The present invention relates to semiconductor packaging technology and more particularly, to a MEMS (micro-electromechanical system) microphone package.
MEMS is a technology that in its most general form can be defined as miniaturized mechanical and electro-mechanical elements (i.e., devices and structures) that are made using the techniques of micro fabrication. When compared with conventional electrets condenser microphones (ECM), MEMS microphones have the advantages of small package size, low power consumption and better environmental interference (such as temperature variation and electromagnetic interference) suppression ability. Therefore, the application of MEMS microphones in the field of acoustics will be more and more widespread.
In a conventional MEMS microphone 90, as illustrated in
Therefore, it is desirable to provide a MEMS microphone that eliminates the drawbacks of the aforesaid prior art MEMS microphone design.
The present invention has been accomplished under the circumstances in view. It is the main object of the present invention to provide a MEMS microphone package, which has the advantages of low profile packaging and low signal interference.
To achieve this and other objects of the present invention, a MEMS microphone package comprises a substrate, a sidewall, a cover plate, a processor chip and an acoustic wave sensor. The substrate comprises a sound hole, a first conduction part and a second conduction part. The sidewall is connected with one end thereof to the substrate, comprising a conducting line electrically connected to the second conduction part. The cover plate is connected to an opposite end of the sidewall, defining with the sidewall and the substrate a chamber therein. Further, the cover plate comprises a solder pad, and a fifth contact disposed in conduction with the solder pad and electrically connected to the conducting line. The processor chip is mounted on the substrate and electrically connected with the first conduction part and the second conduction part. Further, the processor chip is disposed in the chamber. The acoustic wave sensor is mounted on the substrate, and electrically connected with the first conduction part using flip-chip technology. Further, the acoustic wave sensor is disposed in the chamber to face toward the sound hole.
Thus, because the acoustic wave sensor is electrically connected with the first conduction part of the substrate using flip-chip technology, the sidewall and the chamber do not need to provide a spare height for accommodating wire bonding metal wires, and therefore, the invention overcomes the problem of the prior art design that is unable to provide a low profile characteristic due to the application of wire bonding technology to electrically connect the acoustic wave sensor to the substrate. When compared to conventional wire bonding technology, the invention using flip-chip technology to electrically connect the acoustic wave sensor to the substrate has the advantages of better heat dissipation, lower signal interference and high I/O pin count.
Other advantages and features of the present invention will be fully understood by reference to the following specification in junction with the accompanying drawings, in which like reference signs denote like components of structure.
Referring to
The substrate 20 comprises a sound hole 21, a first conduction part 22 and a second conduction part 23. The sound hole 21 is adapted for the passing of acoustic waves. The first conduction part 22 comprises a first contact 24 and a second contact 25. The first contact 24 and the second contact 25 are electrically conducted. The second conduction part 23 comprises a third contact 26 and a fourth contact 27. The third contact 26 and the fourth contact 27 are electrically conducted.
The sidewall 30 has one end thereof mounted at the substrate 20, more specifically, the sidewall 30 extends around the border of the substrate 20. Further, the sidewall 30 comprises a conducting line 31 electrically connected to the fourth contact 27.
The cover plate 40 can be a metal substrate, fiberglass substrate or ceramic substrate. The cover plate 40 is connected to an opposite end of the sidewall 30, defining a chamber 41 that is surrounded by the cover plate 40, the sidewall 30 and the substrate 20. Further, the cover plate 40 comprises at least one solder pad 42 and a fifth contact 44. The at least one solder pad 42 are electrically conducted with the fifth contact 44. The fifth contact 44 is electrically connected to the conducting line 31 of the sidewall 30. The quantity of the at least one solder pad 42 in other embodiments can be plurality.
In other embodiments, the quantity of the fourth contact 27, the fifth contact 44 and the conducting line 31 can be the same plurality and respectively electrically connected, for example, three conducting lines 31 are respectively electrically connected to respective three fourth contacts 27 and respective three fifth contacts 44.
The processor chip 50 is mounted on the substrate 20 and electrically connected with the first conduction part 22 and the second conduction part 23, more specifically, the processor chip 50 is electrically connected with the second contact 25 of the first conduction part 22 and the third contact 26 of the second conduction part 23 using flip-chip technology. Further, the processor chip 50 is disposed in the chamber 41. In the present preferred embodiment, the processor chip 50 is an application-specific integrated circuit (ASIC) designed and manufactured according to specific user needs for use in specific electronic systems. The processor chip 50 can have a charge pump, a voltage regulator, an amplifier, a sigma delta modulator and a digital-to-analog converter integrated therein, providing small size, improved performance and noise suppression characteristics.
Referring to
The acoustic wave sensor 60 is mounted on the substrate 20, and electrically connected with the first conduction part 22, more specifically, the acoustic wave sensor 60 is electrically connected with the first contact 24 of the first conduction part 22 using flip-chip technology. The acoustic wave sensor 60 is disposed in the chamber 41 to face toward the sound hole 21 for receiving external acoustic wave signals. In this embodiment, the acoustic wave sensor 60 is capable of converting an external acoustic wave signal to an electrical signal for transmission through the first conduction part 22 to the processor chip 50 for further processing.
In other embodiments, multiple processor chips 50 can be stacked up on the substrate 20, enabling the MEMS microphone package 10 to provide multiple functions; however, the overall height of the stack of processor chips 50 should not be greater than the height of the acoustic wave sensor 60.
Referring to
In conclusion, the acoustic wave sensor 60 is electrically connected with the first conduction part 2 of the substrate 20 using flip-chip technology, thus, the sidewall 30 and the chamber 41 do not need to provide a spare height for accommodating wire bonding metal wires; the MEMS microphone package 10 of the present invention has a low-profile characteristic; when compared to conventional wire bonding technology, flip-chip technology has the advantages of better heat dissipation, lower signal interference and high I/O pin count.
Although particular embodiments of the invention have been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be limited except as by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
105127064 | Aug 2016 | TW | national |