Conventional medical imaging devices, such as x-ray computed tomography (CT) imaging devices, are limited in the types of imaging operations that may be performed.
Embodiments include detector systems for an x-ray imaging device, x-ray imaging systems, external beam radiation treatment systems having an integrated x-ray imaging system, and methods therefor.
An embodiment includes a detector system for an x-ray imaging device that includes a detector chassis defining an interior housing, and a plurality of sub-assemblies mounted to the detector chassis within the interior housing, the plurality of sub-assemblies defining a detector surface, where each sub-assembly of the plurality of sub-assemblies includes a thermally-conductive support mounted to the detector chassis, a detector module including an array of x-ray sensitive detector elements mounted to a first surface of the support, an electronics board mounted to a second surface of the support that is opposite the first surface of the support, at least one electrical connector that connects the detector module to the electronics board, where the electronics board provides power to the detector module and receives digital x-ray image data from the detector module via the at least one electrical connector.
Further embodiments include an x-ray imaging system that includes an O-shaped gantry comprising a housing and defining an imaging bore, an x-ray source located within the housing of the gantry, a detector system located within the housing of the gantry opposite the x-ray source, the detector system including a plurality of x-ray sensitive detector elements defining a contiguous detector area, the detector area having an elongated central portion having a length of at least about 1 meter and a pair of peripheral portions extending on either side of the central portion to define a panel region having a width of greater than 0.3 meters and a length that is less than 0.5 meters, and a drive system for rotating the x-ray source and the detector system around the imaging bore.
Further embodiments include an x-ray imaging system that includes an O-shaped gantry comprising a housing and defining an imaging bore, an x-ray source located within the housing of the gantry, a detector located within the housing of the gantry opposite the x-ray source, the detector including a two-dimensional array of pixels, the array having a length and a width dimension of greater than about 0.3 meters, an apparatus for moving the detector array relative to the x-ray source by a distance that is less than a spacing between adjacent pixels of the detector array, a drive system for rotating the x-ray source and the detector system around an object located in the imaging bore, a processing device, coupled to the detector, that is configured with processor-executable instructions to perform operations including receiving, from the detector, a plurality of first x-ray images of the object with a first spatial resolution that are obtained while the detector array is moved relative to the x-ray source, and generating at least one second image of the object using the plurality of first x-ray images, wherein the at least one second image is a super resolution (SR) image that has an improved spatial resolution and/or signal-to-noise (SNR) ratio compared to the first images.
Further embodiments include an x-ray imaging system that includes an O-shaped gantry comprising a housing and defining an imaging bore, a drive mechanism for moving the gantry with respect to a patient located within the imaging bore of the gantry, an x-ray source located within the housing of the gantry, a detector located within the housing of the gantry opposite the x-ray source, the detector including a two-dimensional array of pixels, the array having a length and a width dimension of greater than about 0.3 meters, a rotation drive system configured to rotate the x-ray source and the detector around the patient located in the imaging bore, and a control system, coupled to the drive mechanism, and including a processor that is configured with processor-executable instructions to perform operations including controlling the drive mechanism to move the x-ray source and detector system relative to the patient located within the bore of the gantry as the x-ray source and detector system rotate around the patient so that the x-ray source and detector system follow a sinusoidal scan trajectory around the patient.
Further embodiments include an x-ray imaging system that includes an O-shaped gantry including a housing and defining an imaging bore, a drive mechanism configured to translate the gantry with respect to a patient located within the imaging bore, an x-ray source located within the housing of the gantry, a detector located within the housing of the gantry opposite the x-ray source, the detector including a two-dimensional array of pixels, the array having a length and a width dimension of greater than about 0.3 meters, a rotation drive system configured to rotate the x-ray source and the detector around the patient located in the imaging bore, and a control system, coupled to the drive mechanism and to the rotation drive system, and including a processor that is configured with processor-executable instructions to perform operations including controlling the rotation drive system to rotate the x-ray source and the detector around a patient located in the bore of the gantry in a first rotational direction and then in a second rotational direction that is opposite the first direction; and controlling the drive mechanism to translate the gantry in a first translation direction along the length of the patient as the x-ray source and detector system rotate around the patient in the first rotational direction and in the second rotational direction so that the x-ray source and detector follow a reverse helical scan trajectory around the patient.
Further embodiments include an external beam radiation treatment system that includes a rotatable gantry having a head that emits a radiation treatment beam, the rotatable gantry configured to rotate around a patient to direct the radiation treatment beam to a target location within the patient from different angles, an x-ray imaging system mounted to the rotatable gantry, the x-ray imaging system including an x-ray source, a detector opposite the x-ray source, a first actuator system for moving the x-ray source relative to the rotatable gantry, and a second actuator system for moving the detector relative to the rotatable gantry, and a control system, coupled to the first actuator system and to the second actuator system, and including a processor that is configured with processor-executable instructions to perform operations including controlling the first actuator system and the second actuator system to move the x-ray source and the detector relative to a patient as the gantry rotates around the patient so that the x-ray source and the detector follow a sinusoidal scan trajectory around the patient.
Further embodiments include an external beam radiation treatment system that includes a rotatable gantry having a head that emits a radiation treatment beam, the rotatable gantry configured to rotate around a patient to direct the radiation treatment beam to a target location within the patient from different angles, an x-ray imaging system mounted to the rotatable gantry, the x-ray imaging system including an x-ray source, a detector opposite the x-ray source, the detector including a two-dimensional array of pixels having a pixel spacing between adjacent pixels, and an apparatus for moving the detector array relative to the x-ray source by a distance that is less than the pixel spacing, and a processing device, coupled to the detector, that is configured with processor-executable instructions to perform operations including receiving, from the detector, a plurality of first x-ray images of the patient with a first spatial resolution that are obtained while the detector array is moved relative to the x-ray source by a distance that is less than the pixel spacing, and generating at least one second image of the object using the plurality of first x-ray images, wherein the at least one second image is a super resolution (SR) image that has an improved spatial resolution and/or signal-to-noise (SNR) ratio compared to the first images.
Further embodiments include an external beam radiation treatment system that includes a rotatable gantry having a head that emits a radiation treatment beam, the rotatable gantry configured to rotate around a patient to direct the radiation treatment beam to a target location within the patient from different angles, an x-ray imaging system mounted to the rotatable gantry, the x-ray imaging system including an x-ray source, a detector opposite the x-ray source, a first actuator system for moving the x-ray source relative to the rotatable gantry, and a second actuator system for moving the detector relative to the rotatable gantry, and a control system, coupled to the gantry, the first actuator system and the second actuator system, and including a processor that is configured with processor-executable instructions to perform operations including controlling the gantry to rotate the x-ray source and the x-ray detector around the patient in a first rotational direction and then in a second rotational direction that is opposite the first direction, controlling the first actuator system and the second actuator system to translate the x-ray source and detector system in a first translation direction along the length of the patient as the x-ray source and detector system rotate around the patient in the first rotational direction and the second rotational direction so that the x-ray source and detector system follow a reverse helical scan trajectory around the patient.
Other features and advantages of the present invention will be apparent from the following detailed description of the invention, taken in conjunction with the accompanying drawings of which:
The various embodiments will be described in detail with reference to the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. References made to particular examples and implementations are for illustrative purposes, and are not intended to limit the scope of the invention or the claims.
An imaging system 100 according to one embodiment is shown in
The gimbal 30 may be a generally U-shaped support that is mounted to the top surface of base 20 and includes a pair of arms 31, 33 extending up from the base. The arms 31, 33 may be connected to opposite sides of gantry 40 so that the gantry is suspended above the base 20 and gimbal 30. A drive system 70 may drive the translation (z-axis translation) of the gimbal 30 and the gantry 40 relative to the base 20 in the direction of arrow 104 shown in
The system 100 of
The gantry 40 and at least an upper portion of the gimbal 30 may rotate on a rotary bearing 103 with respect to the base 20. The rotation of the gantry 40 and gimbal 30 may be about a vertically-extending axis 102 in the direction of arrow 105 in
The gantry 40 may rotate (i.e., tilt) with respect to the gimbal 30 on a pair of rotary bearings 106 that attach the gantry 40 to the arms 31, 33 of the gimbal 30. The tilting motion of the gantry 40 may be about a horizontally-extending axis 107 in the direction of arrow 108 in
In various embodiments, the system 200 may enable imaging (e.g., CT scanning, x-ray fluoroscopy) in multiple orientations and along multiple directions. In embodiments, the system 200 may include a first drive mechanism 203 for translating the gantry 40 relative to the support column 201 in a first direction along the direction of arrow 204 in
In some embodiments, the gantry 40 may also pivot relative to the base 202. For example, at least a portion of the support column 201 to which the gantry 40 is attached may rotate with respect to the base 202 in the direction of arrow 210 in
The first drive mechanism 203, the second drive mechanism 205, the third drive mechanism 208 and/or the fourth drive mechanism 212 may be operatively coupled to and controlled by a system controller 213 that may be similar to the system controller 113 of
The imaging system 200 of
The gantry 40 in systems 100 and 200 may include an outer shell comprised of a high-strength structural material, such as aluminum. A rotor may be attached to the gantry shell via a bearing assembly that enables the rotor to rotate within the gantry 40.
In embodiments, the x-ray source 43 and detector 45 may be configured to perform a helical x-ray CT scan. The detector 45 may comprise a plurality of x-ray sensitive detector elements arranged in a generally semicircular arc, with the arc center coinciding with the focal spot of the x-ray source. Alternately, the x-ray detector may be a flat panel detector, and the system may be configured to perform real time x-ray fluoroscopic and/or cone beam imaging of an object within the bore of the gantry.
In the embodiment of
A plurality of x-ray sensitive detector elements may be located within the interior housing 406 of the chassis 401. In various embodiments, the individual detector elements may be located on a plurality of detector modules 410 (see
A plurality of modules 410 may be arranged in an abutting fashion to provide a detector area with a desired size and shape. For example, a plurality of modules 410 may be abutted along the width dimension of the detector system 45 (i.e., parallel to the imaging axis 114 of the gantry 40) to provide an arbitrary number of “slices” that may be imaged simultaneously during a rotation of the rotor 41. The number of slices of the detector system 45 may be, for example, 32 slices, 40 slices, 64 slices, 128-320 slices, etc. In the embodiment shown in
The modules 410 may also be abutted in the transverse direction (i.e., along the length of the chassis 401) to provide a detector area having an arbitrary length. The gap between adjacent modules in the length direction may be less than 1 mm, such as less than 0.5 mm (e.g., 0.01-0.5 mm), and may be, for example, between 0.4 and 0.5 mm. In the detector system 45 of
The detector system 45 may include a plurality of sub-assemblies 416, each including one or more detector modules 410, where the sub-assemblies 416 may be individually mounted within and removed from the detector chassis 401.
The sub-assembly 416 may also include an anti-scatter assembly 418 attached to the support 417 over the detector modules 410. The anti-scatter assembly 418 may comprise a grid 419 made from an x-ray absorbent material, such as tungsten or lead, having openings aligned over the pixels of the detector modules 410. The x-ray absorbent material of the grid 419 may be located between adjacent columns and rows of detector elements (pixels) of the module 410 so as to inhibit scattered x-rays, traveling at an oblique angle, from impinging on the detector elements. The anti-scatter assembly 418 may be provided so that the detector elements primarily measure the intensity of x-rays that travel along a straight-line path from the x-ray source 43 to the detector 45. The anti-scatter assembly 418 may comprise a focused grid having apertures that are angled toward the focal spot of the x-ray source. Although the anti-scatter assembly 418 in this embodiment is a two-dimensional grid 419 located between each column and row of detector elements, it will be understood that other configurations can be utilized, including an array of x-ray absorbent plates located between adjacent columns or rows of detector elements to absorb scattered x-rays along one direction.
The sub-assembly 416 may also include at least one electronics board 420 attached to a second side of the support 417 that is opposite the first side to which the module(s) 410 are attached. One or more electronic cables 421 may extend between each of the modules 410 and the electronics board 420. As shown in
The electronics board 420 may be secured to the support 417 of the sub-assembly 416 using an adhesive and/or suitable fastener(s). A handle 422 or other element to enable the sub-assembly 416 to be easily gripped and manipulated may be located over the electronics board 420 opposite the support 417. One or more fasteners (e.g., screws) may extend through the handle 422 and the electronics board 420 and into the support 417 to clamp the electronics board 420 to the support 417.
As shown in
As shown in
The support 417 of the sub-assembly 416 may also include a set of alignment pins 434 to facilitate alignment of the anti-scatter assembly 418 over the detector modules 410. The alignment pins 434 may be received in a recessed portion 435 of the anti-scatter assembly 418, as shown in
In embodiments, to access the detector modules 410 and/or electronics boards 420 for service and/or replacement, one or more access panels 429 may be removed from the rear side 409 of the detector chassis 401, and an individual sub-assembly 416 may be disconnected and removed from the detector chassis 401 without disturbing other sub-assemblies 416 of the detector system 45.
In the embodiment shown in
The detector system may include a plurality of additional circuit boards 439 that may extend along the length of the detector chassis 401.
In embodiments, the detector chassis 401, including at least the side walls 402, 403, end walls 404, 405 and lip portions 430 to which the detector sub-assemblies 416 are mounted, may be formed (e.g., precision machined) from a single workpiece (e.g., an aluminum block). This may improve the manufacturability of the detector system while ensuring that required tolerances are met.
The detector chassis 401 may be made from a material having a relatively high thermal conductivity (e.g., ≥200 W/(m·K)), such as aluminum. Cooling of the interior housing 406 of the detector chassis 401 may be primarily through conduction. As discussed above, each of the sub-assemblies 416 of the detector may include a support 417 that functions as a heat sink to conduct heat away from the detector modules 410 and other electrical components. The sub-assemblies 416 are mechanically and thermally coupled to the detector chassis 401 (i.e., at the interface between the support 417 and the lip portions 430 of the chassis 401) so that heat is conducted from the sub-assemblies 416 into the chassis 401. The supports of the sub-assemblies and the chassis walls may provide a thermally-conductive path from the detector modules 410 and electronics boards 420 to the exterior surfaces of the chassis 401. In embodiments, a thermal paste may be provided at the interface between the sub-assemblies 416 and the chassis 401. Other heat generating components of the detector system 45, such as a power supply and the additional circuit board(s) 439, may be directly mechanically and thermally coupled to the chassis 401, such as fastened to the interior side wall 403 of the chassis 401. A cooling fluid (e.g., air) may be directed through the interior of the gantry 40 and over the exterior surface of the detector chassis 401 to cool the detector system 45.
Alternately or in addition, the detector system 45 may include a cooling system for directing a cooling fluid (e.g., air) through the interior housing 406 of the detector chassis 401 to remove heat, such as described in U.S. Pat. No. 9,125,613, the entire contents of which are incorporated by reference herein.
The heat load of the detector system 45 may also be managed by controlling the power provided to the detector system 45 (e.g., from batteries 63) so that all or a portion of the electrical components of the detector system 45 may remain unpowered or minimally powered when not in use. A control system (e.g., controller 113) may maintain the detector system 45 in an unpowered or low-power “standby” mode until the imaging system is ready to perform an imaging scan. Upon initiation of a scan, the control system may transmit a control signal to cause the detector system 45 to be powered up to an operational mode in which the detector system 45 is ready to obtain x-ray image data. After the scan is complete, the detector system 45 may be returned to an unpowered or low-power standby mode until the next scan is initiated.
In an alternative configuration of the detector system 45, the electronics boards 420 of the sub-assemblies 416 may be directly connected to one another, such as via a plurality of ribbon cables. Additional circuit board(s) 439 extending along the length of the chassis 401 may optionally be omitted. The electronics boards 420 of the plurality of sub-assemblies 416 may transmit the collected image data along a series of adjacent sub-assemblies 416 in a daisy chain configuration, such as described in U.S. Pat. No. 9,111,379, the entire contents of which are incorporated by reference herein. Each sub-assembly 416 may combine its own image data with the image data received from a preceding sub-assembly 416, and transmit the combined image data to the next sub-assembly 416 in the series. The combined image dataset from all of the sub-assemblies 416 may be streamed into a frame grabber (e.g., where the data may be converted to gigabit Ethernet format) and the frames of data may be streamed into an external processing device (e.g., computer 46) for performing tomographic reconstruction and/or other processing operations.
In some embodiments, at least a portion of the image data processing operations, including tomographic reconstruction, may be performed within the detector system 45 itself. In embodiments, at least one image processing/reconstructor module may be located within the detector system 45. The image processing/reconstructor module may be implemented on a separate computer located on or within the detector chassis 401 and/or on one or more circuit boards 439 within the detector chassis 401. The image processing/reconstructor unit may comprise a parallel processor having a plurality of processing cores for performing the tomographic reconstruction process in parallel. For example, the parallel processor may be a graphics processing unit (GPU), and may be located on a graphics card. The GPU may include a large internal memory (e.g., up to 8 gigabytes or more, such as 2-4 gigabytes) and a plurality of processing cores (e.g., up to 4096 cores or more, such as 2048 cores) for performing parallel processing of the image data. It will be understood that the image processing/reconstructor module may be implemented using any suitable processing device, such as one or more of a GPU, a CPU, an FPGA, ASIC, etc. The image processing/reconstructor module may receive inputs of encoder position(s) (e.g., indicating the rotation position of the rotor 41 and/or translation/rotation of the gantry 40), source-to-detector distance, x-ray photon flux and/or x-ray source temperature (e.g., from a reference detector as described in U.S. Pat. No. 9,111,379). The image processing/reconstructor module may be configured to perform various image correction techniques on the image data, such as offset correction, gain correction and/or pixel correction. In some embodiments, the image processing/reconstructor module may also perform other real-time processing operations (e.g., for 2D fluoroscopy), including edge enhancement, recursive noise reduction and super resolution techniques as described below.
The detector system 501 in this embodiment is a hybrid detector system having a contiguous detector area that includes an elongated first portion 502 for performing fan-beam CT imaging (e.g., axial and/or helical scans) and a panel-shaped second portion 503 for performing 2D fluoroscopic imaging and/or 3D cone beam CT imaging. The first portion 502 and the second portion 503 may be overlapping, such that a portion of the detector area is shared by both the first portion 502 and the second portion 503. The first portion 502 may have a length dimension (L1) that is greater than the length dimension (L2) of the second portion 503. For example, the first portion 502 may have a length that is greater than 0.5 meter, such as 1 meter or more, and the second portion 503 may have a length that is less than 0.5 meter, such as between about 0.3 and 0.4 meters. The second portion 503 may have a width dimension (W2) that is greater than the width dimension (W1) of the first portion 502. For example, the first portion 502 may have a width that is less than 0.3 meters (e.g., 0.15-0.25 meters) and the second portion 503 may have a width that is greater than 0.3 meters (e.g., 0.3-0.4 meters or more).
The detector area may be produced by arranging an array of detector modules 504 in a desired geometric shape or pattern. The modules 504 may be similar or identical to the modules 410 described above with reference to
The second portion 503 of the detector area may be formed by abutting additional row(s) of modules 504 in the width direction along a section of the modules 504 forming the first portion 502. In the embodiment of
The detector modules 504 in the detector system 501 may have a uniform size and shape or may have varying size(s) and/or shape(s). In one embodiment, the modules 504 may be a 2D element array, with for example 640 pixels per module (e.g., 32×20 pixels). The modules 504 may be mounted within a housing of a detector chassis 505, which may be similar to the chassis 401 shown in
The modules 504 may be supported on the chassis 505 such that the modules 504 are curved or angled along the length of the chassis 505 to form or approximate a semicircular arc, with the arc center coinciding with the focal spot 307 of the x-ray source 43 (see
Each detector module 504 may be electronically coupled to an electronics board (e.g., similar or identical to the electronics board 420 shown in
In embodiments, the detector system 501 may include a plurality of sub-assemblies that may be individually mounted within and removed from the detector chassis 505. The sub-assemblies may be similar or identical to the sub-assemblies 416 shown in
The detector system 501 may also include an anti-scatter assembly located over the detector modules 504. The anti-scatter assembly may include a two-dimensional grid comprised of x-ray absorbent material located between the columns and rows of detector elements (pixels) or may be an array of x-ray absorbent plates located between adjacent columns or rows of detector elements. The anti-scatter assembly may include grid or plate elements mounted above the detector modules in each sub-assembly of the detector system 501, as shown in
In embodiments, the x-ray source 43 of the imaging system 500 may include an adjustable collimator 506 that defines the shape of the x-ray beam 517 emitted by the source 43. The collimator 506 may include motor-driven shutters or leaves comprised of an x-ray absorbent material (e.g., lead or tungsten) that may block a portion of the x-rays generated by the x-ray tube. In a first configuration shown in
A detector system 501 such as shown in
A detector system 501 as described above may also provide improved image quality over an equivalent flat panel detector by including a curved profile (in one or two dimensions) in which the detector elements or modules 504 are arranged along an arc centered on the x-ray focal spot, and may also include a 1D or 2D anti-scatter assembly as described above. The detector system 501 may enable diagnostic-quality cone-beam CT images over at least the center slice of the reconstruction. Further, a true CT detector system 501 as described above may have better dynamic range than a conventional flat panel detector used for fluoroscopic imaging.
In embodiments, the rotor 41 containing the x-ray source 43 and the detector system 501 may rotate within the gantry 40 at least 90° per second, including 180°, 270° or 360° or more per second. The rotation of the rotor 41 may be continuous (i.e., the rotor 41 may continuously rotate through 360° in the same direction). The rotation of the rotor 41 may be unidirectional or bi-directional (i.e., in both clockwise and counterclockwise directions). The system controller (e.g., computer 46) may precisely control the rotation and rotational position of the rotor 41 by sending control signals to the rotor drive system 47. The rotor position may be controlled based on encoder feedback data. The rotor components may be completely housed within the gantry 40 during their rotation to avoid any possibility of collision with a person or other object.
In embodiments, the rotor 41 may be controlled to move to different rotational positions to obtain x-ray fluoroscopic images from different projection angles (e.g., anterior-posterior, lateral images). The rotor 41 may rotate between the different projection angles in a short period of time (e.g., 500 msec or less) to provide updated “real time” fluoroscopic images from multiple projection angles.
The imaging system 500 may also be used to obtain 2D and/or 3D CT images along oblique projection angles by rotating/tilting the gantry 40 with respect to the patient (i.e., such that the patient axis is not parallel to the gantry imaging axis 114). For example, a system that is configured as shown in
Further embodiments include methods and systems for improving the spatial resolution and/or signal-to-noise ratio (SNR) of x-ray images using super resolution (SR). In an imaging system such as the system 500 shown in
There is an inherent tradeoff between pixel size and signal-to-noise ratio (SNR) in that the smaller the pixel size, the less photons are incident on each pixel per unit of time and the lower the SNR of the system. Thus, improving the spatial resolution by decreasing the pixel size may lower the SNR of the system below generally acceptable levels. This issue may be partially compensated by, for example, increasing the number of x-ray photons emitted by the source 43 (e.g., by employing a large, high-power (e.g., 120-130 kW) high-voltage generator coupled to the x-ray tube) and decreasing the exposure time (i.e., to maintain approximately the same x-ray radiation dose). However, these approaches may not be feasible due to size and power constraints of the system. Further, there may be an upper limit in terms of the ability of the system's electronics components (e.g., A/D converters, frame grabbers, etc.) to collect large quantities of raw projection data in a relatively short time period. In addition, the power of the x-ray source 43 can only be increased so much until radiation dosing and exposure levels become a safety issue. Thus, for all of these reasons there is generally a practical lower limit on the pixel size of the detector and therefore the achievable spatial resolution in the image.
Various embodiments include methods and systems for improving the spatial resolution of an x-ray imaging system using super-resolution. Embodiments may be implemented in software, and may improve spatial resolution of the image without requiring smaller pixel sizes for the detector. In addition, embodiments may improve the spatial resolution without decreasing the signal-to-noise ratio (SNR) of the detector. Further embodiments may improve the spatial resolution while maintaining or even decreasing the x-ray radiation dose received by the patient.
Various embodiments may improve the spatial resolution of the x-ray image in accordance with a factor, F, relative to the best spatial resolution that would otherwise be achievable in the image based on the size and/or spacing of the detector elements (i.e., pixels). As used herein, the spatial resolution of the image refers to the size of the smallest discernible feature of the image. Thus, in this context, “improving” the spatial resolution means that the spatial resolution is made smaller (i.e., such that smaller features are discernible in the image). By way of example, a detector having a pixel spacing, Sp may inherently result in a minimum achievable spatial resolution, R1, in the image without the use of an embodiment method. The various embodiments may improve (i.e., decrease) the achievable spatial resolution for the same detector in accordance with a factor, F, by providing an image having a second spatial resolution, R2, where R2=R1(1/F). In various embodiments, F>1.0, and may be between about 1.1 and about 10 (e.g., 1.2-5.0, such as 1.5-4.0), including between 1.5-2.0, 2.0-3.0, 3.0-4.0 and/or 4.0-5.0.
In one embodiment, for a detector having a pixel spacing Sp of about 1.0 mm or more (e.g., 1.0-2.0 mm), which would normally provide a spatial resolution of about 0.5 mm or greater in the image, the spatial resolution of the image obtained using the present invention may be improved to less than 0.5 mm (e.g., 0.1 mm to 0.45 mm, such as 0.2-0.4 mm, including about 0.25 mm).
The various embodiments may improve the resolution of the image using super-resolution. Super-resolution refers to a class of processing techniques for improving the resolution of an imaging system. In general, super-resolution techniques use information from several different images/frames to create an upsized image having improved resolution and lower noise (i.e., higher SNR). These techniques were originally developed in photography and video editing to improve the resolution beyond what would otherwise be possible based on the pixel size of the camera taking the images. Super-resolution techniques typically require that multiple images or frames be taken of the scene or object of interest from slightly different perspectives (e.g., the camera has moved slightly with respect to the object between images/frames). The techniques will not work if either the camera does not move at all relative to the object or the camera moves too much relative to the object between successive images/frames. In a typical super-resolution technique, an image/frame is upsized (i.e., the number of pixels is increased by some factor) and an interpolation algorithm is applied to generate an interpolated upsized image. Then, one or more regions within neighboring images/frames may be compared to estimate how much objects within the region(s) have moved between frames. Information from neighboring images/frames may then be intelligently merged with the interpolated upsized image to produce a super-resolution (SR) image which may have more information than is contained in any one of the originally-obtained images. In particular, the super-resolution image may have improved spatial resolution and/or SNR compared to the original image(s). The process may be repeated iteratively to further improve the spatial resolution and/or SNR.
In general, super-resolution techniques may involve attempting to reproduce or model the process by which image quality is lost using the camera/detector that obtained the lower-quality images and then solving the inverse problem of finding (e.g., reconstructing) the higher-quality image (e.g., an upsized image with improved spatial resolution and higher SNR) which would produce the known lower-quality images by that process. Various techniques and algorithms for improving spatial resolution and/or SNR of images using super-resolution are known.
In block 601, a plurality of first x-ray images of an object (e.g., a human or animal patient) may be obtained at a detector with a first spatial resolution while the detector is moved slightly with respect to the source between images. The magnitude of the movement of the detector with respect to the source may be a sub-pixel length (i.e., less than the center-to-center spacing, Sp, between adjacent pixels).
In block 603, at least one second image of the object may be generated using the plurality of first x-ray images, where the at least one second image has a spatial resolution that is different than the first spatial resolution. The plurality of first images may be used to generate the at least one second image using a super-resolution technique as described above. In particular, information from the plurality of first images may be intelligently merged to produce a second super-resolution (SR) image which may have more information than is contained in any one of the original images. The SR image may be upsized (i.e., contain more pixels) than the original images(s) and have an improved spatial resolution as described above. The SR image may also have an improved SNR compared to the original image(s).
The at least one second image may be generated by a suitable computing device having a memory and a processor coupled to the memory, such as the computer 46 shown in
In one exemplary embodiment, the detector may read out image frames at a rate that is greater than 30 Hz, such as at least about 60 Hz (e.g., 60-300 Hz), while the detector is moved a sub-pixel amount with respect to the x-ray source. The processor may combine a certain number of image frames (e.g., 5 frames) to generate a SR image. For example, if the detector system is reading out image frames at a first frame rate (e.g., 300 Hz), the processor may combine a set number of image frames (e.g., 5 frames) to produce SR images at a lower frame rate (e.g., 60 Hz). Alternately, the processor may generate SR images at the same frame rate as the image data is acquired by the detector by combining a set number of preceding frames with each new frame read out from the detector.
The generated SR images may be sent to a display device (e.g., workstation computer, monitor device, etc.) for real-time display of the SR images. In embodiments, the SR images may be transmitted via a wireless communication link from the gantry 40 to an external computing device. In some embodiments, a plurality of SR images may be generated from different projection angles as the rotor 41 rotates to different positions around the gantry 40. The plurality of SR images may be used as an input to a tomographic reconstruction algorithm (e.g., a backprojection algorithm), and to generate a tomographic reconstruction (e.g., cone-beam CT reconstruction) of the object using the SR images.
The imaging system may further include an apparatus for moving the detector relative to the x-ray source while the plurality of first images are obtained by the detector. For example, one or more actuators may be coupled to the detector system (e.g., to the detector chassis) to drive the motion of the detector relative to the x-ray source.
If the displacement of the detector relative to the source between multiple x-ray images is precisely known (e.g., via encoder data), then the generated SR images may exhibit a 4-5 times improvement in spatial resolution relative to the originally-obtained images. However, even where the displacement is not known, a motion estimation algorithm may be used to improve the spatial resolution by at least about a factor of two.
Super-resolution techniques may be used to improve spatial resolution and also to increase SNR of the originally obtained image. Thus, in embodiments, the plurality of first images may be obtained using a relatively lower output power (i.e., lower x-ray dosing) from the x-ray source 43. This may decrease the SNR of the first images obtained at the detector. However, the SNR may be restored in the at least one second image generated from the plurality of lower SNR first images using a super-resolution technique as described above. In some embodiments, the SNR of the first plurality of images may be below generally acceptable levels for use in diagnostic imaging. However, the SNR of the generated second image(s) may be sufficiently high for use in diagnostic imaging.
Further embodiments include methods and systems for performing cone beam CT imaging using scan paths that follow non-planar trajectories. In a typical cone beam CT scan, the x-ray source and detector rotate around the patient in a single scan plane along a circular trajectory. A plurality of 2D x-ray projections are obtained by the detector from different projection angles as the source and detector rotate, and are used to generate a 3D reconstruction of a region of interest. In the tomographic reconstruction, the highest image quality is found in the central (axial) slice of the reconstruction, with image quality decreasing as a function of distance from the central slice. This is because the central slice, which corresponds to the scan plane of the x-ray source, has the most complete set of projection data from every projection angle, while there is less projection data for the slices further away from the central slice. This may result in artifacts in the reconstructed image, particularly in the peripheral slices.
In various embodiments, a cone beam CT imaging system that uses non-planar scan trajectories, such as a sinusoidal trajectory, may be utilized to obtain more complete set of projection data for reconstruction of slices outside of the central slice. The resulting 3D reconstruction may be characterized by improved image quality and reduced artifacts. The imaging system may be similar or identical to any of the systems shown in
The displacement of the gantry 40 (i.e., ±d shown in
An imaging system such as shown in
In a sinusoidal circular trajectory as shown in
In the imaging system of
Similarly, in the imaging system of
In a typical external beam radiation treatment, one or more pre-operative images (e.g., CT scan and/or MRI images) of the patient may be used for pre-treatment planning. The pre-treatment planning may include identifying the location of the target tissue (e.g., tumor(s)) to be irradiated, as well as identifying the location of other tissue (e.g., “organs at risk”) to be avoided. At the time of treatment, an imaging device located in the treatment suite may be used to obtain additional images of the patient, such as 2D x-ray fluoroscopic images and/or a 3D x-ray cone beam CT image. The additional image(s) may be matched to the pre-operative images to enable the patient to be positioned in the same coordinate system (relative to the LINAC head 903) as was used for the pre-operative planning. In the embodiment shown in
External beam radiation treatment systems that include integrated x-ray imaging equipment commonly use flat panel detectors. The image quality obtainable from such detectors is generally not sufficient for use directly for pre-treatment planning purposes. The images from such detectors are typically used to match bony landmarks visible in the images to the same landmarks in pre-operative images used in pre-treatment planning, which are generally of much higher image quality and may enable clearer visualization of tumors and other soft tissue of the patient. A patient may receive external beam radiation treatment therapy over the course of multiple (e.g., daily) treatment sessions that can last several weeks. During the course of the therapy sessions, the target tissue (e.g., tumor) can shrink significantly and can also move within the patient's body. However, changes in the size, shape and/or location of the target tissue may not be evident from the images (e.g., 2D fluoroscopy and/or cone beam CT images) obtained using the x-ray imaging equipment located at the point-of-treatment.
Various embodiments of an external beam radiation treatment system 900 having an integrated x-ray imaging system 901 utilize a detector 907 that provides improved image quality relative to a conventional flat panel detector. In embodiments, the detector 907 may be similar to the detectors described above with reference to
The imaging system 901 may also be used to generate images having improved spatial resolution and/or SNR using a super-resolution (SR) technique, as described above. In particular, a plurality of first x-ray images of the patient may be obtained using the detector 907 while the detector 907 is moved slightly with respect to the source 906 between images. The magnitude of the detector movement 907 may be in the sub-pixel range (i.e., less than the center-to-center spacing, Sp, between adjacent pixels). The first images may be fed to a computer 910 that may use the first image to generate at least one second image using a super-resolution technique as described above. The generated second image may be upsized (i.e., contain more pixels) than the first images and may have an improved spatial resolution compared to the first images. The second image may also have an improved SNR compared to the first images.
The movement of the detector 907 relative to the source 906 between successive x-ray images may be achieved by moving the arm 909 to which the detector 907 is mounted. The system 900 may include a controller 911 (e.g., a computer) that may be configured to send control signals the arms 908, 909 to control the movements of the arms 908, 909. The controller 911 may control the arm 909 to move the detector 907 by a sub-pixel amount between the acquisition of each of the first images that are used to generate the super-resolution images. Alternately or in addition, a separate actuator system (e.g., one or more piezoelectric motors) may be operatively coupled to the detector 907 to drive the motion of the detector 907 relative to the x-ray source 906, as described above.
In various embodiments of a system 900 as shown in
Various embodiments include controlling the arm 909 to move the detector 907 along an arc or line with respect to the focal spot of the x-ray source to effectively increase the field-of-view of the detector 907. This is schematically illustrated in
In other embodiments, an imaging scan may be performed by rotating the gantry 902 to a plurality of rotation angles around the patient, and at each rotation angle, moving the detector 907 to different position(s) relative to the focal spot and obtaining multiple sets x-ray image data with the detector 907 moved to each position.
In embodiments, the x-ray source 906 may include a mechanism that alters a characteristic of the output x-ray beam based on the position of the detector 907. In one embodiment, the x-ray source 906 may include an adjustable collimator that may shape the beam output such that the detector 907 remains exposed to x-rays at it moves to different positions, while portion(s) of the beam not incident on the detector 907 are blocked. Alternately or in addition, the arm 908 may be controlled to pivot the x-ray source 906 about the stationary focal spot (indicated by arrow 1003 in
In further embodiments, the system 900 may utilize non-planar scan trajectories, such as a sinusoidal trajectory, to obtain a more complete set of projection data for cone-beam CT imaging. In one example, the controller 911 may control the arms 908, 909 to translate the source 906 and detector 907 back and forth along the length of the patient in the direction of arrows 1101, 1102, as shown in
In embodiments, the controller 911 may control the arms 908, 909 to move the source 906 and detector 907 in a sinusoidal scan trajectory while arm 909 may move the detector 907 along an arc or line with respect to the focal spot of the x-ray source 906 to effectively increase the field-of-view of the detector 907. For example, the source 906 and detector 907 may move back and forth in the z-axis direction as shown in
Translating the source 906 and/or detector 907 on the arms 908, 909 as schematically shown in
In a typical helical CT scan, the source and detector are rotated continuously around the patient while either the patient is moved within the imaging bore or the imaging gantry is moved over the patient so that the x-ray source defines a helical or spiral trajectory around the patient. However, many rotating-gantry external beam radiation systems (e.g., LINAC systems) can rotate and counter-rotate over a limited range but do not enable continuous rotation of the gantry. This may limit the field-of-view of the CT reconstruction along the length of the patient.
Further embodiments include operating an external beam radiation system 900 having an integrated imaging system 901 to perform a reverse helical scan of a patient. In embodiments, the controller 911 may control the arms 908, 909 to translate the source 906 and the detector 907 in a first translation direction along the length of the patient as the rotor rotates the source 906 and detector 907 in a first rotational direction (i.e., clockwise or counter-clockwise) around the patient. The gantry 902 may perform a full (i.e., 360°) or partial (e.g., 180°, 270°, etc.) rotation around the patient. The gantry 902 may then counter-rotate in a second rotational direction opposite the first rotational direction while the arms 908, 909 may continue to translate in the first translation direction. The gantry 902 may continue to alternate its rotational direction while the arms 908, 909 continue to translate the source 906 and detector 907 in the first direction along the patient length to provide a reverse helical scan trajectory. This is schematically illustrated by
In some embodiments, the system 900 may perform a scan along a reverse helical trajectory while arm 909 may move the detector 907 along an arc or line with respect to the focal spot of the x-ray source 906 to effectively increase the field-of-view of the detector 907. For example, the source 906 and detector 907 may translate in a first direction while the gantry rotates and counter-rotates as described above while the detector 907 is in a first position relative to the focal spot of the detector 907. The arm 909 may then move the detector 907 to a second position relative to the source 906 (e.g., by translating the detector 907 by one-half panel width), and the system 900 may perform another reverse helical scan in the reverse direction by translating the source 906 and detector 907 in a second direction back down the length of the patient while the gantry rotates and counter-rotates.
In some embodiments, the detector 907 may have an integrated processor unit that may be configured to perform all or a portion of the image processing operations, including tomographic reconstruction. The integrated processor unit may be an alternative or in addition to the separate computer 910 shown in
Although the external beam radiation treatment system 900 shown in
In some embodiments, the detector 1303 in the system 1300 shown in
In embodiments, the control system 1313 may control the imaging system 1300 to translate and/or rotate the gantry 1340 in coordination with the rotation of the source 1302 and detector 1303 to perform an imaging scan using a sinusoidal scan trajectory, such as a sinusoidal circular trajectory or a sinusoidal spherical trajectory, as discussed above. In some embodiments, the control system 1313 may control the imaging system 1300 to translate the gantry 1340 along the z-axis in coordination with a rotation and counter-rotation of the source 1302 and detector 1303 within the gantry 1340 to perform a cone-beam CT scan using a reverse helix trajectory. In some embodiments, the detector 1303 may include a mechanism that moves the detector 1303 by a sub-pixel amount to enable super-resolution imaging as described above.
The foregoing method descriptions are provided merely as illustrative examples and are not intended to require or imply that the steps of the various embodiments must be performed in the order presented. As will be appreciated by one of skill in the art the order of steps in the foregoing embodiments may be performed in any order. Words such as “thereafter,” “then,” “next,” etc. are not necessarily intended to limit the order of the steps; these words may be used to guide the reader through the description of the methods. Further, any reference to claim elements in the singular, for example, using the articles “a,” “an” or “the” is not to be construed as limiting the element to the singular.
The various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
The hardware used to implement the various illustrative logics, logical blocks, modules, and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Alternatively, some steps or methods may be performed by circuitry that is specific to a given function.
In one or more exemplary aspects, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on as one or more instructions or code on a non-transitory computer-readable medium. The steps of a method or algorithm disclosed herein may be embodied in a processor-executable software module executed which may reside on a non-transitory computer-readable medium. Non-transitory computer-readable media includes computer storage media that facilitates transfer of a computer program from one place to another. A storage media may be any available media that may be accessed by a computer. By way of example, and not limitation, such non-transitory computer-readable storage media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to carry or store desired program code in the form of instructions or data structures and that may be accessed by a computer. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk, and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of non-transitory computer-readable storage media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a machine readable medium and/or computer-readable medium, which may be incorporated into a computer program product.
The preceding description of the disclosed aspects is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects without departing from the scope of the invention. Thus, the present invention is not intended to be limited to the aspects shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
This application is a Continuation of U.S. patent application Ser. No. 16/354,047, filed on Mar. 14, 2019, which claims priority to and the benefit of U.S. Provisional Patent Application No. 62/644,032, filed Mar. 16, 2018, the disclosures of each of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4442489 | Wagner | Apr 1984 | A |
4709382 | Sones | Nov 1987 | A |
4928283 | Gordon | May 1990 | A |
5448607 | McKenna | Sep 1995 | A |
5592523 | Tuy et al. | Jan 1997 | A |
5740222 | Fujita et al. | Apr 1998 | A |
6041097 | Roos et al. | Mar 2000 | A |
6075836 | Ning | Jun 2000 | A |
6104775 | Tuy | Aug 2000 | A |
6212251 | Tomura et al. | Apr 2001 | B1 |
6243438 | Nahaliel et al. | Jun 2001 | B1 |
6304625 | Senzig | Oct 2001 | B1 |
6426989 | Grass et al. | Jul 2002 | B2 |
6490333 | Hsieh | Dec 2002 | B1 |
6700948 | Hoffman | Mar 2004 | B2 |
6744844 | Horiuchi | Jun 2004 | B2 |
6988827 | Mueller | Jan 2006 | B2 |
6996204 | Grass et al. | Feb 2006 | B2 |
7001045 | Gregerson et al. | Feb 2006 | B2 |
7175347 | Tybinkowski et al. | Feb 2007 | B2 |
7215805 | Bruder et al. | May 2007 | B2 |
7224764 | Sukovic et al. | May 2007 | B2 |
7388941 | Sukovic et al. | Jun 2008 | B2 |
7394888 | Sukovic et al. | Jul 2008 | B2 |
7397895 | Bailey et al. | Jul 2008 | B2 |
7489516 | Lacey | Feb 2009 | B2 |
7532702 | Hsieh et al. | May 2009 | B2 |
7568836 | Bailey et al. | Aug 2009 | B2 |
7637660 | Tybinkowski et al. | Dec 2009 | B2 |
7963696 | Bailey et al. | Jun 2011 | B2 |
8031828 | DeMan et al. | Oct 2011 | B1 |
8251584 | Tybinkowski et al. | Aug 2012 | B2 |
8705695 | Jabri et al. | Apr 2014 | B2 |
8737708 | Hartmann et al. | May 2014 | B2 |
8746973 | Gregerson et al. | Jun 2014 | B2 |
8753009 | Gregerson et al. | Jun 2014 | B2 |
8888364 | Bailey et al. | Nov 2014 | B2 |
8890079 | Kurochi et al. | Nov 2014 | B2 |
8987675 | Kato | Mar 2015 | B2 |
9016941 | Tybinkowski et al. | Apr 2015 | B2 |
9111379 | Gregerson et al. | Aug 2015 | B2 |
9125613 | Gregerson et al. | Sep 2015 | B2 |
9398886 | Gregerson et al. | Jul 2016 | B2 |
9788804 | Bailey et al. | Oct 2017 | B2 |
9795022 | Duhamel | Oct 2017 | B2 |
9820704 | Tybinkowski et al. | Nov 2017 | B2 |
9968314 | Sebring | May 2018 | B1 |
10178981 | Bailey et al. | Jan 2019 | B2 |
10307117 | Park et al. | Jun 2019 | B2 |
20020054659 | Okumura et al. | May 2002 | A1 |
20050135560 | Dafni et al. | Jun 2005 | A1 |
20070104317 | Ohishi | May 2007 | A1 |
20070280410 | Lutz et al. | Dec 2007 | A1 |
20090252285 | Shapiro et al. | Oct 2009 | A1 |
20100215142 | Dafni et al. | Aug 2010 | A1 |
20110116595 | Carmi et al. | May 2011 | A1 |
20120069956 | Guery et al. | Mar 2012 | A1 |
20130034200 | Hsieh et al. | Feb 2013 | A1 |
20130051519 | Yang et al. | Feb 2013 | A1 |
20130343507 | Gregerson et al. | Dec 2013 | A1 |
20140265182 | Stanton et al. | Sep 2014 | A1 |
20150119704 | Roth | Apr 2015 | A1 |
20150374322 | Gregerson et al. | Dec 2015 | A1 |
20160046860 | Wang et al. | Feb 2016 | A1 |
20170007334 | Crawford et al. | Jan 2017 | A1 |
20170215825 | Johnson et al. | Aug 2017 | A1 |
20170215826 | Johnson et al. | Aug 2017 | A1 |
20170215827 | Johnson et al. | Aug 2017 | A1 |
20170322619 | Eismann et al. | Nov 2017 | A1 |
20180055707 | Stanton | Mar 2018 | A1 |
20180177473 | Gregerson et al. | Jun 2018 | A1 |
20180214098 | Tybinkowski et al. | Aug 2018 | A1 |
20190282185 | Gregerson | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
2016077138 | May 2016 | WO |
Entry |
---|
International Search Report for Application No. PCT/US 2019/022509 dated Aug. 21, 2019, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20220061780 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
62644032 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16354047 | Mar 2019 | US |
Child | 17524201 | US |