1. Technical Field
This disclosure relates generally to magnetic devices that utilize thin film magnetic layers, and more specifically, to methods for protecting such devices during processing.
2. Description of the Related Art
Many present day magnetic devices utilize thin film depositions in which magnetic thin films may have in-plane (plane of deposition) magnetization directions, out-of-plane (i.e., perpendicular to the film plane) magnetization directions, which is often referred to as perpendicular magnetic anisotropy (PMA) or even components in both of such directions. Such devices include, but are not limited to:
(1) various designs of magnetic random access memory (MRAM), e.g., PMA (or Partial-PMA) Spin-Torque MRAM in which such films can serve as pinned layers, reference layers, free layers, or dipole (offset-compensation) layers;
(2) various designs of PMA spin valves, tunnel valves (magnetic tunnel junctions—MTJs) and PMA media used in magnetic sensors and magnetic data storage, and;
(3) other spintronic devices.
In all of these magnetic thin film applications, there is the problem of preventing oxidation of the various metal layers during processing steps that are subsequent to the initial layer depositions and patterning. Often this problem is addressed by encapsulating the depositions with a thin layer of SiN which is an excellent oxidation preventative. Unfortunately, such a layer loses its integrity and/or becomes etched away during subsequent processing steps such as the metal etching processes required for bit line patterning. It would clearly be advantageous to provide a method of protecting thin film depositions from oxidation that would survive the rigors of subsequent processing steps.
Although others have addressed problems associated with the patterning of TJ cells and the incorporation of TJ cells in complex MRAM arrays, these attempts have not dealt with the specific problem of oxidation and its prevention. Gaidis et al. (U.S. Pat. No. 7,825,420), Kim et al. (U.S. Pat. No. 8,092,698) and Wang et al. (U.S. Pat. No. 7,723,128), each describe methods of forming MRAM arrays in which stresses are relieved. As noted, however, none of these methods address the present problem, nor do they utilize the present approach to solving that problem, which will now be described in detail.
A first object of the present disclosure is to provide a method of protecting magnetic thin film layered depositions from oxidation during processing steps.
A second object of the present disclosure is to provide such a method that is efficiently incorporated within standard thin film processing methodologies.
A third object of the present disclosure is to provide such a method that is applicable to a wide range of magnetic thin film depositions, including those used in:
(1) various designs of magnetic random access memory (MRAM), e.g., PMA (or Partial-PMA) Spin-Torque MRAM in which such films can serve as pinned layers, reference layers, free layers, or dipole (offset-compensation) layers;
(2) various designs of PMA spin valves, tunnel valves (magnetic tunnel junctions—MTJs) and PMA media used in magnetic sensors and magnetic data storage, and;
(3) other spintronic devices.
The present disclosure describes in detail how these objects are achieved, for example, in the case of the fabrication of a magnetic tunneling junction (TJ) thin film device. In this case, which may be considered as exemplary of the fabrication of other device structures, the protection is provided by means of a metal layer (overlayer) grown on top of a SiN encapsulated TJ thin film deposition. The metal layer protects the integrity of the oxidation-preventive SiN encapsulation layer during subsequent processing steps so that the oxidation protective role of the SiN layer remains continuously effective. The metal overlayer can be a layer of Ta, Al, TiN, TaN or W.
After metal etch and resist stripping (and other such process steps used in bit line patterning), the SiN encapsulation layer remains effectively protected under the metal overlayer that had been formed over it, even during the final step of nitride removal. We find, therefore, that the metal overlayer allows the integrity of the SiN encapsulation layer to be maintained during the subsequent processing steps as was desired. In addition, by means of a novel combination of plasma etching chemistries (Cl2, BCl3 and C2H4 for a rapid metal etch and a separate O2 etch for the photo-resist, both in the same chamber), we can obtain good etch selectivities of metal-to-resist and of metal-to-oxide during all process steps. With the combination of metal layer protection and SiN layers the functional properties of the final TJ structure were significantly improved.
a-1f is a sequence of schematic illustrations of the fabrication of an exemplary TJ thin layer deposition using a previous method.
a-2c is a sequence of schematic illustrations of the fabrication of an exemplary TJ thin layer deposition using the method of the present application.
The present disclosure provides a method for providing continued protection of a thin film deposition against oxidation, such as in protecting a tunneling magnetic junction (TJ) device, during subsequent processing steps. It is to be noted, however, that there is a great variety of thin film depositions that will also be afforded the desired protection using this method. Any deposition in which oxidation prevention layers, such as SiN layers, are applied to exposed surfaces of oxidation-prone layers, are subject to the possibility that the oxidation protection layer will itself be degraded during processing. The present method provides additional protection to the already present oxidation protection layer so that critical regions of that layer receive additional and continual protection.
Referring first to
The structure of
Referring next to
Referring now to
Finally,
We begin by preparing the fabrication of
Referring now to
Referring now to
Referring now to
Referring finally to
The process steps used to pattern the metal overlayer and then to etch the bit line trench opening while leaving the metal overlayer intact, are carried out in a single chamber and involve the patterning of the metal layer and the removal of the second SiN layer (70) by a combination of plasma chemistries comprising oxygen, Cl2, BCl3 and C2H4 at low pressures. These chemistries allow precise removal of the metal overlayer to create the proper width of the overlayer (sufficiently exceeding the critical width) and to strip away the resist mask used to pattern the metal overlayer. The chemistries are selective for rapid removal of the metal protective overlayer against the SiN encapsulation layer. A separate oxygen plasma etch, in the same chamber, is used to strip away the remaining photoresist of the photolithographic mask used for patterning the free layer, the oxygen etch being selective for the photoresist as against the magnetic free layer. The photo-resist stripping process provides very good selectivities over the metal and the oxide. The specific details of the plasma chemistries is not given herein beyond the mention of exemplary chemistries that fulfilled the desired selectivities.
As is finally understood by a person skilled in the art, the detailed description given above is illustrative of the present disclosure rather than limiting of the present disclosure. Revisions and modifications may be made to methods, materials, structures and dimensions employed in forming and providing an oxidation-protected encapsulated thin film structure further protected by an additional metal overlayer to maintain integrity of the encapsulation during subsequent processing steps, while still forming and providing such a structure in accord with the spirit and scope of the present invention as defined by the appended claims.