct 2014 | WO |
WO-2014201010 | Dec 2014 | WO |
WO-2014201538 | Dec 2014 | WO |
WO-2015081946 | Jun 2015 | WO |
WO-2015081947 | Jun 2015 | WO |
WO-2015088647 | Jun 2015 | WO |
WO-2015088655 | Jun 2015 | WO |
WO-2015111475 | Jul 2015 | WO |
WO-2015113933 | Aug 2015 | WO |
WO-2015129383 | Aug 2015 | WO |
WO-2015139674 | Sep 2015 | WO |
WO-2016083189 | Jun 2016 | WO |
WO-016189284 | Dec 2016 | WO |
WO-2016189284 | Dec 2016 | WO |
WO-2017064301 | Apr 2017 | WO |
WO-2017064303 | Apr 2017 | WO |
WO-2017064305 | Apr 2017 | WO |
WO-2017064306 | Apr 2017 | WO |
Entry |
---|
Abbott, et al., “Design of an Endoluminal Notes Robotic System,” IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, pp. 410-416 (2007). |
Aesculap Surgical Technologies, Aesculap® Caiman®, Advanced Bipolar Seal and Cut Technology Brochure, 6 pages (retrieved Aug. 31, 2015). |
Arata, et al., “Development of a dexterous minimally-invasive surgical system with augmented force feedback capability,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3207-3212 (2005). |
çavuo{hacek over (g)}lu, et al., “Laparoscopic Telesurgical Workstation,” IEEE Transactions on Robotics and Automation,(15)4:728-739 (1999). |
Dachs, et al., “Novel Surgical Robot Design: Minimizing the Operating Envelope Within the Sterile Field,” 28th International Conference, IEEE Engineering in Medicine Biology Society, New York, pp. 1505-1508 (2006). |
Dario, et al., “Novel Mechatronic Tool for Computer-Assisted Arthroscopy,” IEEE Transactions on Information Technology in Biomedicine, 4(1):15-29 (Mar. 2000). |
Focacci, et al., “Lightweight Hand-held Robot for Laparoscopic Surgery,” IEEE International Conference on Robotics & Automation, Rome, Italy, pp. 599-604 (2007). |
Guthart, et al., “The Intuitive™ Telesurgery System: Overview and Application,” IEEE International Conference on Robotics & Automation, San Francisco, CA, pp. 618-621 (2000). |
Ikuta, et al., “Development of Remote Microsurgery Robot and New Surgical Procedure for Deep and Narrow Space,” IEEE International Conference on Robotics & Automation, Taipei, Taiwan, pp. 1103-1108 (2003). |
Ikuta, et al., “Hyper Redundant Miniature Manipulator ‘Hyper Finger’ for Remote Minimally Invasive Surgery in Deep Area,” IEEE International Conference on Robotics & Automation, Taipei, Taiwan, pp. 1098-1102 (2003). |
International Search Report & Written Opinion dated Feb. 2, 2017 in Int'l PCT Patent Appl. Serial No. PCT/IB2016/001286. |
International Search Report & Written Opinion dated Jan. 18, 2013 in Int'l PCT Patent Appl Serial No. PCT/IB2012/053786. |
International Search Report dated Jan. 18, 2013 in Int'l PCT Patent Appl Serial No. PCT/IB2012/053786. |
International Search Report dated Mar. 23, 2012 in Int'l PCT Patent Appl Serial No. PCT/IB2011/054476. |
Ishii, et al., “Development of a New Bending Mechanism and Its Application to Robotic Forceps Manipulator,” IEEE International Conference on Robotics & Automation, Rome, Italy, pp. 238-243 (2007). |
International Search Report & Written Opinion dated May 23, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002524. |
International Search Report & Written Opinion dated Mar. 30, 2015 in Int'l PCT Patent Appl Serial No. PCT/EP2015/051473. |
International Search Report & Written Opinion dated Apr. 26, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002512. |
International Search Report & Written Opinion dated May 24, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002487. |
International Search Report & Written Opinion dated Jun. 10, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002533. |
International Search Report & Written Opinion dated Jun. 13, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002493. |
International Search Report & Written Opinion dated Aug. 25, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2016/000542. |
International Search Report & Written Opinion dated Sep. 2, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2016/000543. |
Kobayashi, et al., “Small Occupancy Robotic Mechanisms for Endoscopic Surgery,” International Conference on Medical Image Computing and Computer assisted Interventions, pp. 75-82 (2002). |
Mayer, et al., “The Endo[PA]R System for Minimally Invasive Robotic Surgery,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, pp. 3637-3642 (2004). |
Mitsuishi, et al., “Development of a Remote Minimally Invasive Surgical System with Operational Environment Transmission Capability,” IEEE International Conference on Robotics & Automation, Taipei, Taiwan, pp. 2663-2670 (2003). |
Nakamura, et al., “Multi-DOF Forceps Manipulator System for Laparoscopic Surgery-Mechanism miniaturized & Evaluation of New Interface,” 4th International Conference on Medical Image Computing and Computer assisted Interventions (MICCAI2001), pp. 606-613 (2001). |
Peirs, et al., “Design of an advanced tool guiding system for robotic surgery,” IEEE International Conference on Robotics & Automation, Taipei, Taiwan, pp. 2651-2656 (2003). |
Sallé, et al., “Optimal Design of High Dexterity Modular MIS Instrument for Coronary Artery Bypass Grafting,” IEEE International Conference on Robotics & Automation, New Orleans, LA, pp. 1276-1281 (2004). |
Seibold, et al., “Prototype of Instrument for Minimally Invasive Surgery with 6-Axis Force Sensing Capability,” IEEE International Conference on Robotics & Automation, Barcelona, Spain, pp. 496-501 (2005). |
Simaan et al., “Dexterous System for Laryngeal Surgery: Multi-Backbone Bending Snake-like Slaves for Teleoperated Dexterous Surgical Tool Manipulation,” IEEE International Conference on Robotics & Automation, New Orleans, LA, pp. 351-357 (2004). |
Stryker®, Endoscopy, Take a Look Around, Ideal Eyes™ FFD122 HD, Articulating Laparoscope Brochure, 2 pages (2009). |
Swiss Search Report dated Jun. 4, 2012 in Swiss Patent Application No. CH 00702/12. |
Tavakoli, et al., “Force Reflective Master-Slave System for Minimally Invasive Surgery,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, pp. 3077-3082 (2003). |
Taylor, et al., “Steady-Hand Robotic System for Microsurgical Augmentation,” The International Journal of Robotics Research, 18(12):1201-1210 (1999). |
www.cttc.co/technologies/maestro-non-robotic-dexterous-laproscopic-instrument-writs-providing-seven-degrees, “Maestro: Non-Robotic Dexterous Laproscopic Instrument With a Wrist Providing Seven Degrees of Freedom”, accessed Nov. 12, 2015, 4 pages. |
Yamashita, et al., “Development of Endoscopic Forceps Manipulator Using Multi-Slider Linkage Mechanisms,” The 1st Asian Symposium on Computer Aided Surgery-Robotic and Image-Guided Surgery, Ibaraki, Japan, 4 pages (2005). |
Zeus, “Robotic Surgical System” available at http://allaboutroboticsurgery.com/zeusrobot.html. |
Number | Date | Country | |
---|---|---|---|
20160346053 A1 | Dec 2016 | US |