1. Field of the Invention
The present invention relates generally to environmental sensors. More particularly, the present invention relates to micro-electromechanical (“MEMS”) humidity sensors, accelerometers, and resistors.
2. Background of the Invention
Embedding miniature sensors in structures, systems, storage and shipping containers, and other items allows the monitoring of those items to determine health, maintenance needs, lifetime, and other item characteristics. In addition, embedded sensors can be used to perform built in test and evaluation of products. Information from miniature accelerometers, temperature sensors, and humidity sensors can tell a user whether or not the item has been dropped sufficiently to cause damage, experienced temperature extremes beyond specifications, or seen humidity levels beyond those that can be handled. A multifunction sensor suite can be used to collect these environmental parameters, which can then be stored and analyzed by a monitoring system, test stand, or other external device.
Current embedded sensor systems that perform this type of monitoring typically use sets of discrete sensor devices on a printed circuit board to form the sensor suite. The devices are typically individually packaged and interconnected to external electronics using printed circuit board traces. However, this approach limits the miniaturization of the sensor suite. The individual packages take up a lot of space, as do the relatively large circuit traces on a printed circuit board. Monolithic integration of sensors allows size reductions by removing the need for individual packaging for each sensor, as well as utilizing finer electrical interconnects.
Most of the previous work on monolithically integrated sensors has focused on combining two sensor types onto the same chip. Typically, both an accelerometer and a temperature sensor, or both a temperature sensor and humidity sensor, may be monolithically integrated, but not all three. A number of designs and fabrication processes have been employed to perform the integration of two sensors. However, integrating all three sensing functions of accelerometers, temperature sensors, and humidity sensors (or integrating the two sensing functions of accelerometers and humidity sensors) is much more difficult. Integration challenges lie in the sensor design, sensor fabrication, and sensor packaging.
The challenges are due to the sensor devices having substantially different functionality. In particular, the accelerometer requires a suspended inertial mass whereas a humidity sensor requires a material or structure that changes depending on humidity levels. These features often require widely different microfabrication approaches and techniques. Furthermore, a fundamental difference between accelerometers, temperature sensors, and humidity sensors is that the accelerometers and temperature sensors do not need to be exposed to the ambient air or gas. In contrast, humidity sensors need to be exposed to the external environment, as do chemical and biological sensors as well. Integrating exposed sensors and sensors that should not be exposed is difficult from a packaging perspective.
As embedded sensor systems are miniaturized and incorporated into applications, the requirement to use integrated sensor suites becomes more important. It would therefore be desirable to combine accelerometers, temperature sensors, and humidity sensors in a small form factor.
It is therefore an object of the present invention to provide multiple MEMS sensors on one chip for embedded sensing systems through a new sensor fabrication process, and associated sensor designs. The present invention achieves this goal by fabricating on a common substrate up to three different types of MEMS sensors. The three types of sensors are a three-axis accelerometer, a temperature sensor, and a humidity sensor. The accelerometer consists of a proof mass, suspension system, anchors, and capacitive position sensors. An external acceleration moves the proof mass against the suspension, thereby changing the capacitance of the position sensors. The temperature sensor consists of a doped silicon resistor with a resistance that is sensitive to temperature. Temperature changes will modify the resistance of the structure, which can then be measured by external circuitry. The humidity sensor consists of a humidity sensitive polymer layer sandwiched between two parallel-plate electrodes. Varying levels of humidity will alter the volume and dielectric constant of the polymer layer, which is then read by placing a modulated voltage across the electrodes. These three sensors are integrated on a common substrate and can be placed in a package that leaves the humidity sensor exposed to the environment through a filter structure.
For purposes of summarizing the invention, certain aspects, advantages, and novel features of the invention have been described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any one particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
These and other embodiments of the present invention will also become readily apparent to those skilled in the art from the following detailed description of the embodiments having reference to the attached figures, the invention not being limited to any particular embodiment(s) disclosed.
Repeat use of reference characters throughout the present specification and appended drawings is intended to represent the same or analogous features or elements of the invention
The present invention and its advantages are best understood by referring to the drawings. The elements of the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the invention.
The illustrated embodiment of the invention is fabricated in a thick layer of silicon or other conductor material. Within this thick layer of material, the proof masses, flexures, capacitive position sensors, isolated resistors, humidity sensitive capacitors, and multiple anchors and pads are fabricated.
The Accelerometer
With reference to
F=m*a,
where F is the inertial force, m is the mass of the proof mass, and a is the applied acceleration.
The stiffness of the suspension provides a force against the inertial force. The stiffness in each axis of the device is given by:
where k is the entire suspension stiffness, kb is the stiffness of one beam in the suspension, E is the Young's modulus of the material the device is made of, wb is the width 66 of a beam in the suspension, lb is the length 65 of a beam in the suspension, and t is the thickness of the material.
The distance the proof mass will move under the applied acceleration is given by:
The capacitive position sensor capacitance will change with deflection of the proof mass. The capacitance change is given by:
where C is the comb-drive capacitance, ∈o is the permittivity of free space, N is the number of fingers in the comb-drive, t is the thickness of the structure, lo is the initial overlap 67 of the fingers, y is the amount of deflection, and go is the gap 68 between fingers in the comb-drive. Typical capacitive measurement circuits can measure capacitance changes on the order of 10−18 Farads.
The Temperature Sensor
where Ro is the resistance at ambient temperature, ρ is the material resistivity, t is the thickness of the material, w is the width 70 of the resistor, and L is the length of the resistor (i.e., the total length of all of the segments of length Lo 71).
For a temperature sensitive resistor, the resistance as a function of temperature is given by:
R=Ro*(1+α(T−To)),
where R is the resistance at temperature, T, Ro is the resistance at ambient temperature, α is the temperature coefficient of the resistor material, and To is ambient temperature. Typical resistance measurement circuits can determine milliOhm changes in resistance.
The Humidity Sensor
For the humidity sensor capacitor, the nominal capacitance depends on the area of the capacitor, A, the thickness of the dielectric layer, d, the permittivity of free space, ∈o, and the nominal relative permittivity of the dielectric between the electrodes, ∈r, and is given approximately by:
In the presence of humidity, the polymer layer will absorb water vapor. The dielectric constant of water is approximately ∈w=80, while that of the polymer layer is approximately ∈p=3.5. This substantial difference in dielectric constant results in a change to the capacitance of the structure when in the presence of humidity. In the presence of humidity, the relative permittivity of the dielectric between the electrodes is given by a weighted average of the relative permittivities of the constituents:
∈r=fw*∈w+fp*∈p,
where fw and fp are the volume fraction of each component. Furthermore, in general:
1=fw+fp,
and therefore
∈r=∈p+fw*(∈w−∈p),
and
Therefore, the capacitance of the structure will be linear with the volume fraction absorption of water into the polymer. For the polymer used in one embodiment (PI2723 polyimide), the volume fraction absorption of water is 4% at 100% relative humidity, and 0% relative humidity, yielding an absorption of 0.04% per 1% RH. Other types of polymers could be used for the humidity sensitive layer of the capacitor depending upon the amount of water absorption that is desired. As can be seen from the above equations, the thickness of the layer of humidity sensitive polymer will vary depending upon the absorption rate of the polymer selected.
The Fabrication Technique
Referring to
The areas on the wafer 50 in which the accelerometer 1, temperature sensor 2 and humidity sensor 3 will be fabricated are shown in
After completing the humidity sensor, a coating of silicon nitride 60 is deposited and patterned to completely encapsulate all exposed metal, as shown in
As illustrated in
Referring to
Although the process discussed above incorporated one accelerometer, one resistor and one humidity sensor, any combinations of the three sensors on one chip that includes at least an accelerometer and a humidity sensor on one chip would be within the scope of the present invention.
The sensor suite is connected to external electronics well known in the art of sensor systems that provide an oscillator that produces a modulation signal for monitoring the capacitors, a demodulator for detecting the capacitance-induced modulation of that signal, a current source to run through the thermistor, and amplifiers and filters to condition the signal. The electronics can be integrated in an application specific integrated circuit for further miniaturization.
Using typical capacitance and resistance measurement circuits capable of monitoring changes in capacitance on the order of 10−18 Farads and changes in resistance on the order of milliOhms, the ranges and resolutions for the sensors given the specific set of design parameters are shown in Table 1 below.
The initial intent of this invention was to miniaturize sensing devices in multifunctional embedded data acquisition systems, diagnostic devices, and test & evaluation systems. However, the device could also be used in standalone applications where the sensor suite is connected to an RFID tag or other transmitter for remote determination of the environment seen by shipping containers and products.
Although the current embodiment and some other potential embodiments and forms of this invention have been illustrated, it is apparent that other various modifications and embodiments of the invention can be made by those skilled in the art without departing from the scope and spirit of the present invention. For example, alternative designs of the accelerometer may be utilized including single axis versions such as the embodiment shown in
This application is a divisional of U.S. patent application Ser. No. 11/251,740, filed Oct. 17, 2005, both of which claim priority to Provisional Patent Application U.S. Ser. No. 60/619,421, entitled “MEMS Sensor Suite on a Chip”, filed on Oct. 15, 2004. Both Parent application Ser. No. 11/251,740 and Provisional Patent Application U.S. Ser. No. 60/619,421 are fully incorporated herein by reference.
This invention was made with Government support under contract number DAAE30-03-C-1076, awarded by the United States Army. The Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
4114450 | Shulman et al. | Sep 1978 | A |
4670092 | Motamedi | Jun 1987 | A |
5275055 | Zook et al. | Jan 1994 | A |
5315874 | Petrovich et al. | May 1994 | A |
5407730 | Imanaka | Apr 1995 | A |
5444637 | Smesny et al. | Aug 1995 | A |
5659302 | Cordier | Aug 1997 | A |
5721162 | Schubert et al. | Feb 1998 | A |
5754449 | Hoshal et al. | May 1998 | A |
5867809 | Soga et al. | Feb 1999 | A |
6140144 | Najafi et al. | Oct 2000 | A |
6401545 | Monk et al. | Jun 2002 | B1 |
6591678 | Sakai | Jul 2003 | B2 |
6619692 | Van Wynsberghe et al. | Sep 2003 | B2 |
6635509 | Ouellet | Oct 2003 | B1 |
6775624 | Storino | Aug 2004 | B2 |
6860939 | Hartzell | Mar 2005 | B2 |
6875671 | Faris | Apr 2005 | B2 |
6889550 | Beitia | May 2005 | B2 |
6889568 | Renken | May 2005 | B2 |
6901971 | Speasl et al. | Jun 2005 | B2 |
6936491 | Partridge et al. | Aug 2005 | B2 |
6948388 | Clayton et al. | Sep 2005 | B1 |
6956268 | Faris | Oct 2005 | B2 |
6988399 | Watanabe et al. | Jan 2006 | B1 |
7045878 | Faris | May 2006 | B2 |
7081657 | Faris | Jul 2006 | B2 |
7193290 | Benzel et al. | Mar 2007 | B2 |
7211909 | Schindler | May 2007 | B2 |
7214625 | Asami et al. | May 2007 | B2 |
7217588 | Hartzell et al. | May 2007 | B2 |
7218938 | Lau et al. | May 2007 | B1 |
7223624 | Wu et al. | May 2007 | B2 |
7318349 | Vaganov et al. | Jan 2008 | B2 |
7368312 | Kranz et al. | May 2008 | B1 |
7425749 | Hartzell et al. | Sep 2008 | B2 |
20050172717 | Wu et al. | Aug 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20080163687 A1 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
60619421 | Oct 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11251740 | Oct 2005 | US |
Child | 12051905 | US |