The present invention relates to a metallic surface of a body, particularly a contact region or a surface of a plug or a plug connection, of a detachable, especially a detachably lifted off or detachably sliding electrical contact element such as a relay or a switch, or an element for making electrical contact or electrical connection of component parts, a method for producing a structured metallic surface of a body as well as its use.
At the present time, in the automobile field, as surfaces for electrical contact elements and plugs, for example, tin surfaces are predominantly used, i.e. hot-dipped substrate or substrate having a galvanically deposited tin layer in a range of thickness of a few micrometers. In this context, tin stands out by its ductility as well as very good electrical conductivity.
As base material or substrate for electrical plug connectors or plugs having a surface tin layer, alloys are used as a rule, that are copper-based, such as bronze, so that an intermediate layer develops by diffusion at the boundary between the tin layer and the substrate, which is made up of an intermetallic compound, such as a compound of the composition CuSn3, Cu5Sn6. This is harder than the tin layer that is located over it and is able to grow too, depending on the temperature.
Finally, it is known that one may apply a layer made of so-called “Thermotin” onto plugs and/or plug contacts, i.e. a layer based on intermetallic phases with tin that has been created by hot exposure. Because of their low hardness and their low resistance to wear, as is well known, tin alloys, when subjected to frequently repeated plugging or vehicle-caused or engine-caused vibrations, tend to fraying as well as to intensified oxidation (friction oxidation), which, in the case of a motor vehicle may lead to the failure of a component, especially a sensor, a control unit or another type of electrical component.
In known surfaces of plug connections that are based on tin, it is also of disadvantage that the insertion forces that come about due to the great tendency to adhesion and plastic deformability are frequently very great.
The metallic surface of a body, according to the present invention, and the method, according to the present invention, for preparing a structured metallic surface of a body, has the advantage, compared to the related art, that an intermetallic compound is produced because of a heat input into locally specified regions of the surface of the metallic body, especially via a brief period of laser treatment, and there locally, above all via induced diffusion processes, whereby the structure of the metal that is present there changes at the same time, whereas in the surface regions that are at least to a great extent not exposed to the heat input, the formation of this intermetallic compound does not take place, at least to a great extent.
In this context, depending on the setting of the laser being used, both the depth of formation of the intermetallic compound and its lateral extension may be set in a defined manner to the microscopic plane. In addition, by the laser setting, the removal quantity or the evaporation in the region of the surface of the irradiated body can also be set, so that, in this fashion, a specified topography of the surface of the body, to which laser light is locally applied, is created.
In the case of the metallic surface of an electrical contact element such as a plug contact or a plug, it is also advantageous that the thickness of the intermetallic compound on the surface of the body, that forms because of the method according to the present invention, is essentially of the same order of magnitude as the typical thickness of a customary tin layer on a base body, such as a material that is based on copper.
Thus it is especially advantageous that, because of the method according to the present invention, a metallic surface having a layer at first made essentially of tin or containing tin is able to be provided on, for example, a base body made of copper or a copper-containing material, in a defined manner, region by region, with an intermetallic tin-copper compound, and then, into this intermetallic tin-copper compound, region by region, surface regions being embedded or sunk in, which, at least essentially, are made of pure tin or, compared to the regions in which the intermetallic tin-copper compound has formed, has at least to a great extent remained unchanged.
The combination, thus generated, of a region by region relatively hard intermetallic phase, present on the surface, and surface regions embedded or sunk therein, having ductile residual tin that has a high electrical conductivity, on the surface of the metallic body, fulfills in a particular manner the electrical properties demanded of wear-resistant metal surfaces, particularly tin surfaces, and furthermore, in the case of their use as plug contacts or plugs, lead to especially low plug-in forces.
Because of the preferably periodical surface topography of the metallic body, obtained according to the present invention, such as in the form of a mound-shaped or a wave-shaped surface topography, it is also of advantage that micro-motions of such a plug or plug contact are clearly reduced during vibrational stressing.
Besides that, it is advantageous in this connection if the surface regions created form an especially lattice-like and/or periodical pattern of islands or regions integrated into or embedded in the intermetallic compound, or a pattern of linear channels integrated into or embedded in the intermetallic compound, or a mixture of these patterns.
For the defined local and microscopic generation of the desired regions having the intermetallic compound and of the surface regions in the surface of the metallic body, advantageously a high power laser having sufficient coherence length and a post-connected imaging device is used, so that, by beam splitting, several, such as two or four coherent beam components are able to be generated which, by interference, make available locally periodical, sufficiently high laser intensities. The absorption of the local laser intensities then supplies, locally limited, the energy for a specified intermetallic phase formation and/or a local fusion right up to evaporation, and consequently the formation of the desired, especially periodic surface topography.
In this context, especially by a different number of coherent beam components and/or a different spatial interference angle between the beam components, in a very simple manner, one may generate or pattern out, for example, periodic dotted or lineal patterns such as “holes” or the above-mentioned “islands” or “channels” or other patterns largely at will, which are based on a periodic phase array and/or a periodic topography effect.
By the way, it is advantageous that the metallic surfaces of the body according to the present invention demonstrate a clear increase in hardness, confirmed by Nanointender measurements compared to their state before structuring, using the method according to the present invention.
By the use of pulsed high-energy lasers, such as Nd:YAG lasers, it is advantageously possible to make such a high power locally available that, using one “shot” having a duration of only some nanoseconds, a surface of typically 1 mm2 can be processed, so that the method according to the present invention is also suitable for mass production.
The lateral extension of surface regions 12′ according to
The thickness of the layer formed by intermetallic compound 11′ according to
In
Because of the local energy input of the laser, as shown in
By the way, it is clear that the method explained is suitable both for structuring metallic surfaces 5 and generally for structuring close to a surface or generating metallic structures. It is particularly suitable for the surface structuring of contact surfaces, especially for plugs, electrical contact elements, detachably removable electrical contact elements such as relays, detachably sliding electrical contact elements such as switches or other electrical connecting elements. It is also clear that surface regions 12′, in deviation from
By the way, it should be emphasized that, besides the metals Cu and Sn explained in exemplary fashion or alloys or intermetallic compounds with these metals, other metals such as Ag, Ni, Fe, Ru, Zr, Au or Al, as well as alloys or intermetallic compounds with these metals come into consideration as the material for intermetallic layer 11 or metallic layer 12.
Furthermore, in many cases it is expedient if, between substrate 10 and first intermetallic layer 11, there is at least one further intermediate layer, such as an adhesion layer, or a multi-layer system.
A laser beam 22 starts out from laser 21 according to
Number | Date | Country | Kind |
---|---|---|---|
101 46 274 | Sep 2001 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE02/03503 | 9/19/2002 | WO | 00 | 10/6/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/028159 | 4/3/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3629022 | Terry | Dec 1971 | A |
4233185 | Knapton et al. | Nov 1980 | A |
4608085 | Eudier et al. | Aug 1986 | A |
4693942 | Shimizu et al. | Sep 1987 | A |
4783384 | Van Beek et al. | Nov 1988 | A |
4975355 | Suzuki | Dec 1990 | A |
5300157 | Okabe et al. | Apr 1994 | A |
5916695 | Fister et al. | Jun 1999 | A |
6040067 | Sugawara et al. | Mar 2000 | A |
6096445 | Terakado et al. | Aug 2000 | A |
6332728 | Ito et al. | Dec 2001 | B1 |
6776726 | Sano | Aug 2004 | B1 |
20010012490 | Yamauchi | Aug 2001 | A1 |
20010019779 | Sakai et al. | Sep 2001 | A1 |
20020025448 | Yamaguchi | Feb 2002 | A1 |
Number | Date | Country |
---|---|---|
63-169352 | Jul 1988 | JP |
05-177548 | Jul 1993 | JP |
10 302 867 | Nov 1998 | JP |
Number | Date | Country | |
---|---|---|---|
20050048308 A1 | Mar 2005 | US |