Medical device adapter with wrist mechanism

Information

  • Patent Grant
  • 11497572
  • Patent Number
    11,497,572
  • Date Filed
    Friday, August 16, 2019
    5 years ago
  • Date Issued
    Tuesday, November 15, 2022
    a year ago
Abstract
A surgical device adapter for coupling an end effector to a surgical device includes: a proximal joint housing that is couplable to the surgical device; a middle joint housing pivotally coupled to the distal end of the proximal joint housing; and a distal joint housing pivotally coupled to the distal end of the middle joint housing. The middle joint housing is pivotable about a first pivot axis defined between the proximal joint housing and the middle joint housing. The distal joint housing is couplable to the end effector and pivotable about a second pivot axis defined between the middle joint housing and the distal joint housing, the second pivot axis being transverse to the first pivot axis.
Description
TECHNICAL FIELD

The present disclosure relates to surgical apparatuses, devices and/or systems for performing endoscopic surgical procedures and methods of use thereof. More specifically, the present disclosure relates to electromechanical adapters, devices and/or systems configured for use with handheld or robotic surgical apparatuses and removable disposable loading units and/or single use loading units for clamping, cutting and/or stapling tissue.


BACKGROUND

Currently there are various drive systems for operating and/or manipulating electromechanical surgical devices. In many instances the electromechanical surgical devices include a reusable actuation assembly (e.g., motorized or manual tool handle or robotic), and disposable or single-use loading units. The loading units are selectively connected to the actuation assembly prior to use and then disconnected from the actuation assembly following use in order to be disposed of or in some instances sterilized for re-use.


Many of the existing end effectors for use with the existing surgical devices and/or actuation assemblies are driven by a linear force, such as end effectors for performing endo-gastrointestinal anastomosis procedures, end-to-end anastomosis procedures, and transverse anastomosis procedures. As such, these end effectors are not compatible with surgical devices and/or actuation assemblies that use rotary motion to deliver power or the like.


In order to make the linear driven end effectors compatible with surgical devices and/or actuation assemblies that use a rotary motion to deliver power, a need exists for adapters and/or adapter assemblies to interface between and interconnect the linear driven end effectors with the rotary driven surgical devices and/or handle assemblies.


SUMMARY

Further details and aspects of exemplary embodiments of the present invention are described in more detail below with reference to the appended Figures.


According to one embodiment of the present disclosure, a surgical device adapter for coupling an end effector to a surgical device is disclosed. The surgical device adapter includes: a proximal joint housing including a proximal end and a distal end, the proximal joint housing couplable at the proximal end thereof to the surgical device; a middle joint housing having a proximal end and a distal end, the middle joint housing pivotally coupled at the proximal end thereof to the distal end of the proximal joint housing, the middle joint housing pivotable about a first pivot axis defined between the proximal joint housing and the middle joint housing; and a distal joint housing having a proximal end and a distal end, the distal join housing pivotally coupled at the proximal end thereof to the distal end of the middle joint housing, the distal joint housing coupleable at the distal end thereof to the end effector and pivotable about a second pivot axis defined between the middle joint housing and the distal joint housing, the second pivot axis being transverse to the first pivot axis.


According to one aspect of the above embodiment, the surgical device is a handheld surgical device or a robotic surgical device.


According to another aspect of the above embodiment, the adapter further includes: a first articulation link coupled to the middle joint housing, the first articulation link longitudinally movable in a proximal direction to pivot the middle joint housing in a first direction about the first pivot axis and in a distal direction to pivot the middle joint housing in a second direction about the first pivot axis.


The adapter may further include: a second articulation link coupled to the distal joint housing, the second articulation link longitudinally movable in a proximal direction to pivot the distal joint housing in a first direction about the second pivot axis and in a distal direction to pivot the distal joint housing in a second direction about the second pivot axis.


According to one aspect of the above embodiment, the second articulation link is bendable in response to pivoting of the middle joint housing.


According to another aspect of the above embodiment, the adapter further includes: a drive mechanism couplable to the surgical device and the end effector, the drive mechanism configured to actuate the end effector in response to input from the surgical device.


The drive mechanism may also include: a proximal transmission shaft rotatably disposed within the proximal joint housing, the proximal transmission shaft including a connector sleeve disposed at a proximal end thereof couplable to the surgical device and a first gear disposed at a distal end thereof; a middle transmission shaft rotatably disposed within the middle joint housing, the middle transmission shaft including a second gear disposed at a proximal end thereof and meshingly engaged with the first gear and a third gear disposed at a distal end thereof; and a distal transmission shaft rotatably disposed within the distal joint housing, the distal transmission shaft including a fourth gear disposed at a proximal end thereof and meshingly engaged with the third gear and a keyed distal end configured to engage the end effector. The first, second, third, and fourth gears have a substantially ellipsoid shape.


According to another embodiment of the present disclosure, a surgical device adapter for coupling an end effector to a surgical device is disclosed. The surgical device adapter includes: a proximal joint housing including a proximal end and a distal end, the proximal joint housing couplable at the proximal end thereof to the surgical device; a middle joint housing having a proximal end and a distal end, the middle joint housing pivotally coupled at the proximal end thereof to the distal end of the proximal joint housing, the middle joint housing pivotable about a first pivot axis defined between the proximal joint housing and the middle joint housing; and a distal joint housing having a proximal end and a distal end, the distal join housing pivotally coupled at the proximal end thereof to the distal end of the middle joint housing, the distal joint housing coupleable at the distal end thereof to the end effector and pivotable about a second pivot axis defined between the middle joint housing and the distal joint housing, the second pivot axis being transverse to the first pivot axis; and a drive mechanism including a plurality of gears and couplable to the surgical device and the end effector, the drive mechanism configured to actuate the end effector in response to input from the surgical device, wherein the plurality of gears are disposed between the proximal, middle, and distal joint housings.


According to one aspect of the above embodiment, the surgical device is a handheld surgical device or a robotic surgical device.


According to another aspect of the above embodiment, the adapter further includes: a first articulation link coupled to the middle joint housing, the first articulation link longitudinally movable in a proximal direction to pivot the middle joint housing in a first direction about the first pivot axis and in a distal direction to pivot the middle joint housing in a second direction about the first pivot axis.


The adapter may further include: a second articulation link coupled to the distal joint housing, the second articulation link longitudinally movable in a proximal direction to pivot the distal joint housing in a first direction about the second pivot axis and in a distal direction to pivot the distal joint housing in a second direction about the second pivot axis.


According to one aspect of the above embodiment, the second articulation link is bendable in response to pivoting of the middle joint housing.


According to another aspect of the above embodiment, the drive mechanism includes: a proximal transmission shaft rotatably disposed within the proximal joint housing, the proximal transmission shaft including a connector sleeve disposed at a proximal end thereof couplable to the surgical device and a first gear disposed at a distal end thereof.


The drive mechanism may also include: a middle transmission shaft rotatably disposed within the middle joint housing, the middle transmission shaft including a second gear disposed at a proximal end thereof and meshingly engaged with the first gear and a third gear disposed at a distal end thereof.


According to one aspect of the above embodiment, the drive mechanism includes: a distal transmission shaft rotatably disposed within the distal joint housing, the distal transmission shaft including a fourth gear disposed at a proximal end thereof and meshingly engaged with the third gear and a keyed distal end configured to engage the end effector.


According to another aspect of the above embodiment, the first, second, third, and fourth gears have a substantially ellipsoid shape.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:



FIG. 1A is a schematic illustration of an electromechanical surgical system including a robotic actuation assembly, an end effector and an adapter assembly according to the present disclosure;



FIG. 1B is a perspective view of an electromechanical surgical system including a handheld actuation assembly according to the present disclosure and the end effector and the adapter assembly of FIG. 1A;



FIG. 2 is a perspective view of the adapter assembly with the end effector of FIG. 1A in an unarticulated configuration according to the present disclosure;



FIG. 3 is a perspective view of the adapter assembly with the end effector of FIG. 1A in an articulated configuration according to the present disclosure;



FIG. 4 is a perspective, enlarged view of a proximal end of the adapter assembly of FIG. 1A according to the present disclosure;



FIG. 5 is a perspective, partially-disassembled view of the distal end of the adapter assembly of FIG. 1A with a proximal articulation mechanism according to the present disclosure;



FIG. 6 is a perspective, partially-disassembled view of the proximal end of the adapter assembly of FIG. 1A with the proximal articulation mechanism in a first configuration according to the present disclosure;



FIG. 7 is a perspective, partially-disassembled view of the proximal end of the adapter assembly of FIG. 1A with the proximal articulation mechanism in a second configuration according to the present disclosure;



FIG. 8 is a further perspective, partially-disassembled view of the proximal end of the adapter assembly of FIG. 1A with the proximal articulation mechanism in the second configuration according to the present disclosure;



FIG. 9 is a perspective, partially-disassembled view of the proximal end of the adapter assembly of FIG. 1A with the proximal articulation mechanism in the second configuration according to the present disclosure;



FIG. 10 is a perspective, partially-disassembled view of a distal end of the adapter assembly of FIG. 1A illustrated together with a distal articulation mechanism according to the present disclosure;



FIG. 11 is a perspective view of a drive assembly of the adapter assembly of FIG. 1A according to the present disclosure;



FIG. 12 is a perspective view of a middle shaft of the drive assembly of the adapter assembly of FIG. 1A according to the present disclosure;



FIG. 13 is a perspective view of middle and input shafts of the drive assembly of the adapter assembly of FIG. 1A in the unarticulated configuration according to the present disclosure; and



FIG. 14 is a perspective view of middle and input shafts of the drive assembly of the adapter assembly of FIG. 1A in the articulated configuration according to the present disclosure.





DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the presently disclosed electromechanical surgical system, apparatus and/or device are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term “distal” refers to that portion of the electromechanical surgical system, apparatus and/or device, or component thereof, that are farther from the user, while the term “proximal” refers to that portion of the electromechanical surgical system, apparatus and/or device, or component thereof, that are closer to the user. The terms “left” and “right” refer to that portion of the electromechanical surgical system, apparatus and/or device, or component thereof, that are on the left and right sides, respectively, from the perspective of the user facing the distal end of the electromechanical surgical system, apparatus and/or device from the proximal end while the surgical system, apparatus and/or device is oriented in non-rotational (e.g., home) configuration.


With reference to FIG. 1A, an embodiment of the electrosurgical powered surgical system 10 is shown. Electromechanical surgical system 10 includes a surgical apparatus or device in the form of a robotic surgical apparatus 20 that is configured for selective attachment thereto of a plurality of different end effectors 300, via a first adapter assembly 200 (e.g., elongated body).


The robotic surgical apparatus 20 includes a robot arm 22 coupled to a base 24. Robot arm 22 may include a plurality of limbs or levers 37-40 interconnected to one another by a plurality of elbows or axes 31-34, and a flange 42 supported on a distal-most axis 34, to which the end effector 300 is attached through the first adapter assembly 200.


In the case of the present exemplary embodiment, each of the axes 31-34 is moved by an electric drive 51-54, respectively, each of which is electrically connected to a controller 57 of robotic surgical apparatus 20, so that controller 57, or a computer readable set of instructions running on controller 57, is able to actuate electric drives 51-56 in such a way that the position and orientation of flange 42 of robotic surgical apparatus 20 can be set essentially freely in space. Each of the electric drives 51-54 of robotic surgical apparatus 20 includes an electric motor and any power-generating or control electronics that actuate the motors.


Robotic surgical apparatus 20 may also be configured to work with robotic surgical systems. Such systems employ various robotic elements (e.g., robotic surgical apparatus 20) to assist the surgeon in the operating theater and allow remote operation or partial remote operation of surgical instrumentation (e.g., end effector 300). Various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. of the robotic surgical apparatus 20 may be employed for this purpose and may be designed to assist the surgeon during the course of an operation or treatment. Robotic surgical apparatus 20 may include, remotely steerable systems, automatically flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, and combinations thereof.


The robotic surgical apparatus 20 may be employed with one or more consoles that are next to the operating theater or located in a remote location. In embodiments, one team of surgeons or nurses may prep the patient for surgery and configure the robotic surgical apparatus 20 with one or more of the end effectors 300 disclosed herein while another surgeon or group of surgeons remotely control the end effector 300 via the robotic surgical apparatus 20. As can be appreciated, a highly skilled surgeon may perform multiple operations in multiple locations without leaving his/her remote console, which can be both economically advantageous and a benefit to the patient or a series of patients.


The robotic surgical apparatus 20 of the surgical system may be coupled to one or more master handles (not shown) coupled locally or remotely to the controller 57. The handles may be moved by the surgeon to produce a corresponding movement of the working ends of any type of surgical instrument (e.g., end effectors 300, graspers, knifes, scissors, etc.) which may complement the use of one or more of the embodiments described herein. The movement of the master handles may be scaled so that the working ends have a corresponding movement that is different, smaller or larger, than the movement performed by the operating hands of the surgeon. The scale factor or gearing ratio may be adjustable so that the surgeon can control the resolution of the working ends of the surgical instrument(s).


The master handles may include various sensors to provide feedback (e.g., haptic) to the surgeon relating to various tissue parameters or conditions, e.g., resistance due to manipulation, cutting or otherwise treating tissue, pressure by the instrument onto the tissue, tissue temperature, tissue impedance, and combinations thereof. As can be appreciated, such sensors provide the surgeon with enhanced tactile feedback simulating actual operating conditions. The master handles may also include a variety of different actuators for delicate tissue manipulation or treatment further enhancing the surgeon's ability to mimic actual operating conditions.


Referring to FIG. 1B, another embodiment of the electromechanical powered surgical system 10′ is shown. Electromechanical surgical system 10′ includes a surgical apparatus or device in the form of an electromechanical, hand-held, powered surgical instrument 100 that is configured for selective attachment thereto of a plurality of different end effectors 300, via the first adapter assembly 200 (e.g., elongated body). A secondary adapter assembly 200′ may also be utilized to mate the first adapter assembly 200, which is used to couple to the robotic surgical apparatus 20, to the powered surgical instrument 100. The end effector 300 and the adapter assemblies 200 and 200′ are configured for actuation and manipulation by the surgical instrument 100. In particular, the surgical instrument 100, the adapter assemblies 200 and 200′, and the end effector 300 are separable from each other such that the surgical instrument 100 is configured for selective connection with first adapter assembly 200 via the secondary adapter assembly 200′, and, in turn, first adapter assembly 200 is configured for selective connection with any one of a plurality of different end effectors 300. In embodiments, the surgical instrument 100 may be operated directly with the first adapter assembly 200.


Reference may be made to International Application No. PCT/US2008/077249, filed Sep. 22, 2008 (Inter. Pub. No. WO 2009/039506), and U.S. Patent Application Publication No. 2011/0121049, published May 26, 2011, the entire contents of all of which are incorporated herein by reference, for a detailed description of the construction and operation of exemplary electromechanical, hand-held, powered surgical instruments 100.


With reference to FIG. 1B, surgical instrument 100 includes a handle housing 102 including one or more controllers, a power source, and a drive mechanism having one or more motors, gear selector boxes, gearing mechanisms, and the like. The housing 102 also supports a control assembly 103. Control assembly 103 may include one or more finger-actuated control buttons, rocker devices, joystick or other directional controls, whose input is transferred to the drive mechanism to actuate the first adapter assembly 200 and the end effector 300.


The housing 102 defines a nose or connecting portion 108 configured to accept a corresponding drive coupling assembly 210′ of secondary adapter assembly 200′ (FIG. 5). Connecting portion 108 houses one or more rotatable drive connectors that interface with corresponding rotatable connector sleeves (not shown) of the first adapter assembly 200′. The secondary adapter assembly 200′ is configured to accept a corresponding drive coupling assembly 210 of first adapter assembly 200. The adapter assembly 200′ and the robotic surgical apparatus 20 include one or more rotatable and/or longitudinally movable drive connectors that interface with corresponding rotatable connector sleeve 218 (FIGS. 2 and 4) and longitudinally movable first and second articulation links 220 and 222 (FIGS. 2 and 4) of the first adapter assembly 200, as described in further detail below.


With reference to FIG. 2, the first adapter assembly 200 is shown in an unarticulated configuration. The first adapter assembly 200 includes a distal joint housing 202 configured to couple to the end effector 300. The distal joint housing 202 is pivotally coupled to a middle joint housing 204, which in turn, is pivotally coupled to a proximal joint housing 206. With reference to FIG. 3, the middle joint housing 204 is independently pivotable relative to proximal joint housing 206 by a proximal articulation assembly 212. The distal joint housing 202 is pivotable relative to the middle joint housing 204 by a distal articulation assembly 208.


When first adapter assembly 200 is mated to secondary adapter assembly 200′ (FIG. 1B), or to the robotic surgical apparatus 20, the drive connectors (not shown) of second adapter assembly 200′, or of the robotic surgical apparatus 20, couple with the rotatable connector sleeves 218 (FIGS. 2 and 4) and articulation links 220 and 222 of first adapter assembly 200 (FIGS. 2 and 4). In this regard, the interface between drive connectors (not shown) and connector sleeve 218 and articulation links 220 and 222 are keyed such that rotation and/or movement of each of drive connectors of secondary adapter assembly 200′, or the robotic surgical apparatus 20, causes a corresponding rotation and/or movement of the corresponding connector sleeve 218 and articulation links 220 and 222 of first adapter assembly 200. This allows for longitudinal and/or rotational forces to be independently transmitted via each of the three respective connector interfaces.


The drive mechanisms of the surgical instrument 100 and the robotic surgical apparatus 20 are configured to drive shafts and/or gear components in order to selectively move tool assembly 304 of end effector 300 relative to proximal body portion 302 of end effector 300, to rotate end effector 300 relative to first adapter assembly 200 about a longitudinal axis “X-X” (FIG. 3) defined by the first adapter assembly 200, actuate various components of the tool assembly 304, e.g., to move anvil assembly 306 relative to cartridge assembly 308 of end effector 300, and/or to fire a stapling and cutting cartridge within cartridge assembly 308 of end effector 300 (FIG. 2).


The selective rotation and/or movement of drive connector(s) of surgical instrument 100 and/or robotic surgical apparatus 20 allows surgical instrument 100 and/or robotic surgical apparatus 20 to selectively actuate different functions of end effector 300. As discussed in greater detail below, selective and independent rotation of connector sleeve 218 of first adapter assembly 200 corresponds to the selective and independent opening and closing of tool assembly 304 of end effector 300, and driving of a stapling/cutting component of tool assembly 304 of end effector 300. In embodiments, rotation of the connector sleeve 218 may be used to rotate end effector 300 relative to first adapter assembly 200 about the longitudinal axis “X-X.”


With reference to FIGS. 2 and 3, selective and independent movement of articulation links 220 and 222 corresponds to the selective and independent actuation of the distal and proximal articulation assemblies 208 and 212, respectively. More specifically, as shown in FIG. 3, the middle joint housing 204 is pivotable relative to the proximal joint housing 206 about a pivot axis “A-A” in directions “C1” or “C2.” The middle joint housing 204 may be pivoted from an unarticulated configuration in which the longitudinal axes “X-X” and “Y-Y” defined by the proximal and middle joint housings 206 and 204, respectively, are aligned (e.g. zero angle) as shown in FIG. 2 to an articulated configuration in which the longitudinal axes “X-X” and “Y-Y” are in non-parallel alignment (e.g., non-zero angle) as shown in FIG. 3. The middle joint housing 204 may be articulated about the pivot axis “A-A” from about 5° to about 170°, in embodiments, about 60°.


The distal joint housing 202 is pivotable relative to the middle joint housing 204 about a pivot axis “B-B” in directions “D1” or “D2.” The distal joint housing 202 may be pivoted from an unarticulated configuration in which the longitudinal axes “Y-Y” and “Z-Z” defined by the middle and distal joint housings 204 and 202, respectively, are aligned (e.g. zero angle) as shown in FIG. 2 to an articulated configuration in which the longitudinal axes “Y-Y” and “Z-Z” are in non-parallel alignment (e.g., non-zero angle) as shown in FIG. 3. The distal joint housing 202 may be articulated about the pivot axis “B-B” from about 5° to about 170°, in embodiments about 90°. The pivot axes “A-A” and “B-B” are transverse relative to each other allowing for two-dimensional articulation of the end effector 300 relative to the proximal joint housing 206.


With reference to FIGS. 5-9, proximal articulation assembly 212 for pivoting middle joint housing 204 relative to proximal joint housing 206 is shown. The proximal articulation assembly 212 includes the second articulation link 222 longitudinally movable within the proximal joint housing 206. The proximal joint housing 206 is pivotally coupled to the middle joint housing 204 via a lever 224. The lever 224 is pivotally coupled at one end to a pivot pin 207 disposed at a distal end of the proximal joint housing 206 and at another end to a pivot pin 205 disposed at a proximal end of the middle joint housing 204.


The second articulation link 222 is also pivotally coupled to the pivot pin 205. The pivot pin 207 defines the pivot axis “A-A” and acts as a fulcrum for the lever 224, which pivots about the pivot pin 207 as the second articulation link 222 is moved along a longitudinal direction “E” (FIG. 5). In particular, as the second articulation link 222 is moved in the proximal direction, as shown in FIGS. 5 and 7, the middle joint housing 204 is pivoted about the pivot pin 205 along with the lever 224 which is pivoted about the pivot pin 207 in a counterclockwise direction “C1” (FIG. 3). Distal movement of the second articulation link 222, as shown in FIG. 6, reverses pivoting of the middle joint housing 204 in a clockwise direction “C2.”


With reference to FIGS. 8 and 9, each of the middle joint housing 204 and the proximal joint housing 206 includes a geared surface 209 and 211, respectively. The lever 224 maintains the geared surfaces 209 and 211 meshingly engaged allowing for the middle joint housing 204 to maintain its angular position relative to the proximal joint housing 206. In embodiments, the middle and proximal joint housings 204 and 206 may be interconnected by two levers 224, pivot pints 205 and 207 and corresponding geared surfaces 209 and 211 on two opposing sides thereof.


With reference to FIG. 10, distal articulation assembly 208 for pivoting distal joint housing 202 relative to middle joint housing 204 is shown. The proximal articulation assembly 212 includes the first articulation link 220 longitudinally movable within the middle and proximal joint housings 204 and 206. The middle joint housing 204 is pivotally coupled to the distal joint housing 202 via levers 226a, 226b (FIGS. 5 and 10). The levers 226a, 226b are pivotally coupled at one end to pivot pins 217a, 217b, respectively, which are disposed at a distal end of the middle joint housing 204 and at another end to pivot pins 215a, 215b, respectively, which are disposed at a proximal end of the distal joint housing 202.


The first articulation link 220 is also pivotally coupled to the pivot pin 215b. The pivot pins 217a, 217b define the pivot axis “B-B” (FIGS. 3 and 5) and act as a fulcrum for the levers 226a, 226b which pivot about the pivot pins 217a, 217b, respectively, as the first articulation link 220 is moved along a longitudinal direction “F” (FIG. 10). In particular, as the first articulation link 220 is moved in the proximal direction, as shown in FIG. 10, the distal joint housing 202 is pivoted about the pivot pins 215a, 215b along with the levers 226a, 226b, which are pivoted about the pivot pins 217a, 217b in a counterclockwise direction “D1.” Distal movement of the first articulation link 220 reverses pivoting of the distal joint housing 202 in a clockwise direction “D2.” The first articulation link 220 is also formed from a resilient, flexible material, such that longitudinal movement of first articulation link 220 is translated to the middle joint housing 204. The flexibility of the first articulation link 220 allows it to bend as the distal and middle joint housings 202 and 204 are articulated.


With reference to FIGS. 6-9, each of the proximal joint housing 202 and the middle joint housing 204 includes geared surfaces 219a, 219b and 221a, 221b, respectively. Levers 226a, 226b maintain the geared surfaces 219a, 219b and 221a, 221b meshingly engaged allowing for the proximal joint housing 202 to maintain its angular position relative to the middle joint housing 206.


With reference to FIGS. 5 and 11-14, the drive mechanism 330 is shown. The drive mechanism 330 includes proximal, middle, and distal transmission shafts 332, 334, 336, which transmit rotation of the rotatable connector sleeve 218 to the end effector 300. The distal, middle, and proximal transmission shafts 332, 334, 336 are disposed within proximal, middle, and distal housings 206, 204, and 202, respectively, and are configured to rotate therein. The proximal transmission shaft 336 is coupled at its proximal end to the rotatable connector sleeve 218. The proximal transmission shaft 336 includes a distal gear 336a at its distal end coupled to a proximal gear 334b of the middle transmission shaft 334. The middle transmission shaft 334 at its distal end also includes a distal gear 334a coupled to a proximal gear 332b of the distal transmission shaft 332.


The gears 332b, 334a, 334b, 336a have a substantially three-dimensional ellipsoid shape (e.g., each of the teeth have a two-dimensional ellipse shape) allowing the gears 332b and 334a and gears 334b and 336a to meshingly engage each other while the transmission shafts 332, 334, 336 are pivoted relative to each other during articulation of the distal and middle joint housings 202 and 204. Each of the gears can be ball-shaped spur gears for transmitting rotary drive motion through a first, second, and third housing, such as proximal, middle, and distal joint housings 202, 204, 206. In particular, the gears 332b, 334a, 334b, 336a are disposed between the distal, middle, and proximal joint housings 202, 204, 206 allowing the gears 332b, 334a, 334b, 336a to couple the distal, middle, and proximal transmission shafts 332, 334, 336 regardless of the pivoting of the distal and middle joint housings 202 and 204, as shown in FIGS. 11, 13, and 1.


With reference to FIG. 5, the distal housing 202 also includes a flange 203 for selectively coupling the end effector 300 thereto. The distal transmission shaft 332 also includes a keyed distal end 332a dimensioned and configured to engage a connector sleeve (not shown) of the end effector 300. During operation, as the connector sleeve 218 is rotated, each of the transmission shafts 332, 334, 336 are in turn rotated via the gears 332b, 334a, 334b, 336a, which in turn, rotates the keyed distal end 332a, thereby actuating the end effector 300.


It will be understood that various modifications may be made to the embodiments disclosed herein. For example, the end effector 300 need not apply staples but rather may apply two part fasteners as is known in the art. Further, the length of the linear row of staples or fasteners may be modified to meet the requirements of a particular surgical procedure. Thus, the length of a single stroke of the actuation shaft and/or the length of the linear row of staples and/or fasteners within a disposable loading unit may be varied accordingly.


In any of the embodiments disclosed herein, the end effector can be configured to connect with adapters for hand held powered, manually powered, or robotic instruments. Furthermore the end effector can incorporate electrosurgical instruments, such as ultrasonically vibrating blades and/or clamps. The power transmission shafts and elliptical toothed gears can be used in other types of instruments, including ones for manually, robotic, motorized, hand-held or other systems. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended thereto.

Claims
  • 1. A surgical device having a longitudinal axis, comprising: a proximal joint housing defining first gears;a middle joint housing defining second gears at a first end portion and third gears at a second, opposite end portion, the first gears meshingly engaged with the second gears;a distal joint housing defining fourth gears, the fourth gears meshingly engaged with the third gears;a first axis between the proximal and middle joint housings and defined transverse to the longitudinal axis; anda second axis between the middle and distal joint housing and defined transverse to the longitudinal axis, the distal joint housing being movable so as to position the second axis away from the longitudinal axis, wherein the first and second gears and the third and fourth gears maintain rotatable engagement during movement of the distal joint housing,wherein the proximal joint housing, the middle joint housing, and distal joint housing are rotatably coupled to one another during movement of the distal joint housing.
  • 2. The surgical device according to claim 1, wherein the proximal and middle joint housings are connected by at least one first lever, and the middle and distal joint housings are connected by at least one second lever.
  • 3. The surgical device according to claim 1, further including a proximal transmission shaft disposed within the proximal joint housing.
  • 4. The surgical device according to claim 3, further including a middle transmission shaft disposed within the middle joint housing.
  • 5. The surgical device according to claim 4, further including a distal transmission shaft disposed within the distal joint housing.
  • 6. The surgical device according to claim 5, wherein the distal transmission shaft has a keyed distal end configured to engage an end effector of the surgical device.
  • 7. The surgical device according to claim 5, wherein the proximal transmission shaft includes a connector sleeve disposed at a proximal portion thereof, wherein the connector sleeve is couplable to the surgical device.
  • 8. The surgical device according to claim 5, wherein the first, second, third, and fourth gears define an elliptical shape along a respective longitudinal axis defined by the proximal, middle, and distal transmission shafts.
  • 9. The surgical device according to claim 8, wherein the first, second, third, and fourth gears maintain rotatable engagement during respective movement of the proximal, middle, and distal transmission shafts.
  • 10. A drive mechanism for a surgical device, comprising: a proximal transmission shaft selectively couplable to the surgical device, the proximal transmission shaft defining a first gear at a distal portion thereof, a proximal portion of the proximal transmission shaft includes a connector sleeve that is couplable to the surgical device;a middle transmission shaft having a second gear defined at a proximal portion thereof and a third gear defined at a distal portion thereof, the second gear meshingly engaged with the first gear; anda distal transmission shaft selectively couplable to an end effector of the surgical device, the distal transmission shaft defining a fourth gear at a proximal portion thereof, the fourth gear meshingly engaged with the third gear,wherein the first, second, third, and fourth gears maintain rotatable engagement during respective movement of the proximal, middle, and distal transmission shafts.
  • 11. The drive mechanism according to claim 10, wherein the first, second, third, and fourth gears define an elliptical shape along a respective longitudinal axis defined by the proximal, middle, and distal transmission shafts.
  • 12. The drive mechanism according to claim 10, wherein the drive mechanism defines a longitudinal axis along a length thereof.
  • 13. The drive mechanism according to claim 12, wherein the drive mechanism defines a first axis between the proximal and middle transmission shafts and defined transverse to the longitudinal axis.
  • 14. The drive mechanism according to claim 10, wherein the proximal transmission shaft is disposed within a proximal joint housing.
  • 15. The drive mechanism according to claim 14, wherein the middle transmission shaft is disposed within a middle joint housing.
  • 16. The drive mechanism according to claim 15, wherein the distal transmission shaft is disposed within a distal joint housing, wherein the proximal joint housing, the middle joint housing, and distal joint housing are rotatably coupled to one another during movement of the distal joint housing.
  • 17. The drive mechanism according to claim 16, wherein the drive mechanism defines a second axis between the middle and distal joint housing and defined transverse to the longitudinal axis.
  • 18. The drive mechanism according to claim 17, wherein the distal transmission shaft is movable so as to position the second axis away from the longitudinal axis.
  • 19. A drive mechanism for a surgical device, comprising: a proximal transmission shaft selectively couplable to the surgical device, the proximal transmission shaft defining a first gear at a distal portion thereof, a proximal portion of the proximal transmission shaft includes a connector sleeve that is couplable to the surgical device;a middle transmission shaft having a second gear defined at a proximal portion thereof and a third gear defined at a distal portion thereof, the second gear meshingly engaged with the first gear; anda distal transmission shaft selectively couplable to an end effector of the surgical device, a distal portion of the distal transmission shaft defines a keyed distal end configured to engage an end effector of the surgical device, the distal transmission shaft defining a fourth gear at a proximal portion thereof, the fourth gear meshingly engaged with the third gear,wherein the first, second, third, and fourth gears maintain rotatable engagement during respective movement of the proximal, middle, and distal transmission shafts.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/049,651, filed on Feb. 22, 2016, which is a divisional of U.S. patent application Ser. No. 14/075,180, filed on Nov. 8, 2013, now U.S. Pat. No. 9,295,522, the entire disclosure of each of which is incorporated by reference herein.

US Referenced Citations (460)
Number Name Date Kind
562173 Daniels Jun 1896 A
942545 Colidge Dec 1909 A
2777340 Hettwer et al. Jan 1957 A
2957353 Babacz Oct 1960 A
3111328 Di Rito et al. Nov 1963 A
3695058 Keith, Jr. Oct 1972 A
3734515 Dudek May 1973 A
3759336 Marcovitz et al. Sep 1973 A
4162399 Hudson Jul 1979 A
4606343 Conta et al. Aug 1986 A
4705038 Sjostrom et al. Nov 1987 A
4722685 de Estrada et al. Feb 1988 A
4823807 Russell et al. Apr 1989 A
4874181 Hsu Oct 1989 A
5129118 Walmesley Jul 1992 A
5129570 Schulze et al. Jul 1992 A
5152744 Krause et al. Oct 1992 A
5301061 Nakada et al. Apr 1994 A
5312023 Green et al. May 1994 A
5326013 Green et al. Jul 1994 A
5350355 Sklar Sep 1994 A
5383874 Jackson et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5411508 Bessler et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5427087 Ito et al. Jun 1995 A
5467911 Tsuruta et al. Nov 1995 A
5476379 Disel Dec 1995 A
5487499 Sorrentino et al. Jan 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5526822 Burbank et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
5535934 Boiarski et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5562239 Boiarski et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5609560 Ichikawa et al. Mar 1997 A
5632432 Schulze et al. May 1997 A
5653374 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5667517 Hooven Sep 1997 A
5693042 Boiarski et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5713505 Huitema Feb 1998 A
5762603 Thompson Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5792135 Madhani et al. Aug 1998 A
5797900 Madhani et al. Aug 1998 A
5807377 Madhani et al. Sep 1998 A
5820009 Melling et al. Oct 1998 A
5863159 Lasko Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5908427 McKean et al. Jun 1999 A
5954259 Viola et al. Sep 1999 A
5964774 McKean et al. Oct 1999 A
5976122 Madhani et al. Nov 1999 A
5993454 Longo Nov 1999 A
6010054 Johnson et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6090123 Culp et al. Jul 2000 A
6126651 Mayer Oct 2000 A
6129547 Cise et al. Oct 2000 A
6165169 Panescu et al. Dec 2000 A
6239732 Cusey May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6302311 Adams et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6321855 Barnes Nov 2001 B1
6329778 Culp et al. Dec 2001 B1
6343731 Adams et al. Feb 2002 B1
6348061 Whitman Feb 2002 B1
6364888 Niemeyer et al. Apr 2002 B1
6368324 Dinger et al. Apr 2002 B1
6371909 Hoeg et al. Apr 2002 B1
6371952 Madhani et al. Apr 2002 B1
6394998 Wallace et al. May 2002 B1
6422411 Gray Jul 2002 B1
6434507 Clayton et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6460718 Vogel Oct 2002 B1
6461372 Jensen et al. Oct 2002 B1
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6533157 Whitman Mar 2003 B1
6537280 Dinger et al. Mar 2003 B2
6554844 Lee et al. Apr 2003 B2
6610066 Dinger et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6645218 Cassidy et al. Nov 2003 B1
6654999 Stoddard et al. Dec 2003 B2
6676684 Morley et al. Jan 2004 B1
6685698 Morley et al. Feb 2004 B2
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6699235 Wallace et al. Mar 2004 B2
6716233 Whitman Apr 2004 B1
6743240 Smith et al. Jun 2004 B2
6746443 Morley et al. Jun 2004 B1
6783533 Green et al. Aug 2004 B2
6786896 Madhani et al. Sep 2004 B1
6792390 Burnside et al. Sep 2004 B1
6793652 Whitman et al. Sep 2004 B1
6817508 Racenet et al. Nov 2004 B1
6817974 Cooper et al. Nov 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6866671 Tierney et al. Mar 2005 B2
6902560 Morley et al. Jun 2005 B1
6905057 Swayze et al. Jun 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
RE39152 Aust et al. Jun 2006 E
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7066926 Wallace et al. Jun 2006 B2
7077856 Whitman Jul 2006 B2
7090683 Brock et al. Aug 2006 B2
7111769 Wales et al. Sep 2006 B2
7121781 Sanchez Oct 2006 B2
7122029 Koop et al. Oct 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7169141 Brock et al. Jan 2007 B2
7172104 Scirica et al. Feb 2007 B2
7225964 Mastri et al. Jun 2007 B2
7238021 Johnson Jul 2007 B1
7241288 Braun Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7297142 Brock Nov 2007 B2
7316681 Madhani et al. Jan 2008 B2
7320700 Cooper et al. Jan 2008 B2
7328828 Ortiz et al. Feb 2008 B2
7364061 Swayze et al. Apr 2008 B2
7371210 Brock et al. May 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7398707 Morley et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7481347 Roy Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7549564 Boudreaux Jun 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7637409 Marczyk Dec 2009 B2
7641093 Doll et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7699835 Lee et al. Apr 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7736356 Cooper et al. Jun 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7744608 Lee et al. Jun 2010 B2
7744622 Brock et al. Jun 2010 B2
7758569 Brock Jul 2010 B2
7758613 Whitman Jul 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7775972 Brock et al. Aug 2010 B2
7780651 Madhani et al. Aug 2010 B2
7789875 Brock et al. Sep 2010 B2
7793812 Moore et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7819884 Lee et al. Oct 2010 B2
7822458 Webster, III et al. Oct 2010 B2
7845534 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7854738 Lee et al. Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7862580 Cooper et al. Jan 2011 B2
7867241 Brock et al. Jan 2011 B2
7870989 Viola et al. Jan 2011 B2
7890211 Green Feb 2011 B2
7905828 Brock et al. Mar 2011 B2
7905897 Whitman et al. Mar 2011 B2
7914522 Morley et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7918861 Brock et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922719 Ralph et al. Apr 2011 B2
7942868 Cooper May 2011 B2
7947034 Whitman May 2011 B2
7951071 Whitman et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7992758 Whitman et al. Aug 2011 B2
8004229 Nowlin et al. Aug 2011 B2
8016178 Olson et al. Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8035487 Malackowski Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8083667 Cooper et al. Dec 2011 B2
8105320 Manzo Jan 2012 B2
8114118 Knodel et al. Feb 2012 B2
8123740 Madhani et al. Feb 2012 B2
8132705 Viola et al. Mar 2012 B2
8152516 Harvey et al. Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8160743 Birkenbach et al. Apr 2012 B2
8182470 Devengenzo et al. May 2012 B2
8182494 Yencho et al. May 2012 B1
8186555 Shelton, IV et al. May 2012 B2
8186587 Zmood et al. May 2012 B2
8220367 Hsu Jul 2012 B2
8235273 Olson et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8272554 Whitman et al. Sep 2012 B2
8282653 Nelson Oct 2012 B2
8292150 Bryant Oct 2012 B2
8292888 Whitman Oct 2012 B2
8292916 Grace Oct 2012 B2
8303581 Arts et al. Nov 2012 B2
8337521 Cooper et al. Dec 2012 B2
8342379 Whitman et al. Jan 2013 B2
8343141 Madhani et al. Jan 2013 B2
8348855 Hillely et al. Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8357144 Whitman et al. Jan 2013 B2
8365633 Simaan et al. Feb 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8372057 Cude et al. Feb 2013 B2
8391957 Carlson et al. Mar 2013 B2
8398634 Manzo et al. Mar 2013 B2
8424739 Racenet et al. Apr 2013 B2
8454585 Whitman Jun 2013 B2
8505802 Viola et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8551076 Duval et al. Oct 2013 B2
8561871 Rajappa et al. Oct 2013 B2
8623000 Humayun et al. Jan 2014 B2
8632463 Drinan et al. Jan 2014 B2
8647258 Aranyi et al. Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8696552 Whitman Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8752749 Moore et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8806973 Ross et al. Aug 2014 B2
8851355 Aranyi et al. Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8939344 Olson et al. Jan 2015 B2
8960519 Whitman et al. Feb 2015 B2
8961396 Azarbarzin et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
9028468 Scarfogliero May 2015 B2
9064653 Prest et al. Jun 2015 B2
9113875 Viola et al. Aug 2015 B2
9216013 Scirica et al. Dec 2015 B2
9282961 Whitman et al. Mar 2016 B2
9282963 Bryant Mar 2016 B2
9295522 Kostrzewski Mar 2016 B2
9307986 Hall et al. Apr 2016 B2
10390897 Kostrzewski Aug 2019 B2
20020049454 Whitman et al. Apr 2002 A1
20020165541 Whitman Nov 2002 A1
20030038938 Jung et al. Feb 2003 A1
20030165794 Matoba Sep 2003 A1
20040111012 Whitman Jun 2004 A1
20040133189 Sakurai Jul 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20050131442 Yachia et al. Jun 2005 A1
20060027467 Ferguson Feb 2006 A1
20060142656 Malackowski et al. Jun 2006 A1
20060142740 Sherman et al. Jun 2006 A1
20060278680 Viola et al. Dec 2006 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070055219 Whitman et al. Mar 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070084898 Scirica Apr 2007 A1
20070102472 Shelton May 2007 A1
20070152014 Gillum et al. Jul 2007 A1
20070175949 Shelton et al. Aug 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070175961 Shelton et al. Aug 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080058801 Taylor et al. Mar 2008 A1
20080109012 Falco et al. May 2008 A1
20080110958 McKenna et al. May 2008 A1
20080167736 Swayze et al. Jul 2008 A1
20080185419 Smith et al. Aug 2008 A1
20080188841 Tomasello et al. Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080208195 Shores et al. Aug 2008 A1
20080237296 Boudreaux et al. Oct 2008 A1
20080251561 Eades et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255607 Zemlok Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20090090763 Zemlok et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090138006 Bales et al. May 2009 A1
20090171147 Lee et al. Jul 2009 A1
20090182193 Whitman et al. Jul 2009 A1
20090209990 Yates et al. Aug 2009 A1
20090254094 Knapp et al. Oct 2009 A1
20100069942 Shelton, IV Mar 2010 A1
20100193568 Scheib et al. Aug 2010 A1
20100211053 Ross et al. Aug 2010 A1
20100225073 Porter et al. Sep 2010 A1
20110006101 Hall et al. Jan 2011 A1
20110017801 Zemlok et al. Jan 2011 A1
20110071508 Duval et al. Mar 2011 A1
20110077673 Grubac et al. Mar 2011 A1
20110118707 Burbank May 2011 A1
20110118708 Burbank et al. May 2011 A1
20110118709 Burbank May 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110139851 McCuen Jun 2011 A1
20110155783 Rajappa et al. Jun 2011 A1
20110155786 Shelton, IV Jun 2011 A1
20110172648 Jeong Jul 2011 A1
20110174099 Ross et al. Jul 2011 A1
20110204119 McCuen Aug 2011 A1
20110218522 Whitman Sep 2011 A1
20110253765 Nicholas et al. Oct 2011 A1
20110276057 Conlon et al. Nov 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110295242 Spivey et al. Dec 2011 A1
20110295269 Swensgard et al. Dec 2011 A1
20120000962 Racenet et al. Jan 2012 A1
20120074199 Olson et al. Mar 2012 A1
20120089131 Zemlok et al. Apr 2012 A1
20120104071 Bryant May 2012 A1
20120116368 Viola May 2012 A1
20120143002 Aranyi et al. Jun 2012 A1
20120172924 Allen, IV Jul 2012 A1
20120209253 Donhowe Aug 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120245428 Smith et al. Sep 2012 A1
20120253329 Zemlok et al. Oct 2012 A1
20120310220 Malkowski et al. Dec 2012 A1
20120323226 Chowaniec et al. Dec 2012 A1
20120330285 Hartoumbekis et al. Dec 2012 A1
20130018361 Bryant Jan 2013 A1
20130093149 Saur et al. Apr 2013 A1
20130098966 Kostrzewski et al. Apr 2013 A1
20130098968 Aranyi et al. Apr 2013 A1
20130098969 Scirica et al. Apr 2013 A1
20130181035 Milliman Jul 2013 A1
20130184704 Beardsley et al. Jul 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130240596 Whitman Sep 2013 A1
20130274722 Kostrzewski et al. Oct 2013 A1
20130282052 Aranyi et al. Oct 2013 A1
20130292451 Viola et al. Nov 2013 A1
20130313304 Shelton, IV et al. Nov 2013 A1
20130317486 Nicholas et al. Nov 2013 A1
20130319706 Nicholas et al. Dec 2013 A1
20130324978 Nicholas et al. Dec 2013 A1
20130324979 Nicholas et al. Dec 2013 A1
20130334281 Williams Dec 2013 A1
20140012236 Williams et al. Jan 2014 A1
20140012237 Pribanic et al. Jan 2014 A1
20140012289 Snow et al. Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140110455 Ingmanson et al. Apr 2014 A1
20140207125 Applegate et al. Jul 2014 A1
20140207182 Zergiebel et al. Jul 2014 A1
20140236173 Scirica et al. Aug 2014 A1
20140236174 Williams et al. Aug 2014 A1
20140276932 Williams et al. Sep 2014 A1
20140299647 Scirica et al. Oct 2014 A1
20140303668 Nicholas et al. Oct 2014 A1
20140358129 Zergiebel et al. Dec 2014 A1
20140361068 Aranyi et al. Dec 2014 A1
20140373652 Zergiebel et al. Dec 2014 A1
20150048144 Whitman Feb 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150080912 Sapre Mar 2015 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150164502 Richard et al. Jun 2015 A1
20150272577 Zemlok et al. Oct 2015 A1
20150297199 Nicholas et al. Oct 2015 A1
20150303996 Calderoni Oct 2015 A1
20150320420 Penna et al. Nov 2015 A1
20150327850 Kostrzewski Nov 2015 A1
20150342601 Williams et al. Dec 2015 A1
20150342603 Zergiebel et al. Dec 2015 A1
20150374366 Zergiebel et al. Dec 2015 A1
20150374370 Zergiebel et al. Dec 2015 A1
20150374371 Richard et al. Dec 2015 A1
20150374372 Zergiebel et al. Dec 2015 A1
20150374449 Chowaniec et al. Dec 2015 A1
20150380187 Zergiebel et al. Dec 2015 A1
20160095585 Zergiebel et al. Apr 2016 A1
20160095596 Scirica et al. Apr 2016 A1
20160106406 Cabrera et al. Apr 2016 A1
20160113648 Zergiebel et al. Apr 2016 A1
20160113649 Zergiebel et al. Apr 2016 A1
Foreign Referenced Citations (83)
Number Date Country
2008229795 Apr 2009 AU
2451558 Jan 2003 CA
101856251 Oct 2010 CN
102247182 Nov 2011 CN
103379874 Oct 2013 CN
102008053842 May 2010 DE
0634144 Jan 1995 EP
0648476 Apr 1995 EP
0686374 Dec 1995 EP
0705571 Apr 1996 EP
1690502 Aug 2006 EP
1723913 Nov 2006 EP
1736112 Dec 2006 EP
1759652 Mar 2007 EP
1769754 Apr 2007 EP
1772105 Apr 2007 EP
1813199 Aug 2007 EP
1813203 Aug 2007 EP
1813211 Aug 2007 EP
1908412 Apr 2008 EP
1917929 May 2008 EP
1943954 Jul 2008 EP
1943956 Jul 2008 EP
1943958 Jul 2008 EP
1943976 Jul 2008 EP
1952769 Aug 2008 EP
2005898 Dec 2008 EP
2027819 Feb 2009 EP
2044890 Apr 2009 EP
2055243 May 2009 EP
2090247 Aug 2009 EP
2098170 Sep 2009 EP
2100561 Sep 2009 EP
2100562 Sep 2009 EP
2165664 Mar 2010 EP
2236098 Oct 2010 EP
2245994 Nov 2010 EP
2263568 Dec 2010 EP
2272443 Jan 2011 EP
2316345 May 2011 EP
2324776 May 2011 EP
2329773 Jun 2011 EP
2333509 Jun 2011 EP
2377472 Oct 2011 EP
2462878 Jun 2012 EP
2462880 Jun 2012 EP
2491872 Aug 2012 EP
2586382 May 2013 EP
2606834 Jun 2013 EP
2668910 Dec 2013 EP
2676615 Dec 2013 EP
2815705 Dec 2014 EP
2333509 Feb 2010 ES
2861574 May 2005 FR
08038488 Feb 1996 JP
2005125075 May 2005 JP
20120022521 Mar 2012 KR
9915086 Apr 1999 WO
0072760 Dec 2000 WO
0072765 Dec 2000 WO
03000138 Jan 2003 WO
03026511 Apr 2003 WO
03030743 Apr 2003 WO
03065916 Aug 2003 WO
03077769 Sep 2003 WO
03090630 Nov 2003 WO
2004107989 Dec 2004 WO
2004112618 Dec 2004 WO
2006042210 Apr 2006 WO
2007016290 Feb 2007 WO
2007026354 Mar 2007 WO
2007137304 Nov 2007 WO
2007146987 Dec 2007 WO
2008131362 Oct 2008 WO
2008133956 Nov 2008 WO
2009039506 Mar 2009 WO
2009039510 Mar 2009 WO
2007014355 Apr 2009 WO
2009132359 Oct 2009 WO
2009143092 Nov 2009 WO
2009149234 Dec 2009 WO
2011108840 Sep 2011 WO
2012040984 Apr 2012 WO
Non-Patent Literature Citations (64)
Entry
Extended European Search Report corresponding to International Application No. EP 15 17 3803.6 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3804.4 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 8539.9 dated Feb. 17, 2016.
Extended European Search Report corresponding to International Application No. EP 15 17 3910.9 dated Nov. 13, 2015.
European Office Action corresponding to International Application No. EP 14 15 2236.7 dated Aug. 11, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 4915.5 dated Jan. 5, 2016.
Extended European Search Report for appln. No. 16178492.1 dated Oct. 14, 2016.
Australian Examination Report dated Jun. 21, 2018 issued in corresponding AU Appln. No. 2014227482.
Japanese Office Action dated Jul. 9, 2018 issued in corresponding JP Appln. No. 2014-216074.
Chinese Office Action dated Oct. 18, 2018 issued in corresponding CN Appln. No. 2014106439934.
Australian Examination Report dated Jul. 17, 2019 issued in corresponding AU Appln. No. 2018271364.
Extended European Search Report corresponding to International Application No. EP 15 15 1076.5 dated Apr. 22, 2015.
Japanese Office Action corresponding to International Application No. JP 2011-084092 dated Jan. 14, 2016.
Extended European Search Report corresponding to International Application No. EP 12 19 7970.2 dated Jan. 28, 2016.
Chinese Office Action corresponding to International Application No. CN 201210560638.1 dated Oct. 21, 2015.
European Office Action corresponding to International Application No. EP 14 15 9056.2 dated Oct. 26, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2015200153 dated Dec. 11, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2014204542 dated Jan. 7, 2016.
Chinese Office Action corresponding to International Application No. CN 201310125449.6 dated Feb. 3, 2016.
Extended European Search Report corresponding to International Application No. EP 15 19 0245.9 dated Jan. 28, 2016.
Extended European Search Report corresponding to International Application No. EP 15 16 7793.7 dated Apr. 5, 2016.
European Office Action corresponding to International Application No. EP 14 18 4882.0 dated Apr. 25, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 6704.2 dated Sep. 24, 2015.
International Search Report and Written Opinion corresponding to Int'l Appln. No. PCT/US2015/051837, dated Dec. 21, 2015.
Extended European Search Report corresponding to International Application No. EP 14 19 7563.1 dated Aug. 5, 2015.
Partial European Search Report corresponding to International Application No. EP 15 19 0643.5 dated Feb. 26, 2016.
Extended European Search Report corresponding to International Application No. EP 15 16 6899.3 dated Feb. 3, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 9783.3 dated Dec. 22, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3807.7 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 19 0760.7 dated Apr. 1, 2016.
Extended European Search Report corresponding to EP No. 13 16 3033.7, completed Jun. 27, 2013 and dated Jul. 15, 2013; (8 pp).
Extended European Search Report corresponding to EP No. 11 17 8021.9, dated Jun. 4, 2013; (3 pp).
Extended European Search Report corresponding to EP No. 12 18 6177.7, completed Aug. 14, 2013 and dated Aug. 23, 2013; (8 pp).
Partial European Search Report corresponding to EP No. 13 17 2400.7, completed Sep. 18, 2013 and dated Oct. 1, 2013; (7 pp).
Partial European Search Report corresponding to EP No. 13 17 1742.3, completed Sep. 17, 2013 and dated Sep. 25, 2013; (8 pp).
Extended European Search Report corresponding to EP No. 13 17 5475.6, completed Sep. 23, 2013 and dated Oct. 1, 2013; (8 pp).
Extended European Search Report corresponding to EP No. 13 17 5478.0, completed Sep. 24, 2013 and dated Oct. 2, 2013; (6 pp).
Extended European Search Report corresponding to EP No. 08 25 2703.7, completed Oct. 23, 2008 and dated Oct. 31, 2008; (7 pp).
International Search Report from the corresponding EP Application No. 12186177.7 dated Aug. 23, 2013.
International Search Report corresponding to PCT/US2005/027266, completed May 30, 2008 and dated Jun. 18, 2008; (2 pp.).
Extended European Search Report corresponding to EP 08 25 3184.9, completed Feb. 12, 2009 and dated Feb. 27, 2009; (3 pp.).
Extended European Search Report corresponding to EP 10 25 0228.3, completed May 20, 2010 and dated Jun. 1, 2010; (6 pp.).
Extended European Search Report corresponding to EP 10 25 2037.6, completed Mar. 1, 2011 and dated Mar. 9, 2011; (3 pp.).
Extended European Search Report corresponding to EP 10 25 1968.3, completed on Jul. 4, 2011 and dated Jul. 14, 2011; (12 pp.).
Extended European Search Report corresponding to EP 11 15 2266.0, completed Jul. 15, 2011 and dated Jul. 28, 2011; (3 pp.).
Extended European Search Report corresponding to EP 11 25 0462.6, completed Jul. 20, 2011 and dated Jul. 28, 2011; (6 pp.).
Extended European Search Report corresponding to EP 11 25 0771.0, completed Feb. 7, 2012 and dated Feb. 17, 2012; (3 pp.).
Extended European Search Report corresponding to EP 06 78 8914.7, completed May 3, 2012 and dated May 11, 2012; (8 pp.).
Partial European Search Report corresponding to EP 12 18 6177.7, completed Jan. 30, 2013 and dated Feb. 12, 2013; (6 pp.).
Extended European Search Report corresponding to EP 08 25 2703.7, completed Oct. 23, 2008 and dated Oct. 31, 2008; (7 pp.).
Extended European Search Report corresponding to EP No. 13 17 5479.8, completed Sep. 27, 2013 and dated Oct. 10, 2013; (7 pp).
Partial Extended European Search Report corresponding to EP 13 17 5477.2, completed Oct. 7, 2013 and dated Oct. 15, 2013; (7 pp).
European search Report from Appl. No. 13177163.6 dated Nov. 15, 2013. (8 pp).
Extended European Search Report from EP Application No. 13172400.7 dated Jan. 21, 2014.
Extended European Search Report from EP Application No. 13189026.1 dated Jan. 31, 2014.
The extended European Search Report from Application No. EP 13177163.6 dated Feb. 6, 2014.
Extended European Search Report from Application No. EP 13175477.2 dated Feb. 6, 2014.
Extended European Search Report from Application No. EP 13169998.5 dated Feb. 24, 2014.
Extended European Search Report corresponding to EP 13176805.3, dated Nov. 4, 2013.
Extended European Search Report from Application No. EP 13171742.3 dated Jan. 3, 2014.
European Search Report No. 14192217.9 dated Feb. 5, 2015.
Canadian Office Action dated Aug. 28, 2020 issued in corresponding CA Appln. No. 2,865,105.
Extended European Search Report from Application No. EP 13177163.6 dated Feb. 6, 2014.
Chinese Office Action dated Feb. 2, 2018 issued in corresponding Chinese Application No. 2014106439934.
Related Publications (1)
Number Date Country
20190365492 A1 Dec 2019 US
Divisions (1)
Number Date Country
Parent 14075180 Nov 2013 US
Child 15049651 US
Continuations (1)
Number Date Country
Parent 15049651 Feb 2016 US
Child 16542668 US