Aspects of various embodiments are directed to apparatuses, systems, methods of use, methods of making, or materials, and involving polarimetry, optics, and/or light processing.
Using polarimetry as one such technology area for ease of discussion, it has been appreciated that a Mueller matrix of a sample fully describes the effect on the polarization state of light that passes through or reflects off the sample. These effects can take the form of properties such as birefringence, depolarization, or optical activity. The optical properties can be further interpreted as physical properties such as stress in plastic or glass for industrial metrology, scattering particles in air for environmental monitoring, or cancerous cells in tissue samples for medical imaging. As such the Mueller matrix is a powerful tool, but the information it contains comes at a high cost: sixteen independent measurements at every point are typically required to reconstruct the Mueller matrix of a sample. Traditional Mueller matrix polarimeters take these measurements sequentially through a set of rotating waveplates and often only at a single point, necessitating scanning over a sample to construct an image. Modern polarimeters often utilize some form of Fourier domain signal processing and fast polarization modulators to speed up the process. Even more advanced designs may possess either imaging or snapshot behavior.
While there have been numerous attempts to use these types of polarimeters in a variety of implementations, attempts in improving efficiencies of light processing have presented challenges for a variety of applications.
Various examples/embodiments presented in this disclosure are directed to issues such as those addressed above and/or others which may become apparent from the following description. For instance, certain exemplary aspects of the present disclosure are directed to overcoming such issues by using matrix-related polarimetry processing such as by use of a Mueller matrix and Mueller-like polarimeter which is capable of snapshot imaging. In certain more specific aspects according to the present disclosure, a methodology and structure is implemented in the form of a snapshot imaging Mueller polarimeter. Such a polarimeter may be advantageously used for instantaneously capturing the Mueller matrix across an entire sample, and/or to provide actual real-time access to the valuable information stored in the Mueller matrix with significant impacts in the above fields.
According to one type of specific example, the present disclosure is directed to methods and/or apparatus which involve using filtering optics to provide a set of filter-separated light beams respectively associated with different polarization states of polarized light directed towards a sample; and providing a set of sample-characterizing response data based on one or a combination of two or more factors from among the following: sets of polarization-state values, different wavelengths associated with the polarization states, and light-incidence angles characterizing separation of the different polarization states. A more specific example may involve image-capturing such incidence angles of light in real time via a single image capture.
Building on the above type of example, more-specific examples are directed to mathematical characterization of the response data. In one example, the matrix may involve the set of sample-characterizing response data being sufficient to compute or populate a mathematical matrix for light-response characterization of the sample in response to the at least one polarized light passing through and/or reflecting from the sample. In other such examples, the mathematical matrix is a Mueller matrix, and such methodology may further include computing the Mueller matrix across an entire image (and/or across the relevant aspects of the image), with the image being captured in response to using filtering optics such as metasurface polarization filtering to provide the set of filter-separated light beams. In another related example, the sets of polarization-state values may correspond to or are associated with Stokes vectors. Further, the filtering optics may include use of four polarization-selective metasurfaces adjacent to each other (e.g., on a single substrate), wherein each of the metasurfaces is sufficiently small that the at least one polarized light impinges on the all four polarization selective metasurfaces concurrently.
Other examples of the present disclosure are directed to an apparatus including filtering optics and a detector which cooperatively operate in a manner which is somewhat similar to the activities discussed above. The filtering optics is to provide, in response to at least one polarized light beam directed towards a sample, a set of filter-separated light beams respectively associated with different polarization states of the at least one light beam. The detector is to provide a set of sample-characterizing response data based on one or a combination of more than one of the above-discussed factors.
Further and as may be used in more specific examples, the apparatus may include one or more of the following: a light source as illumination for the at least one polarized light beam; a polarization-state generator to provide the at least one polarized light beam; a polarization-state generator (PSG) to provide the at least one polarized light beam, wherein the PSG includes a Fabry-Perot cavity to filter out desired wavelength channels from an output of a broadband light source as a light source for the at least one polarized light beam directed towards the sample; and a polarization-state generator (PSG) to provide the at least one polarized light beam, wherein the PSG includes four pairs of narrowband light sources, each pair respectively associated with a different set of polarization optics.
In such examples involving a PSG, the apparatus may include the PSG to provide the at least one polarized light beam, wherein the PSG includes an optical cavity to filter, by selection, a set of wavelength channels from an output of a broadband light source as a light source for multiple polarizations corresponding to the at least one polarized light beam directed towards the sample; and may further include optical elements, having a linear polarization filter and multi-order waveplates, to further process light in respective wavelength channels.
Yet further examples may involve characterizing a sample in response to polarized light directed towards the sample. In this context, such an apparatus and/or method involves a non-transitory data-storage medium including a set of sample-characterizing response data based on one, two or more of the above factors.
In certain related aspects, another set of data associated with a set of computer-directing instructions may also be included and used by a computer to compute or populate a mathematical matrix, based on the set of sample-characterizing response data, for light-response characterization of the sample in response to the at least one polarized light passing through and/or reflecting from the sample, wherein the non-transitory data-storage medium, the other set of data being in the non-transitory data-storage medium or another non-transitory data-storage medium, forms part of the apparatus.
Yet another aspect of the present disclosure is directed to a hyperspectral light-field detector configured to perform the task of decoding the information dense light beams. In one example, such a detector includes a diffraction grating mounted on top of a microlens array which is then mounted on top of an image sensor. Each microlens in the microlens array serves as a large pixel(s), with the entire array able to record an image, and under each microlens there are many pixels of the underlying image sensor which will record different aspects of the samples polarization state. The microlens array may serve as a light field camera, imaging the set of four apertures onto unique pixels under each microlens.
The above discussion is not intended to describe each aspect, embodiment or every implementation of the present disclosure. The figures and detailed description that follow also exemplify various embodiments.
Various example embodiments, including experimental examples, may be more completely understood in consideration of the following detailed description and in connection with the accompanying drawings, each in accordance with the present disclosure, in which:
While various exemplary embodiments disclosed herein are amenable to modifications and alternative forms, aspects thereof have been disclosed by way of example in the drawings and descriptive discussion. In this context, the term “example” as used throughout this application is only by way of illustration, and not limitation.
Aspects of the present disclosure are believed to be applicable to a variety of different types of apparatuses, systems and methods involving polarimetry, optics, and/or light processing, in which a light-characterizing mathematical matrix is acquired in a single shot. In accordance with certain example aspects of the present disclosure, an apparatus is used to for acquiring the matrix at all points on a given sample (e.g., to characterize the sample and/or its response via a single image capture) based on use of metasurface polarization optics and light-field (e.g., hyperspectral) imaging. While the following discussion refers to certain specific illustrations of optical systems and optical-related structures in connection with certain experimental and/or proof of concept example apparatuses as discussed and/or illustrated further below by use of a Mueller matrix, such discussion is for providing merely an exemplary context to help explain such aspects and the present disclosure is not necessarily so limited.
Accordingly, in the following description various specific details are set forth to describe specific examples presented herein. It should be apparent to one skilled in the art, however, that one or more other examples and/or variations of these examples may be practiced without all the specific details given below. In other instances, well known features have not been described in detail so as not to obscure the description of the examples herein. For ease of illustration, the same connotation and/or reference numerals may be used in different diagrams to refer to the same or similar elements (e.g., serving similar purposes and/or to depict additional instances of the same/similar element unless indicated otherwise); an example in this regard are the light sources of
Exemplary aspects of the present disclosure are related to methods and apparatuses involving use of filtering optics to provide a set of filter-separated light beams respectively associated with different polarization states of polarized light directed towards a sample; and providing a set of sample-characterizing response data based on one, two or more factors from among the following: sets of polarization-state values, different wavelengths associated with the polarization states, and light-incidence angles characterizing separation of the different polarization states. Advantageously and as useful for any of a variety of applications, more-specific example may involve image-capturing such incidence angles of light in real time via a single image capture.
Consistent with the above-discussed methods and apparatuses, further aspects of the present disclosure may relate to or build on such apparatuses (e.g., systems, devices, etc.) and/or methods. For example, in connection with the above-discussed type of apparatuses, a system may include a light source as illumination for the at least one polarized light beam and/or a polarization-state generator (PSG) to provide the polarized light beam or beams into different channels. Such a PSG may include an optical cavity to filter, by selection, a set of wavelength channels from an output of a broadband light source. The PSG may also be configured and/or used to provide the polarized light beams in sets of light beams, each of which has a different wavelength and a polarization associated with the different wavelength, and the polarized light output from the PSG may be characterized via a set of light beams, via Stokes vectors (e.g., four such vectors), and/or with polarizations to minimally optimize a mathematical matrix descriptive of all the Stokes vectors.
In a more specific example, a broadband light source may act as a light source for multiple polarizations corresponding to the polarized light directed towards the sample, and optical elements such as a linear polarization filter and multi-order waveplates may be included to further process light in respective wavelength channels. The multi-order waveplates may be configured to further process light in respective wavelength channels that are associated with respective polarization states of the polarized light, and the respective polarization states may be characterized in that in a Poincare sphere they form a tetrahedron.
As other optional, more-specific aspects building on the above discussion, such types of systems and methods may involve mathematical characterization of the response data. In one example, the matrix may involve the set of sample-characterizing response data being sufficient to compute or populate a mathematical matrix for light-response characterization of the sample in response to the at least one polarized light passing through and/or reflecting from the sample. In other such examples, the mathematical matrix is a Mueller matrix, and such methodology may further include computing the Mueller matrix across an entire image, with the image being captured in response to using filtering optics (e.g., metasurface polarization filtering to provide the set of filter-separated light beams). In another related example, the sets of polarization-state values may correspond to or are associated with Stokes vectors as noted above.
Further, the filtering optics may include use of four polarization-selective metasurfaces adjacent to each other (e.g., on a single substrate), wherein each of the metasurfaces is sufficiently small so that the at least one polarized light impinges on all of the four polarization selective metasurfaces concurrently.
As may be useful, for example, in connection with a system directed to or including a logic circuit (such a computer processor circuit or CPU), for characterizing a sample in response to polarized light directed towards the sample, the apparatus and/or method may involve or use a non-transitory data-storage medium including a set of sample-characterizing response data based on one, two or more of the above factors. Such a non-transitory data-storage medium may take many forms (e.g., memory internal to CPU, memory plugs, memory chips, etc.) as is typical in memory-storage systems, circuits and devices configured to store data for access (reads and/or writes) via a logic circuit. In connection with the above-discussed mathematical expressions and sample-characterizing response data, the logic circuit may be configured (or programmed) to compute and/or populate such a matrix.
Further, the non-transitory data-storage medium, implemented as one or multiple memories, may include another set of data associated with a set of computer-instructions (or computer directing instructions). Such a data set may be used by a computer in connection with a variety of data processing activities, such as, but not limited to, the mathematical characterizations of the response data noted above concerning a Mueller matrix, organizing the sample-responsive data, identifying a specific sample from the characterized data, etc.
Turning now to the drawing,
The detector 108 may be configured to provide a set of sample-characterizing-response data based on one, two or more factors associated with the processing by the filtering optics 104/106. In a specific approach, these factors may include: sets of polarization-state values respectively associated with the filter-separated ones of the different polarization states, different wavelengths associated with the different polarization states, and incidence angles of light arising or caused by further processing of the filter-separated ones of the different polarization states. With such a system's use of one or more of these factors, it is appreciated that in various embodiments, these components may contribute to developing one or more of the above-noted factors (e.g., sets of polarization-state values, wavelengths associated with the polarization states, and light-incidence angles characterizing separation of the different polarization states).
According to other exemplary aspects, the present disclosure is directed to any one or more components or parts (e.g., 104, 106 and/or 108) of the system of
The following is one of many specific examples provided in the above contexts illustrate such a system-applicable kit according to certain aspects of the present disclosure. In this example, the kit may have one or two device, one including logic (computationally-enabled/CPU) circuitry and another including a memory device. Such logic circuitry may be used for data processing and computation in processing a sample's optical response which, by use of the example shown in
According to example aspects and implementations consistent with the systems disclosed in connection with
As with the above discussion, according to yet other exemplary aspects, the present disclosure is directed to any one or more components or parts illustrated and/or discussed in connection with
In a specific example using either of the alternative systems of
In connection with one or more of the examples provided in connection with
Yet another an example implementation for a PSG has the PSG configured with a cavity to filter out desired wavelength channels from the output of a broadband light source.
According to another specific aspect of the present disclosure, the thickness of the waveplates 220 and 230 may be designed in such a manner to generate four polarization states that are well-spaced across a Poincare (or Poincare) sphere 400, which sphere is shown in
As discussed above, an alternative system implementation is specifically illustrated in
The transmitted or reflected light may then be passed through a polarizing metasurface aperture structure (e.g., as a form of a polarization state analyzer or PSA), and, in response, collected by an imaging lens (e.g., as part of a detector).
Relating to a figure of merit for describing performance of a detailed experimental metasurface structure in connection with such implementations according to the present disclosure,
In such implementations using such a metasurface-based structure, the metasurface structure may include and/or consist of (depending on the implementation) a nanostructured film on a transparent substrate. The nanostructures may include any or a combination of various geometries (such as bars, rectangular pillars, or freeform optimized structures) and the metasurface materials may be fabricated using dielectrics such as silicon, silicon nitride, or titanium dioxide, with metals such as gold, aluminum or silver, or various polymers. The substrate (e.g., 550 of
After detection, the image is de-mosaicked (unpacked) in order to reconstruct sixteen images that each represent a single measurement. Then, at each pixel, the Mueller matrix can be computed from the measured intensities. This set of inexpensive computations is then performed at each pixel to compute the Mueller matrix across the entire image.
Consistent with many of the above discussed aspects and also according to the present disclosure,
The light enters the imaging optics 160″ where a polarization state analyzer (PSA) 170″ is located. The PSA 170″ may include or provide sixteen different apertures, each producing a different output polarization state. In response to such processing by the PSA 170″, the light in these channels (each corresponding to one of the sixteen different output polarization states) hit the hyperspectral light-field detector 180″ (aka camera or image sensor), which analyzes and decodes the information similar to the previous discussion.
Accordingly, advantages of this configuration include, among others, that in the apparatus or system of
As realized in an experimental application of the polarimetry system of
Further in connection with this experimental application, the image sensor produces a raw image output such as shown in
In connection with more specific details, the system of
In other examples, one or more of the above-described aspects of the present disclosure involve use of such a (Mueller) matrix based polarimetry with aspects known from related applications in one or more disciplines. As one example, in industrial settings, the above-described aspects employ Mueller matrices to allow for detection of stresses and defects in materials. In other examples, examples of the present disclosure involve methods and instruments (e.g., using the optical and circuitry-based aspects and procedures as above) for multi-wavelength operation and object characterizations; for example, such examples according to the include imaging ellipsometry in which snapshot images are used to measure a change of polarization upon reflection or transmission relative to a certain object (e.g., cell or material) for comparing it to an object-characterizing model showing corresponding attributes and/or properties manifested by similar objects, for example, in terms of composition, roughness, thickness, crystalline nature, doping concentration, electrical conductivity, and importantly the optical response of incident radiation that interacts with the object. Within medical settings, numerous studies have explored the potential for imaging Mueller matrix polarimetry to help diagnose diseases such as cancer or Alzheimer's disease, and more generally obtaining measurements on unstable liquid surfaces and microscopic imaging such as in biology and medicine where biologic samples whether in the lab or ex vivo, or in vitro. In yet further examples, such aspects of the present disclosure are directed to rapid snapshot imaging Mueller polarimeter for these and other uses in medical research and clinical settings for real-time diagnostics. Further discussion of advantages and improvements over existing methods, devices or materials follow.
Many of the above systems and methods, as disclosed in accordance with the present disclosure, permit but do not require more complex aspects such as: optical setups to perform imaging Mueller-matrix related polarimetry for measurements which are time sequential (i.e., multiple measurements made in sequence to obtain response characterization data); and spatial Fourier domain processing (which is prohibitively slow for many applications requiring high speed processing). Moreover, such complex aspects (e.g., Fourier domain imaging) necessitate redundant information captured on the image sensor, which may significantly reduce the efficiency of the design.
Further, and in accordance with the present disclosure, many of the above-disclosed systems and methods may use only a simple matrix multiplication to compute the Mueller matrix, and may additionally use microlenses which concentrate light, rather than spreading it, to increase the signal to noise ratio of the measurement. From a commercial perspective, Mueller polarimeters may be custom built or acquired such as from Hinds Instruments (e.g., Exicor 150XT is a commercially-available single-point Mueller polarimeter utilizing photoelastic modulators to capture the Mueller matrix). While the measurement of each individual point is relatively fast due to the high-speed nature of the photo-elastic modulators, the beam is to be scanned across the sample making measurements of images very slow.
Other examples of the present disclosure may involve the above-described aspects used in combination with certain of the tools and processes, as would be recognized by the skilled artisan, disclosed previously in publications such as U.S. patent-related documents identified by U.S. Pat. Nos. 4,306,809, 6,175,412, and Publication No. 2011/0205539.
Consistent with the above aspects, certain apparatuses and methods according to the present disclosure may involve aspects disclosed in U.S. Provisional, Application Ser. No. 63/108,164 filed on Oct. 30, 2020 (STFD.424P1), to which priority is claimed. For further information regarding examples and construction details for implementing the above-discussed metasurfaces and/or metasurface-aperture structures (e.g., as in connection with
Exemplary aspects, systems and applications disclosed herein may be implemented alone and/or in combination connection with one or more other aspects such as other example aspects disclosed herewith. The skilled artisan would appreciate that further information regarding such applications, terminology and the like may be found in the literature (e.g., as disclosed in connection with the above-reference U.S. Provisional Application). As examples, uses and applications of the above aspects of the present disclosure may be gleaned with reference to the articles identified and attached as part of the above-noted U.S. Provisional Application and its Appendices which are respectively entitled: “Near infra-red Mueller matrix imaging system and application to retardance imaging of strain”; “Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films”; “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues”; and “High-efficiency, large-area, topology-optimized metasurfaces” (e.g., also showing how topology-optimized metasurfaces may be constructed and used in combination with the above-described aspects of the present disclosure).
It is recognized and appreciated that as specific examples, the above-characterized figures and discussion are provided to help illustrate certain aspects (and advantages in some instances) which may be used in the manufacture of such structures and devices. These structures and devices include the exemplary structures and devices described in connection with each of the figures as well as other devices, as each such described embodiment has one or more related aspects which may be modified and/or combined with the other such devices and examples as described hereinabove may also be found in the Appendices which form part of the above-referenced Provisional.
The skilled artisan would also recognize various terminology as used in the present disclosure by way of their plain meaning. As examples, the Specification may describe and/or illustrates aspects useful for implementing the examples by way of various materials/circuits which may be illustrated as or using terms such as layers, blocks, modules, device, system, unit, controller, and/or other circuit-type depictions. Also, in connection with such descriptions, the terms “optics” and/or “optical element(s)” refers to or includes any of a variety of different types of light-manipulating structures, examples of which are discussed and/or illustrated in connection with the above examples (such as in FIGs, 1A, 1B, 1C and 10A); other examples of optical elements include metasurfaces, Metastructitres, faceplates, lenses, prisms, mirrors, and parts of or the whole of optical scope systems, and optical fiber systems. Such materials (including portions of certain structures and/or layered structure) and/or related circuitry may be used together with other elements to exemplify how certain examples may be carried out in the form or structures, steps, functions, operations, activities, etc. It would also be appreciated that terms to exemplify orientation, such as upper/lower, left/right, top/bottom and above/below, may be used herein to refer to relative positions of elements as shown in the figures. It should be understood that the terminology is used for notational convenience only and that in actual use the disclosed structures may be oriented different from the orientation shown in the figures. Thus, the terms should not be construed in a limiting manner.
Based upon the above discussion and illustrations, those skilled in the art will readily recognize that various modifications and changes may be made to the various embodiments without strictly following the exemplary embodiments and applications illustrated and described herein. For example, methods as exemplified in the Figures may involve steps carried out in various orders, with one or more aspects of the embodiments herein retained, or may involve fewer or more steps. Further, while the above discussion refers to certain exemplary optical-related systems and structures in connection with experimental and/or proof of concept apparatuses by use of a mathematical (Mueller-like) matrix, variations of such systems and aspects may include use of another type of scattering matrix (modifications of the Mueller and Jones matrices, and/or other matrices that may multiply Stokes vectors) and/or involving procurement of one or more less-than-comprehensive representation of the polarization-related properties associated with a sample under evaluation or test. As more specific examples, it may not be necessary to illuminate the entire sample and/or homogenize all the illumination directed to the sample, and for characterizing a sample's response certain implementations may modify the optics such that not all of the information is processed or available as described in connection with one or more of the above example embodiments. Such modifications do not depart from the true spirit and scope of various aspects of the disclosure, including aspects set forth in the claims.
This invention was made with Government support under contract FA9550-18-1-0070 awarded by the Air Force Office of Scientific Research and under contract N00014-20-1-2105 awarded by the Office of Naval Research. The Government has certain rights in the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/057301 | 10/29/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63108164 | Oct 2020 | US |