The present invention relates to the preparation of mesenchymal stem cells, which are for the proliferation of viral vectors and viruses, and enable virus production and release timing control such that tumor targeting can be improved and viruses can be mass-produced.
As it was reported that in the case of vesicular stomatitis virus, the rate of reaching a tumor was 0.01% within 24 hours compared to an intravenously administered virus (input virus) [Non-Patent Document 1], and the biggest constraint was the very low efficiency of delivery to a target during intravenous injection of the virus.
Since the majority of mortality in cancer patients is caused by metastatic tumors, it is essential that there is tropism to tumors and a sufficient amount of tumor-killing (oncolytic) virus be delivered to tumors relative to the administered virus.
However, upon intravascular injection, most viruses are absorbed by Kupffer cells in the liver, rapidly cleared by mechanical deposition, easily destroyed by intravascular virus-neutralizing antibodies and complements, and further, there is a problem in that the proportion of intravascular viruses released at tumor sites is considerably low. Due to these problems, in particular, the introduction of an adenovirus alone by intravenous injection could not be expected to be effective.
Solutions to the above problems include genetic modification of viruses, the introduction of nanotechnology, the use of mesenchymal stem cells with tropism to tumor sites, and the like. In particular, around 2010, research had been conducted on tumor-tropic cells such as mesenchymal stem cells [Non-Patent Document 2]. However, although mesenchymal stem cells (MSCs) have many advantages in ethical and technical convenience, low immunogenicity, and genetic stability, problems of decreases in adenovirus infection rate and replication rate for MSCs have emerged.
In order to become a carrier and amplifier of an oncolytic adenovirus, infection and replication with respect to MSCs need to be maintained at a certain level or higher, but these problems, the present inventors prepared a genetically modified MSC to get a patent registration in Korea [Patent Document 2]. However, it was confirmed that passage extension was not easy for these MSCs, and the state of a cell line deteriorated as the passage number increased.
In addition, Non-Patent Document 3 confirmed that the intravascular delivery of MSCs for the delivery of oncolytic viruses is accessible for treating multiple brain tumors, but there are problems such as the tumor growth potential of MSCs.
Meanwhile, a technique of constructing a platform that temporarily releases a virus whose production has increased at desired time points after the virus has migrated to tumors has been reported [Non-Patent Document 4]. When an MSC is used as a viral vector, carrier cells (MSCs) loaded with genes that induce cell death are quickly lysed before reaching a tumor site to release the virus, so the technique raised various problems which may be caused by the release of the virus, above all, safety problems, and the like.
Therefore, in reality, most deaths from cancer are caused by recurrence and metastasis, and there is a need for a technique capable of overcoming the major obstacles which have not yet been solved in the treatment of tumors with oncolytic viruses.
Thus, the present inventors have conducted studies and made efforts to solve the above-described problems, and as a result, developed mesenchymal stem cells capable of controlling the timing of virus production and release to improve the tumor targeting of mesenchymal stem cells for the proliferation of viral vectors and viruses and to enable the mass production of viruses, thereby completing the present invention.
Accordingly, an object of the present invention is to provide mesenchymal stem cells for delivering an oncolytic virus, having improved tumor-targeting ability, into which a glucose regulated protein 78 (GRP78) gene is introduced.
Further, another object of the present invention is to provide mesenchymal stem cells for delivering an oncolytic virus into which an E1B55K gene is introduced such that the expression thereof is induced by an expression inducer.
In addition, still another object of the present invention is to provide mesenchymal stem cells for delivering an oncolytic virus, including a glucose regulated protein 78 (GR-P78) gene and an E1B55K, in which the E1B55K is expressed by an expression inducer.
Furthermore, yet another object of the present invention is to provide a composition for delivering an anticancer gene, including the mesenchymal stem cells and the oncolytic virus.
Further, yet another object of the present invention is to provide an anticancer pharmaceutical composition including the mesenchymal stem cells and the oncolytic virus.
In addition, yet another object of the present invention is to provide a composition for diagnosing cancer, including the mesenchymal stem cells and the oncolytic virus.
Furthermore, yet another object of the present invention is to provide a method for treating cancer, the method including: administering a therapeutically effective amount of a pharmaceutical composition including the mesenchymal stem cells and the oncolytic virus to a subject.
The three major difficulties posed by tumor treatment methods by a virus alone are as follows.
First, destruction by circulating antiviral antibodies against an oncolytic adenovirus, second, non-specific adsorption by other non-tumor tissues such as liver and spleen, and third, viral outflow from blood vessels to tumor sites rarely occurs.
In order to overcome these fundamental problems of virotherapy, mesenchymal stem cells were used as a cell carrier to facilitate the systemic blood transport of oncolytic viruses, and in addition to virus delivery, a genetically modified mesenchymal stem cell line (MSC) was developed for effective anti-tumor action caused by a large amount of virus produced during migration to a target tumor site.
The present invention relates to the preparation of mesenchymal stem cells, which are for the proliferation of viral vectors and viruses, and enable virus production and release timing control such that tumor targeting can be improved and viruses can be mass-produced.
Since the majority of mortality in cancer patients is due to metastatic tumors, the migration to tumors relative to the administered virus and the existing adenoviral replication rate reduction in MSCs were remarkably improved such that a sufficient amount of an oncolytic virus could be delivered to tumors, and simultaneously, MSCs with improved tumor targeting were developed.
The MSCs according to the present invention can achieve innovative improvements in stability and anticancer efficacy while minimizing side effects caused by a remarkable improvement in tumor targeting and simultaneously a remarkable increase in infectious virus particle/virus particle (IVP/VP) using MSCs as virus production factories with efficiencies comparable to existing virus-producing cell lines. That is, it is possible to simultaneously achieve the efficacy maximization and toxicity minimization of MSCs loaded with an oncolytic virus by solving the most difficult problems of virus-based anticancer drugs, such as tumorigenesis, tumor tropism, tumor migration ability, and control of virus production/release at an appropriate time point.
Hereinafter, the present invention will be described in more detail.
The present invention includes mesenchymal stem cells for delivering an oncolytic virus into which a human glucose regulated protein 78 (GRP78) gene (GenBank_NM_005347) is introduced.
Further, the present invention provides mesenchymal stem cells for delivering an oncolytic virus with improved tumor-targeting ability by introducing the GIRP78 gene into mesenchymal stem cells used as a viral vector.
The GRP78 gene is a glucose regulated protein 78 gene, whose role of increasing cell infiltration by increasing cell motility is already known, and its gene sequence is as shown in GenBank NM_005347 SEQ NO. I (human). In the present invention, a tumor homing marker serves to improve tumor targeting ability.
In the present invention, it was confirmed that the tumor tropism was improved by the GRP78 gene, and in particular, the virus was delivered to tumor tissue sites without adsorption to organs other than tumors.
Although the passage extension in the case of human mesenchymal stem cells in order to facilitate the introduction of such a specific gene is difficult, a telomerase reverse transcriptase (TERT) gene, which induces cell proliferation, may be additionally introduced to overcome this difficulty.
The TERT gene is a telomerase reverse transcriptase gene, and its gene sequence is as shown in GenBank NM_198253, SEQ ID NO: 2 (human).
In the present invention, an MSC-TERT-GRP78 cell line was established, and the improvement in the tumor targeting of mesenchymal stem cells for the proliferation of viral vectors and viruses was confirmed. Therefore, the mesenchynmal stem cells may be used for both tumor diagnosis and treatment,
In addition, the present invention provides mesenchymal stem cells for delivering an oncolytic virus into which an E1B55K gene is introduced such that the expression thereof is induced by an expression inducer.
The E1B55K gene is a viral gene encoding the E1B55K protein that is expressed at the early stage in the life of an adenovirus. The gene sequence is as shown in GenBank AC_000008, SEQ ID NO: 3. (The underlined a in the first line was originally g, but the KpnI site is removed by substitution. The underlined t in the 14th line is one in which a was originally substituted with t to remove the HindIII site.)
The present inventors established a human MSC-CAR-E1B55K cell line from bone marrow-derived human MSCs that have already been filed (Patent Document 1), and confirmed an increase in virus production, but confirmed that passage extension was not easy and the condition of cell lines deteriorates as the passage number increased, and confirmed that animal experiments and master cell banking were impossible for this reason, and it took a lot of time to figure out the cause. In particular, a new function of E1B55K was confirmed. This is the fact that E1B55K not only induces an increase in viral proliferation, but also induces a decrease in viability of cell lines at the same time.
The increase in tumorigenic potential by the TERT gene, which was inevitably introduced for mass production of MSC cell lines, could provide a solution by determining, for the first time, that E1B55K induces not only an increase in viral replication, but also an overall decrease in viability of MSC cells. That is, the time difference induction of the expression time point of the E1B55K enabled the passage extension of MSCs, thereby enabling mass production through cell banking, and at the same time, fundamentally blocking the tumorigenesis of MSCs.
In the examples, the Tet-on system was applied in order to induce the expression time point of the E1B55K gene with a time difference, that is, to allow for expression after introduction of mesenchymal stem cells into the body, but any other time difference induction system is also possible. Furthermore, an expression inducer is preferably doxycycline, tetracycline, or the like.
In the present invention, an MSC-TERT-tetoneE1B55K cell line was established, and E1B55K was expressed (oncolysis) at desired time points through a time difference to fundamentally block the mass production of viruses and the tumorigenesis of MSCs.
Further, the present invention includes mesenchymal stem cells for delivering an oncolytic virus, including a glucose regulated protein 78 (GRP78) gene and an E1B55K, wherein the E1B55K is expressed by an expression inducer.
In the present invention, an MSC-TERT-tetoneE1B55K-GRP78 cell line was established, and it was confirmed that it is possible to control virus production and release timing such that tumor targeting can be improved and viruses can be mass-produced.
The mesenchymal stem cell line used in the present invention is preferably human-derived. The mesenchymal stem cell line is preferably derived from bone marrow, cord blood or fat.
The oncolytic virus used in the present invention may be an oncolytic adenovirus, an oncolytic adeno-associated virus (AAV), an oncolytic retrovirus, an oncolytic lentivirus, an oncolytic herpes simplex virus or an oncolytic vaccinia virus.
In addition, the oncolytic adenovirus may be an oncolytic adenovirus described in Korean Patent Application No. 2016-0166171 developed by the present inventors.
The present invention also includes a composition for delivering an anticancer gene, including the mesenchymal stem cells for delivering an oncolytic virus and the oncolytic virus.
The composition for delivering a gene of the present invention may be for systemic administration.
Stem cells (Ad-MSCs) loaded with the virus of the present invention, in addition to having cancer-specific characteristics, have a low or no immune response, and thus, can be systemically administered, and are highly targeted to tumor cells, have an effect of not inducing toxicity, and thus can remarkably enhance gene delivery efficiency.
The mesenchymal stem cells may be isolated from bone marrow, cord blood, fat, and the like, and allogeneic mesenchymal stem cells may be used using the patient's own or blood bank databases. Therefore, when the adenovirus-loaded stem cells of the present invention are used as a gene carrier, not only self-treatment but also allogeneic treatment is possible, so the unit cost of gene therapy may be further reduced.
Methods for introducing the adenovirus including the gene of the present invention into mesenchymal stem cells may be carried out by various methods known in the art. Specifically, the gene may be introduced by a virus infection method known in the art.
As used herein, the term “anticancer pharmaceutical composition” refers to a “pharmaceutical composition for use in treating cancer”.
Since the mesenchymal stem cells included as an active ingredient in the anticancer pharmaceutical composition of the present invention are the same as the mesenchymal stem cells of the present invention described above, the detailed description on mesenchymal stem cells is equally applied to the compositions of the present invention. Therefore, the description on common matters is omitted to avoid undue complication due to unnecessary repeated descriptions of the present specification.
Since the oncolytic adenovirus included in the compositions of the present invention exhibits killing efficacy against various tumor cells as described above, the pharmaceutical composition of the present invention may be used for the treatment of cancer such as gastric cancer, lung cancer, breast cancer, ovarian cancer, liver cancer, bronchial cancer, nasopharyngeal cancer, laryngeal cancer, pancreatic cancer, biliary tract cancer, bladder cancer, colorectal cancer, colon cancer, cervical cancer, brain cancer, prostate cancer, bone cancer, head and neck cancer, skin cancer, kidney cancer, polyploid carcinoma, thyroid cancer, parathyroid cancer or ureteral cancer. As used herein, the term “treatment” includes: (i) prevention of tumor cell formation; (ii) inhibition of tumor-related diseases or disorders upon removal of tumor cells; and (iii) relief of tumor-related diseases or disorders upon removal of tumor cells. Therefore, as used herein, the term “therapeutically effective amount” refers to an amount sufficient to achieve the aforementioned pharmacological effect.
A pharmaceutically acceptable carrier included in the composition of the present invention is a pharmaceutically acceptable carrier typically used in formulation, and includes lactose, dextrose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methyl hydroxybenzoate, propyl hydroxybenzoate, talc, magnesium stearate, mineral oil, and the like, but is not limited thereto.
The pharmaceutical composition of the present invention may additionally include a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifier, a suspending agent, a preservative, and the like, in addition to the aforementioned ingredients.
The pharmaceutical composition of the present invention is preferably parenterally administered, and may be administered, for example, using intravenous administration, intraperitoneal administration, intramuscular administration, subcutaneous administration or topical administration. The pharmaceutical composition of the present invention is administered intraperitoneally to treat ovarian cancer and administered through the hepatic portal vein to treat liver cancer, by an injection method, and in the case of liver cancer, melanoma and breast cancer, the pharmaceutical composition may be administered by direct injection into a tumor mass, and in the case of colon cancer, the pharmaceutical composition may be administered by direct injection into an enema, and in the case of bladder cancer, the pharmaceutical composition may be administered by direct injection into a catheter.
A suitable administration amount of the pharmaceutical composition of the present invention may vary depending on factors, such as formulation method, administration method, age, body weight, sex or disease condition of a patient, diet, administration time, administration route, excretion rate and response sensitivity, and a doctor with ordinary skill may readily determine and prescribe an effective dosage for a desired treatment. In general, the pharmaceutical composition of the present invention includes 1×105 to 1×1015 pfu/ml of oncolytic virus, and typically, the amount of virus that infects MSCs (based on 1×106 cells) at one injection is 1×107 to 1×108 pfu.
The pharmaceutical composition of the present invention may be prepared in the form of a unit dose or by being contained in a multi-dose container by being formulated using a pharmaceutically acceptable carrier and/or excipient according to a method that can be readily implemented by a person with ordinary skill in the art to which the present invention pertains. In this case, the formulation may also be in the form of a solution in an oil or aqueous medium, a suspension or in the form of an emulsion, an extract, a powder, a granule, a tablet or a capsule, and the pharmaceutical composition of the present invention may additionally include a dispersant or a stabilizer.
The pharmaceutical composition of the present invention may be used as a single therapy, but may also be used in combination with a common type of chemotherapy or radiation therapy, and when such combination therapy is implemented, cancer may be more effectively treated. A chemotherapeutic agent that can be used together with the composition of the present invention includes gemcitabine, sorafenib, cisplatin, carboplatin, procarbazine, mechlorethamine, cyclophosphamide, ifosfamide, melphalan, chlorambucil, bisulfan, nitrosourea, dactinomycin, daunorubicin, doxorubicin, bleomycin, plicomycin, mitomycin, etoposide, tamoxifen, taxol, transplatinum, 5-fluorouracil, vincristin, vinblastin, methotrexate, and the like. A radiation therapy that can be used together with the composition of the present invention includes X-ray radiation, γ-ray radiation, and the like.
The mesenchymal stem cells according to the present invention may exhibit anticancer effects against gastric cancer, lung cancer, breast cancer, ovarian cancer, liver cancer, bronchial cancer, nasopharyngeal cancer, laryngeal cancer, pancreatic cancer, biliary tract cancer, bladder cancer, colorectal cancer, colon cancer, cervical cancer, brain cancer, prostate cancer, bone cancer, head and neck cancer, skin cancer, kidney cancer, polyploid carcinoma, thyroid cancer, parathyroid cancer or ureteral cancer.
Furthermore, the present invention may include a composition for diagnosing cancer, including a virus/stem cell complex including the mesenchymal stem cells and the oncolytic virus.
As used herein, the term “diagnosis” means confirming the presence or characteristics of the pathological state. Diagnosis in the present invention is to confirm the presence or absence of cancer and its progression.
The virus/stem cell complex refers to a stem cell infected or loaded with a virus.
The virus/stem cell complex may be combined with a luminescent material, a fluorophore, or an isotope to diagnose cancer through imaging.
The luminescent material refers to any material that emits light.
In the examples of the present invention, it was confirmed that after MSCs were infected with a luciferase-expressing adenovirus, luminescence was captured as images by intraperitoneally administering luciferin to mice.
The fluorophore is preferably a phosphor, a fluorescent protein, or other imaging materials capable of binding to the peptide that specifically binds to NRP1, but is not limited thereto.
The fluorophore is preferably fluorescein, BODYPY, tertramethylrhodamine, Alexa, Cyanine, allopicocyanine or derivatives thereof, but is not limited thereto.
The fluorescent protein is preferably Dronpa protein, fluorescent chromogenic gene (EGFP), red fluorescent protein (DsRFP), Cy5.5, which is a cyanine fluorophore exhibiting near-infrared fluorescence, or other fluorescent proteins, but is not limited thereto. Other imaging materials are preferably iron oxide, radioactive isotopes, and the like, but are not limited thereto, and may be applied to imaging equipment such as MR and PET.
The present invention also includes a method for treating cancer, the method including: administering a therapeutically effective amount of a pharmaceutical composition including the mesenchymal stem cells and the oncolytic virus to a subject.
All of the above-described contents in relation to the method for treating cancer can be applied to the above-described mesenchymal stem cells of the present invention and the composition including the same as they are or applied correspondingly.
The cancer may be specifically gastric cancer, lung cancer, breast cancer, ovarian cancer, liver cancer, bronchial cancer, nasopharyngeal cancer, laryngeal cancer, pancreatic cancer, biliary tract cancer, bladder cancer, colorectal cancer, colon cancer, cervical cancer, brain cancer, prostate cancer, bone cancer, head and neck cancer, skin cancer, kidney cancer, polyploid carcinoma, thyroid cancer, parathyroid cancer or ureteral cancer, but is not limited thereto.
As used herein, the term “subject” refers to a mammal that is the subject of treatment, observation or experimentation, preferably a human.
As used herein, the term “therapeutically effective amount” refers to an amount of active ingredient or pharmaceutical composition which induces a biological or medical response in a tissue system, animal or human considered by a researcher, veterinarian, physician or other clinicians, and this includes an amount that induces alleviation of the symptoms of a disease or disorder being treated. It is obvious to those skilled in the art that the therapeutically effective amount and frequency of administration of the active ingredient of the present invention will vary according to the desired effect. Therefore, the optimal dosage to be administered can be easily determined by those skilled in the art, and the range thereof varies according to the type of disease, the severity of disease, the content of active ingredient and other ingredients contained in the composition, the type of formulation, the body weight, age, sex, health condition, and diet of a patient, the administration time, the administration method, the excretion rate, and the like. In the treatment method of the present invention, 1×105 to 1×1015 pfu/ml of oncolytic virus is included, and typically, the amount of virus that infects MSCs (based on 1×106 cells) at one injection is 1×107 to 1×108 pfu.
In the treatment method of the present invention, the pharmaceutical composition of the present invention may be administered orally or parenterally (for example, applied intravenously, subcutaneously, intraperitoneally or topically) according to the desired method.
Hereinafter, the present invention will be described in more detail through the Examples according to the present invention, but the scope of the present invention is not limited by the Examples suggested below.
YSC-02 was constructed as described in Preparation Example 19 of Korean Patent Application No. 2016-0166171.
dl324-3484-H1-shHSP27-U6-shTGFβ1 was constructed as described in Preparation Example 9 of Korean Patent Application No. 2016-0166171.
1) Confirmation of Human Adipose MSC-TERT Single Clone Expression
A TERT gene was introduced to induce the expression of a specific gene that overcomes the short supply and lifespan of MSCs. In the case of human MSCs, passage extension is not easy. To overcome this problem, a telomerase reverse transcriptase (TERT) gene, which induces cell proliferation, was inserted and clones highly expressing TERT were selected.
The method for introducing the TERT gene is as follows.
A retrovirus vector pBABE-hygro-hTERT was purchased from Addgene, and cell clones resistant to 200 μg/ml hygromycin B Gold were obtained by infecting human adipose MSCs with a filtered medium obtained by transfecting platinum-A packaging cells (Cell Biolabs) with 1 μg of the retrovirus vector pBABE-hygro-hTERT, and then screened and selected as in
2) Confirmation of Passage Extension
3) Confirmation of Adenovirus Infection Ability
A TERT-expressing MSC clone (No. 22) was infected with a replication-incompetent adenovirus expressing red fluorescence protein (RFP) at 20 MOI and 100 MOI, and 48 hours later, fluorescence-stained cells were observed under a fluorescence microscope. As a result of comparison with a wild type MSC, which is a control, it was confirmed that the infection rate of human MSC-TERT was improved compared to the control, and at least a two-fold increase in infection rate at (20 MOI) and a 90% or more infection rate at 100 MOI were met (
When MSCs are to be used as a cell line for clinical mass production, master cell banking needs to be conducted. For this purpose, it is essential that the passage extension of MSCs be possible above all else. However, on the other hand, a principle that extension induction must not contribute to an increase in turmorigenic potential also needs to be maintained. Although the dilemma of simultaneously satisfying these two conditions was considered impossible at first, a solution was suggested for the first time in the present inventor's laboratory while constructing a stable MSC cell line in which CAR and E1B55K genes were introduced into MSCs. A human MSC-CAR-E1B55K cell line was established from bone marrow-derived human MSCs that had been filed, and an increased virus production was confirmed [Patent Document 1]. However, it was confirmed several times that passage extension was not easy and the condition of the cell line deteriorated as the passage number increased. Accordingly, it was confirmed that in the case of animal experiments, master cell banking was impossible, and as a result of finding out the cause, it was confirmed that E1B55K induces increased viral proliferation and reduced viability of cell lines at the same time (
The experimental process for this is as follows.
First, E155K was cloned into pcDNA3.1 hygro (+). To extract an E1B55K gene from pBSK-3484 including the E1B55K gene, after PCR (initial denaturing: 95° C. for 2 minutes, denaturing: 95° C. for 30 seconds, annealing: 58° C. for 30 seconds, extension: 72° C. for 2 minutes; 30 cycles) and BamHI/NotI digestion with primers each having BamHI and NotI (forward, 5′-GCGGATCCATGGAGCGAAGAAACCCATICT-3: SEQ ID NO: 4, reverse, 5′-GAG CGGCCGCTCAATCTGTATCTTCATCGCT-3′: SEQ ID NO: 5), a plasmid was constructed by introducing the E1B55K into pcDNA3.1 hygro (+) (Invitrogen), which had been previously digested with BanHI/NotI.
It was confirmed by transfecting the plasmid expressing E1B55K into bone marrow-derived MSCs and adipose-derived MSCs that the cell line long-term expression of E1B55K reduced the viability of the cell line. That is, the accumulation of p53 and the reduction of various survival-related signals were observed.
In order to confirm how the accumulation of p53, reduction of cell survival signals and induction of cell death were caused by E1B55K expression, the following assumption was made. That is, it was known that E1B55K maintains cell survival by well-known p53 degradation in the related art only through a complex with an E4orf6 protein. Therefore, a hypothesis was made, in which when the expression of E1B55K alone is induced in MSC cells, (stoichiometrically) free E1B55K alone acts as a transcriptional activator that promotes p53 transcription to reduce cell viability due to the quantitative comparative advantage of E1B55K over E4orf6, and experiments were carried out as follows.
After the MSC-TERT-tetoneE1B55K cell line was co-transfected with 1 μg of pFlag-C MV2-E4orf6 subcloned with a pGL2-p53 promoter (pGL2-356 bp, Addgene) constructed such that a constant portion (−344 to +12) of the p53 promoter was positioned in front of a site where a luciferase coding gene was inserted and the E4orf6 gene or 1 μg of pFlag-CMV2 (Sigma) as a control, luciferase activity with and without doxycycline (1.25 μg/ml for 48 hours) was confirmed by luminescence intensity.
The analytical method used in this case was a Dual-Luciferase Reporter Assay System from Promnega (catalog number #E1910,
E1B55K, whose expression was induced in the MSC-TERT-tetoneE1B55K cell line by doxycycline treatment, was directly or indirectly bound to the p53 promoter to activate transcription, resulting in a 4-fold increase in luminescence intensity due to luciferase activity (
Here, subcloning of the E4orf6 (GenBank AC 000008; also called E434K) gene was performed to transfer the E4orf6 gene from an adenoviral backbone d1324-BstBI into a pFlag-CM V2 vector. For this purpose, an E4orf6 coding gene site was amplified by PCR (initial denaturing: 95° C. for 2 minutes, denaturing: 95° C. for 30 seconds, annealing: 58° C. for 30 seconds, extension: 72° C. for 1 minute and 30 seconds; 30 cycles) in dl324-BstBI using a primer for E4orf6 PCR (forward 5′-GTACAAGCTTATGACTAC GTCCGGCGTTCC-3′ including HindIII: SEQ ID NO: 6 and reverse 5′-CACCTCTAGACTACATGGGGGTAGAGTCAT-3′ including XbaI: SEQ ID NO: 7), and then doubly digested with HindIII/XbaI and ligated to pFlag-C MV2 digested with HindIII and XbaI. 100% matching was confirmed by performing sequencing using CMV30, one of the universal primers from Cosmogenetech Co. Ltd., to confirm whether subcloning was properly performed (
From the above experimental results, the induction of overexpression of E1B55K acts directly or indirectly on the p53 promoter, which is contrary to the main action of E1B55K in adenovirus wild type (forms a complex with E4orf6 to induce degradation of p53 protein), so a new action that induces the accumulation of p53 was discovered through transcriptional induction. In addition, in order to confirm how the increase in MSC cell death and the decrease in viability signal depending on the increase in expression of E1B55K affect the virus production ability in MSCs, it was intended to again confirm whether the virus production ability in MSCs increased by externally supplying E1B55K using an adenoviral vector. For this purpose, a replication-incompetent adenovirus expressing E1B55K was constructed as follows.
1) Construction of Replication-Incompetent Adenovirus (pCA14-E1B55K) Expressing E1B55K
The E1B55K was cloned into pCA14 which is an adenovirus shuttle vector. E1B55K was included in pBSK-3484, and a primer including XbaI and HindIII at both ends thereof (sense 5-TTCAICTAGAATGGAGCGAAGAAACCCATC-3′ (XbaI): SEQ LD NO: 9, antisense 5′-GiACGAAGCTTTCAATCTGTATCTTCATCGC-3 (HindIII): SEQ ID NO: 10) was constructed and amplified by PCR (initial denaturing: 95° C. for 2 minutes, denaturing: 95° C. for 30 seconds, annealing: 58° C. for 30 seconds, extension: 72° C. for 2 minutes; 30 cycles) and ligated into pCA14 (Microbix, Canada) digested in advance with XbaI/HindIII. As a result, it was confirmed that all E11355K PCR fragments were inserted into PCA14 (
It was confirmed that 1, 2, and 3 out of pc14-E1B55K plasmid clones 1, 2, 3, and 4 read in the forward and reverse directions with a primer dedicated to pCA14 sequence analysis (self-constructed forward (hCMV): 5′-GGG AGGTCTATATAAGCAGAGCTCG-3′: SEQ ID NO: 11, reverse (pCA14 SV40): 5-CATGATCGATGCTAG ACGATCCAGA-3: SEQ ID NO: 12) matched, and here,
2) Confirmation of E1B55K Expression in MSC Lysate Infected with Virus Expressing E1B55K
After it was confirmed that the detection of E1B55K by a polyclonal antibody secured by commissioning the construction of a specific antibody against E1B55K for E1B55K expression was not abnormal (
The process of constructing a polyclonal antibody specific to E1B55K is as follows.
First, a peptide sequence located at the N-terminal site of E1B55K (MERRNPSERGVPAGFSGHASVESGC: SEQ ID NO: 13) was synthesized, bovine serum albumin (BSA) was conjugated to an immunogen carrier, and then New Zealand White rabbits were immunized and serum was purified to obtain the polyclonal antibody (GW Vitek, Korea).
3) Comparison of Virus Production According to E1B55K Expression Level in Human Adipose MSC-TERT→Validation of Innovative Expansion of Virus Production Ability of MSCs According to Gene Transfer
First, human adipocyte-derived MSC-TERT was transfected with 1 μg of an E1B55K-expressing plasmid (pcDNA3.1-E1B55K) (
The increase in control of tumorigenic potential by the TERT gene, which was inevitably introduced for mass production of MSC cell lines, could provide a solution by determining, for the first time, that E1B55K induces not only an increase in viral replication, but also an overall decrease in viability of MSC cells. That is, a control technique, in which the time difference induction of the expression time point of the E1B55K gene enabled the passage extension of MSCs, thereby enabling mass production through cell banking, and at the same time, fundamentally blocking the tumorigenesis of MSCs, was developed. It is of great significance that this has provided an innovative turning point for virus/MSC therapeutic agents.
The protocol in
1) Construction of pRetro-X-Tet-one-puro-E1B55K
In order to insert the E1B55K gene into a Retro-X-Tet-one-purovector plasmid, both ends need to have EcoRI and BamHI recognition sites, respectively pCA14-E1B55K was used as a template for the construction of E1B55K having recognition sites, an E1B55K In-fusion EcoRI sense primer is 5′-CCCTCGTAAAGAATTCATGGAGCGAAGAAACCCATCTGAG-3′ (SEQ ID NO: 14), and an E1B55K In-fusion BamHI antisense primer is 5′-GAGGTGGTCTGGATCCTCAATCTGTATCTTCATCGCTAGA-3′ (SEQ ID NO: 15).
PCR conditions are as follows (
After initial denaturing at 95° C. for 2 minutes, 30 cycles of denaturing at 95° C. for 40 seconds, annealing at 61° C. for 40 seconds, and extension at 72° C. for 1 minute and 50 seconds were performed.
A Promega (#M750B) product was used to perform PCR.
After a construct plasmid (sample pRetro-X-Tetone-E1B55K #13 in
The pRetro-X-tetone-puro-E1B55K vector used for construction is shown in
2) Confirmation of pRetro-X-Tetone-Puro-E1B55K Expression
After transfection with the pRetro-X-Tetone-puro-E1B55K plasmid, the expression of E1B55K was confirmed in pRetro-X-tetone-puro-E1B55K according to the amount of doxycycline during treatment with doxycycline. When a tet one system was introduced to investigate whether the time difference expression regulation of E1B55K could be controlled with the tet one system, it was confirmed that no E1B55K expression occurred at all before the treatment with doxycycline (
The time difference virus release was secondarily verified as follows.
After human adipose MSC-TERT was transfected with a pRetro-tetone-E1B55K plasmid (4 hours) and then infected with an oncolytic adenovirus expressing a red florescence protein (REP) (4 hours), virus production was compared with and without treatment with doxycycline 48 hours later.
As a result, it was confirmed that viral production was clearly increased 10-fold or more upon treatment with doxycycline (
3) Establishment of MSC-TERT-tetoneE1B55K Cell Line
After a gene encoding E1B55K, which is an early region 1B-55 kDa of an adenovirus, was introduced into a Retro-X-Tet-One inducible expression system (TAKARA Bio Inc.), MSC-TERT was infected with the same to secure clones expressing E1B55K in the presence of doxycycline. For this purpose, GP2-293 packaging cells were co-transfected with pRetroX-TetOne-E1B55K and a pAmpho vector encoding the membrane protein (included in the TAKRA kit). After 48 hours, MSC-TERT, which is a target cell, was infected with the filtered retroviral supernatant. All clones selected with puromycin during the culture process were subjected to western blotting again to confirm that the induction of E1B55K expression (
These results indicated that the induction of viral production could be increased at desired time points by regulating the expression time point of E1B55K, which is a loaded gene, according to the treatment with doxycycline. (Since the gene expression of E1B55K must be induced, the virus appears to begin to increase at least 24 hours after treatment with doxycycline.)
4) Realization of Intrinsic Tumorigenesis Control Technique
It was confirmed whether clone 2 or 10 in
As a result, it was confirmed that after 2 weeks of culture with doxycycline treatment (1.25 μg/ml), most of the cells lost their viability (1.25 μg/ml) (
By inducing the additional expression of GRP78 in human adipose MSC-TERT, the expression of tumor tropism-related markers was confirmed.
It was confirmed that the expression of all factors acting at each stage of MSC homing is increased by the increase in GRP78 (
In order to confirm that GRP7S was certainly expressed, an increase in mRNA expression of GRP78 was confirmed by transfecting human MSC-TERT with pcDNA3.1-GRP78 (2 μg) (
1) GRP78 Cloning into pcDNA3.1 Hygro (+)
RNA was extracted from SNU449, a liver cancer cell line with a high expression level of GRP78, with Trizol. The extracted RNA was reverse transcribed using SuperScript™ First-Strand Synthesis System for RT-PCR kit from Invirogen. The primers used to perform PCR were then sequenced by adding an XhoI site in the forward direction and an XbaI site in the reverse direction. PCR (initial denaturing: 95° C. for 2 minutes; denaturing: 95° C. for 40 seconds; annealing: 58° C. for 40 seconds; extension: 72° C. for 2 minutes and 30 seconds; 30 cycles) cloning was performed using Forward (5′-GATTCTCGAGATGAAGCTCTCCCTGG-3′: SEQ ID NO: 16) and Reverse (5′-GGCCTCTAGACTACAATCATCTTTT-3′: SEQ 11) NO: 17) primers. After PCR and digestion with XhoI/XbaI, the backbone pcDNA3.1-hygro vector was also digested with XhoI/XbaI and ligated. Colonies obtained after transformation into bacteria were cultured. Each of the plasmids thus obtained was digested simultaneously with XhoI/XbaI to confirm a size-matched insertion only in plasmid 5 by confirming insertion (
2) GRP78 Cloning into PLNCX Neo
The following procedure was performed to introduce the (GRP78 gene into MSC-TERT or MSC-TERT-tetonE1B55K.
In order to introduce GRP78 into a retroviral vector pLNCXneo, a pcDNA3.1-GRP78 vector was digested with XhoI/PmeI to extract a GRP78 site, and the GRP78 site was ligated and inserted into PLNCXneo previously digested with XhoI/PmeI.
pLNCX neo was originally constructed by increasing the restriction enzyme recognition site from HindIII-HpaI-ClaI, which is a cloning site in existing LNCX, to HindIII-PmII-BstXI-NotI-XhoI-SalI-ApaI-PmeI-HpaI-ClaI (
In this case, a strand sequence is as follows.
To confirm whether LNCXneo-GRP78 was inserted, pLNCXneo (control) and pcDNA3.1-GRP78 (GRUP78 gene-providing plasmid) as controls were digested with HindIII/PmeI, respectively, and the GRP78 fragments derived from linearized PLNTCXneo and pcDNA3.1-GRP78 were ligated and transformed into DH5u competent cells, and then it was confirmed that pLNCXneo-GRP78 candidate constructs (Samples 1 to 24) were cleaved at the same time and inserted into Samples 2, 5,9, 11, 12, 20 and 21 by obtaining plasmids (
3) Construction of MSC-TERT-GRP78 Cell Line
Platinum-A packaging cells (Cell Biolabs) were transfected with a retroviral vector pLNCXneo-GRP78, and after 48 hours, the medium was filtered. Cell clones resistant to G418 (500 μg to 600 μg/ml) were obtained by infecting MSC-TERT with a medium solution containing the retrovirus obtained by filtration, and then screened to select clones 2 and 4 clearly expressing GRP78 and MMP2 (
4) Tumor Targeting of MSCs with Gene Transfer: Confirmation of Conditions to Specifically Reach Only the Tumor Site within Very Short Period of Time
{circle around (1)} (Verification of tumor targeting of MSC-TERT-GRP78
2×106 SNU398 cells (a liver cancer cell line) were subcutaneously transplanted into the shoulder regions of 6-week-old BALB/c thymic nude mice, and 7 days later, 1×106 MSC-TERT-GRP78 cells infected with a replication-incompetent adenovirus expressing firefly luciferase were injected into the tail veins. 150 mg of D-luciferin per kg of mouse was injected intraperitoneally into the mice in order to use an in vivo imaging system (IVIS) device that recognizes luminescence. The biodistribution of MSC-TERT-GRP78 infected with an adenovirus expressing luciferase in vivo was observed 6 hours after injection into the tail vein by imaging using an IVIS Spectrum System (PerkinElmer). A feature of this experiment is that MSC-TERT-GRP78 with GRP78 gene transfer is allowed to form tumors in the shoulder to distinguish them from internal organs such as the liver and lungs in order to accurately distinguish how much tumor migration ability the MSC-TERT-GRP78 has, clearly confirming that the arrival sites of MSC-TERT-GRP78 gathered at tumor tissue sites within a very short time without adsorption to other organs (
{circle around (2)} Verification of Tumor Targeting of Gene-Transferred Final Type MSC-TERT-tetoneE1B55K-GRP78
8×1006 A549 cells (a lung cancer cell line), 2×106 SNU398 cells (a liver cancer cell line) or 2×106 MiaPaCa-2 cells (a pancreatic cancer cell line) were subcutaneously transplanted into the shoulder regions of 6-week-old BALB/c thymic nude mice, and 7 days later, 1×106 MSC-TERT-tetoneE1B55K-GRP78 cells infected with a replication-incompetent adenovirus expressing firefly luciferase were injected into the tail veins. 150 mg of D-luciferin per kg of mouse was injected intraperitoneally into the mice in order to use an IVIS device that recognizes luminescence. The biodistribution of MSCs infected with an adenovirus expressing luciferase in vivo was observed 6 hours or 24 hours later using the IVIS Spectrum System (PerkinElmer).
As a result, similarly to the previous targeting experiment T, tumors were formed on the shoulder side in order to distinguish them from internal organs such as the liver and lungs, thereby clearly confirming that the arrival sites of MSC gathered at tumor tissue sites within a very short time without adsorption to other organs (
Such surprisingly rapid and accurate trafficking of luciferase-expressing MSC-GRP7S to tumors and targeting to various tumor types greatly enhances the possibility of utilizing MSC-GRP78 for tumor diagnosis. In a primary mouse model, solid cancer was artificially transplanted subcutaneously, and the tumor site was confirmed by allowing MSC-GRP7S to migrate, but when there is a tumor in the same manner as in the primary mouse model, even in a metastatic model present in the body, MSC-GRP78 can be delivered to the tumor site to emit light, or tumors can be detected by labeling the tumors with a higher resolution isotope. This can be applied to tumor diagnosis, and it will be possible to construct an OV/MSC complex simultaneously capable of tumor diagnosis and treatment in the long term.
{circle around (3)} Confirmation of Infiltration of Gene-Transferred Final Type MSC-TERT-tetoneE1B55K-GRP78 into Tumors
It was confirmed that the final type of MSC-TERT-tetoneE1B55K-GRP78 reached tumor sites, and the following experiment was performed to confirm whether the MSCs that actually reached the tumor sites infiltrated into tumor tissue.
First, A549 cells were transplanted into the subcutaneous tissue of mice to form tumors. Then, the final type of MSC cells (MSC-TERT-tetoneE1B55K-GRP78) was labeled with a fluorescent cell tracker probe (Invitrogen, C34565) and then injected into the mouse tail vein. At 24 hours, 48 hours and 72 hours after the injection, the tumor tissue was removed and tissue-sectioned, and then the fluorescent site was confirmed under a fluorescence microscope. As shown in
{circle around (4)} Confirmation of Expression of Adenovirus-Related Proteins in Tumor Tissue
Viruses were released from MSC-TERT-tetoneE1B55K-GRP78 that had infiltrated into tumor tissue to infect tumor cells, and the following experiments were performed to confirm whether the virus was replicated and maintained for a certain period of time after virus production.
8×106 A549 cells (a lung cancer cell line) were subcutaneously transplanted into the flank regions of 6-week-old BALD/c thymic nude mice, and 1×106 MSC-TERT-tetoneE1B55K-GRP78 cells infected with an oncolytic adenovirus expressing shHSP27-shTGFβ were injected into the tail veins of each of every 2 mice whose tumor size reached an average of 150 mm3. Then, 3 days later, 1×106 MSC-TERT-tetoneE1B55K-GRP7S cells infected with an oncolytic adenovirus expressing shHSP27-shTGFβ1 were additionally injected. Then, 7 days after the second injection, tumors were removed from the mice in each group, and tumor-sectioned samples were reacted with an adenovirus type 5-specific antibody (Abeam, Cambridge, UK) to perform a DAB coloring reaction with a secondary antibody, and control staining for immunohistochemistry was performed with hematoxylin nuclear stain. In this case, a diet containing doxycycline (625 mg/kg) as feed was fed to all groups.
As a result, adenovirus-specific proteins were confirmed in most confirmed areas (
5) Establishment of Human Adipose MSC-TERT-tetoneE1B55K-GRP78 Cell Line—Confirmation of E1B55K Expression after 1.25 μg/mL Doxycycline Treatment for 48 Hours
After infection with a retroviral soup obtained by co-transfecting GP2-293 packaging cells with pRetroX-TetOne-E1B55K and a pAmpho vector encoding a membrane protein, puromycin selection (0.8 μg/ml to 1.0 μg/ml) was performed, and after infection with a retroviral soup obtained by transfecting platinum-A packaging cells again with a retroviral vector pLNCXneo-GRP7S, G418 selection (500 μg/ml to 600 μg/ml) was performed, and final clones with clear E1B55K and M1P2 protein expression were selected in the presence of doxycycline (1.25 μg/ml) (
In final clone 21, it is shown that the E1B55K induction concentration by doxycycline was effectively and sufficiently induced without any leakage even at a very low concentration, less than 1/10 of the 1.25 μg/ml used (
For the ability of human adipose MSC-TERT-tetoneE1B55K-GRP78 (Clone 21) to produce viruses, after infection with an oncolytic adenovirus expressing shHSP27/shTGFβ1, the increased rate of virus production was confirmed after 48 hours in MSCs during treatment with doxycycline (1.25 μg/ml), and in this case, the difference in virus production according to the expression of the E4orf6 gene was also confirmed. For this experiment, Clone 21 MSCs were transfected with 1 μg of pFlag-CMV2-E4orf6 in which the E4orf6 gene was subcloned or 1 ag of pFlag-CMV2 as a control, and after additional infection with an oncolytic adenovirus expressing shHSP27/shTGFβ1, the cells were treated with doxycycline (1.25 μg/ml for 48 hours), and then the total amount of virus in the harvested soup and remaining cells was determined by titration. As a result, in final clone 21, a nearly 10-fold increase in virus production upon treatment with doxycycline was confirmed, and differences in virus production were observed depending on the presence or absence of transfection with the E4orf6 gene (
6) Comparison of Efficacy Maintenance in Human Adipose MSC-TERT Low Passage and High Passage
It is essential to confirm that MSC efficacy is maintained during mass production of 200 vials or more of master cell bank cell lines. That is, it was confirmed, by western blotting, from samples in which each cell acquired at low passage (p13) and high passage (p23) was lysed whether biomarkers known as markers related to tumor homing, which is an MSC characteristic caused by differences in passage of final MSC-TERT-tetoneE1B55K-GRP78, were maintained.
As a result, it was confirmed that even when the passage was increased to 20, there was no difference in the expression of proteins known as a tumor homing marker (
8×106 A549 cells (a lung cancer cell line) were subcutaneously transplanted into the flanks of 6-weeks-old BALB/c thymic nude mice, and mice with tumors reaching an average size of 150 mm3 were divided into groups of 10 mice each. 1×106 MSC-TERT-tetoneE1B55K-GRP78 cells infected with an oncolytic adenovirus expressing sh-SP27-shTGFβ1 were injected into the mouse tail veins. Then, 3 days later, 1×106 MSC-TERT-tetoneE1B55K-GRP78 cells infected with an oncolytic adenovirus expressing shHSP27-shTGFTβ1 were additionally injected intravenously. As a control, a group transplanted with tumor cells alone (no treat) and a group injected with the final MSC-TERT-tetoneE1B55K-GRP78 (MSC only) were used. In this case, a diet containing doxycycline (625 mg/kg) as feed was fed to all groups.
As a result, it was observed that when an antitumor effect obtained by direct intratumoral injection of the oncolytic virus (Ad-3484-shHSP27-shTGFβ1) (a state in which the growth rate of the tumor size was delayed compared to the control, but the tumor size itself decreased and thus did not regress) was compared, the tumor size was significantly reduced and the tumor almost disappeared within a few days when an oncolytic virus (Ad-3484-shHSβ27-shTGFβ1) in the final MSC-TERT-tetoneE1B55K-GRP78 was injected into the tail veins compared to untreated tumors or the control in which the final type of MSC alone was injected into the tail vein as observed in
After it was confirmed that tumor targeting occurs very efficiently, the copy number of adenoviral genes was measured for each time period for the amount of adenovirus in each major organ including tumors in order to confirm the amount captured in major organs other than tumors (lungs, liver, spleen, and the like), the migration to the tumor site, the elapsed time, and the like in more detail. The viral genomic plasmid DNA was defined as standard known DNA, and confirmed by drawing a standard curve (in the case of the viral DNA of the currently used oncolytic adenovirus, 1 copy is 10 μg).
For this purpose, after infection with a replication-incompetent defective E1B55K virus, a single dose of MSC-TERT-GRP78 (1×106) infected with the YSC-02 oncolytic virus of Reference Example 1 was administered IV through the tail once, and samples were collected by date (day 0, 1, 2, 3, 4, 5, 10, and 15). The collected tissues (tumors, lungs, liver, spleen, kidneys, heart) were immediately stored in liquid nitrogen, and on the day when tissue sampling was completed, genomic DNA was extracted from each tissue under the same conditions. To confirm whether the gene was expressed using the extracted genomic DNA, real-time PCR was performed using primers for the E40RF gene. The primers for screening E40RF used at this time are as follows.
As can be seen in
Number | Date | Country | Kind |
---|---|---|---|
10-2020-0139918 | Oct 2020 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2021/015179 | 10/27/2021 | WO |