The present invention relates to a memory technique field, and more particularly to a memory cell and a memory cell array using the same.
The object of present invention is to provide a memory cell having higher anti-noise ability and consequently being capable of preventing errors from occurring while performing data access.
Another object of present invention is to provide a memory cell array using the aforementioned memory cell.
An embodiment of the present invention provides a memory cell, which includes a first P-type transistor, a second P-type transistor, a first N-type transistor, a second N-type transistor, a third N-type transistor and a fourth N-type transistor. The first P-type transistor is configured to have the first source/drain thereof electrically coupled to a first voltage. The second P-type transistor is configured to have the first source/drain thereof electrically coupled to the first voltage. The first N-type transistor is configured to have the first source/drain thereof electrically coupled to the second source/drain of the first P-type transistor, the second source/drain thereof electrically coupled to a second voltage, and the gate thereof electrically coupled to the gate of the first P-type transistor. The second N-type transistor is configured to have the first source/drain thereof electrically coupled to the second source/drain of the second P-type transistor, the second source/drain thereof electrically coupled to the second voltage, and the gate thereof electrically coupled to the gate of the second P-type transistor. The third N-type transistor is configured to have the first source/drain thereof electrically coupled to a write word line, the second source/drain thereof electrically coupled to the first source/drain of the first N-type transistor and the gate of the second N-type transistor, and the gate thereof electrically coupled to a first write bit line. The fourth N-type transistor is configured to have the first source/drain thereof electrically coupled to the write word line, the second source/drain thereof electrically coupled to the first source/drain of the second N-type transistor and the gate of the first N-type transistor, and the gate thereof electrically coupled to a second write bit line.
Another embodiment of the present invention provides a memory cell array, which includes a plurality of write word lines, a plurality of first write bit lines, a plurality of second write bit lines and a plurality of memory cells. The memory cells are arranged in a matrix form and each one of the memory cells is electrically coupled to one of the write word lines, one of the first write bit lines and one of the second write bit lines. Each one of the memory cells includes a first P-type transistor, a second P-type transistor, a first N-type transistor, a second N-type transistor, a third N-type transistor and a fourth N-type transistor. The first P-type transistor is configured to have the first source/drain thereof electrically coupled to a first voltage. The second P-type transistor is configured to have the first source/drain thereof electrically coupled to the first voltage. The first N-type transistor is configured to have the first source/drain thereof electrically coupled to the second source/drain of the first P-type transistor, the second source/drain thereof electrically coupled to a second voltage, and the gate thereof electrically coupled to the gate of the first P-type transistor. The second N-type transistor is configured to have the first source/drain thereof electrically coupled to the second source/drain of the second P-type transistor, the second source/drain thereof electrically coupled to the second voltage, and the gate thereof electrically coupled to the gate of the second P-type transistor. The third N-type transistor is configured to have the first source/drain thereof electrically coupled to one of the write word lines, the second source/drain thereof electrically coupled to the first source/drain of the first N-type transistor and the gate of the second N-type transistor, and the gate thereof electrically coupled to one of the first write bit lines. The fourth N-type transistor is configured to have the first source/drain thereof electrically coupled to one of the write word lines, the second source/drain thereof electrically coupled to the first source/drain of the second N-type transistor and the gate of the first N-type transistor, and the gate thereof electrically coupled to one of the second write bit lines.
In summary, through controlling the third and fourth N-type transistors to be turned on at different times by the first write bit line and the second write bit line, respectively, the memory cell as well as the memory cell array using the same of the present invention accordingly can have higher anti-noise ability and consequently is capable of preventing errors from occurring while performing data access.
The present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:
The present invention will now be described more specifically with reference to the following embodiments. It is to be noted that the following descriptions of preferred embodiments of this invention are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed.
Specifically, the P-type transistors P1, P2 each are configured to have the first source/drain thereof electrically coupled to a first voltage VDD. The N-type transistor N1 is configured to have the first source/drain thereof electrically coupled to the second source/drain of the P-type transistor P1, the second source/drain thereof electrically coupled to a second voltage VSS, and the gate thereof electrically coupled to the gate of the P-type transistor P1. The N-type transistor N2 is configured to have the first source/drain thereof electrically coupled to the second source/drain of the P-type transistor P2, the second source/drain thereof electrically coupled to the second voltage VSS, and the gate thereof electrically coupled to the gate of the P-type transistor P2. The N-type transistor N3 is configured to have the first source/drain thereof electrically coupled to a write word line WWL, the second source/drain thereof electrically coupled to the first source/drain of the N-type transistor N1 and the gate of the N-type transistor N2, and the gate thereof electrically coupled to a first write bit line WBL. The N-type transistor N4 is configured to have the first source/drain thereof electrically coupled to the write word line WWL, the second source/drain thereof electrically coupled to the first source/drain of the N-type transistor N2 and the gate of the N-type transistor N1, and the gate thereof electrically coupled to a second write bit line WBLB. The N-type transistor N5 is configured to have the first source/drain thereof electrically coupled to a read bit line RBL, and the gate thereof electrically coupled to a read word line RWL. The N-type transistor N6 is configured to have the first source/drain thereof electrically coupled to the second source/drain of the N-type transistor N5, the second source/drain thereof electrically coupled to the second voltage VSS, and the gate thereof electrically coupled to the gate of the N-type transistor N1. In this embodiment, the first voltage VDD is configured to have a value greater than that of the second voltage VSS. Additionally, in this embodiment, the transistors N3, N4 each are exemplified by an N-type transistor; however, it is understood that the two transistors N3, N4 each can be realized by a P-type transistor in an alternative embodiment.
According to the circuit structure of the memory cell 30 shown in
In summary, through controlling the N-type transistors N3, N4 to be turned on at different times by the first write bit line WBL and the second write bit line WBLB, respectively, the memory cell 30 as well as the memory cell array 60 using the same memory cell of the embodiment of the present invention accordingly can have higher anti-noise ability and consequently is capable of preventing errors from occurring while performing data access.
While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.
Number | Name | Date | Kind |
---|---|---|---|
3663828 | Low | May 1972 | A |
3818402 | Golaski | Jun 1974 | A |
4163944 | Chambers | Aug 1979 | A |
4245355 | Pascoe | Jan 1981 | A |
4409608 | Yoder | Oct 1983 | A |
4816784 | Rabjohn | Mar 1989 | A |
5159205 | Gorecki | Oct 1992 | A |
5208725 | Akcasu | May 1993 | A |
5212653 | Tanaka | May 1993 | A |
5406447 | Miyazaki | Apr 1995 | A |
5446309 | Adachi | Aug 1995 | A |
5583359 | Ng | Dec 1996 | A |
5637900 | Ker | Jun 1997 | A |
5760456 | Grzegorek | Jun 1998 | A |
5808330 | Rostoker | Sep 1998 | A |
5923225 | De Los Santos | Jul 1999 | A |
5959820 | Ker | Sep 1999 | A |
6008102 | Alford | Dec 1999 | A |
6081146 | Shiochi | Jun 2000 | A |
6172378 | Hull | Jan 2001 | B1 |
6194739 | Ivanov | Feb 2001 | B1 |
6246271 | Takada | Jun 2001 | B1 |
6285578 | Huang | Sep 2001 | B1 |
6291872 | Wang | Sep 2001 | B1 |
6370372 | Molnar | Apr 2002 | B1 |
6407412 | Iniewski | Jun 2002 | B1 |
6413811 | Masuoka | Jul 2002 | B1 |
6427226 | Mallick | Jul 2002 | B1 |
6448858 | Helms | Sep 2002 | B1 |
6452442 | Laude | Sep 2002 | B1 |
6456221 | Low | Sep 2002 | B2 |
6461914 | Roberts | Oct 2002 | B1 |
6480137 | Kulkarni | Nov 2002 | B2 |
6483188 | Yue | Nov 2002 | B1 |
6486765 | Katayanagi | Nov 2002 | B1 |
6509805 | Ochiai | Jan 2003 | B2 |
6518165 | Yoon | Feb 2003 | B1 |
6521939 | Yeo | Feb 2003 | B1 |
6545547 | Fridi | Apr 2003 | B2 |
6560306 | Duffy | May 2003 | B1 |
6588002 | Lampaert | Jul 2003 | B1 |
6593838 | Yue | Jul 2003 | B2 |
6603360 | Kim | Aug 2003 | B2 |
6608363 | Fazelpour | Aug 2003 | B1 |
6611223 | Low | Aug 2003 | B2 |
6625077 | Chen | Sep 2003 | B2 |
6630897 | Low | Oct 2003 | B2 |
6639298 | Chaudhry | Oct 2003 | B2 |
6653868 | Oodaira | Nov 2003 | B2 |
6668358 | Friend | Dec 2003 | B2 |
6700771 | Bhattacharyya | Mar 2004 | B2 |
6720608 | Lee | Apr 2004 | B2 |
6724677 | Su | Apr 2004 | B1 |
6756656 | Lowther | Jun 2004 | B2 |
6795001 | Roza | Sep 2004 | B2 |
6796017 | Harding | Sep 2004 | B2 |
6798011 | Adan | Sep 2004 | B2 |
6810242 | Molnar | Oct 2004 | B2 |
6822282 | Randazzo | Nov 2004 | B2 |
6822312 | Sowlati | Nov 2004 | B2 |
6833756 | Ranganathan | Dec 2004 | B2 |
6841847 | Sia | Jan 2005 | B2 |
6847572 | Lee | Jan 2005 | B2 |
6853272 | Hughes | Feb 2005 | B1 |
6876056 | Tilmans | Apr 2005 | B2 |
6885534 | Ker | Apr 2005 | B2 |
6901126 | Gu | May 2005 | B1 |
6905889 | Lowther | Jun 2005 | B2 |
6909149 | Russ | Jun 2005 | B2 |
6927664 | Nakatani | Aug 2005 | B2 |
6958522 | Clevenger | Oct 2005 | B2 |
7009252 | Lin | Mar 2006 | B2 |
7027276 | Chen | Apr 2006 | B2 |
7205612 | Cai | Apr 2007 | B2 |
7262069 | Chung | Aug 2007 | B2 |
7365627 | Yen | Apr 2008 | B2 |
7368761 | Lai | May 2008 | B1 |
7400523 | Houston | Jul 2008 | B2 |
7405642 | Hsu | Jul 2008 | B1 |
7672100 | Van Camp | Mar 2010 | B2 |
8144540 | Liaw | Mar 2012 | B2 |
20020019123 | Ma | Feb 2002 | A1 |
20020036545 | Fridi | Mar 2002 | A1 |
20020188920 | Lampaert | Dec 2002 | A1 |
20030076636 | Ker | Apr 2003 | A1 |
20030127691 | Yue | Jul 2003 | A1 |
20030183403 | Kluge | Oct 2003 | A1 |
20050068112 | Glenn | Mar 2005 | A1 |
20050068113 | Glenn | Mar 2005 | A1 |
20050087787 | Ando | Apr 2005 | A1 |
20060006431 | Jean | Jan 2006 | A1 |
20060108694 | Hung | May 2006 | A1 |
20060267102 | Cheng | Nov 2006 | A1 |
20070102745 | Hsu | May 2007 | A1 |
20070194833 | Takeyama et al. | Aug 2007 | A1 |
20070210416 | Hsu | Sep 2007 | A1 |
20070234554 | Hung | Oct 2007 | A1 |
20070246801 | Hung | Oct 2007 | A1 |
20070249294 | Wu | Oct 2007 | A1 |
20070279966 | Houston | Dec 2007 | A1 |
20070296055 | Yen | Dec 2007 | A1 |
20080094166 | Hsu | Apr 2008 | A1 |
20080185679 | Hsu | Aug 2008 | A1 |
20080189662 | Nandy | Aug 2008 | A1 |
20080200132 | Hsu | Aug 2008 | A1 |
20080299738 | Hsu | Dec 2008 | A1 |
20080303623 | Hsu | Dec 2008 | A1 |
20090029324 | Clark | Jan 2009 | A1 |
20090201625 | Liao | Aug 2009 | A1 |
20100271898 | Wu et al. | Oct 2010 | A1 |
20100279484 | Wang | Nov 2010 | A1 |