MEMS multi-axis accelerometer electrode structure

Information

  • Patent Grant
  • 9062972
  • Patent Number
    9,062,972
  • Date Filed
    Tuesday, January 31, 2012
    12 years ago
  • Date Issued
    Tuesday, June 23, 2015
    9 years ago
Abstract
This document discusses, among other things, an inertial sensor including a single proof-mass formed in an x-y plane of a device layer, the single proof-mass including a single, central anchor configured to suspend the single proof-mass above a via wafer. The inertial sensor further includes first and second electrode stator frames formed in the x-y plane of the device layer on respective first and second sides of the inertial sensor, the first and second electrode stator frames symmetric about the single, central anchor, and each separately including a central platform and an anchor configured to fix the central platform to the via wafer, wherein the anchors for the first and second electrode stator frames are asymmetric along the central platforms with respect to the single, central anchor.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is related to Acar, International Application No. PCT/US2011/052065, entitled “MICROMACHINED MONOLITHIC 3-AXIS GYROSCOPE WITH SINGLE DRIVE,” filed on Sep. 18, 2011, which claims the benefit of priority to Acar, U.S. Provisional Patent Application Ser. No. 61/384,245, entitled “MICROMACHINED MONOLITHIC 3-AXIS GYROSCOPE WITH SINGLE DRIVE,” filed on Sep. 18, 2010, and to Acar, International Application No. PCT/US2011/052064, entitled “MICROMACHINED 3-AXIS ACCELEROMETER WITH A SINGLE PROOF-MASS,” filed on Sep. 18, 2011, which claims the benefit of priority of Acar, U.S. Provisional Patent Application Ser. No. 61/384,246, entitled “MICROMACHINED 3-AXIS ACCELEROMETER WITH A SINGLE PROOF-MASS,” filed on Sep. 18, 2010, each of which is hereby incorporated by reference herein in its entirety.


Further, this application is related to Acar et al., U.S. patent application Ser. No. 12/849,742, entitled “MICROMACHINED INERTIAL SENSOR DEVICES,” filed on Aug. 3, 2010 and to Marx et al., U.S. patent application Ser. No. 12/849,787, entitled “MICROMACHINED DEVICES AND FABRICATING THE SAME,” filed Aug. 3, 2010, each of which is hereby incorporated by reference herein in its entirety.


BACKGROUND

Several single-axis or multi-axis micromachined gyroscope structures have been integrated into a system to form a 3-axis gyroscope cluster. However, the size and cost of such clusters consisting of separate sensors can be excessive for certain applications. Even though single or multi-axis gyroscopes can be fabricated on a single MEMS chip, separate drive and sense electronics are required for each sensor. Further, the demand for three axis acceleration detection in consumer/mobile, automotive and aerospace/defense applications is constantly increasing. Many single-axis or multi-axis micromachined accelerometer structures have utilized separate proof-masses for each acceleration axis.


OVERVIEW

This document discusses, among other things, an inertial sensor including a single proof-mass formed in an x-y plane of a device layer, the single proof-mass including a single, central anchor configured to suspend the single proof-mass above a via wafer. The inertial sensor further includes first and second electrode stator frames formed in the x-y plane of the device layer on respective first and second sides of the inertial sensor, the first and second electrode stator frames symmetric about the single, central anchor, and each separately including a central platform and an anchor configured to fix the central platform to the via wafer, wherein the anchors for the first and second electrode stator frames are asymmetric along the central platforms with respect to the single, central anchor.


This overview is intended to provide an overview of subject matter of the present patent application. It is not intended to provide an exclusive or exhaustive explanation of the invention. The detailed description is included to provide further information about the present patent application.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale, like numerals may describe similar components in different views. Like numerals having different letter suffixes may represent different instances of similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.



FIG. 1 illustrates generally a schematic cross sectional view of a 3-degrees-of-freedom (3-DOF) inertial measurement unit (IMU).



FIG. 2 illustrates generally an example of a 3-axis gyroscope.



FIG. 3 illustrates generally an example of a 3-axis gyroscope in drive motion.



FIG. 4 illustrates generally an example of a 3-axis gyroscope including a single proof-mass during sense motion in response to rotation about the x-axis.



FIG. 5 illustrates generally an example of a 3-axis gyroscope including a single proof-mass during sense motion in response to rotation about the y-axis.



FIG. 6 illustrates generally an example of a 3-axis gyroscope including a single proof-mass during sense motion in response to rotation about the z-axis.



FIGS. 7 and 8 illustrate generally examples of a 3-axis gyroscope including a z-axis gyroscope coupling flexure bearing during anti-phase motion and in-phase motion, respectively.



FIG. 9 illustrates generally an example of a 3-axis accelerometer.



FIG. 10 illustrates generally an example of a 3-axis accelerometer in sense motion in response to an x-axis acceleration.



FIG. 11 illustrates generally an example of a 3-axis accelerometer in sense motion in response to a y-axis acceleration.



FIG. 12 illustrates generally an example of a 3-axis accelerometer in sense motion in response to a z-axis acceleration.



FIG. 13 illustrates generally an example of a system including via wafer electrode placement.



FIG. 14 illustrates generally an example side view of a 3-axis accelerometer including a single proof-mass.



FIG. 15 illustrates generally an example of a 3+3-degrees-of-freedom (3+3DOF) inertial measurement unit (IMU).



FIG. 16 illustrates generally an example of the central suspension at rest about an anchor.



FIG. 17 illustrates generally an example of a portion of the central suspension in drive motion.



FIGS. 18-22 illustrate generally examples of an accelerometer electrode structures.



FIGS. 23 and 24 illustrate generally examples of the lowest out-of-plane resonant mode of electrode stator frames.





DETAILED DESCRIPTION

The present inventors have recognized, among other things, a micromachined monolithic 3-axis gyroscope configured to utilize a single center-anchored proof-mass to detect angular rate about all three axes while effectively decoupling the response modes for each axis to minimize cross-axis sensitivity.


In an example, the unique proof-mass partitioning and flexure structure disclosed herein can allow 3-axis angular rate detection utilizing a single drive-mode oscillation, which can require only one drive control loop for all axes. Thus, in contrast to existing multi-axis gyroscopes that use three separate drive loops, complexity and cost of control electronics of the 3-axis gyroscope disclosed herein can be significantly reduced.


Further, the present inventors have recognized, among other things, a micromachined 3-axis accelerometer configured to utilize a single center-anchored proof-mass to detect accelerations about all three axes while effectively decoupling the response modes for each axis to minimize cross-axis sensitivity.


In an example, the unique proof-mass and flexure structure disclosed herein can allow 3-axis acceleration detection using a single center anchored proof-mass. Thus, in contrast to existing multi-axis accelerometers that utilize separate proof-masses for each acceleration axis, the overall die size and the total cost of the microelectromechanical system (MEMS) sensing element of the 3-axis accelerometer disclosed herein can be significantly reduced.


Further, as die deformation and packaging stress affect the temperature coefficients of the MEMS sensors, and further, as one or more of the sensors disclosed herein may not be centered on the die, the present inventors have recognized, among other things, that shifting mass from an electrode stator frame to a proof mass frame can positively affect performance (e.g., more robust, improved shock and vibration resistance, etc.). Moreover, widening the anchor platform of the electrode stator frame can allow for independent or asymmetric placement of the electrode stator frame anchors, which can, among other things, improve temperature performance of the inertial sensor.


Device Structure


FIG. 1 illustrates generally a schematic cross sectional view of a 3-degrees-of-freedom (3-DOF) inertial measurement unit (IMU) 100, such as a 3-DOF gyroscope or a 3-DOF micromachined accelerometer, formed in a chip-scale package including a cap wafer 101, a device layer 105 including micromachined structures (e.g., a micromachined 3-DOF IMU), and a via wafer 103. In an example, the device layer 105 can be sandwiched between the cap wafer 101 and the via wafer 103, and the cavity between the device layer 105 and the cap wafer 101 can be sealed under vacuum at the wafer level.


In an example, the cap wafer 101 can be bonded to the device layer 105, such as using a metal bond 102. The metal bond 102 can include a fusion bond, such as a non-high temperature fusion bond, to allow getter to maintain long term vacuum and application of anti-stiction coating to prevent stiction that can occur to low-g acceleration sensors. In an example, during operation of the device layer 105, the metal bond 102 can generate thermal stress between the cap wafer 101 and the device layer 105. In certain examples, one or more features can be added to the device layer 105 to isolate the micromachined structures in the device layer 105 from thermal stress, such as one or more stress reducing grooves formed around the perimeter of the micromachined structures. In an example, the via wafer 103 can be bonded to the device layer 105, such as fusion bonded (e.g., silicon-silicon fusion bonded, etc.), to obviate thermal stress between the via wafer 103 and the device layer 105.


In an example, the via wafer 103 can include one or more isolated regions, such as a first isolated region 107, isolated from one or more other regions of the via wafer 103, for example, using one or more through-silicon-vias (TSVs), such as a first TSV 108 insulated from the via wafer 103 using a dielectric material 109. In certain examples, the one or more isolated regions can be utilized as electrodes to sense or actuate out-of-plane operation modes of the 6-axis inertial sensor, and the one or more TSVs can be configured to provide electrical connections from the device layer 105 outside of the system 100. Further, the via wafer 103 can include one or more contacts, such as a first contact 110, selectively isolated from one or more portions of the via wafer 103 using a dielectric layer 104 and configured to provide an electrical connection between one or more of the isolated regions or TSVs of the via wafer 103 to one or more external components, such as an ASIC wafer, using bumps, wire bonds, or one or more other electrical connection. In certain examples, the 3-degrees-of-freedom (3-DOF) gyroscope or the micromachined accelerometer in the device layer 105 can be supported or anchored to the via wafer 103 by bonding the device layer 105 to a protruding portion of the via wafer 103, such as an anchor 106. In an example, the anchor 106 can be located substantially at the center of the via wafer 103, and the device layer 105 can be fusion bonded to the anchor 106, such as to eliminate problems associated with metal fatigue.


Gyroscope Device Structure


FIG. 2 illustrates generally an example of a 3-axis gyroscope 200, such as formed in a single plane of a device layer 105 of a 3-DOF IMU 100. In an example, the structure of the 3-axis gyroscope 200 can be symmetric about the x and y axes illustrated in FIG. 2, with a z-axis conceptually coming out of the figure. Reference in FIG. 2 is made to structure and features in one portion of the 3-axis gyroscope 200. However, in certain examples, such reference and description can apply to unlabeled like portions of the 3-axis gyroscope 200.


In an example, the 3-axis gyroscope 200 can include a single proof-mass design providing 3-axis gyroscope operational modes patterned into the device layer 105 of the 3-DOF IMU 100, such as illustrated in the example of FIG. 1.


In an example, the single proof-mass can be suspended at its center using a single central anchor (e.g., anchor 106) and a central suspension 111 including symmetric central flexure bearings (“flexures”), such as disclosed in the copending Acar et al., PCT Patent Application Serial No. US2011052006, entitled “FLEXURE BEARING TO REDUCE QUADRATURE FOR RESONATING MICROMACHINED DEVICES,” filed on Sep. 16, 2011, which is hereby incorporated by reference in its entirety. The central suspension 111 can allow the single proof-mass to oscillate torsionally about the x, y, and z axes, providing three gyroscope operational modes, including:


(1) Torsional in-plane drive motion about the z-axis (e.g., as illustrated in FIG. 3);


(2) Torsional out-of-plane y-axis gyroscope sense motion about the x-axis (e.g., as illustrated in FIG. 4); and


(3) Torsional out-of-plane x-axis gyroscope sense motion about the y-axis (e.g., as illustrated in FIG. 5).


Further, the single proof-mass design can be composed of multiple sections, including, for example, a main proof-mass section 115 and x-axis proof-mass sections 116 symmetric about the y-axis. In an example, drive electrodes 123 can be placed along the y-axis of the main proof-mass section 115. In combination with the central suspension 111, the drive electrodes 123 can be configured to provide a torsional in-plane drive motion about the z-axis, allowing detection of angular motion about the x and y axes.


In an example, the x-axis proof-mass sections 116 can be coupled to the main proof-mass section 115 using z-axis gyroscope flexure bearings 120. In an example, the z-axis gyroscope flexure bearings 120 can allow the x-axis proof-mass sections 116 to oscillate linear anti-phase in the x-direction for the z-axis gyroscope sense motion.


Further, the 3-axis inertial sensor 200 can include z-axis gyroscope sense electrodes 127 configured to detect anti-phase, in-plane motion of the x-axis proof-mass sections 116 along the x-axis.


In an example, each of the drive electrodes 123 and z-axis gyroscope sense electrodes 127 can include moving fingers coupled to one or more proof-mass sections interdigitated with a set of stationary fingers fixed in position (e.g., to the via wafer 103) using a respective anchor, such as anchors 124, 128.


Gyroscope Operational Modes


FIG. 3 illustrates generally an example of a 3-axis gyroscope 300 in drive motion. In an example, the drive electrodes 123 can include a set of moving fingers coupled to the main proof-mass section 115 interdigitated with a set of stationary fingers fixed in position using a first drive anchor 124 (e.g., a raised and electrically isolated portion of the via wafer 103). In an example, the stationary fingers can be configured to receive energy through the first drive anchor 124, and the interaction between the interdigitated moving and stationary fingers of the drive electrodes 123 can be configured to provide an angular force to the single proof-mass about the z-axis.


In the example of FIG. 3, the drive electrodes 123 are driven to rotate the single proof-mass about the z-axis while the central suspension 111 provides restoring torque with respect to the fixed anchor 106, causing the single proof-mass to oscillate torsionally, in-plane about the z-axis at a drive frequency dependent on the energy applied to the drive electrodes 123. In certain examples, the drive motion of the single proof-mass can be detected using the drive electrodes 123.


X-Axis Rate Response


FIG. 4 illustrates generally an example of a 3-axis gyroscope 400 including a single proof-mass during sense motion in response to rotation about the x-axis, the single proof-mass including a main proof-mass section 115, x-axis proof-mass sections 116, and central suspension 111.


In the presence of an angular rate about the x-axis, and in conjunction with the drive motion of the 3-axis gyroscope 400 described in the example of FIG. 3, Coriolis forces in opposite directions along the z-axis can be induced on the x-axis proof-mass sections 116 because the velocity vectors are in opposite directions along the y-axis. Thus, the single proof-mass can be excited torsionally about the y-axis by flexing the central suspension 111. The sense response can be detected using out-of-plane x-axis gyroscope sense electrodes, e.g., formed in the via wafer 103 and using capacitive coupling of the x-axis proof-mass sections 116 and the via wafer 103.


Y-Axis Rate Response


FIG. 5 illustrates generally an example of a 3-axis gyroscope 500 including a single proof-mass during sense motion in response to rotation about the y-axis, the single proof-mass including a main proof-mass section 115, x-axis proof-mass sections 116, and central suspension 111.


In the presence of an angular rate about the y-axis, and in conjunction with the drive motion of the 3-axis gyroscope 400 described in the example of FIG. 3, Coriolis forces in opposite directions along the z-axis can be induced on the main proof-mass section 115 because the velocity vectors are in opposite directions along the x-axis. Thus, the single proof-mass can be excited torsionally about the x-axis by flexing the central suspension 111. The sense response can be detected using out-of-plane y-axis gyroscope sense electrodes, e.g., formed in the via wafer 103 and using capacitive coupling of the main proof-mass section 115 and the via wafer 103.


Z-Axis Rate Response


FIG. 6 illustrates generally an example of a 3-axis gyroscope 600 including a single proof-mass during sense motion in response to rotation about the z-axis, the single proof-mass including a main proof-mass section 115, x-axis proof-mass sections 116, central suspension, z-axis flexure bearings 120, and z-axis gyroscope coupling flexure bearings 121.


In the presence of an angular rate about the z-axis, and in conjunction with the drive motion of the 6-axis inertial sensor 400 described in the example of FIG. 3, Coriolis forces in opposite directions along the x-axis can be induced on the x-axis proof-mass sections 116 because the velocity vectors are in opposite directions along the y-axis. Thus, the x-axis proof-mass sections 116 can be excited linearly in opposite directions along the x-axis by flexing the z-axis flexure bearings 120 in the x-direction. Further, the z-axis gyroscope coupling flexure bearings 121 can be used to provide a linear anti-phase resonant mode of the x-axis proof-mass sections 116, which are directly driven by the anti-phase Coriolis forces. The sense response can be detected using in-plane parallel-plate sense electrodes, such as the z-axis gyroscope sense electrodes 127 formed in the device layer 105.



FIGS. 7 and 8 illustrate generally examples of a 3-axis gyroscope 700 including a z-axis gyroscope coupling flexure bearing 121 during anti-phase motion and in-phase motion, respectively. To improve the vibration rejection of the 3-axis gyroscope 700 due to x-axis acceleration, the z-axis gyroscope coupling flexure bearings 121 is configured to suppress in-phase motion of the x-axis proof-mass sections 116.


During the anti-phase motion, the connection beams that connect the two x-axis proof-mass sections 116 to the z-axis gyroscope coupling flexure bearing 121 apply forces in the same direction and the coupling beams undergo a natural bending with low stiffness.


In contrast, during the in-phase motion, the coupling beams of the z-axis gyroscope coupling flexure bearing 121 apply forces in opposite directions on the coupling beams, forcing the coupling beams into a twisting motion with a higher stiffness. Thus, the in-phase motion stiffness and the resonant frequencies are increased, providing better vibration rejection.


Accelerometer Device Structure


FIG. 9 illustrates generally an example of a 3-axis accelerometer 900, such as formed in a single plane of a device layer 105 of a 3-DOF IMU 100. In an example, the 3-axis accelerometer 900 can include a single proof-mass design, providing 3-axis accelerometer operational modes patterned into the device layer 105 of the 3-DOF IMU 100, such as illustrated in the example of FIG. 1.


In an example, the single proof-mass can be suspended at its center to a single central anchor (e.g., anchor 106) using a series of flexure bearings and frames that aim to decouple the response modes and reduce cross-axis sensitivities. In an example, the 3-axis accelerometer 900 can include x-axis flexure bearings 133 configured to couple the anchor 106 to the x-axis frame 135 and allow the x-axis frame 135 to deflect in response to acceleration along the x-axis. Further, the device can include y-axis flexure bearings 134 configured to couple the x-axis frame 135 to the y-axis frame 136 and allow the y-axis frame 136 to deflect with respect to the x-axis frame 135 in response to accelerations along the y-axis, and z-axis flexure bearings 137 configured to couple the y-axis frame 136 to the remainder of the proof-mass 138. The z-axis flexure bearings 137 function as a torsional hinge, allowing the proof-mass to deflect torsionally out-of-plane about the axis that passes through the center of the beams.


Further, the 3-axis accelerometer 900 can include x-axis accelerometer sense electrodes 125 configured to detect in-phase, in-plane x-axis motion of the x-axis frame 135, or y-axis accelerometer sense electrodes 131 configured to detect in-phase, in-plane, y-axis motion of the y-axis frame 136. In an example, each of the x-axis and y-axis accelerometer sense electrodes 125, 131 can include moving fingers coupled to one or more frame sections interdigitated with a set of stationary fingers fixed in position (e.g., to the via wafer 103) using a respective anchor, such as anchors 126, 132.


X-Axis Accelerometer Response


FIG. 10 illustrates generally an example of a 3-axis accelerometer 1000 in sense motion in response to an x-axis acceleration, the 3-axis accelerometer including a single proof-mass, an anchor 106, x-axis flexure bearings 133, and an x-axis frame 135.


In the presence of an acceleration along the x-axis, the proof-mass, the y-axis frame 136 and the x-axis frame 135 can move in unison with respect to the anchor 106. The resulting motion can be detected using the x-axis accelerometer sense electrodes 125 located on opposite sides of the proof-mass, allowing differential measurement of deflections. In various examples, a variety of detection methods, such as capacitive (variable gap or variable area capacitors), piezoelectric, piezoresistive, magnetic or thermal can be used.


Y-Axis Accelerometer Response


FIG. 11 illustrates generally an example of a 3-axis accelerometer 1100 in sense motion in response to a y-axis acceleration, the 3-axis accelerometer including a single proof-mass, an anchor 106, y-axis flexure bearings 134, and a y-axis frame 136.


In the presence of an acceleration along the y-axis, the y-axis flexure bearings 134 that connect the y-axis frame 136 to the x-axis frame 135 deflect and allow the y-axis frame 136 to move along the y-axis in unison with the proof-mass, while the x-axis frame remains stationary. The resulting motion can be detected using the y-axis accelerometer sense electrodes 131 located on opposite sides of the proof-mass, allowing differential measurement of deflections. In various examples, a variety of detection methods, such as capacitive (variable gap or variable area capacitors), piezoelectric, piezoresistive, magnetic or thermal can be used.


Z-Axis Accelerometer Response


FIG. 12 illustrates generally an example of a 3-axis accelerometer 1200 in sense motion in response to a z-axis acceleration, the 3-axis accelerometer including a single proof-mass 138, an anchor, and z-axis flexure bearings 137.


In the example of FIG. 12, the x-axis flexure bearings 137 are located such that the axis that passes through the center of the beam is offset from the center of the proof-mass 138. Thus, a mass imbalance is created, so that the portion of the mass that is located further from the pivot line generates a larger inertial moment than the portion located closer, rendering the proof-mass 138 sensitive to z-axis accelerations, deflecting torsionally out-of-plane about the pivot line. The x and y-axis flexure bearings 133, 134 are designed to have high out-of-plane stiffness. Accordingly, they remain stationary during z-axis acceleration.



FIG. 13 illustrates generally an example of a system 1300 including via wafer electrode placement. In an example, z-axis accelerometer electrodes 140 can be placed on the via wafer 103 under the device layer 105. The torsional response allows measurement of deflections differentially with only one layer of out-of-plane electrodes. In an example, a variety of detection methods such as capacitive (variable gap or variable area capacitors), piezoelectric, piezoresistive, magnetic or thermal can be employed.



FIG. 14 illustrates generally an example side view of a 3-axis accelerometer 1400 including a single proof-mass, an illustrative “pivot”, and z-axis accelerometer electrodes 140.


3+3DOF


FIG. 15 illustrates generally an example of a 3+3-degrees-of-freedom (3+3DOF) inertial measurement unit (IMU) 200 (e.g., a 3-axis gyroscope and a 3-axis accelerometer), such as formed in a single plane of a device layer 105 of an IMU. In an example, the 3+3 DOF can include a 3-axis gyroscope 1505 and a 3-axis accelerometer 1510 on the same wafer.


In this example, each of the 3-axis gyroscope 1505 and the 3-axis accelerometer 1510 have separate proof-masses, though when packaged, the resulting device (e.g., chip-scale package) can share a cap, and thus, the 3-axis gyroscope 1505 and the 3-axis accelerometer 1510 can reside in the same cavity. Moreover, because the devices were formed at similar times and on similar materials, the invention significantly lowers the risk of process variations, reduces the need to separately calibrate the sensors, reduces alignment issues, and allows closer placement than separately bonding the devices near one another.


Further, there is a space savings associated with sealing the resulting device. For example, if a 100 um seal width is required, sharing the cap wafer and reducing the distance between devices allows the overall size of the resulting device to shrink Packaged separately, the amount of space required for the seal width could double.


In an example, die size can be reduced to 2.48×1.8 mm with a 100 um seal width.


Drive and Detection Frequencies

In an example, the drive mode and the three gyroscope sense modes can be located in the 20 kHz range. For open-loop operation, the drive mode can be separated from the sense-modes by a mode separation, such as 100 Hz to 500 Hz, which can determine the mechanical sensitivity of the gyroscopes. To increase sensitivity, the gyroscope operational resonant frequencies can be reduced if the vibration specifications of the application allow. If closed-loop sense operation is implemented, the mode separation can be reduced to increase mechanical sensitivity further.


Quadrature Error Reduction


FIG. 16 illustrates generally an example of the central suspension 111 at rest about an anchor 106, the central suspension 111 including symmetric “C-beams” configured to locally cancel quadrature error. The primary source of quadrature error in micromachined gyroscopes is the DRIE sidewall angle errors, which result in deviation of the etch profile from a straight sidewall. If sidewalls have an angle error, the in-plane drive motion can also cause out-of-plane motion when the skew axis is along beam length. Thus, when skewed compliant beams are located on opposite sides of the drive motion, the resulting out-of-plane deflections cause quadrature error.



FIG. 17 illustrates generally an example of a portion of the central suspension 111 in drive motion. The central suspension 111 utilizes symmetric “C-beams” on each side of the anchor 106. The out-of-plane motion caused by each C-beam on a side is cancelled out by its symmetric counterpart. Thus, the quadrature error induced on each beam can be locally cancelled.


Accelerometer Electrode Structure


FIG. 18 illustrates generally an example of an accelerometer electrode structure 1800 including an electrode stator frame 141 and a proof-mass frame 142 configured to support accelerometer sense electrodes (e.g., x-axis accelerometer sense electrodes 125, etc.) including moving fingers interdigitated with stationary fingers configured to detect motion along one or more axes.


A first major side of the accelerometer electrode structure 1800 can be substantially bound by the electrode stator frame 141 fixed in position (e.g., to a via wafer 103) using an anchor 126 and including a central platform 143 positioned substantially perpendicular to the electrode stator frame 141 and first and second outer branches 144, 145 substantially parallel to at least a portion of the central platform 143.


In an example, the electrode stator frame 141 and a first portion of the central platform 143 can surround and provide support for the anchor 126. A second portion of the central platform, distal from the anchor 126, can narrow, providing increased area for accelerometer sense electrodes (e.g., x-axis accelerometer sense electrodes 125).


A second major side of the accelerometer electrode structure 1800, substantially parallel to the first major side, can be substantially bound by the proof-mass frame 142 including first and second inner branches 148, 149 substantially perpendicular to the proof-mass frame 142 and first and second outer branches 146, 147 substantially parallel to the first or second inner branches 148, 149.


In the example of FIG. 18, the first and second outer branches 146, 147 of the proof-mass frame 142 can surround the first and second outer branches 144, 145 of the electrode stator frame 141 on first and second minor sides of the accelerometer electrode 1800 (e.g., the top and bottom in FIG. 18). In an example, to reduce proof-mass weight, the first and second outer branches 146, 147 of the proof-mass frame 142 can be excluded.



FIG. 19 illustrates generally an example of an accelerometer electrode structure 1900 including an electrode stator frame 151 and a proof-mass frame 152 configured to support accelerometer sense electrodes (e.g., x-axis accelerometer sense electrodes 125, etc.) including moving fingers interdigitated with stationary fingers configured to detect motion along one or more axes.


The present inventors have recognized, among other things, that shifting mass from the electrode stator frame 151 to the proof-mass frame 152 can improve the shock and vibration resistance of the accelerometer electrode structure 1900 or an associated inertial sensor. Further, the present inventors have recognized that providing a wider central platform 153 can allow independent or asymmetric anchor 126 placement on each or either side of the associated inertial sensor to, for example, to compensate for die deformation, such as from packaging stress, to improve temperature performance, etc.


Similar to the example illustrated in FIG. 18, a first major side of the accelerometer electrode structure 1900 can be substantially bound by an electrode stator frame 151 fixed in position (e.g., to a via wafer 103) using the anchor 126 and including a central platform 153 positioned substantially perpendicular to the electrode stator frame 151 and first and second inner branches 154, 155 substantially parallel to at least a portion of the central platform 153.


In an example, the electrode stator frame 151 and the central platform 153 can surround and provide support for the anchor 126. In contrast to the example illustrated in FIG. 18, the central platform 152 of FIG. 19 can be wider than the central platform 142 of FIG. 18, providing a wider platform to locate the anchor 126, in certain examples, allowing independent or adjustable anchor 126 positions on each or either side of the inertial sensor. In certain examples, independent or adjustable anchor positions for one or both sides of the inertial sensor can improve temperature performance of the inertial sensor, depending on, for example, the position of the inertial sensor on a die.


A second major side of the accelerometer electrode structure 1900, substantially parallel to the first major side, can be substantially bound by a proof-mass frame 152 including first and second inner branches 158, 159 substantially perpendicular to the proof-mass frame 152 and first and second outer branches 156, 157 substantially parallel to the first or second inner branches 158, 159.


In the example of FIG. 19, the first and second inner branches 154, 155 of the electrode stator frame 151 and the first and second inner branches 158, 159 of the proof-mass frame 152 can be positioned closer to the central platform 153 than the example illustrated in FIG. 18. In an example, shifting these branches closer to the central platform 153 can allow a shift of a portion of the electrode mass to the proof-mass side of the accelerometer electrode structure 1900, minimizing the mass of the electrode stator 151 to improve shock or vibration resistance or to increase the lower or lowest resonant frequencies of the capacitive accelerometer sense electrodes, such as illustrated in FIG. 24.



FIG. 20 illustrates generally an example of an accelerometer electrode structure 2000, such as that illustrated in the example of FIG. 18. In this example, the electrode stator frame 141 and the proof-mass frame 142 are separated, separately illustrating moving fingers 160 decoupled from stationary fingers 161.



FIG. 21 illustrates generally an example of an accelerometer electrode structure 2100, such as that illustrated in the example of FIG. 19. In this example, the electrode stator frame 151 and the proof-mass frame 152 are separated, separately illustrating moving fingers 162 decoupled from stationary fingers 163. Although the central platform 153 illustrated in FIGS. 19 and 21 is wider than the central platform 143 illustrated in FIGS. 18 and 20, the reduced mass electrode stator frame 151 can provide for an additional sense electrodes or additional sense electrode area.



FIG. 22 illustrates generally an example of a decoupled left and right accelerometer electrode structure 2200 including a left anchor 126A, a left central platform 153A, a right anchor 126B, and a right central platform 153B. In this example, the left and right anchors 126A, 126B are positioned asymmetrically to optimize or improve temperature performance. In certain examples, the left and right anchors 126A, 126B can be positioned independently or asymmetrically to compensate for non-centered placement on the die or asymmetric die deformation, such as from packaging stress. In certain examples, placement of the anchors towards the stator side versus the proof-mass side can be specifically configured to compensate for temperature performance, to adjust for offset inertial sensor placement on a die, to adjust for inertial sensor packaging, or one or more other factors.



FIG. 23 illustrates generally an example of a lowest out-of-plane resonant mode of an electrode stator frame 141, such as that illustrated in the examples of FIGS. 18 and 20.



FIG. 24 illustrates generally an example of a lowest out-of-plane resonant mode of an electrode stator frame 151, such as that illustrated in the examples of FIGS. 19 and 21.


The resonant modes of FIGS. 23 and 24 illustrate generally that the lowest out-of-plane resonant mode of the electrode stator frame 151 of the example of FIG. 24 is higher than the lowest out-of-plane resonant mode of the electrode stator frame 141 of the example of FIG. 23.


Additional Notes and Examples

In Example 1, an inertial sensor includes a single proof-mass formed in an x-y plane of a device layer, the single proof-mass including a single, central anchor configured to suspend the single proof-mass above a via wafer, first and second electrode stator frames formed in the x-y plane of the device layer on respective first and second sides of the inertial sensor, the first and second electrode stator frames symmetric about the single, central anchor, and each separately including a central platform and an anchor configured to fix the central platform to the via wafer, wherein the anchors for the first and second electrode stator frames are asymmetric along the central platforms with respect to the single, central anchor.


In Example 2, the first and second electrode stator frames of Example 1 optionally includes first and second inner branches and a plurality of stationary fingers coupled to the first and second inner branches.


In Example 3, the first inner branch of any one or more of Examples 1-2 is substantially parallel to the second inner branch.


In Example 4, the first and second inner branches of the first and second electrode stator frames are substantially parallel to the central platforms of the first and second electrode stator frames.


In Example 5, the central platforms of the first and second electrode stator frames of any one or more of Examples 1-4 are optionally symmetric about the single, central anchor.


In Example 6, any one or more of Examples 1-5 optionally includes first and second proof-mass frames formed in the x-y plane of the device layer, each coupled to the single proof-mass and including first and second inner branches about and substantially parallel to the central platform, first and second outer branches, and a plurality of moving fingers coupled to the first and second inner and outer branches.


In Example 7, the first and second electrode stator frames of any one or more of Examples 1-6 optionally have a first mass, wherein the first and second proof-mass frames of any one or more of Examples 1-6 optionally have a second mass, and wherein the first mass is optionally less than the second mass.


In Example 8, at least a portion of the plurality of stationary fingers of any one or more of Examples 1-7 are optionally interdigitated with at least a portion of the plurality of moving fingers.


In Example 9, the stationary fingers of any one or more of Examples 1-8 are optionally substantially perpendicular to the first and second inner branches of the first and second electrode stator frames, wherein the moving fingers are optionally substantially perpendicular to the first and second inner and outer branches of the first and second proof-mass frames.


In Example 10, any one or more of Examples 1-9 optionally include a single proof-mass 3-axis accelerometer including the single proof-mass and separate x, y, and z-axis flexure bearings, wherein the x and y-axis flexure bearings are optionally symmetric about the single, central anchor and the z-axis flexure is optionally not symmetric about the single, central anchor.


In Example 11, the 3-axis accelerometer of any one or more of Examples 1-10 optionally includes in-plane x and y-axis accelerometer sense electrodes symmetric about the single, central anchor and out-of-plane z-axis accelerometer sense electrodes, wherein the in-plane x-axis accelerometer sense electrodes optionally include the first and second electrode stator frames.


In Example 12, any one or more of Examples 1-11 optionally includes a single proof-mass 3-axis gyroscope formed in the x-y plane adjacent the 3-axis accelerometer, the single proof-mass 3-axis gyroscope including a main proof-mass section suspended about a single, central anchor, the main proof-mass section including a radial portion extending outward towards an edge of the 3-axis gyroscope, a central suspension system configured to suspend the 3-axis gyroscope from the single, central anchor, and a drive electrode including a moving portion and a stationary portion, the moving portion coupled to the radial portion, wherein the drive electrode and the central suspension system are configured to oscillate the 3-axis gyroscope about a z-axis normal to the x-y plane at a drive frequency.


In Example 13, any one or more of Examples 1-12 optionally includes a cap wafer bonded to a first surface of the device layer, wherein the via wafer is optionally bonded to a second surface of the device layer, wherein the cap wafer and the via wafer are optionally configured to encapsulate the single proof-mass 3-axis gyroscope and the single proof-mass 3-axis accelerometer in the same cavity.


In Example 14, the single, central anchor of any one or more of Examples 1-13 is optionally not centered on the via wafer, wherein the anchors for the first and second electrode stator frames are optionally asymmetric along the central platforms with respect to the single, central anchor to improve temperature performance associated with thermal deformation.


In Example 15, any one or more of Examples 1-14 optionally includes a single proof-mass formed in an x-y plane of a device layer, the single proof-mass including a single, central anchor configured to suspend the single proof-mass above a via wafer, x-axis flexure bearings symmetric about the single, central anchor, a first proof-mass frame, a first electrode stator frame on a first side of the single, central anchor, the first electrode stator frame including a first central platform, first and second inner branches, a plurality of stationary fingers coupled to the first and second inner branches, and a first anchor configured to fix the first electrode stator frame to the via wafer at a first position along the first central platform, and a second electrode stator frame on a second side of the single, central anchor, the second electrode stator frame including a second central platform, third and fourth inner branches, a plurality of stationary fingers coupled to the third and fourth inner branches, and a second anchor configured to fix the second electrode stator frame to the via wafer at a second position along the second central platform, wherein the first position along the first central platform and the second position along the second central platform are asymmetric with respect to the single, central anchor.


In Example 16, the first and second electrode stator frames of any one or more of Examples 1-15 are optionally symmetric about the single, central anchor.


In Example 17, the inertial sensor of any one or more of claims 1-16 optionally include first and second proof-mass frames formed in the x-y plane of the device layer, each coupled to the single proof-mass and including first and second inner branches about and substantially parallel to the first and second central platforms, first and second outer branches, and a plurality of moving fingers coupled to the first and second inner and outer branches. At least a portion of the plurality of stationary fingers of any one or more of Examples 1-16 optionally are interdigitated with at least a portion of the plurality of moving fingers.


In Example 18, a method can include suspending a single proof-mass formed in an x-y plane of a device layer above a via wafer using a single, central anchor, asymmetrically, with respect to the single, central anchor, anchoring first and second electrode stator frames along central platforms of the first and second electrode stator frames formed in the x-y plane of the device layer to the via wafer, wherein the first and second electrode stator frames are symmetric about the single, central anchor, and detecting acceleration between the single proof-mass and the first and second electrode stator frames.


In Example 19, the suspending the single proof-mass of any one or more of Examples 1-18 optionally includes suspending a single proof-mass 3-axis accelerometer having symmetric x and y-axis flexure bearings about the single, central anchor and asymmetric z-axis flexure bearings about the single, central anchor.


In Example 20, the asymmetrically anchoring the first and second electrode stator frames along the central platforms with respect to the single, central anchor of any one or more of Examples 1-19 optionally includes to compensate for package deformation and improve temperature performance of an inertial sensor associated with the single proof-mass.


Example 21 can include, or can optionally be combined with any portion or combination of any portions of any one or more of Examples 1-20 to include, subject matter that can include means for performing any one or more of the functions of Examples 1-20, or a machine-readable medium including instructions that, when performed by a machine, cause the machine to perform any one or more of the functions of Examples 1-20.


The above detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which the invention can be practiced. These embodiments are also referred to herein as “examples.” Such examples can include elements in addition to those shown or described. However, the present inventors also contemplate examples in which only those elements shown or described are provided. Moreover, the present inventors also contemplate examples using any combination or permutation of those elements shown or described (or one or more aspects thereof), either with respect to a particular example (or one or more aspects thereof), or with respect to other examples (or one or more aspects thereof) shown or described herein.


All publications, patents, and patent documents referred to in this document are incorporated by reference herein in their entirety, as though individually incorporated by reference. In the event of inconsistent usages between this document and those documents so incorporated by reference, the usage in the incorporated reference(s) should be considered supplementary to that of this document; for irreconcilable inconsistencies, the usage in this document controls.


In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended, that is, a system, device, article, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.


Method examples described herein can be machine or computer-implemented at least in part. Some examples can include a computer-readable medium or machine-readable medium encoded with instructions operable to configure an electronic device to perform methods as described in the above examples. An implementation of such methods can include code, such as microcode, assembly language code, a higher-level language code, or the like. Such code can include computer readable instructions for performing various methods. The code may form portions of computer program products. Further, the code can be tangibly stored on one or more volatile or non-volatile tangible computer-readable media, such as during execution or at other times. Examples of these tangible computer-readable media can include, but are not limited to, hard disks, removable magnetic disks, removable optical disks (e.g., compact disks and digital video disks), magnetic cassettes, memory cards or sticks, random access memories (RAMs), read only memories (ROMs), and the like.


The above description is intended to be illustrative, and not restrictive. For example, the above-described examples (or one or more aspects thereof) may be used in combination with each other. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above description. The Abstract is provided to comply with 37 C.F.R. §1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above Detailed Description, various features may be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment, and it is contemplated that such embodiments can be combined with each other in various combinations or permutations. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims
  • 1. An inertial sensor, comprising: a single proof-mass formed in an x-y plane of a device layer, the single proof-mass including a single, central anchor configured to suspend the single proof-mass above a via wafer;first and second electrode stator frames formed in the x-y plane of the device layer on respective first and second sides of the inertial sensor, the first and second electrode stator frames symmetric about the single, central anchor, and each separately including: a central platform; andan anchor configured to fix the central platform to the via wafer;wherein the anchors for the first and second electrode stator frames are positioned asymmetrically along the central platforms with respect to the single, central anchor.
  • 2. The inertial sensor of claim 1, wherein the first and second electrode stator frames include: first and second inner branches; anda plurality of stationary fingers coupled to the first and second inner branches.
  • 3. The inertial sensor of claim 2, wherein the first inner branch is substantially parallel to the second inner branch.
  • 4. The inertial sensor of claim 3, wherein the first and second inner branches of the first and second electrode stator frames are substantially parallel to the central platforms of the first and second electrode stator frames.
  • 5. The inertial sensor of claim 4, wherein the central platforms of the first and second electrode stator frames are symmetric about the single, central anchor.
  • 6. The inertial sensor of claim 2, including: first and second proof-mass frames formed in the x-y plane of the device layer, each coupled to the single proof-mass and including: first and second inner branches about and substantially parallel to the central platforms;first and second outer branches; anda plurality of moving fingers coupled to the first and second inner and outer branches.
  • 7. The inertial sensor of claim 6, wherein the first and second electrode stator frames have a first mass, wherein the first and second proof-mass frames have a second mass, and wherein the first mass is less than the second mass.
  • 8. The inertial sensor of claim 6, wherein at least a portion of the plurality of stationary fingers are interdigitated with at least a portion of the plurality of moving fingers.
  • 9. The inertial sensor of claim 6, wherein the stationary fingers are substantially perpendicular to the first and second inner branches of the first and second electrode stator frames; and wherein the moving fingers are substantially perpendicular to the first and second inner and outer branches of the first and second proof-mass frames.
  • 10. The inertial sensor of claim 1, including: a single proof-mass 3-axis accelerometer including the single proof-mass and separate x, y, and z-axis flexure bearings; andwherein the x and y-axis flexure bearings are symmetric about the single, central anchor and the z-axis flexure is not symmetric about the single, central anchor.
  • 11. The inertial sensor of claim 10, wherein the 3-axis accelerometer includes in-plane x and y-axis accelerometer sense electrodes symmetric about the single, central anchor and out-of-plane z-axis accelerometer sense electrodes; and wherein the in-plane x-axis accelerometer sense electrodes include the first and second electrode stator frames.
  • 12. The inertial sensor of claim 11, including: a single proof-mass 3-axis gyroscope formed in the x-y plane adjacent the 3-axis accelerometer, the single proof-mass 3-axis gyroscope including: a main proof-mass section suspended about a single, central anchor, the main proof-mass section including a radial portion extending outward towards an edge of the 3-axis gyroscope;a central suspension system configured to suspend the 3-axis gyroscope from the single, central anchor; anda drive electrode including a moving portion and a stationary portion, the moving portion coupled to the radial portion, wherein the drive electrode and the central suspension system are configured to oscillate the 3-axis gyroscope about a z-axis normal to the x-y plane at a drive frequency.
  • 13. The apparatus of claim 11, including: a cap wafer bonded to a first surface of the device layer; andwherein the via wafer is bonded to a second surface of the device layer, wherein the cap wafer and the via wafer are configured to encapsulate the single proof-mass 3-axis gyroscope and the single proof-mass 3-axis accelerometer in the same cavity.
  • 14. The inertial sensor of claim 1, wherein the single, central anchor is not centered on the via wafer; and wherein the anchors for the first and second electrode stator frames are asymmetric along the central platforms with respect to the single, central anchor to improve temperature performance associated with thermal deformation.
  • 15. An inertial sensor, comprising: a single proof-mass formed in an x-y plane of a device layer, the single proof-mass including: a single, central anchor configured to suspend the single proof-mass above a via wafer;x-axis flexure bearings symmetric about the single, central anchor;a first proof-mass frame;a first electrode stator frame on a first side of the single, central anchor, the first electrode stator frame including: a first central platform;first and second inner branches;a plurality of stationary fingers coupled to the first and second inner branches; anda first anchor configured to fix the first electrode stator frame to the via wafer at a first position along the first central platform; anda second electrode stator frame on a second side of the single, central anchor, the second electrode stator frame including: a second central platform;third and fourth inner branches;a plurality of stationary fingers coupled to the third and fourth inner branches; anda second anchor configured to fix the second electrode stator frame to the via wafer at a second position along the second central platform; andwherein the first position along the first central platform and the second position along the second central platform are asymmetric with respect to the single, central anchor.
  • 16. The inertial sensor of claim 15, wherein the first and second electrode stator frames are symmetric about the single, central anchor.
  • 17. The inertial sensor of claim 16, including: first and second proof-mass frames formed in the x-y plane of the device layer, each coupled to the single proof-mass and including: first and second inner branches about and substantially parallel to the first and second central platforms;first and second outer branches; anda plurality of moving fingers coupled to the first and second inner and outer branches; andwherein at least a portion of the plurality of stationary fingers are interdigitated with at least a portion of the plurality of moving fingers.
US Referenced Citations (183)
Number Name Date Kind
4896156 Garverick Jan 1990 A
5487305 Ristic et al. Jan 1996 A
5491604 Nguyen et al. Feb 1996 A
5600064 Ward Feb 1997 A
5723790 Andersson Mar 1998 A
5751154 Tsugai May 1998 A
5760465 Alcoe et al. Jun 1998 A
5765046 Watanabe et al. Jun 1998 A
6131457 Sato Oct 2000 A
6214644 Glenn Apr 2001 B1
6301965 Chu et al. Oct 2001 B1
6351996 Nasiri et al. Mar 2002 B1
6366468 Pan Apr 2002 B1
6390905 Korovin et al. May 2002 B1
6501282 Dummermuth et al. Dec 2002 B1
6504385 Hartwell Jan 2003 B2
6553835 Hobbs et al. Apr 2003 B1
6722206 Takada Apr 2004 B2
6725719 Cardarelli Apr 2004 B2
6781231 Minervini et al. Aug 2004 B2
6848304 Geen Feb 2005 B2
7051590 Lemkin et al. May 2006 B1
7054778 Geiger et al. May 2006 B2
7093487 Mochida Aug 2006 B2
7166910 Minervini et al. Jan 2007 B2
7202552 Zhe et al. Apr 2007 B2
7210351 Lo et al. May 2007 B2
7221767 Mullenborn et al. May 2007 B2
7240552 Acar et al. Jul 2007 B2
7258011 Nasiri et al. Aug 2007 B2
7258012 Xie et al. Aug 2007 B2
7266349 Kappes Sep 2007 B2
7293460 Zarabadi et al. Nov 2007 B2
7301212 Mian et al. Nov 2007 B1
7305880 Caminada et al. Dec 2007 B2
7358151 Araki et al. Apr 2008 B2
7436054 Zhe Oct 2008 B2
7449355 Lutz et al. Nov 2008 B2
7451647 Matsuhisa et al. Nov 2008 B2
7454967 Skurnik Nov 2008 B2
7518493 Bryzek et al. Apr 2009 B2
7539003 Ray et al. May 2009 B2
7595648 Ungaretti et al. Sep 2009 B2
7600428 Robert et al. Oct 2009 B2
7616078 Prandi et al. Nov 2009 B2
7622782 Chu et al. Nov 2009 B2
7706149 Yang et al. Apr 2010 B2
7781249 Laming et al. Aug 2010 B2
7795078 Ramakrishna et al. Sep 2010 B2
7851925 Theuss et al. Dec 2010 B2
7859352 Sutton Dec 2010 B2
7950281 Hammerschmidt May 2011 B2
8004354 Pu et al. Aug 2011 B1
8006557 Yin et al. Aug 2011 B2
8037755 Nagata et al. Oct 2011 B2
8113050 Acar et al. Feb 2012 B2
8171792 Sameshima May 2012 B2
8201449 Ohuchi et al. Jun 2012 B2
8250921 Nasiri et al. Aug 2012 B2
8375789 Prandi et al. Feb 2013 B2
8421168 Howard et al. Apr 2013 B2
8476970 Mokhtar et al. Jul 2013 B2
8508290 Elsayed et al. Aug 2013 B2
8710599 Marx et al. Apr 2014 B2
8739626 Acar Jun 2014 B2
8742964 Kleks et al. Jun 2014 B2
8754694 Opris et al. Jun 2014 B2
8813564 Acar Aug 2014 B2
20020021059 Knowles et al. Feb 2002 A1
20020117728 Brosnihhan et al. Aug 2002 A1
20020178831 Takada Dec 2002 A1
20020189352 Reeds et al. Dec 2002 A1
20020196445 Mcclary et al. Dec 2002 A1
20030038415 Anderson et al. Feb 2003 A1
20030061878 Pinson Apr 2003 A1
20030200807 Hulsing, II Oct 2003 A1
20030222337 Stewart Dec 2003 A1
20040085784 Salama et al. May 2004 A1
20040119137 Leonardi et al. Jun 2004 A1
20040177689 Cho et al. Sep 2004 A1
20040211258 Geen Oct 2004 A1
20040219340 McNeil et al. Nov 2004 A1
20040231420 Xie et al. Nov 2004 A1
20040251793 Matsuhisa Dec 2004 A1
20050005698 McNeil et al. Jan 2005 A1
20050097957 McNeil et al. May 2005 A1
20050139005 Geen Jun 2005 A1
20050189635 Humpston et al. Sep 2005 A1
20050274181 Kutsuna et al. Dec 2005 A1
20060032308 Acar et al. Feb 2006 A1
20060034472 Bazarjani et al. Feb 2006 A1
20060043608 Bernier et al. Mar 2006 A1
20060097331 Hattori May 2006 A1
20060137457 Zdeblick Jun 2006 A1
20060207328 Zarabadi et al. Sep 2006 A1
20060213265 Weber et al. Sep 2006 A1
20060213266 French et al. Sep 2006 A1
20060213268 Asami et al. Sep 2006 A1
20060246631 Lutz et al. Nov 2006 A1
20070013052 Zhe et al. Jan 2007 A1
20070034005 Acar et al. Feb 2007 A1
20070040231 Harney et al. Feb 2007 A1
20070047744 Karney et al. Mar 2007 A1
20070071268 Harney et al. Mar 2007 A1
20070085544 Viswanathan Apr 2007 A1
20070099327 Hartzell et al. May 2007 A1
20070114643 DCamp et al. May 2007 A1
20070165888 Weigold Jul 2007 A1
20070205492 Wang Sep 2007 A1
20070220973 Acar Sep 2007 A1
20070222021 Yao Sep 2007 A1
20070284682 Laming et al. Dec 2007 A1
20080049230 Chin et al. Feb 2008 A1
20080081398 Lee et al. Apr 2008 A1
20080083958 Wei et al. Apr 2008 A1
20080083960 Chen et al. Apr 2008 A1
20080092652 Acar Apr 2008 A1
20080122439 Burdick et al. May 2008 A1
20080157238 Hsiao Jul 2008 A1
20080157301 Ramakrishna et al. Jul 2008 A1
20080169811 Viswanathan Jul 2008 A1
20080202237 Hammerschmidt Aug 2008 A1
20080245148 Fukumoto Oct 2008 A1
20080247585 Leidl et al. Oct 2008 A1
20080251866 Belt et al. Oct 2008 A1
20080290756 Huang Nov 2008 A1
20080302559 Leedy Dec 2008 A1
20080314147 Nasiri Dec 2008 A1
20090064780 Coronato et al. Mar 2009 A1
20090072663 Ayazi et al. Mar 2009 A1
20090140606 Huang Jun 2009 A1
20090166827 Foster et al. Jul 2009 A1
20090175477 Suzuki et al. Jul 2009 A1
20090183570 Acar et al. Jul 2009 A1
20090194829 Chung et al. Aug 2009 A1
20090263937 Ramakrishna et al. Oct 2009 A1
20090266163 Ohuchi et al. Oct 2009 A1
20100019393 Hsieh et al. Jan 2010 A1
20100024548 Cardarelli Feb 2010 A1
20100038733 Minervini Feb 2010 A1
20100044853 Dekker et al. Feb 2010 A1
20100052082 Lee Mar 2010 A1
20100058864 Hsu et al. Mar 2010 A1
20100072626 Theuss et al. Mar 2010 A1
20100089154 Ballas et al. Apr 2010 A1
20100122579 Hsu et al. May 2010 A1
20100155863 Weekamp Jun 2010 A1
20100206074 Yoshida et al. Aug 2010 A1
20100212425 Hsu et al. Aug 2010 A1
20100224004 Suminto et al. Sep 2010 A1
20100236327 Mao et al. Sep 2010 A1
20110030473 Acar Feb 2011 A1
20110030474 Kuang et al. Feb 2011 A1
20110031565 Marx et al. Feb 2011 A1
20110094302 Schofield et al. Apr 2011 A1
20110120221 Yoda May 2011 A1
20110121413 Allen et al. May 2011 A1
20110146403 Rizzo Piazza Roncoroni et al. Jun 2011 A1
20110265564 Acar et al. Nov 2011 A1
20110285445 Huang et al. Nov 2011 A1
20130139591 Acar Jun 2013 A1
20130139592 Acar Jun 2013 A1
20130192364 Acar Aug 2013 A1
20130247666 Acar Sep 2013 A1
20130247668 Bryzek Sep 2013 A1
20130250532 Bryzek et al. Sep 2013 A1
20130257487 Opris et al. Oct 2013 A1
20130263641 Opris et al. Oct 2013 A1
20130263665 Opris et al. Oct 2013 A1
20130265070 Kleks et al. Oct 2013 A1
20130265183 Kleks et al. Oct 2013 A1
20130268227 Opris et al. Oct 2013 A1
20130268228 Opris et al. Oct 2013 A1
20130269413 Tao et al. Oct 2013 A1
20130270657 Acar et al. Oct 2013 A1
20130270660 Bryzek et al. Oct 2013 A1
20130271228 Tao et al. Oct 2013 A1
20130277772 Bryzek et al. Oct 2013 A1
20130277773 Bryzek et al. Oct 2013 A1
20130298671 Acar et al. Nov 2013 A1
20130328139 Acar Dec 2013 A1
20130341737 Bryzek et al. Dec 2013 A1
20140070339 Marx Mar 2014 A1
Foreign Referenced Citations (118)
Number Date Country
1389704 Jan 2003 CN
1617334 May 2005 CN
1659810 Aug 2005 CN
1816747 Aug 2006 CN
1886669 Dec 2006 CN
1905167 Jan 2007 CN
1948906 Apr 2007 CN
101038299 Sep 2007 CN
101067555 Nov 2007 CN
101171665 Apr 2008 CN
101180516 May 2008 CN
101239697 Aug 2008 CN
101270988 Sep 2008 CN
101316462 Dec 2008 CN
101426718 May 2009 CN
101459866 Jun 2009 CN
101519183 Sep 2009 CN
101638211 Feb 2010 CN
101813480 Aug 2010 CN
101858928 Oct 2010 CN
102597699 Jul 2012 CN
103209922 Jul 2013 CN
103210278 Jul 2013 CN
103221331 Jul 2013 CN
103221332 Jul 2013 CN
103221333 Jul 2013 CN
103221778 Jul 2013 CN
103221779 Jul 2013 CN
103221795 Jul 2013 CN
103238075 Aug 2013 CN
103363969 Oct 2013 CN
103363983 Oct 2013 CN
103364590 Oct 2013 CN
103364593 Oct 2013 CN
103368503 Oct 2013 CN
103368562 Oct 2013 CN
103368577 Oct 2013 CN
103376099 Oct 2013 CN
103376102 Oct 2013 CN
103403495 Nov 2013 CN
203275441 Nov 2013 CN
203275442 Nov 2013 CN
103663344 Mar 2014 CN
203719664 Jul 2014 CN
104094084 Oct 2014 CN
104105945 Oct 2014 CN
104220840 Dec 2014 CN
112011103124 Dec 2013 DE
102013014881 Mar 2014 DE
1460380 Sep 2004 EP
1521086 Apr 2005 EP
1688705 Aug 2006 EP
1832841 Sep 2007 EP
1860402 Nov 2007 EP
2053413 Apr 2009 EP
2259019 Dec 2010 EP
09089927 Apr 1997 JP
10239347 Sep 1998 JP
2005024310 Jan 2005 JP
2005114394 Apr 2005 JP
2005294462 Oct 2005 JP
2007024864 Feb 2007 JP
2008294455 Dec 2008 JP
2009075097 Apr 2009 JP
2009186213 Aug 2009 JP
2010025898 Feb 2010 JP
2010506182 Feb 2010 JP
1020110055449 May 2011 KR
1020130052652 May 2013 KR
1020130052653 May 2013 KR
1020130054441 May 2013 KR
1020130055693 May 2013 KR
1020130057485 May 2013 KR
1020130060338 Jun 2013 KR
1020130061181 Jun 2013 KR
101311966 Sep 2013 KR
1020130097209 Sep 2013 KR
101318810 Oct 2013 KR
1020130037462 Oct 2013 KR
1020130112789 Oct 2013 KR
1020130112792 Oct 2013 KR
1020130112804 Oct 2013 KR
1020130113385 Oct 2013 KR
1020130113386 Oct 2013 KR
1020130113391 Oct 2013 KR
1020130116189 Oct 2013 KR
1020130116212 Oct 2013 KR
101332701 Nov 2013 KR
1020130139914 Dec 2013 KR
1020130142116 Dec 2013 KR
101352827 Jan 2014 KR
1020140034713 Mar 2014 KR
I255341 May 2006 TW
WO-0175455 Oct 2001 WO
WO-2008059757 May 2008 WO
WO-2008087578 Jul 2008 WO
WO-2009050578 Apr 2009 WO
WO-2009156485 Dec 2009 WO
WO-2011016859 Feb 2011 WO
WO-2011016859 Feb 2011 WO
WO-201237537 Mar 2012 WO
WO-2012037492 Mar 2012 WO
WO-2012037492 Mar 2012 WO
WO-2012037501 Mar 2012 WO
WO-2012037501 Mar 2012 WO
WO-2012037536 Mar 2012 WO
WO-2012037538 Mar 2012 WO
WO-2012037539 Mar 2012 WO
WO-2012037539 Mar 2012 WO
WO-2012037540 Mar 2012 WO
WO-2012040194 Mar 2012 WO
WO-2012040211 Mar 2012 WO
WO-2012040245 Mar 2012 WO
WO-2012040245 Mar 2012 WO
WO-2013115967 Aug 2013 WO
WO-2013116356 Aug 2013 WO
WO-2013116514 Aug 2013 WO
WO-2013116522 Aug 2013 WO
Non-Patent Literature Citations (217)
Entry
“Application Serial No. PCT/US2011/052006, International Republished Application mailed Jun. 7, 2012”, 1 pg.
“Application Serial No. PCT/US2011/052417, International Republished Application mailed Jun. 7, 2012”, 1 pg.
“International Application Serial No. PCT/US2011/051994, International Search Report mailed Apr. 16, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/051994, Written Opinion mailed Apr. 16, 2012”, 6 pgs.
“International Application Serial No. PCT/US2011/052006, Search Report mailed Apr. 16, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052006, Written Opinion mailed Apr. 16, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/052059, Search Report mailed Apr. 20, 2012”, 4 pgs.
“International Application Serial No. PCT/US2011/052059, Written Opinion mailed Apr. 20, 2012”, 7 pgs.
“International Application Serial No. PCT/US2011/052060, International Search Report Apr. 20, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052060, Written Opinion mailed Apr. 20, 2012”, 7 pgs.
“International Application Serial No. PCT/US2011/052061, International Search Report mailed Apr. 10, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052061, Written Opinion mailed Apr. 10, 2012”, 4 pgs.
“International Application Serial No. PCT/US2011/052369, International Search Report mailed Apr. 24, 2012”, 6 pgs.
“International Application Serial No. PCT/US2011/052369, Written Opinion mailed Apr. 24, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052417, International Search Report mailed Apr. 23, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/052417, Written Opinion mailed Apr. 23, 2012”, 4 pgs.
Beyne, E, et al., “Through-silicon via and die stacking technologies for microsystems-integration”, IEEE International Electron Devices Meeting, 2008. IEDM 2008., (Dec. 2008), 1-4.
Cabruja, Enric, et al., “Piezoresistive Accelerometers for MCM-Package-Part II”, The Packaging Journal of Microelectromechanical Systems. vol. 14, No. 4, (Aug. 2005), 806-811.
Ezekwe, Chinwuba David, “Readout Techniques for High-Q Micromachined Vibratory Rate Gyroscopes”, Electrical Engineering and Computer Sciences University of California at Berkeley, Technical Report No. UCB/EECS-2007-176, http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-176.html, (Dec. 21, 2007), 94 pgs.
Rimskog, Magnus, “Through Wafer Viw Technolog for MEMS and 3D Intergration”, Electronic Manufacturing Tecnology Smposium, (Oct. 2007), pp. 286-289.
“U.S. Appl. No. 12/849,742, Notice of Allowance mailed Nov. 29, 2013”, 7 pgs.
“U.S. Appl. No. 12/849,787, Notice of Allowance mailed Dec. 11, 2013”, 9 pgs.
“U.S. Appl. No. 13/362,955, Response filed Feb. 17, 2014 to Restriction Requirement mailed Dec. 17, 2013”, 9 pgs.
“U.S. Appl. No. 13/363,537, Non Final Office Action mailed Feb. 6, 2014”, 10 pgs.
“U.S. Appl. No. 13/742,942, Notice of Allowance mailed Jan. 28, 2014”, 9 pgs.
“U.S. Appl. No. 13/746,016, Notice of Allowance mailed Jan. 17, 2014”, 10 pgs.
“U.S. Appl. No. 13/755,841, Restriction Requirement mailed Feb. 21, 2014”, 6 pgs.
“Chinese Application Serial No. 201180053926.1, Office Action mailed Jan. 13, 2014”, 7 pgs.
“Chinese Application Serial No. 201180054796.3, Office Action mailed Jan. 16, 2014”, 8 pgs.
“Chinese Application Serial No. 201180055029.4, Office Action mailed Jan. 13, 2014”, 7 pgs.
“Chinese Application Serial No. 201320172366.8, Office Action mailed Oct. 25, 2013”, 8 pgs.
“Chinese Application Serial No. 201320172366.8, Response filed Dec. 24, 2013 to Office Action mailed Oct. 25, 2013”, 11 pgs.
“Chinese Application Serial No. 201320565239.4, Office Action mailed Jan. 16, 2014”, w/English Translation, 3 pgs.
“European Application Serial No. 10806751.3, Extended European Search Report mailed Jan. 7, 2014”, 7 pgs.
“Korean Application Serial No. 10-2013-0109990, Amendment filed Dec. 10, 2013”, 4 pgs.
“Korean Application Serial No. 10-2013-7009775, Office Action mailed Dec. 27, 2013”, 8 pgs.
“Korean Application Serial No. 10-2013-7009775, Response filed Oct. 29, 2013 to Office Action mailed Sep. 17, 2013”, w/English Claims, 23 pgs.
“Korean Application Serial No. 10-2013-7009777, Office Action mailed Jan. 27, 2014”, 5 pgs.
“Korean Application Serial No. 10-2013-7009777, Response filed Nov. 5, 2013 to Office Action mailed Sep. 17, 2013”, 11 pgs.
“Korean Application Serial No. 10-2013-7009788, Office Action mailed Dec. 27, 2013”, w/English Translation, 10 pgs.
“Korean Application Serial No. 10-2013-7009788, Response filed Oct. 29, 2013 to Office Action mailed Aug. 29, 2013”, w/English Claims, 22 pgs.
“International Application Serial No. PCT/US2010/002166, International Preliminary Report on Patentability mailed Feb. 16, 2012”, 6 pgs.
“International Application Serial No. PCT/US2010/002166, International Search Report mailed Feb. 28, 2011”, 3 pgs.
“International Application Serial No. PCT/US2010/002166, Written Opinion mailed Feb. 28, 2011”, 4 pgs.
“International Application Serial No. PCT/US2011/052064, Search Report mailed Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052064, Written Opinion mailed Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052065, International Search Report mailed Apr. 10, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052065, Written Opinion mailed Apr. 10, 2012”, 5 pgs.
“U.S. Appl. No. 12/849,742, Non Final Office Action mailed Mar. 28, 2013”, 9 pgs.
“U.S. Appl. No. 12/849,742, Non Final Office Action mailed Aug. 23, 2012”, 9 pgs.
“U.S. Appl. No. 12/849,742, Response filed Jan. 23, 2012 to Non Final Office Action mailed Aug. 23, 2012”, 10 pgs.
“U.S. Appl. No. 12/849,787, Response filed Feb. 4, 2013 to Restriction Requirement mailed Oct. 4, 2012”, 7 pgs.
“U.S. Appl. No. 12/849,787, Restriction Requirement mailed Oct. 4, 2012”, 5 pgs.
“U.S. Appl. No. 13/813,443, Preliminary Amendment mailed Jan. 31, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,586, Preliminary Amendment mailed Mar. 8, 2013”, 6 pgs.
“U.S. Appl. No. 13/821,589, Preliminary Amendment mailed Mar. 8, 2013”, 6 pgs.
“U.S. Appl. No. 13/821,612, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,793, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,842, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,853, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“International Application Serial No. PCT/US2011/052006, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 7 pgs.
“International Application Serial No. PCT/US2011/052059, International Preliminary Report on Patentability mailed Jan. 22, 2013”, 14 pgs.
“International Application Serial No. PCT/US2011/052060, International Preliminary Report on Patentability mailed Jan. 22, 2013”, 12 pgs.
“International Application Serial No. PCT/US2011/052061, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 6 pgs.
“International Application Serial No. PCT/US2011/052064, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 5 pgs.
“International Application Serial No. PCT/US2011/052065, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 7 pgs.
“International Application Serial No. PCT/US2011/052417, International Preliminary Report on Patentability mailed Apr. 4, 2013”, 6 pgs.
“U.S. Appl. No. 12/849,742, Response filed Sep. 30, 2013 to Non-Final Office Action mailed Mar. 28, 2013”, 12 pgs.
“U.S. Appl. No. 12/849,787, Response filed Oct. 28, 2013 to Non Final Office Action mailed May 28, 2013”, 12 pgs.
“Chinese Application Serial No. 201180053926.1, Amendment filed Aug. 21, 2013”, w/English Translation, 13 pgs.
“Chinese Application Serial No. 201180055309.5, Voluntary Amendment filed Aug. 23, 2013”, w/English Translation, 13 pgs.
“Chinese Application Serial No. 201320165465.3, Office Action mailed Jul. 22, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320165465.3, Response filed Aug. 7, 2013 to Office Action mailed Jul. 22, 2013”, w/English Translation, 39 pgs.
“Chinese Application Serial No. 201320171504.0, Office Action mailed Jul. 22, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320171504.0, Response filed Jul. 25, 2013 to Office Action mailed Jul. 22, 2013”, w/English Translation, 33 pgs.
“Chinese Application Serial No. 201320171616.6, Office Action mailed Jul. 10, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320171757.8, Office Action mailed Jul. 11, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320171757.8, Response filed Jul. 25, 2013 to Office Action mailed Jul. 11, 2013”, w/English Translation, 21 pgs.
“Chinese Application Serial No. 201320171757.8, Response filed Jul. 26, 2013 to Office Action mailed Jul. 10, 2013”, w/English Translation, 40 pgs.
“Chinese Application Serial No. 201320172128.7, Office Action mailed Jul. 12, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320172128.7, Response filed Aug. 7, 2013 to Office Action mailed Jul. 12, 2013”, w/English Translation, 39 pgs.
“Chinese Application Serial No. 201320172366.8, Office Action mailed Jul. 9, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320172366.8, Response filed Sep. 16, 2013 to Office Action mailed Jul. 9, 2013”, w/English Translation, 24 pgs.
“Chinese Application Serial No. 201320172367.2, Office Action mailed Jul. 9, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320172367.2, Response filed Sep. 16, 2013 to Office Action mailed Jul. 9, 2013”, w/English Translation, 24 pgs.
“Chinese Application Serial No. 201320185461.1, Office Action mailed Jul. 23, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320185461.1, Response filed Sep. 10, 2013 to Office Action mailed Jul. 23, 2013”, w/English Translation, 25 pgs.
“Chinese Application Serial No. 201320186292.3, Office Action mailed Jul. 19, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320186292.3, Response filed Sep. 10, 2013 to Office Action mailed Jul. 19, 2013”, w/English Translation, 23 pgs.
“European Application Serial No. 13001692.6, European Search Report mailed Jul. 24, 2013”, 5 pgs.
“European Application Serial No. 13001696.7, Extended European Search Report mailed Aug. 6, 2013”, 4 pgs.
“European Application Serial No. 13001721.3, European Search Report mailed Jul. 18, 2013”, 9 pgs.
“International Application Serial No. PCT/US2013/024138, International Search Report mailed May 24, 2013”, 3 pgs.
“International Application Serial No. PCT/US2013/024138, Written Opinion mailed May 24, 2013”, 4 pgs.
“Korean Application Serial No. 10-2013-7009775, Office Action mailed Sep. 17, 2013”, w/English Translation, 6 pgs.
“Korean Application Serial No. 10-2013-7009777, Office Action mailed Sep. 17, 2013”, w/English Translation, 8 pgs.
“Korean Application Serial No. 10-2013-7009788, Office Action mailed Aug. 29, 2013”, w/English Translation, 6 pgs.
“Korean Application Serial No. 10-2013-7009790, Office Action mailed Jun. 26, 2013”, W/English Translation, 7 pgs.
“Korean Application Serial No. 10-2013-7009790, Response filed Aug. 26, 2013 to Office Action mailed Jun. 26, 2013”, w/English Claims, 11 pgs.
“Korean Application Serial No. 10-2013-7010143, Office Action mailed May 28, 2013”, w/English Translation, 5 pgs.
“Korean Application Serial No. 10-2013-7010143, Response filed Jul. 24, 2013 to Office Action mailed May 28, 2013”, w/English Claims, 14 pgs.
Ferreira, Antoine, et al., “A Survey of Modeling and Control Techniques for Micro- and Nanoelectromechanical Systems”, IEEE Transactions on Systems, Man and Cybernetics—Part C: Applications and Reviews vol. 41, No. 3., (May 2011), 350-364.
Fleischer, Paul E, “Sensitivity Minimization in a Single Amplifier Biquad Circuit”, IEEE Transactions on Circuits and Systems. vol. Cas-23, No. 1, (1976), 45-55.
Reljin, Branimir D, “Properties of SAB filters with the two-pole single-zero compensated operational amplifier”, Circuit Theory and Applications: Letters to the Editor. vol. 10, (1982), 277-297.
Sedra, Adel, et al., “Chapter 8.9: Effect of Feedback on the Amplifier Poles”, Microelectronic Circuits, 5th edition, (2004), 836-864.
Song-Hee, Cindy Paik, “A MEMS-Based Precision Operational Amplifier”, Submitted to the Department of Electrical Engineering and Computer Sciences MIT, [Online]. Retrieved from the Internet: <URL: http://dspace.mit.edu/bitstream/handle/1721.1/16682/57138272.pdf?...>, (Jan. 1, 2004), 123 pgs.
“U.S. Appl. No. 12/849,787, Non Final Office Action mailed May 28, 2013”, 18 pgs.
“U.S. Appl. No. 12/947,543, Notice of Allowance mailed Dec. 17, 2012”, 11 pgs.
“U.S. Appl. No. 13/821,598, Preliminary Amendment mailed Mar. 8, 2013”, 7 pgs.
“U.S. Appl. No. 13/821,609, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,619, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“Application Serial No. PCT/US2011/051994, International Republished Application mailed Jun. 7, 2012”, 1 pg.
“DigiSiMic™ Digital Silicon Microphone Pulse Part No. TC100E”, TC100E Datasheet version 4.2 DigiSiMic™ Digital Silicon Microphone. (Jan. 2009), 6 pgs.
“EPCOS MEMS Microphone With TSV”, 1 pg.
“International Application Serial No. PCT/US2011/051994, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 8 pgs.
“International Application Serial No. PCT/US2011/052340, International Preliminary Report on Patentability mailed Apr. 4, 2013”, 5 pgs.
“International Application Serial No. PCT/US2011/052340, Search Report mailed Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052340, Written Opinion mailed Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052369, International Preliminary Report on Patentability mailed Apr. 4, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/021411, International Search Report mailed Apr. 30, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/021411, Written Opinion mailed Apr. 30, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/023877, International Search Report mailed May 14, 2013”, 3 pgs.
“International Application Serial No. PCT/US2013/023877, Written Opinion mailed May 14, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/024149, Written Opinion mailed”, 4 pages.
“International Application Serial No. PCT/US2013/024149, International Search Report mailed”, 7 pages.
“T4020 & T4030 MEMS Microphones for Consumer Electronics”, Product Brief 2010, Edition Feb. 2010, 2 pgs.
Acar, Cenk, et al., “Chapter 4: Mechanical Design of MEMS Gyroscopes”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 73-110.
Acar, Cenk, et al., “Chapter 6: Linear Multi DOF Architecture—Sections 6.4 and 6.5”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 158-178.
Acar, Cenk, et al., “Chapter 7: Torsional Multi-DOF Architecture”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (209), 187-206.
Acar, Cenk, et al., “Chapter 8: Distributed-Mass Architecture”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 207-224.
Acar, Cenk, et al., “Chapter 9: Conclusions and Future Trends”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 225-245.
Krishnamurthy, Rajesh, et al., “Drilling and Filling, but not in your Dentist's Chair A look at some recent history of multi-chip and through silicon via (TSV) technology”, Chip Design Magazine, (Oct./Nov. 2008), 7 pgs.
“U.S. Appl. No. 12/849,742, Supplemental Notice of Allowability mailed Mar. 17, 2014”, 3 pgs.
“U.S. Appl. No. 12/849,742, Supplemental Notice of Allowability mailed May 5, 2014”, 2 pgs.
“U.S. Appl. No. 12/849,787, Supplemental Notice of Allowability mailed Mar. 21, 2014”, 3 pgs.
“U.S. Appl. No. 13/363,537, Final Office Action mailed Jun. 27, 2014”, 8 pgs.
“U.S. Appl. No. 13/363,537, Response filed Jun. 6, 2014 to Non Final Office Action mailed Feb. 6, 2014”, 11 pgs.
“U.S. Appl. No. 13/742,942, Notice of Allowance mailed Jan. 28, 2014”, 8 pgs.
“U.S. Appl. No. 13/742,942, Supplemental Notice of Allowability mailed Apr. 10, 2014”, 2 pgs.
“U.S. Appl. No. 13/755,841, Notice of Allowance mailed May 7, 2014”, 8 pgs.
“U.S. Appl. No. 13/755,841, Preliminary Amendment filed Oct. 10, 2013”, 10 pgs.
“U.S. Appl. No. 13/755,841, Response filed Apr. 21, 2014 to Restriction Requirement mailed Feb. 21, 2014”, 7 pgs.
“U.S. Appl. No. 13/755,841, Supplemental Notice of Allowability Jun. 27, 2014”, 2 pgs.
“U.S. Appl. No. 13/821,589, Non Final Office Action mailed Jul. 9, 2014”, 10 pgs.
“U.S. Appl. No. 13/821,589, Response to Restriction Requirement mailed Apr. 11, 2014”, 6 pgs.
“U.S. Appl. No. 13/821,589, Restriction Requirement mailed Apr. 11, 2014”, 10 pgs.
“U.S. Appl. No. 13/821,598, Restriction Requirement mailed Aug. 15, 2014”, 11 pgs.
“U.S. Appl. No. 13/821,612, Non Final Office Action mailed Jul. 23, 2014”, 8 pgs.
“U.S. Appl. No. 13/821,853, Non Final Office Action mailed Jul. 30, 2014”, 10 pgs.
“U.S. Appl. No. 13/860,761, Non Final Office Action mailed Aug. 19, 2014”, 13 pgs.
“Chinese Application Serial No. 2010800423190, Office Action mailed Mar. 26, 2014”, 10 pgs.
“Chinese Application Serial No. 2010800423190, Response filed Aug. 11, 2014 to Office Action mailed Mar. 26, 2014”, w/English Claims, 11 pgs.
“Chinese Application Serial No. 201180053926.1, Response filed Apr. 29, 2014 to Office Action mailed Jan. 13, 2014”, w/English Claims, 10 pgs.
“Chinese Application Serial No. 201180054796.3, Response filed Jun. 30, 2014 to Office Action mailed Jan. 16, 2014”, w/English Claims, 3 pgs.
“Chinese Application Serial No. 201180055029.4, Office Action mailed Jul. 2, 2014”, w/English Translation, 5 pgs.
“Chinese Application Serial No. 201180055029.4, Response filed May 27, 2014 to Office Action mailed Jan. 13, 2014”, w/English Claims, 29 pgs.
“Chinese Application Serial No. 201180055309.5, Office Action mailed Mar. 31, 2014”, w/English Claims, 7 pgs.
“Chinese Application Serial No. 201180055309.5, Response filed Aug. 13, 2014 to Office Action mailed Mar. 31, 2014”, w/English Claims, 27 pgs.
“Chinese Application Serial No. 201320172366.8, Office Action mailed Jan. 30, 2014”, w/English Claims, 3 pgs.
“Chinese Application Serial No. 201320172366.8, Response filed Mar. 18, 2014 to Office Action mailed Jan. 30, 2014”, w/English Claims, 20 pgs.
“Chinese Application Serial No. 201320565239.4, Response filed Mar. 31, 2014 to Office Action mailed Jan. 16, 2014”, w/English Claims, 38 pgs.
“Chinese Application Serial No. 201380007588.7, Notification to Make Rectification mailed Aug. 18, 2014”, 2 pgs.
“Chinese Application Serial No. 201380007615.0, Notification to Make Rectification mailed Aug. 18, 2014”, 2 pgs.
“European Application Serial No. 10806751.3, Response filed Jul. 24, 2014 to Office Action mailed Jan. 24, 2014”, 26 pgs.
“European Application Serial No. 118260070.2, Office Action mailed Mar. 12, 2014”, 1 pg.
“European Application Serial No. 11826068.6, Extended European Search Report mailed Jul. 16, 2014”, 10 pgs.
“European Application Serial No. 11826070.2, Extended European Search Report mailed Feb. 21, 2014”, 5 pgs.
“European Application Serial No. 11826071.0, Extended European Search Report mailed Feb. 20, 2014”, 6 pgs.
“European Application Serial No. 11826071.0, Office Action mailed Mar. 12, 2014”, 1 pg.
“European Application Serial No. 13001692.6, Response filed Apr. 1, 2014 to Extended European Search Report mailed Jul. 24, 2013”, 19 pgs.
“European Application Serial No. 13001719.7, Extended European Search Report mailed Jun. 24, 2014”, 10 pgs.
“European Application Serial No. 13001721.3, Response filed Apr. 7, 2014 to Extended European Search Report mailed Jul. 18, 2013”, 25 pgs.
“International Application Serial No. PCT/US2013/021411, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 7 pgs.
“International Application Serial No. PCT/US2013/023877, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 7 pgs.
“International Application Serial No. PCT/US2013/024138, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 6 pgs.
“International Application Serial No. PCT/US2013/024149, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 6 pgs.
“Korean Application Serial No. 10-2013-7009777, Response filed Apr. 28, 2014”, w/English Claims, 19 pgs.
Xia, Guo-Ming, et al., “Phase correction in digital self-oscillation drive circuit for improve silicon MEMS gyroscope bias stability”, Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE International Conference on, IEEE, (Nov. 1, 2010), 1416-1418.
“Chinese Application Serial No. 2010800423190, Office Action mailed Dec. 3, 2014”, 3 pgs.
“Chinese Application Serial No. 201180054796.3, Response filed Nov. 19, 2014 to Office Action mailed Sep. 4, 2014”, with English translation of claims, 7 pgs.
“Chinese Application Serial No. 201180055029.4, Response filed Nov. 14, 2014 to Office Action mailed Jul. 2, 2014”, w/English Claims, 23 pgs.
“Chinese Application Serial No. 201180055630.3, Office Action mailed Dec. 22, 2014”, 10 pgs.
“Chinese Application Serial No. 201180055792.7, Office Action mailed Dec. 22, 2014”, 10 pgs.
“Chinese Application Serial No. 201180055794.6, Office Action mailed Dec. 17, 2014”, with English translation of claims, 9 pgs.
“Chinese Application Serial No. 201380007588.7, Response filed Oct. 24, 2014”, with English translation, 3 pgs.
“Chinese Application Serial No. 201380007615.0, Response filed Oct. 24, 2014”, with English translation, 3 pgs.
“European Application Serial No. 11826071.0, Examination Notification Art. 94(3) mailed Dec. 11, 2014”, 4 pgs.
“European Application Serial No. 11827384.6, Extended European Search Report mailed Nov. 12, 2014”, 6 pgs.
“U.S. Appl. No. 13/363,537, Notice of Allowance mailed Nov. 7, 2014”, 5 pgs.
“U.S. Appl. No. 13/821,586, Non Final Office Action mailed Jan. 15, 2015”, 8 pgs.
“U.S. Appl. No. 13/821,586, Response filed Nov. 24, 2014 to Restriction Requirement mailed Sep. 22, 2014”, 6 pgs.
“U.S. Appl. No. 13/821,589, Response filed Nov. 10, 2014 to Non Final Office Action mailed Jul. 9, 2014”, 15 pgs.
“U.S. Appl. No. 13/821,598, Non Final Office Action mailed Nov. 20, 2014”, 9 pgs.
“U.S. Appl. No. 13/821,609, Restriction Requirement mailed Dec. 15, 2014”, 7 pgs.
“U.S. Appl. No. 13/821,612, Notice of Allowance mailed Dec. 10, 2014”, 8 pgs.
“U.S. Appl. No. 13/821,612, Response filed Oct. 23, 2014 to Non Final Office Action mailed Jul. 23, 2014”, 6 pgs.
“U.S. Appl. No. 13/821,853, Response filed Dec. 1, 2014 to Non Final Office Action mailed Jul. 30, 2014”, 10 pgs.
“U.S. Appl. No. 13/860,761, Final Office Action mailed Jan. 15, 2015”, 14 pgs.
“U.S. Appl. No. 13/860,761, Response filed Dec. 19, 2014 to Non Final Office Action mailed Aug. 19, 2014”, 12 pgs.
“U.S. Appl. No. 13/363,537, Examiner Interview Summary mailed Sep. 29, 2014”, 3 pgs.
“U.S. Appl. No. 13/363,537, Response filed Sep. 29, 2014 to Final Office Action mailed Jun. 27, 2014”, 9 pgs.
“U.S. Appl. No. 13/821,586, Restriction Requirement mailed Sep. 22, 2014”, 4 pgs.
“U.S. Appl. No. 13/821,598, Response filed Oct. 15, 2014 to Restriction Requirement mailed Aug. 15, 2014”, 8 pgs.
“Chinese Application Serial No. 201180054796.3, Office Action mailed Sep. 4, 2014”, w/English Claims, 11 pgs.
“Chinese Application Serial No. 201310118845.6, Office Action mailed Sep. 9, 2014”, with English translation of claims, 8 pgs.
“Chinese Application Serial No. 201310119472.4, Office Action mailed Sep. 9, 2014”, w/English Translation, 11 pgs.
“European Application Serial No. 11826043.9, Office Action mailed May 6, 2013”, 2 pgs.
“European Application Serial No. 11826043.9, Response filed Nov. 4, 2013 to Office Action mailed May 6, 2013”, 6 pgs.
“European Application Serial No. 11826067.8, Extended European Search Report mailed Oct. 6, 2014”, 10 pgs.
“European Application Serial No. 11826070.2, Response filed Sep. 19, 2014 to Office Action mailed Mar. 12, 2014”, 11 pgs.
“European Application Serial No. 11826071.0, Response filed Sep. 19, 2014 to Office Action mailed Mar. 12, 2014”, 20 pgs.
“European Application Serial No. 11827347.3, Office Action mailed May 2, 2013”, 6 pgs.
“European Application Serial No. 11827347.3, Response filed Oct. 30, 2013 to Office Action mailed May 2, 2013”, 9 pgs.
“European Application Serial No. 13001695.9, European Search Report mailed Oct. 5, 2014”, 6 pgs.
Dunn, C, et al., “Efficient linearisation of sigma-delta modulators using single-bit dither”, Electronics Letters 31(12), (Jun. 1995), 941-942.
Kulah, Haluk, et al., “Noise Analysis and Characterization of a Sigma-Delta Capacitive Silicon Microaccelerometer”, 12th International Conference on Solid State Sensors, Actuators and Microsystems, (2003), 95-98.
Sherry, Adrian, et al., “AN-609 Application Note: Chopping on Sigma-Delta ADCs”, Analog Devices, [Online]. Retrieved from the Internet: <URL: http://www.analog.com/static/imported-files/application—notes/AN-609.pdf>, (2003), 4 pgs.
Related Publications (1)
Number Date Country
20130192369 A1 Aug 2013 US