Memory storage systems generally utilize latches or shift registers to store binary information. Often, a latch will associate a “1” when the latch experiences a high voltage or a “0” for lower voltages. A sequence of “1”s and “0”s can be arranged to store arbitrary data.
A latch's ability to switch between high and low voltage states affects the speed that a latch can operate. Also, changing between high and low voltages consumes energy. Usually, more energy is consumed when the voltage differential is high. Yet, statistically significant margins are used to differentiate between the high and low voltage states.
The accompanying drawings illustrate various examples of the principles described herein and are a part of the specification. The illustrated examples are merely examples and do not limit the scope of the claims.
Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements.
The present specification describes principles including, for example, a metal-insulator transition (MIT) latch with a first electrode spaced apart from a second electrode. An MIT material is disposed between the two electrodes and may, under some circumstances, electrically connect the electrodes. The MIT material has a negative differential resistance (NDR) characteristic that exhibits a discontinuous resistance change at a threshold voltage or threshold current.
The MIT material may be in either of two independent stable resistance states or phases depending on exposure to a transition temperature as will be discussed in detail below. One resistance phase is a metal phase in which the MIT material exhibits a low resistance similar to metals. The other resistance phase is an insulator phase in which the MIT material exhibits a resistance similar to insulators. Either electrode is electrically connected to an electrical bias source regulated to set a resistance state of the MIT material. Thus, the electrodes can be used to carry a current that heats the MIT material through the transition temperature. So long as the current is flowing and the corresponding increase in temperature applied, the change in the resistance phase of the MIT material is stable.
In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present systems and methods. It will be apparent, however, to one skilled in the art that the present apparatus, systems and methods may be practiced without these specific details. Reference in the specification to “an example” or similar language means that a particular feature, structure, or characteristic described in connection with the example is included in at least that one example, but not necessarily in other examples. The various instances of the phrase “in one example” or similar phrases in various places in the specification are not necessarily all referring to the same example.
The MIT material (104) has an NDR characteristic that results in the MIT material exhibiting discontinuous changes in resistance at specific temperatures achieved at certain voltage or current ranges. The MIT material's characteristics provide unique properties where a voltage or current change may drive the MIT material to transition between resistance phases.
For example, the bias regulator (103) may control the voltage or current of the bias signal to be outside a voltage or current NDR range exhibited by the MIT material to set the operational parameters of the latch. To hold the operational parameters of the latch, the regulator (103) may adjust the signal to be within the voltage or current NDR range such that an internal temperature of the MIT material is close to a transition phase temperature, where the MIT material transitions from one resistance phase to another resistance phase. Near or at the phase transition temperature, the MIT material possesses characteristics that allow the MIT material to exhibit properties of either resistance phase. Adjusting the voltage or current applied to the MIT material outside of the NDR range may move the internal temperature of the MIT material past the transition temperature and result in the MIT material transitioning to a different resistance phase.
The MIT material may exhibit either of two independent stable resistance phases on either side of the transition temperature. As described above, one phase may be a metal phase that exhibits a resistance similar to metals, while the other phase may be an insulator phase that exhibits a resistance similar to insulators. In a certain temperature window at the transition temperature, the material can exhibit properties of either the metal or insulator phases. These phases may be stable binary states that may be used in memory and/or digital devices. For example, the resistive phases may be used to correspond to binary information, such as 0 or 1. By holding the bias signal within either the voltage or current NDR range, less energy may be used when the bias signal is adjusted to transition the MIT material's phase. However, the phases are easily differentiated from one another even when the internal temperature is held at or near transition temperature.
In some examples, the latch includes a two-terminal device in a Goto pair, shift register, memory circuit, delay circuit, or combinations thereof. In some examples, the electrodes may also be arranged on a common substrate.
An example of an N-NDR characteristic is illustrated in a current voltage (IV) chart (200) of
The IV relationship within the NDR voltage range (205) may not be linear. As shown in the example of
Thus, the MIT material in the example of
Returning to
For example, the power source (105) may supply a voltage to the MIT material within either the low voltage region or the NDR voltage region, such as regions (203, 205) illustrated in the example of
In another example, the power source (105) may supply a current to the MIT material within either the low current region or the NDR current region, such as regions (306, 308) illustrated in the example of
The MIT material exhibits a thermal characteristic exhibited by abrupt changes in its resistance, leading to a metal to insulator phase transition at a certain temperature.
At the transition temperature (405) of
IV curve (604) is associated with an external temperature of 300 arbitrary units. IV curve (604) shows a low voltage range (609) with a positive differential resistance and an NDR voltage range (610) with a negative differential resistance. IV curve (604) also shows a threshold voltage (611) between the low voltage range (609) and the NDR voltage range (610).
IV curve (608) is associated with a higher external temperature of 340 arbitrary units. While power curve (608) exhibits a similar positive relationship between current and voltage at lower voltages, its low voltage range (612) is smaller than low voltage range (609). Further, the threshold voltage (613) associated with IV curve (608) is also lower. IV curves (605, 606, 607) exhibit similar trends along a continuum between IV curve (604) and IV curve (608).
In the example of
The internal temperature of the MIT material may be controlled through a voltage bias. The bias energy is converted to heat through Joule heating. The voltage bias may be adjusted to control the MIT material's internal temperature to setting or holding the resistance states of the latch.
In some examples, the latch may be a level sensitive latch that includes set and reset operations. The voltage or current may be varied to set or reset the latch. The voltage or current may be held at a level that causes MIT material's internal temperature to at or near the transition temperature to hold the latch in either the set or reset state.
In constant power mode, the MIT material may exhibit an IV relationship that approximates I=(TMIT−Tamb)/V*α, where I is current, V is voltage, TMIT is a transition temperature where the MIT material transitions from a metal phase to an insulator phase, Tamb is an ambient internal temperature, and α is the effective thermal resistance of the latch.
An example of S-NDR IV characteristics is illustrated in chart (700) of
IV curve (704) is associated with a temperature of 300 arbitrary units. IV curve (704) shows a low current range (706) where the differential resistance is positive. However, when the current reaches a threshold current (707), the voltage drops and as a consequence the latch exhibits its NDR behavior (708) due to the MIT material. At the NDR region, the material is undergoing an insulator-to-metal phase transition. As the current increases, (709), the differential resistance becomes positive again.
IV curve (705) is associated with an external temperature of 300 arbitrary units. IV curve (705) also shows a low current range (710) and an NDR range (711). However, low current range (710) is smaller than low current range (706). Thus, the threshold current (712) of IV curve (705) is lower than the threshold current (707) of IV curve (704).
The example of
The method may further include regulating the bias signal to apply a consistent bias. This regulation may cause a consistent current or a consistent voltage to be applied to the MIT material. For the N-NDR examples, the voltage of the bias signal may control the joule heating, while for the S-NDR examples, the current of the bias signal may control the joule heating.
In some examples, the voltage is increased in the bias signal to reach the threshold voltage. In alternative examples, the current in the bias signal is increased to the reach the threshold current.
In this example, the MIT material may exhibit a NDR characteristic similar to that described in relation to the example of
In the metallic phase, the MIT material may conduct the signal from the voltage source (901) to the first input (905) with little resistance, thus conducting a greater value of current. Since the second input (907) is grounded, the signal passing through the latch (903) may be amplified by the operational amplifier. The particular signal that is outputted from the amplifier (906) may correspond to binary information. The output (910) of the operational amplifier (910) may be in electrically communication with delay circuitry, memory circuitry, other latch circuitry, shift registers, Goto pairs, other circuitry, or combinations thereof.
To reset the output of the amplifier (906), the voltage signal may be adjusted to transition the phase of the MIT material to exhibit insulator properties. This may be accomplished by lowering the voltage such that the current generated in the signals drops below the current NDR range. Since the insulator phase still conducts a small current, transitioning to the insulator phase does not break the circuit. To hold the MIT material in the insulator phase, the signal may be adjusted again such that the current of the signal is within the current NDR range.
In the insulator phase, the MIT material may restrict the amount of current that is conducted through the latch (903). As a consequence, the signal that reaches the first input may be distinctly different than when the MIT material was in the metal phase. Thus, the amplifier's output may be distinctly identifiable and may represent a 0 or 1 in a binary code. Finally, the feedback resistor (909) sets the output voltage, which can be the input of another latch or any other circuitry.
In some examples, the latch may be used in compact applications because the phase transition characteristics of the MIT material are bulk properties that may be independent of the physical sizes of the latch's components. Thus, a latch, made in accordance with the principles described herein, may have a reduced size and enable a smaller footprint for associated circuitry.
In some examples, the latch's components may be placed on top of a complementary metal oxide semiconductor (CMOS) circuit or any electrically insulating substrate. In some examples, the MIT material may be deposited on a substrate through shadow masking or depositing a layer and etching a strip of MIT material.
In some examples, the MIT material may be a metal selected from a group consisting of niobium, titanium, tungsten, manganese, iron, vanadium, oxides thereof, nitrides thereof, doped alloys thereof, and combinations thereof. In some examples, the MIT material includes chromium doped vanadium oxide.
In some examples, the MIT material or other components of the latch may expand as their internal temperature increase, which may open gaps in the latch. These gaps may interfere with the electrical conductivity of the overall circuit, thereby, increasing the circuit's electrical resistance. In some examples, the gaps are molecular gaps formed in the MIT material. This volume characteristic may contribute, in part, to transitioning between metal and insulator phases.
In some examples, the transition characteristic of the MIT material is affected by how quickly the majority of the MIT material's volume transitions between phases. In some examples, the MIT material's volume may transition to another phase at an initial location and propagate from there. In alternative examples, the several discrete locations within the MIT material may independently transition to the other phase and propagate from each discrete location. Multiple initial phase transitions locations may result in a quicker overall transition such that the MIT material thereby exhibits a more abrupt transition between phases.
The preceding description has been presented only to illustrate and describe examples of the principles described. This description is not intended to be exhaustive or to limit these principles to any precise form disclosed. Many modifications and variations are possible in light of the above teaching.
This application is a Continuation-in-Part of co-pending International Patent Application No. PCT/US2011/058461 entitled “Metal-Insulator Phase Transition Flip-Flop” filed Oct. 28, 2011, herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3670313 | Beausoleil et al. | Jun 1972 | A |
3708690 | Paivinen | Jan 1973 | A |
3760382 | Itoh | Sep 1973 | A |
3797002 | Brown | Mar 1974 | A |
3893088 | Bell | Jul 1975 | A |
4037205 | Edelberg et al. | Jul 1977 | A |
4133043 | Hiroshima et al. | Jan 1979 | A |
4322635 | Redwine | Mar 1982 | A |
4845670 | Nishimoto et al. | Jul 1989 | A |
5153846 | Rao | Oct 1992 | A |
5504919 | Lee et al. | Apr 1996 | A |
5543748 | Ando | Aug 1996 | A |
5698997 | Williamson et al. | Dec 1997 | A |
5930323 | Tang et al. | Jul 1999 | A |
6061417 | Kelem | May 2000 | A |
6239638 | Masuda | May 2001 | B1 |
6362660 | Deng | Mar 2002 | B1 |
6745216 | Nakamura | Jun 2004 | B1 |
6834005 | Parkin | Dec 2004 | B1 |
7051153 | Lin et al. | May 2006 | B1 |
7508701 | Liang et al. | Mar 2009 | B1 |
7573310 | Yang et al. | Aug 2009 | B2 |
7608849 | Ino et al. | Oct 2009 | B2 |
7728327 | Kim et al. | Jun 2010 | B2 |
7791376 | Lim et al. | Sep 2010 | B2 |
7983068 | Ufert | Jul 2011 | B2 |
20020089024 | Iwata | Jul 2002 | A1 |
20050127524 | Sakamoto et al. | Jun 2005 | A1 |
20070080345 | Joo et al. | Apr 2007 | A1 |
20070165446 | Oliva et al. | Jul 2007 | A1 |
20070267627 | Joo et al. | Nov 2007 | A1 |
20090294869 | Chen | Dec 2009 | A1 |
20100193824 | Kim et al. | Aug 2010 | A1 |
20110106742 | Pino | May 2011 | A1 |
20120138885 | Wu et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
0827156 | Apr 1998 | EP |
5066921 | Sep 1993 | JP |
2005071500 | Mar 2005 | JP |
Entry |
---|
Chudnovskii, F.A. et al.; “Switching Phenomena in Chromium-doped Vanadium Sesquioxide”; (Research Paper); Journal of Applied Physics; Sep. 1, 1998; pp. 2643-2646; vol. 84; No. 5.; http://ieeexplore.ieee.org/xpl/freeabs—all.jsp?arnumber=5021804. |
Youn, D.H. et al.; “Observation of Abrupt Metallic Transitions in p-Type GaAs Devices and Comparison with Avalanche Breakdown in the InGaAs APD”; (Research Paper); Journal of the Korean Physical Society; Jul. 1, 2005, pp. 1-5; vol. 47; No. 1; http://www.kps.or.kr/home/kor/journal/library/downloadPdf.asp?articleuid=%7BF70AB715-2A31-4C44-A52D-733D0D21B25C%7D. |
Hikita, Y. et al.; “Negative Differential Resistance Induced by Mn Substitution at SrRuO3/Nb:SrTiO3 Schottky Interfaces”; (Research Paper); Journals of American Physical Society; Mar. 19, 2008; vol. 77; No. 20; http://prb.aps.org/abstract/PRB/v77/i20/e205330. |
Chen, F. et al.; “S-shaped Negative Differential Resistance Modeling in Electro-thermal Simulation of Phase-change Memory Programming”; (Research Paper); Non-Volatile Memory Technology Symposium; Nov. 10-13, 2007; pp. 67-70; Albuquerque; http://ieeexplore.ieee.org/xpl/freeabs—all.jsp?arnumber=4389949. |
Boriskov, P.P. et al.; “Metal-insulator Transition in Electric Field: a Viewpoint from the Switching Effect”; (Research Paper); Feb. 28, 2006; http://arxiv.org/pdf/condmat/0603132. |
Chen-Yi Lee et al., “High-Speed Median Filter Designs Using Shiftable Content-Addressable Memory,” IEEE Trans. Circuits and Systems for Video Tech., vol. 4, No. 6, Dec. 19. |
Chudnovskiy, F. et al., “Switching Device Based on First-order Metalinsulator Transition Induced by External Electric Field,” IEEE Future Trends in Microelectronics: the Nano. |
PCT Search Report, PCT/US2011/058461, May 31, 2012. |
Perez-Andrade, Roberto, et al., “A Versatile Linear Insertion Sorter Based on a FIFO Scheme,” IEEE Computer Society Annual Symposium on VLSI, 2008, pp. 357-362. |
Pickett et al., “Coexistence of Memristance and Negative Differential Resistance in a Nanoscale Metal-Oxide-Metal System,” IEEE Advanced Materials, 2011, pp. 23, 1730-1733. |
Number | Date | Country | |
---|---|---|---|
20130106480 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2011/058461 | Oct 2011 | US |
Child | 13362538 | US |