This invention relates to a medical article used to provide access to the vasculature of a patient. More particularly, this invention relates to a medical article With Wings configured to stabilize the medical article on the patient.
Medical professionals routinely require access to the vasculature of a patient for delivery or Withdrawal of fluids to or from the patient's bloodstream. When such access is required over any period of time, it is common to introduce a catheter or similar medical article into the bloodstream of the patient to provide reusable access, for instance in order to deliver medication and/or fluids directly into the bloodstream of the patient.
In intravenous applications, the catheter is generally short and includes a fitting, for example, a luer connector, at one end that is designed for attachment to another medical line or another medical article. Such a connector may also include a spin nut to lock the medical line to the catheter. In this way the same catheter may be connected to and released from different medical lines in order to exchange the medical lines without the need to introduce multiple intravenous catheters. In some cases, an extension set comprising a medical tube with a spin nut at one end can be connected to the catheter, so that the free end of the extension set can be attached to another medical line or system as desired, at a location further away from the insertion site than the catheter hub.
It is often advantageous to restrict the movement of the catheter. A moving catheter may cause discomfort to the patient, restrict the administering of fluids or medications or the draining of fluids, cause infection, or become dislodged from the patient unintentionally. In order to keep the catheter or other medical tubing properly positioned for the duration of treatment, the catheter or medical tubing can be stabilized on the patient in a variety of Ways. Most commonly, the medical provider may attempt to restrict movement of the catheter by securing the distal end of the catheter, or a portion of a medical device connected to the catheter such as a connector fitting, to the patient using tape. Medical providers commonly place long pieces of tape across the distal end of the catheter, often in a crisscross pattern, to secure the catheter distal end to the patient. This securement is intended to inhibit disconnection between the catheter and the patient or between the catheter and another medical article, such as a drainage tube, as Well as to prevent the catheter from catching on other objects, such as on a bed rail.
The devices, systems, and methods of the present invention have several features, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention as expressed by the claims which follow, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of Certain Embodiments,” one will understand how the features of this invention provide several advantages over other medical articles.
One aspect of the present invention is a medical article for use in providing access to a patient's vasculature. The medical article includes an elongated body and a pair of wings extending away from the elongated body. The elongated body has a longitudinal axis, a distal end, and a proximal end. At least one of the pair of wings is configured to rotate about the longitudinal axis of the elongated body between at least a first configuration and a second configuration.
Another aspect of the present invention is a medical article for use in providing access to a patient's vasculature. The medical article includes an elongated body, a housing, and a wing extending away from the elongated body. The elongated body has a longitudinal axis, a distal end, and a proximal end. The housing is disposed around at least a portion of the elongated body and defines a channel between the housing and the elongated body. The wing is configured to rotate about the longitudinal axis of the elongated body between at least a first configuration and a second configuration with at least a portion of the wing disposed within the channel.
Yet another aspect of the present invention is a method for introducing a medical line into a patient's vasculature. The method includes providing a handpiece including a slot and providing a medical article including an elongated body, a pair of wings extending from the elongated body, and a catheter. The elongated body has a longitudinal axis, a distal end, and a proximal end. Each wing is rotatable about the longitudinal axis of the elongated body between at least a first configuration and a second configuration and the catheter extends from the elongated body in a direction substantially parallel to the longitudinal axis of the elongated body. The method also includes positioning at least a portion of each of the wings within the slot of the handpiece to inhibit free rotation of the wings from the first configuration towards the second configuration.
Another aspect of the present invention is a medical article for use in providing access to a patient's vasculature. The medical article includes an elongated body having a longitudinal axis and a pair of wings extending from the elongated body. The wings are releasably attachable to one another and configured to independently rotate about the longitudinal axis of the elongated body between at least a first configuration and a second configuration upon detachment of the wings from one another.
The above mentioned and other features of the invention will now be described with reference to the drawings of several embodiments of the present stabilization system. The illustrated embodiments of the stabilization system are intended to illustrate, but not to limit the invention. The drawings contain the following figures:
The following description and the accompanying figures, which describe and show the preferred embodiments, are made to demonstrate several possible configurations that a medical article can take to include various aspects and features of the invention. Some of the illustrated embodiments are shown with a handpiece that can be utilized by a health care provider to insert a medical article (e.g., a catheter) into a patient to provide access to the patient's vasculature. The illustration of the medical article in this context is not intended to limit the disclosed aspects and features of the invention to the specified embodiments or to usage only with the illustrated handpiece. Those of skill in the art will recognize that the disclosed aspects and features of the invention are not limited to any particular application.
To assist with the description of the components of the medical article, the following coordinate terms are used (see
The preferred embodiments of the present invention advantageously provide a medical article for providing access to a patient's vasculature. The medical article preferably has one or more wings configured to stabilize and/or secure the medical article relative to the patient's skin. The one or more wings of the medical article can be configured to rotate about the longitudinal axis of the medical article between at least a first configuration and a second configuration. The one or more wings can be configured to lock in place, relative to the body of the medical article, in one or more configurations. The wings can also be secured relative to the patient's skin to secure the medical article relative to the patient.
In each of the embodiments described below, the medical article has an elongated body. The elongated body includes a proximal end and a distal end with a catheter extending from the proximal end for insertion into a patient. A fitting can be positioned near the distal end to fluidly couple the elongated body to a medical line or an extension set. A housing can surround the elongated body and create a channel therebetween through which the pair of wings can move between at least a first configuration and a second configuration. In some embodiments, the wings and elongated body are joined by a living hinge that allows the wings to bend or rotate relative to the elongated body.
To facilitate a complete understanding of the illustrated embodiment, the remainder of the detailed description describes the medical article with reference to the attached figures, wherein like elements among the embodiments are referenced with like numerals throughout the following description.
As shown in
The distal end of the medical article 100 can be partially inserted into handpiece 200 such that at least a portion of the wings 106a, 106b of the medical article abut the handpiece 200. The handpiece 200 can include a slot 202 configured to receive a portion of the wings 106a, 106b to inhibit or limit free rotation of the wings when they are partially received within the slot 202. The handpiece 200 can also include one or more contoured surfaces 204a, 204b to facilitate proper gripping of the handpiece 200. By such a configuration, the handpiece 200 and the elongated body 102 can cooperate to assist a medical professional in handling and placing the catheter 108 in a patient's vasculature.
As shown in
The wings 106a, 106b can comprise various suitable materials including, for example, plastics or textiles. In some embodiments, the wings 106a, 106b can be biased to rotate away from one another upon detachment of the wings from one another. For example, the wings 106a, 106b can be spring-loaded to rotate relative to the longitudinal axis of the medical article 100. In some embodiments, the wings 106a, 106b can be joined with the medical article 100 by a living hinge that is configured to allow the wings to bend or rotate along the line of the hinge. In other embodiments, the wings 106a, 106b can be unbiased and manually rotatable (independently or together) relative to the medical article 100 by a medical professional. As shown in
The wings 106a, 106b can each form an angle of between about 0 degrees and about 30 degrees with the skin of the patient when they are in the down configuration. For example, the wings 106a, 106b can each form an angle of between about 5 degrees and about 10 degrees with the skin of the patient. This configuration can result in an offset of the elongated body 102 from a portion of the patient. The wings 106a, 106b can also be configured to stabilize the medical article 100 relative to the patient such that the longitudinal axis of the medical article 100 and the skin of the patient form an angle between about 5 degrees and about 35 degrees. This angle can facilitate a proper insertion of the catheter 108 into the patient's vasculature.
The needle of the catheter 108 includes a beveled tip. Preferably the bevel is aligned with one or more points on the medical article. For example, the bevel can be aligned with a 12 o'clock position of the elongated body 102 and/or housing 302. In some embodiments, the bevel and the wings 106a, 106b can be rotationally aligned about the longitudinal axis of the medical article 100. As illustrated in
As can be seen most clearly in
The detents 704a, 704b and the protrusions 702a, 702b can be configured to releasably lock the wings 106a, 106b relative to the elongated body 102 when the protrusions are slid over and received within the detents. The detents 704a, 704b can act to limit the rotation of the wings 106a, 106b and/or to define a configuration for the wings, for example, the down configuration. In some embodiments, the wings 106a, 106b can be releasably locked relative to the elongated body 102 in the down configuration.
The following method of use will be with reference principally to
In starting an I.V. line, the medical professional begins by inserting the medical article 100 into the handpiece 200 as shown in
Once the catheter 108 is inserted into the patient 1201 and the medical article 100 is connected to a medical line 1212, the medical professional can move the wings 106a, 106b to the down configuration. As discussed above, in some embodiments, the wings 106a, 106b can optionally be releasably locked relative to the elongated body 102. The medical professional can then secure the medical article 100 to the patient 1201 by placing adhesive strips 1203 over the wings 106a, 106b and/or by adhering the wings 106a, 106b directly to the patient's skin.
Finally, the medical professional can position a dressing or covering 1205, for example, a piece of Tegaderm™, over the insertion site to protect the site from infection. The covering 1205 can be provided separate from the medical article 100 or the covering 1205 can be integral with the medical article 100. For example, the covering 1205 can initially be disposed at least partially between the wings 106a, 106b when they are in the up configuration such that the covering 1205 is released as the wings are moved to the down configuration. In one embodiment, the covering 1205 is folded between the wings 106a, 106b in the up configuration such that the covering unfolds in the proximal direction when the wings 106a, 106b are moved to the down configuration. For example, the covering 1205 can be folded multiple times in an accordion or fan-like arrangement between the wings 106a, 106b such that the covering unfolds when the wings 106a, 106b are moved apart from one another.
The covering 1205 and the wings 106a, 106b can be formed as an integral, single piece. Alternatively, the covering 1205 and the wings 106a, 106b are formed separately and then attached together. In this case, the covering 1205 and the wings 106a, 106b may be attached by any means or mechanism that allows the covering 1205 to fold, bend, or rotate down over the insertion site area. Attachment means include glue or adhesive, a weld of the materials, heat sealing, mechanical fasteners such as staples or eyelets, or other such means of attachment.
The occlusive covering 1205 can be configured to be waterproof or otherwise impermeable to liquids and in some embodiments also restricts the flow of air. In other embodiments, the covering 1205 may be configured to be breathable, allowing air and/or moisture near an insertion site through to the other side of the covering 1205 and away from the insertion site, while keeping at least external moisture on the other side of the covering 1205 away from the insertion site. In some embodiments, the covering 1205 is impermeable to viruses and bacteria, and may comprise or be coated with an anti-bacterial or anti-microbial material. In some embodiments, the covering 1205 comprises or is coated with a waxy material. In some embodiments, the covering 1205 comprises a film which may or may not be transparent. Selection of a transparent film for use as the covering 1205 may allow a medical provider to see the insertion site and any administered catheter. In some embodiments, covering 1205 is absorbent.
The wings 106a, 106b can be used as a long-term solution to secure the medical article 100 relative to the patient 1201 until the catheter 108 is removed. Alternatively, the wings 106a, 106b can be used as a short-term or temporary solution to secure the medical article 100 relative to the patient 1201 until the medical article is secured relative to the patient by a different device or method.
The various embodiments of medical articles and techniques described above thus provide a number of ways to stabilize a medical article to the skin of a patient. In addition, the techniques described may be broadly applied for use with a variety of medical lines and medical procedures.
Of course, it is to be understood that not necessarily all such objectives or advantages may be achieved in accordance with any particular embodiment using the systems described herein. Thus, for example, those skilled in the art will recognize that the systems may be developed in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objectives or advantages as may be taught or suggested herein.
Furthermore, the skilled artisan will recognize the interchangeability of various features from different embodiments. Although these techniques and systems have been disclosed in the context of certain embodiments and examples, it will be understood by those skilled in the art that these techniques and systems may be extended beyond the specifically disclosed embodiments to other embodiments and/or uses and obvious modifications and equivalents thereof. Additionally, it is contemplated that various aspects and features of the invention described can be practiced separately, combined together, or substituted for one another, and that a variety of combination and subcombinations of the features and aspects can be made and still fall within the scope of the invention. Thus, it is intended that the scope of the systems disclosed herein disclosed should not be limited by the particular disclosed embodiments described above but by a fair reading of the claims which follow.
This application is a continuation of U.S. patent application Ser. No. 13/577,425, filed Sep. 17, 2012, now U.S. Pat. No. 9,700,000, which is a National Stage of International Patent Application No. PCT/US2011/026897, filed Mar. 2, 2011, titled “MEDICAL ARTICLE WITH ROTATABLE WINGS,” which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 61/310,223, filed Mar. 3, 2010, titled “MEDICAL ARTICLE WITH ROTATABLE WINGS,” each of which is hereby incorporated by reference in its entirety into this application.
Number | Name | Date | Kind |
---|---|---|---|
2402306 | Turkel | Jun 1946 | A |
2525398 | Collins | Oct 1950 | A |
2533961 | Rousseau et al. | Dec 1950 | A |
3046984 | Eby | Jul 1962 | A |
3064648 | Bujan | Nov 1962 | A |
3167072 | Stone et al. | Jan 1965 | A |
3194235 | Cooke | Jul 1965 | A |
3245567 | Knight | Apr 1966 | A |
3288137 | Lund | Nov 1966 | A |
3394954 | Sams | Jul 1968 | A |
3493238 | Ludwig | Feb 1970 | A |
3529597 | Fuzak | Sep 1970 | A |
3589361 | Loper et al. | Jun 1971 | A |
3630195 | Santomieri | Dec 1971 | A |
3677250 | Thomas | Jul 1972 | A |
3686896 | Rutter | Aug 1972 | A |
3766915 | Rychlik | Oct 1973 | A |
3812851 | Rodriguez | May 1974 | A |
3817240 | Ayres | Jun 1974 | A |
3826254 | Mellor | Jul 1974 | A |
3834380 | Boyd | Sep 1974 | A |
3856020 | Kovac | Dec 1974 | A |
3863631 | Baldwin | Feb 1975 | A |
3900026 | Wagner | Aug 1975 | A |
3901226 | Scardenzan | Aug 1975 | A |
3906946 | Nordstrom | Sep 1975 | A |
3920001 | Edwards | Nov 1975 | A |
3934576 | Danielsson | Jan 1976 | A |
3942228 | Buckman et al. | Mar 1976 | A |
3973565 | Steer | Aug 1976 | A |
4004586 | Christensen et al. | Jan 1977 | A |
D243477 | Cutruzzula et al. | Feb 1977 | S |
4020835 | Nordstrom et al. | May 1977 | A |
4037599 | Raulerson | Jul 1977 | A |
4059105 | Cutruzzula et al. | Nov 1977 | A |
4079738 | Dunn et al. | Mar 1978 | A |
4082094 | Dailey | Apr 1978 | A |
4114618 | Vargas | Sep 1978 | A |
4116196 | Kaplan et al. | Sep 1978 | A |
4123091 | Cosentino et al. | Oct 1978 | A |
4129128 | McFarlane | Dec 1978 | A |
4133312 | Burd | Jan 1979 | A |
4142527 | Garcia | Mar 1979 | A |
4161177 | Fuchs | Jul 1979 | A |
D252822 | McFarlane | Sep 1979 | S |
4170993 | Alvarez | Oct 1979 | A |
4193174 | Stephens | Mar 1980 | A |
4194504 | Harms et al. | Mar 1980 | A |
D256162 | Haerr et al. | Jul 1980 | S |
4224937 | Gordon | Sep 1980 | A |
4230109 | Geiss | Oct 1980 | A |
4250880 | Gordon | Feb 1981 | A |
4275721 | Olson | Jun 1981 | A |
4314568 | Loving | Feb 1982 | A |
4316461 | Marais et al. | Feb 1982 | A |
4324236 | Gordon et al. | Apr 1982 | A |
4326519 | D'Alo et al. | Apr 1982 | A |
4333468 | Geist | Jun 1982 | A |
4362156 | Feller, Jr. et al. | Dec 1982 | A |
4392853 | Muto | Jul 1983 | A |
4397647 | Gordon | Aug 1983 | A |
4398757 | Floyd et al. | Aug 1983 | A |
4405163 | Voges et al. | Sep 1983 | A |
4405312 | Gross et al. | Sep 1983 | A |
4435174 | Redmond et al. | Mar 1984 | A |
4435175 | Friden | Mar 1984 | A |
4439193 | Larkin | Mar 1984 | A |
D273993 | Schulte et al. | May 1984 | S |
4449975 | Perry | May 1984 | A |
4453933 | Speaker | Jun 1984 | A |
4470410 | Elliott | Sep 1984 | A |
4474559 | Steiger | Oct 1984 | A |
4480639 | Peterson et al. | Nov 1984 | A |
4484913 | Swauger | Nov 1984 | A |
4516968 | Marshall et al. | May 1985 | A |
4517971 | Sorbonne | May 1985 | A |
4561857 | Sacks | Dec 1985 | A |
4563177 | Kamen | Jan 1986 | A |
4585435 | Vaillancourt | Apr 1986 | A |
4585444 | Harris | Apr 1986 | A |
4631056 | Dye | Dec 1986 | A |
4632670 | Mueller, Jr. | Dec 1986 | A |
4633863 | Filips et al. | Jan 1987 | A |
4645492 | Weeks | Feb 1987 | A |
4650473 | Bartholomew et al. | Mar 1987 | A |
4660555 | Payton | Apr 1987 | A |
4666434 | Kaufman | May 1987 | A |
4669458 | Abraham et al. | Jun 1987 | A |
4693710 | McCool | Sep 1987 | A |
4711636 | Bierman | Dec 1987 | A |
4723948 | Clark et al. | Feb 1988 | A |
4737143 | Russell | Apr 1988 | A |
4742824 | Payton et al. | May 1988 | A |
4743231 | Kay et al. | May 1988 | A |
4752292 | Lopez et al. | Jun 1988 | A |
4792163 | Kulle | Dec 1988 | A |
4795429 | Feldstein | Jan 1989 | A |
4826486 | Palsrok et al. | May 1989 | A |
4834702 | Rocco | May 1989 | A |
4834716 | Ogle, II | May 1989 | A |
4838858 | Wortham et al. | Jun 1989 | A |
D302304 | Kulle et al. | Jul 1989 | S |
4846807 | Safadago | Jul 1989 | A |
4852844 | Villaveces | Aug 1989 | A |
4857058 | Payton | Aug 1989 | A |
4863432 | Kvalo | Sep 1989 | A |
4878897 | Katzin | Nov 1989 | A |
4880412 | Weiss | Nov 1989 | A |
4895570 | Larkin | Jan 1990 | A |
4897082 | Erskine | Jan 1990 | A |
4898587 | Mera | Feb 1990 | A |
4919654 | Kalt | Apr 1990 | A |
4934375 | Cole et al. | Jun 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4955864 | Hajduch | Sep 1990 | A |
4966582 | Sit et al. | Oct 1990 | A |
4976698 | Stokley | Dec 1990 | A |
4976700 | Tollini | Dec 1990 | A |
4981469 | Whitehouse et al. | Jan 1991 | A |
4981475 | Haindl | Jan 1991 | A |
4997421 | Palsrok et al. | Mar 1991 | A |
5024665 | Kaufman | Jun 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5037398 | Buchanan | Aug 1991 | A |
5037405 | Crosby | Aug 1991 | A |
5074847 | Greenwell et al. | Dec 1991 | A |
D323390 | Paine et al. | Jan 1992 | S |
5084026 | Shapiro | Jan 1992 | A |
5098048 | Chen | Mar 1992 | A |
5105807 | Kahn et al. | Apr 1992 | A |
5112313 | Sallee | May 1992 | A |
5116324 | Brierley et al. | May 1992 | A |
5120320 | Fayngold | Jun 1992 | A |
5135506 | Gentelia et al. | Aug 1992 | A |
5137519 | Littrell et al. | Aug 1992 | A |
5147322 | Bowen et al. | Sep 1992 | A |
5156641 | White | Oct 1992 | A |
5163913 | Rantanen-Lee et al. | Nov 1992 | A |
5167630 | Paul | Dec 1992 | A |
5192273 | Bierman | Mar 1993 | A |
5192274 | Bierman | Mar 1993 | A |
5195981 | Johnson | Mar 1993 | A |
5215532 | Atkinson | Jun 1993 | A |
5238010 | Grabenkort et al. | Aug 1993 | A |
5248306 | Clark et al. | Sep 1993 | A |
5263943 | Vanderbrook | Nov 1993 | A |
5267967 | Schneider | Dec 1993 | A |
5290248 | Bierman et al. | Mar 1994 | A |
5306253 | Brimhall | Apr 1994 | A |
5306256 | Jose | Apr 1994 | A |
D347060 | Bierman | May 1994 | S |
5314411 | Bierman et al. | May 1994 | A |
5328487 | Starchevich | Jul 1994 | A |
5330438 | Gollobin et al. | Jul 1994 | A |
5336195 | Daneshvar | Aug 1994 | A |
5341411 | Hashimoto | Aug 1994 | A |
5344414 | Lopez et al. | Sep 1994 | A |
5354282 | Bierman | Oct 1994 | A |
5356379 | Vaillancourt | Oct 1994 | A |
5356391 | Stewart | Oct 1994 | A |
5370627 | Conway | Dec 1994 | A |
5380293 | Grant | Jan 1995 | A |
5380294 | Persson | Jan 1995 | A |
5380301 | Prichard et al. | Jan 1995 | A |
5382239 | Orr et al. | Jan 1995 | A |
5382240 | Lam | Jan 1995 | A |
5395344 | Beisang, III et al. | Mar 1995 | A |
5413120 | Grant | May 1995 | A |
5413562 | Swauger | May 1995 | A |
D359120 | Sallee et al. | Jun 1995 | S |
5456671 | Bierman | Oct 1995 | A |
5470321 | Forster et al. | Nov 1995 | A |
D364922 | Bierman | Dec 1995 | S |
5484425 | Fischell et al. | Jan 1996 | A |
5496283 | Alexander | Mar 1996 | A |
5507535 | McKamey et al. | Apr 1996 | A |
5531695 | Swisher | Jul 1996 | A |
D375355 | Bierman | Nov 1996 | S |
D375356 | Bierman | Nov 1996 | S |
5577516 | Schaeffer | Nov 1996 | A |
5578013 | Bierman | Nov 1996 | A |
D377831 | Bierman | Feb 1997 | S |
5605546 | Wolzinger et al. | Feb 1997 | A |
5620427 | Werschmidt et al. | Apr 1997 | A |
5626565 | Landis et al. | May 1997 | A |
5643217 | Dobkin | Jul 1997 | A |
5664581 | Ashley | Sep 1997 | A |
5681290 | Alexander | Oct 1997 | A |
5685859 | Komerup | Nov 1997 | A |
5686096 | Khan et al. | Nov 1997 | A |
5690616 | Mogg | Nov 1997 | A |
5690617 | Wright | Nov 1997 | A |
5693032 | Bierman | Dec 1997 | A |
5702371 | Bierman | Dec 1997 | A |
5722959 | Bierman | Mar 1998 | A |
5728053 | Calvert | Mar 1998 | A |
5755225 | Hutson | May 1998 | A |
5800402 | Bierman | Sep 1998 | A |
5800410 | Gawreluk | Sep 1998 | A |
5810781 | Bierman | Sep 1998 | A |
5814021 | Balbierz | Sep 1998 | A |
D399954 | Bierman | Oct 1998 | S |
5827230 | Bierman | Oct 1998 | A |
5827239 | Dillon et al. | Oct 1998 | A |
5833666 | Davis et al. | Nov 1998 | A |
5833667 | Bierman | Nov 1998 | A |
5855591 | Bierman | Jan 1999 | A |
5885251 | Luther | Mar 1999 | A |
5885254 | Matyas | Mar 1999 | A |
5897519 | Shesol et al. | Apr 1999 | A |
5947931 | Bierman | Sep 1999 | A |
6050934 | Mikhail et al. | Apr 2000 | A |
D425619 | Bierman | May 2000 | S |
6099509 | Brown, Jr. et al. | Aug 2000 | A |
6113577 | Hakky et al. | Sep 2000 | A |
6132398 | Bierman | Oct 2000 | A |
6132399 | Shultz | Oct 2000 | A |
6139532 | Howell et al. | Oct 2000 | A |
D433503 | Powers et al. | Nov 2000 | S |
6213979 | Bierman | Apr 2001 | B1 |
6213996 | Jepson et al. | Apr 2001 | B1 |
6224571 | Bierman | May 2001 | B1 |
6228064 | Abita | May 2001 | B1 |
6231547 | O'Hara | May 2001 | B1 |
6231548 | Bassett | May 2001 | B1 |
6258066 | Urich | Jul 2001 | B1 |
6270086 | Lloyd | Aug 2001 | B1 |
6283945 | Bierman | Sep 2001 | B1 |
6290676 | Bierman | Sep 2001 | B1 |
6332874 | Eliasen et al. | Dec 2001 | B1 |
6361523 | Bierman | Mar 2002 | B1 |
6375639 | Duplessie et al. | Apr 2002 | B1 |
6413240 | Bierman et al. | Jul 2002 | B1 |
6428515 | Bierman et al. | Aug 2002 | B1 |
6428516 | Bierman | Aug 2002 | B1 |
6436073 | Von Teichert | Aug 2002 | B1 |
6447485 | Bierman | Sep 2002 | B2 |
6447486 | Tollini | Sep 2002 | B1 |
6471676 | DeLegge et al. | Oct 2002 | B1 |
6482183 | Pausch et al. | Nov 2002 | B1 |
6491664 | Bierman | Dec 2002 | B2 |
6500154 | Hakky et al. | Dec 2002 | B1 |
D469530 | Gomez | Jan 2003 | S |
D470936 | Bierman | Feb 2003 | S |
6517522 | Bell et al. | Feb 2003 | B1 |
6551285 | Bierman | Apr 2003 | B1 |
6572588 | Bierman et al. | Jun 2003 | B1 |
6582403 | Bierman et al. | Jun 2003 | B1 |
6616635 | Bell et al. | Sep 2003 | B1 |
6626890 | Nguyen et al. | Sep 2003 | B2 |
6652487 | Cook | Nov 2003 | B1 |
6663600 | Bierman et al. | Dec 2003 | B2 |
6673046 | Bierman et al. | Jan 2004 | B2 |
6689104 | Bierman | Feb 2004 | B2 |
D492411 | Bierman | Jun 2004 | S |
6770055 | Bierman et al. | Aug 2004 | B2 |
6786892 | Bierman | Sep 2004 | B2 |
6809230 | Hancock et al. | Oct 2004 | B2 |
6824527 | Gollobin | Nov 2004 | B2 |
6827705 | Bierman | Dec 2004 | B2 |
6827706 | Tollini | Dec 2004 | B2 |
6827707 | Wright et al. | Dec 2004 | B2 |
6834652 | Altman | Dec 2004 | B2 |
6837875 | Bierman | Jan 2005 | B1 |
6866652 | Bierman | Mar 2005 | B2 |
D503977 | Bierman | Apr 2005 | S |
6951550 | Bierman | Oct 2005 | B2 |
6972003 | Bierman et al. | Dec 2005 | B2 |
6979320 | Bierman | Dec 2005 | B2 |
6981969 | Chavez et al. | Jan 2006 | B2 |
7014627 | Bierman | Mar 2006 | B2 |
7018362 | Bierman et al. | Mar 2006 | B2 |
7070580 | Nielsen | Jul 2006 | B2 |
7090660 | Roberts et al. | Aug 2006 | B2 |
D528206 | Bierman | Sep 2006 | S |
7144387 | Millerd | Dec 2006 | B2 |
7153291 | Bierman | Dec 2006 | B2 |
7354421 | Bierman | Apr 2008 | B2 |
7491190 | Bierman et al. | Feb 2009 | B2 |
7935083 | Bierman et al. | May 2011 | B2 |
9700700 | Andino et al. | Jul 2017 | B2 |
9731097 | Andino et al. | Aug 2017 | B2 |
9962524 | Andino | May 2018 | B2 |
20020068904 | Bierman et al. | Jun 2002 | A1 |
20020099360 | Bierman | Jul 2002 | A1 |
20020133121 | Bierman | Sep 2002 | A1 |
20030055382 | Schaeffer | Mar 2003 | A1 |
20030163096 | Swenson | Aug 2003 | A1 |
20030181870 | Bressler et al. | Sep 2003 | A1 |
20030229313 | Bierman | Dec 2003 | A1 |
20040102736 | Bierman | May 2004 | A1 |
20040111067 | Kirchhofer | Jun 2004 | A1 |
20040204685 | Wright et al. | Oct 2004 | A1 |
20050096606 | Millerd | May 2005 | A1 |
20050182367 | Walborn | Aug 2005 | A1 |
20050215953 | Rossen | Sep 2005 | A1 |
20050288635 | Davis et al. | Dec 2005 | A1 |
20060015076 | Heinzerling et al. | Jan 2006 | A1 |
20060064063 | Bierman | Mar 2006 | A1 |
20060079740 | Silver et al. | Apr 2006 | A1 |
20060135944 | Bierman | Jun 2006 | A1 |
20060184127 | Bierman | Aug 2006 | A1 |
20060184129 | Bierman | Aug 2006 | A1 |
20060217669 | Botha | Sep 2006 | A1 |
20060247577 | Wright | Nov 2006 | A1 |
20060264836 | Bierman | Nov 2006 | A1 |
20060270994 | Bierman | Nov 2006 | A1 |
20060270995 | Bierman | Nov 2006 | A1 |
20070016166 | Thistle | Jan 2007 | A1 |
20070016167 | Smith et al. | Jan 2007 | A1 |
20070250021 | Brimhall et al. | Oct 2007 | A1 |
20080045905 | Chawki | Feb 2008 | A1 |
20080300543 | Abriles et al. | Dec 2008 | A1 |
20100049139 | Kiyono et al. | Feb 2010 | A1 |
20100298777 | Nishtala | Nov 2010 | A1 |
20120265147 | Andino et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
1311977 | Dec 1992 | CA |
1318824 | Jun 1993 | CA |
2690234 | Dec 2008 | CA |
2341297 | Apr 1975 | DE |
0114677 | Aug 1984 | EP |
0169704 | Jan 1986 | EP |
0247590 | Dec 1987 | EP |
0263789 | Apr 1988 | EP |
0356683 | Mar 1990 | EP |
0367549 | May 1990 | EP |
0720836 | Jul 1996 | EP |
2922458 | Apr 2009 | FR |
2063679 | Jun 1981 | GB |
2086466 | May 1982 | GB |
2178811 | Feb 1987 | GB |
9005559 | May 1990 | WO |
9421319 | Sep 1994 | WO |
9715337 | May 1997 | WO |
9955409 | Nov 1999 | WO |
2004016309 | Feb 2004 | WO |
09032008 | Mar 2009 | WO |
10132837 | Nov 2010 | WO |
Entry |
---|
AU 2010303477 filed Oct. 6, 2010 Examiner's Search Report dated Oct. 22, 2015. |
CA 2775571 filed Mar. 27, 2012 Office Action dated Aug. 8, 2016. |
Cravens, et al. “Urinary Catheter Management” American Family Physician, vol. 61, No. 2, pp. MDG 000273-MDG 000282, dated Jan. 15, 2000. |
Dale® Foley Catheter Holder brochure, pp. MDG 000344-MDG 000346, 2002. |
Expert Discusses Strategies to Prevent CAUTIs, Infection Control Today, pp. MDG 000603-MDG-000609, Jun. 2005. |
Grip-Lok Universal Tubing Securement brochure, pp. MDG 000364-MDG 000366, 2005-2006. |
Grip-LokTM Universal Tubing Securement brochure, pp. MDG 000348-MDG 000349, Jun. 12, 2012. |
M.C. Johnson Co., Gath-Secure®—http://www.mcjohnson.com/cath-secure.html, last accessed Jun. 12, 2012. |
PCT/US2007/077302 filed Aug. 30, 2007 International Search Report dated Mar. 28, 2008. |
PCT/US2010/035004 filed May 14, 2010 International Search Report and Written Opinion dated Jul. 21, 2010. |
PCT/US2010/051664 filed Oct. 6, 2010 International Search Report and Written Opinion dated Dec. 2, 2010. |
PCT/US20111026897 filed Mar. 2, 2011 International Search Report dated Apr. 26, 2011. |
U.S. Appl. No. 13/320,381, filed Feb. 27, 2012 Examiner's Answer dated Jun. 2, 2017. |
U.S. Appl. No. 13/320,381, filed Feb. 27, 2012 Final Office Action dated Dec. 17, 2015. |
U.S. Appl. No. 13/320,381, filed Feb. 27, 2012 Non-Final Office Action dated Aug. 26, 2015. |
U.S. Appl. No. 13/320,381, filed Feb. 27, 2012 Non-Final Office Action dated Jul. 29, 2016. |
U.S. Appl. No. 13/415,644, filed Aug. 3, 2012, Advisory Action dated Sep. 24, 2015. |
U.S. Appl. No. 13/415,644, filed Aug. 3, 2012, Examiner's Answer dated Jun. 15, 2016. |
U.S. Appl. No. 13/415,644, filed Aug. 3, 2012, Non Final Office Action dated Jun. 29, 2015. |
U.S. Appl. No. 13/498,121, filed Jul. 3, 2012 Final Office Action dated Dec. 15, 2016. |
U.S. Appl. No. 13/498,121, filed Jul. 3, 2012 Final Office Action dated Nov. 5, 2015. |
U.S. Appl. No. 13/498,121, filed Jul. 3, 2012 Non-Final Office Action dated Jun. 3, 2016. |
U.S. Appl. No. 13/498,121, filed Jul. 3, 2012 Notice of Allowance dated Apr. 14, 2017. |
U.S. Appl. No. 13/577,425, filed Sep. 17, 2012, Advisory Action of dated Dec. 4, 2015. |
U.S. Appl. No. 13/577,425, filed Sep. 17, 2012, Final Office Action of dated Sep. 8, 2015. |
U.S. Appl. No. 13/577,425, filed Sep. 17, 2012, Non-Final Office Action of dated May 21, 2015. |
U.S. Appl. No. 13/577,425, filed Sep. 17, 2012, Non-Final Office Action of dated Oct. 17, 2016. |
U.S. Appl. No. 13/577,425, filed Sep. 17, 2012, Notice of Allowance of dated Mar. 8, 2017. |
U.S. Pat. No. 5,827,230 National Patent Services, Search Report re Patent Validity Study pp. MDG 001319-MDG 001320, dated May 23, 2006. |
CN 201510185955.3 filed Apr. 20, 2015 Office Action dated Aug. 7, 2018. |
CN 201510185955.3 filed Apr. 20, 2015 Office Action dated Jan. 30, 2018. |
CN 201510185955.3 filed Apr. 20, 2015 Office Action dated May 4, 2017. |
U.S. Appl. No. 13/320,381, filed Feb. 27, 2012 Board Decision dated Jul. 27, 2018. |
U.S. Appl. No. 13/415,644, filed Aug. 3, 2012, Decision on Appeal dated Sep. 29, 2017. |
U.S. Appl. No. 13/415,644, filed Aug. 3, 2012, Notice of Allowance dated Dec. 21, 2017. |
Number | Date | Country | |
---|---|---|---|
20170296789 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
61310223 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13577425 | US | |
Child | 15637987 | US |